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AN ITERATED LOGARITHM THEOREM FOR SOME WEIGHTED
AVERAGES OF INDEPENDENT RANDOM VARIABLES'

By R. JAMES TOMKINS

University of Saskatchewan, Regina

1. Introduction. In [1] Gaposhkin proved that, if X;, X,, --- is a sequence of
uniformly bounded, independent random variables (rv’s), each with mean zero and
variance one, then, for any a > 0

2i=1(L=k/n)* X,
(2nloglogn)*

lim sup,_ o =(u+1)"*ae.

The purpose of this note is to present the following extension and generalization
of Gaposhkin’s result:

THEOREM. Let X, X,, -+ be a sequence of independent random variables. Suppose
that there exists a sequence of positive numbers c, = o((log log n)™*) and a number
N > 0 such that, if n = N then

M exp {(*/2n)(1=|t]e,)} < Eexp {tX,/n*} < exp {(£*/2n)(1 +|t]c,/2)}
for all m £ n, provided ,t|c,, <1
Let f be a real-valued function which is continuous on [0, 1], and define
S, =Y r=1f(k/n)X,. Then
2) lim sup, ., (2n loglogn)™%S, 2 || /|| a.e.

where || /]| = (Jo/?(x)dx)*.

Furthermore, any of the following conditions is sufficient to ensure that equality
holdsin (2):

(i) f'is a polynomial:

(ii) f'is an absolutely continuous or monotone function which can be written as
a power series f(x) =Y oax* on [0,1] where limsup |a,|'" = 1,Y|a,| <
0, ya, = f(1) = 0.

(iii) f has a power series representation with radius of convergence greater than 1.

REMARK. Some results of a similar type have been obtained for independent,
identically distributed random variables by Strassen [4].
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2. Outline of the proof. The proof of the theorem, for the most part, is similar
to the proof of Gaposhkin’s theorem. As in most iterated logarithm results, the
basic technique used in the proof is the method discovered by Kolmogorov (see [2]
or page 260 [3]). In order to apply that technique, the following ‘‘exponential
bounds’’ are required:

LEMMA. Let S be an rv and let ¢ > 0.

(i) If Ee' < exp {(t*/2)(1 +1¢/2)} for some ¢ > 0 and all 0 < tc < 1, then
P[S > ¢] < exp {(—€*/2)(1—ec/2)} if ec £ 1 and P[S > €] < exp {—¢[(4c)} if
ec > 1;

(i) If exp {(t*[2)(1 —tc)} £ Ee'S < exp {(t*/2)(1+1¢[2)} for some ¢ > O and all
0 £ tc £ 1, then, for any given y > 0, there exist numbers ¢, > 0 and no > 0 (both
depending on y) such that P[S > &) > exp {(—¢&*/2)(1+7)} whenever ¢ > ¢, and
e < Hg-

This lemma can be proved in the same manner as Kolmogorov’s exponential
bounds are demonstrated. The proof is detailed in [5], but need not be reproduced
here.

It should be pointed out, before proceeding further, that EX, = 0 and
EX,? = 1, for every n. To derive these facts it suffices to write the terms of (1) as
Taylor series for ¢ > 0, cancel the first terms, divide throughout by ¢ (or r2,
respectively) and let ¢+ | O.

There is no loss of generality in assuming that H f H = 1. Then, using the lemma
and the fact that ES,2 = Y% _,f*(m/n) ~ n||f]| = n, the inequality (2) can be
obtained in a manner similar to that used by Gaposhkin.

Proving that equality holds in (2) when f is a polynomial (Condition (i)) also
can be accomplished following Gaposhkin, although some extra computations are
required to establish Gaposhkin’s inequality (24). One would need to know,
too, that, for any j = 0,lim sup,_, ,, n; ‘(2nog logn,) " # Y7 KX, < (2j+1)"* < 1
a.e. where n, is the integral part of ¢** for some appropriately chosen ¢ > 1;
this statement can be proved in the same manner as Kolmogorov’s Law of the
Iterated Logarithm with the help of our lemma; details appear in [5].

At this juncture, however, Gaposhkin’s procedure breaks down in part,
necessitating a new approach. We shall now demonstrate that (2) holds with
equality under either (ii) or (iii).

