ON THE ZEROS OF INFINITELY DIVISIBLE DENSITIES

By F. W. STEUTEL

The University of Texas¹

1. Introduction. Making use of a representation theorem for infinitely divisible (inf div) distributions on the nonnegative integers, which is implicit in [3], and its continuous analogue, which is implicit in [5], some properties are proved regarding the zeros of inf div probability density functions (pdf's) on $[0, \infty)$, both in the discrete and in the continuous case.

2. Representation theorems.

THEOREM 1. A probability distribution $\{p_n\}$ on the nonnegative integers, with $p_0 > 0$, is inf div if and only if

(1)
$$np_n = \sum_{j=0}^{n-1} p_j q_{n-j-1},$$

where the q's satisfy,

(2)
$$q_j \ge 0 \ (j = 0, 1, 2, \cdots); \qquad \sum_{j=1}^{\infty} j^{-1} q_j < \infty.$$

PROOF. From Feller [1] (page 270 seq.) one easily obtains, that $\{p_n\}$ is inf div if and only if its generating function (pgf) P(z) is of the form

$$P(z) = \exp\{-\lambda(1 - R(z))\}\$$
 $(|z| \le 1),$

where $\lambda > 0$ and R(z) is the pgf of some distribution $\{r_n\}$ on the nonnegative integers. Equivalently we have, taking logarithmic derivatives,

$$P'(z) = P(z)Q(z) \qquad (|z| < 1),$$

where $Q(z) = \lambda R'(z)$.

Again equivalently,

$$np_n = \sum_{j=0}^{n-1} p_j q_{n-j},$$

where
$$q_n = \lambda(n+1)r_{n+1}$$
, with $\sum_{1}^{\infty} (n+1)^{-1} q_n = \lambda(1-r_0)$.

In the same way for general distributions on $[0, \infty)$ we have

THEOREM 2. A distribution function (df) F(x) on $[0, \infty)$ is inf div if and only if it satisfies

(3)
$$\int_0^x u dF(u) = \int_0^x F(x-u) dP(u),$$

where P is non-decreasing, and

$$\int_1^\infty x^{-1} dP(x) < \infty.$$

Received November 3, 1969; revised October 12, 1970.

812

¹ Now at Twente Institute of Technology, Enschede, Netherlands.

PROOF. According to Feller [2] the Laplace transform $\tilde{F}(\tau)$ of a df on $[0, \infty)$ is inf div if and only if

$$\tilde{F}(\tau) = \exp \left\{ -\int_0^\infty x^{-1} (1 - e^{-\tau x}) dP(x) \right\},\,$$

where P is non-decreasing and satisfies (4). Taking logarithmic derivatives and using the convolution theorem yields (3), as we have

$$-d\tilde{F}(\tau)/d\tau = \int_0^\infty x e^{-\tau x} dF(x).$$

COROLLARY. The pdf f(x) of a distribution on $[0, \infty)$ is inf div if and only if

(5)
$$xf(x) = \int_0^x f(x-u) dP(u),$$

where P is non-decreasing and satisfies (4).

PROOF. This follows by writing $F(u) = \int_0^u f(t) dt$ and changing the order of integration in (3).

3. Zeros of discrete distributions.

LEMMA 1. If $\{p_n\}$ is an inf div distribution on the nonnegative integers, with $p_0 > 0$, then

PROOF. $(a+b)p_{a+b} \ge p_a q_{b-1} > 0$, hence $p_{a+b} > 0$.

THEOREM 3. If $\{p_n\}$ is an inf div distribution on the nonnegative integers, with $p_0 > 0$, then

$$\left. \begin{array}{l} p_a > 0 \\ p_b > 0 \end{array} \right\} \rightarrow p_{a+b} > 0.$$

PROOF. As $bp_b = \sum_{j=0}^{b-1} p_j q_{b-j-1}$, there is a j_0 , with $0 \le j_0 < b$, such that $p_{j_0} > 0$ and $q_{b-j_0-1} > 0$. It follows by Lemma 1 that $p_{a+b-j_0} > 0$. There are two possibilities.

Case 1. $q_{i_0-1} > 0$ and hence by (6), $p_{a+b} > 0$.

Case 2. $q_{j_0-1} = 0$. Then, as $p_{j_0} > 0$, there is a j_1 , with $0 \le j_1 < j_0$, such that $p_{j_1} > 0$ and $q_{j_0-j_1-1} > 0$. It follows that $p_{a+b-j_1} > 0$. Again there are two cases.

Case 2.1. $q_{j_1-1} > 0$ and hence by (6) $p_{a+b} > 0$.

Case 2.2. $q_{j_1-1}=0$. Then, as $p_{j_1}>0$, there is a j_2 , with $0 \le j_2 < j_1$, such that $p_{j_2}>0$ and $q_{j_1-j_2-1}>0$. It follows that $p_{a+b-j_2}>0$.