Suppose that (ii) holds with f absolutely continuous or that (iii) holds (in which
case fis also absolutely continuous and Zlakl < ). Let ¢ > 0. Then there exists a
& > 0 such that, for any finite number of disjoint intervals in [0, 1], (say (a,, b,),

n=12--N),
n=1|f(b)—f(a,)| <e2 if Y., (by—a,) <0
Choose ¢ > 1 so close to 1 that
(3) <2, c—1<¢4, (¢*—~1)c"?<4/2 and ,
Y olaj(c? —1)e™ < gf2.
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For each k = 1, define n, to be the integral part of c*; note that n,_, < n,

for all sufficiently large k, say, k = kq, and thatn, ~ c2*.
In view of (3), then, 1 —n,_,/n, < o for all large k so thatifn,_, < n < n,, then

1—(m_1+1)/n < 6.
By absolute continuity, then,
mme_+1 | f(m[n)=f((m+1)[n)| < g/2.

A similar, but simpler, argument would establish this inequality under condition

(ii), where fis monotone.
Now define 5,2 = ES,? and 1,2 = 2loglogs,?, for n = 1, and, for k = k,,

R, = max,.k_,<,.§,.,<(S,.tn)_lisn"‘snk-xi’
Rk(l) =maX,,  <n<n, (Sntn)_1 |Z;k=—i {f(m/n) —f(m/nk“‘)}XmL and
Ry = may, _, <ngm, (5ota) ™ [T 1/ (/M) X, -
In addition, we define S, = X, .+ +X,, fork 2 koand n,_; <n =< n.
Then, Yr . s 1/ (M/N)X 0 =Y men_,+1 L (mn)=f(m+1)/n)}S,* +£(1)S,®.
Rk(z) = (8/2+ If(l))l MaXy, _\<ngm ISﬂ(k)l/(s"t”)’
and lim supy, o, R < | f(1)] +¢/2

in view of Kolmogorov’s Theorem.
Then, proceeding exactly in accordance with Gaposhkin’s handling of R,
with the use of the relations in (3), one discovers that lim sup R‘? < ¢/2 and,

therefore, lim sup R, < e+ A(1)].
It is easily established that lim sup,._,, S, /(S,t,) = 1 so that it follows, since
5,2 ~ n, that

@ lim sup,_,,, S,/(2n loglog m)* < 1+|f(1)| a.e.

If (ii) holds, the proof is finished. Under (iii), the radius of convergence of the
power series is greater than 1 so that ) @,x* is uniformly convergent on [0, 1].

For each m 2 0, define g,,(x) =Y 7o a,;x’, h,(x) =f(x)—gn(x). Since g,, > f
uniformly in x as m — o0, itis clear that

lgml| = ||/l =1 and ||h,|| >0 as m— oo.

Noting that g,, is a polynomial and 4, is a power series we apply (4) and the
fact that equality holds in (2) under condition (i) to find that, for allm = 0,

limsup,_, , S,/(2n loglog n)?*
< limsup, ., (2nloglogn) ¥ Y %_; g.(k/n)X,
+limsup,_, , (2nloglogn)~*-3%_, h,(k/n)X,
< G| || - (1 |BaD))) 2
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But 1im,,_, o, (|| @] |+ |[f1m]| - (1 +]2(D]) = 1. So,
lim sup,_, ., 2nloglogn)™ %S, < 1 ae.

3. Consequences and remarks. In view of the complexity of the conditions
placed on the random variables in the theorem, it might be useful to indicate some
special cases. (1) holds under any of the following circumstances, provided
EX,=0and EX,> = 1:

(a) each X, has normal N(0, 1) distribution.

(b) for some sequence 0 < a, = o(n*(loglogn)™%),and alln = 1, |X,| < a,a..
(c) the X,’s are uniformly bounded.

(d) each X, has Laplace distribution.

(a) is obvious while (c) is a consequence of (b). (b) implies (1) if one uses the
argument on page 255 of [3] with ¢, = a,n” *(log log n)*. Details of (d) are given
in[5].

That Gaposhkin’s result is a consequence of our theorem is clear, since
f(x) = (1-x)%, a > 0 satisfies condition (ii) of the theorem; in fact, we have shown
that the Gaposhkin theorem remains valid for a wider class of random variables.

REMARK. It follows from the First Weierstrass Theorem that if fis continuous
on [0, 1], then fis approached uniformly be a sequence of polynomials. It is then
plausible that (2) should hold with equality for any continuous function, since it is
true for polynomials. The author has been unable to establish the conjecture.
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