Proceeding in this way, in a finite number of steps we reach the situation that $p_{a+b-j_m} > 0$, and $q_{j_{m-1}} > 0$ or $j_m = 0$. Hence $p_{a+b} > 0$.

COROLLARY. If $\{p_n\}$ is an inf div distribution on the nonnegative integers, $p_0 > 0$, then $p_1 > 0 \rightarrow p_k > 0$ $(k = 0, 1, 2, \cdots)$.

REMARK. Theorem 3 can also be proved by direct application of the definition of infinite divisibility, without use of Theorem 1.

4. Zeros of densities.

THEOREM 4. If f(x) is a continuous and inf div density on $(0, \infty)$, then

$$f(x_0) = 0 \to \{ f(x) = 0 \mid (x \le x_0) \}.$$

PROOF. It is no restriction (this can be achieved by a shift) to assume that for every $\delta > 0$ there is an $x_1 < \delta$ such that $f(x_1) > 0$. We now have to prove that f(x) has no zeros in $(0, \infty)$. Suppose, therefore, that $f(x_1) > 0$ and $f(x_0') = 0$ with $x_0' > x_1$. Then by the continuity of f(x) there is a smallest number x_0 satisfying $x_0 > x_1$ and $f(x_0) = 0$. By (5) we have

$$0 = x_0 f(x_0) = \int_0^{x_0} f(x_0 - u) dP(u).$$

As f(x) > 0 for all x with $x_1 \le x < x_0$, it follows that $\int_{0^+}^{x_0 - x_1} dP(u) = 0$, and hence that $\int_{0^+}^{x_0 + x_0} f(x - u) dP(u) = 0$ for all $x < x_0 - x_1$. Therefore, by (5), xf(x) = f(x)P(0) for all $x < x_0 - x_1$. It follows from the continuity of f that f(x) = 0 for all $x < x_0 - x_1$. As this contradicts our assumption, it follows that x_0 does not exist and that $f(x) \ne 0$ for x > 0. This proves the theorem.

COROLLARY. An inf div pdf on $(0, \infty)$, which is continuous on $(0, \infty)$ and positive on $(0, \delta)$ for some $\delta > 0$, has no zeros on the positive half-line.

It does not seem easy to extend the argument of Theorem 4 to pdf's on $(-\infty, \infty)$: if $\phi(t)$ is the characteristic function (ch.f.) of a pdf f(x), having a representation of the form

$$\phi(t) = \exp \int_{-\infty}^{\infty} (e^{itx} - 1) d\theta(x),$$

where θ is non-decreasing, then the analogue of (5) becomes (if differentiation is possible)

$$xf(x) = \int_{-\infty}^{\infty} f(x - u)u \ d\theta(u),$$

where however $u d\theta(u)$ is not a measure. Theorem 4 provides a generalization of the Corollary to Theorem in [4], if ϕ is the ch.f. of a pdf on $(0, \infty)$ and if ϕ is not integrable.

5. Examples. Examples of pdf's which are not inf div by the Corollary to Theorem 4 are

1.
$$f(x) = 6(e^{-x} - 2e^{-2x})^2$$
 (cf. [6]).

2.
$$f_{\alpha}(x) = 1/24 \exp(-x^{\frac{1}{4}})(1 - \alpha \sin x^{\frac{1}{4}})$$
 for $\alpha = 1$.

 $f_0(x)$ is inf div (see [5]). It follows from the closure property of inf div distributions, that f_{α} cannot be inf div for all α , with $0 \le \alpha < 1$, as this would imply that $f_1(x)$ is inf div. The pdf f_{α} has the same moments for all α (cf. [2], page 224).

From the representation theorems it easily follows that Const. $\{q^n p_n\}$ is inf div if $\{p_n\}$ is inf div. In the same way if f(x) is inf div, then Const. $e^{-\lambda x} f(x)$ is inf div.

REFERENCES

- [1] Feller, W. (1957). An Introduction to Probability Theory and Its Applications 1 (2nd ed.). Wiley, New York.
- [2] Feller, W. (1966). An Introduction to Probability Theory and Its Applications 2. Wiley, New York.
- [3] KATTI, S. K. (1967). Infinite divisibility of integer valued random variables. *Ann. Math. Statist.* 38 1306–1308.
- [4] SHARP, M. (1969). Zeros of infinitely divisible densities. Ann. Math. Statist. 40 1503-1505.
- [5] STEUTEL, F. W. (1969). A moment criterion for infinite divisibility. Mathematical Communications, Twente Institute of Technology, 4, No. 1.
- [6] Steutel, F. W. (1967). Note on the infinite divisibility of exponential mixtures. *Ann. Math. Statist.* 38 1303–1305.