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1. Introduction. This note deals with a point arising from the recently published
paper of Hanurav (1968). Defining the notion of hyperadmissibility for estimators
for finite populations, Hanurav proves that (i) if the sampling design is a non-
unicluster design, then the Horvitz Thomson estimator (H-T estimator for short)
for the population total is the unique unbiased and hyperadmissible estimator,
in the class of all polynomial estimators; he further claims to prove that (ii) if the
sampling design is a unicluster design there is always a class of unbiased hyper-
admissible estimators. Hanurav has also expressed the conjecture that his result
(i) is probably true for the entire class of unbiased estimators of the population
total.

We show that (ii) is false; for any unicluster design which has three or more
clusters, the H-T estimator is the unique hyperadmissible estimator. Thus for
obtaining a unique hyperadmissible estimator, the restraint on the sampling
design of non-uniclusterness is not the correct one. A revised condition if formulated,
and it is shown that if the sampling design satisfies this revised condition, then the
H-T estimator is (as conjectured by Hanurav), the unique hyperadmissible
estimator in the entire class of all unbiased estimators of the population total.

The revised restraint on the sampling design is a mild one, which would be
satisfied for most designs—whether unicluster or non-unicluster—met with in
practical work. For the remaining cases of non-unicluster designs, which do not
satisfy the revised condition, Hanurav’s result (i) continues to apply, but even in
these cases, the restriction to polynomial estimators is unnecessary, and the result
remains valid if the class of estimators is restricted only by requiring that the
estimators should be continuous functions of the variate values at the single point
at which all the variate values vanish.

2. Notation. For convenience we use the same notation and definitions as
Hanurav. For ready reference the notation and the relevant definitions are briefly
reproduced here. The population % consists of distinct units U,, U,, ---, Uy.
A sample s is a finite, ordered, sequence of units, not necessarily distinct, drawn
from %. S is the set of all possible samples s. A sampling design P (or more briefly
a design) is determined by defining a proba’bility Pon S. P, denotes the probability
of the sample s when the sampling design is P. % is a real variable defined on
which takes the value Y;on U;,i = 1, 2, ---, N. Y denotes the population total of the
% -values, i.e.

(1) Y=y,
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HYPERADMISSIBILITY OF ESTIMATORS 681

Y =(Y,,7Y,, -, Yy)is a vector in the N-dimensional space Ry. An estimator T
is a real function defined on S x Ry, such that for each s € S, the value of 7" depends
on Y through only those Y;, for which the unit U; occurs in the sample (sequence) s.

i € s means that the unit U; occurs at least once in the sample 5. ) ;., denotes
that the sum is taken over the distinct units U; which occur in s, i.e. each unit is
taken only once whether it occurs once or more often in the sample (sequence) s.
Similarly Y ,; denotes a sum taken over the samples s, in which the unit U; occurs,
the sample s being taken once only irrespective of the number of times, the unit
U; occurs in s. With this notation the inclusion probability =n; of the unit U;, is
given by

(2) n; = ZssiPs‘

A *(P) denotes the class of all unbiased estimators of the population total Y,
which for each s € S, are polynomials in Y.

3. Unicluster designs. A pair of samples s, and s, are said to be disjoint if the set
of distinct units which occur in s, is disjoint from the set of distinct units which
occur in s,. A pair of samples s, and s, are said to be effectively equivalent, in
symbols s; ~ s,, if the set of distinct units which occur in s,, is identical with the
set of distinct units which occur in s,. For a given sampling design P, we denote
by S the subset of S consisting of all those samples s for which P, > 0. A sampling
design P is said to be a unicluster design if for every pair of samples (sequences)
51, 55 € S, 5, and s, are either disjoint or effectively equivalent. For such sampling
designs, Hanurav’s theorem is as follows:

THEOREM 5.1 OF [1]. If the unicluster design is such that
3) 0<my, i=1,2,---, N,

then any estimator T € M *(P) is admissible, iff, T is of the form

(41) T = {T(Y),seS,YeRy}

and for s€ S,

(4ii) T(Y) = K+ Yics Yilm;

where K are constants (i.e. independent of 'Y) satisfying,

(51) K, =K, if s ~8,, and
(5ii) Y5 PK, = 0.

Further every T satisfying (4) and (5) is h-admissible (short for hyperadmissible).

(Note. (3) is obviously a necessary condition in order that unbiased estimation of
Y should be possible at all.)
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It is the further part of this theorem which is not valid as is shown in the Remark
below Example 5.1 in this paper. This is an immediate consequence of the main
Theorem 4.1 proved in the next section.

4. Revised restriction on the sampling design. The H-T estimator is given by

(6) }A,HT = Zies Yi/n;,

the sum in (6) being taken over the distinct units which occur in s. We shall show
that the uniqueness of ¥, does not depend on whether the design is unicluster or
not but.the uniqueness is secured instead by a different condition on P. For each
i,i=1,2,---, N, let §; denote the subset of S consisting of all those samples s,
in which the unit U; occurs and S;* the subset of S consisting of all those samples s
in which U; does not occur. Clearly § = §;+§,;*

Then,

ConDITION 4.1. The sampling design P should be such that it is possible to
determine an ordered series of integers, iy, i,, -, i, such that

@) S=Uk=1 S
and for each j, j = 2, 3, -+, k, the set S,-"; has at least one sample in common with
the set ( JJZ1 S*.

Though Condition 4.1 appears complicated it will be seen to be satisfied for most
designs considered in practical work. We shall now prove the following

THEOREM 4.1. If the sampling design P satisfies Condition 4.1 and also the con-
dition in (3) then the Horvitz—Thomson estimator given by (6) is the unique hyper-
admissible estimator in the entire class of all unbiased estimators of the population
total.

PROOF. Let
(8) T= {TS(Y)’ SE S’ Ye RN}

be a hyperadmissible estimator. Hyperadmissibility as defined by Hanurav means
that 7'is an unbiased estimator of the population total Y defined by (1) and further
that T is admissible in the class of unbiased estimators of Y in every subspace

R(iy, iy, -+, i,,) of Ry where [iy, i,, -+, i,,] Is any set of distinct integers such that,
1=mZ N, 1£i;£N,forj=1,2,-,m, and the subspace R(iy, i, -, i,) is
defined by .

YER(I.I’ i29 Tty lm) IH’
(91) Yij # 0’ j = l’ 2’ e, m
(9i1) Y, =0 for every k¢ iy, iy, -+, i)

Hanurav defines the admissibility of an estimator in the usual way with the
squared error as loss function. We shall however take a mere general loss function
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W(d) where W is a nonnegative, non-decreasing and strictly convex function of the
absolute value of the difference d between the estimate and the parametric function
under estimation, i.e.

(10 d = |T(Y)-Y|.

This loss function includes the squared error as a special case.

Now consider the unbiasedness and admissibility of the estimator T in (8) in the
subspace R (i), for some fixed integer i, 1 < i £ N. In this subspace, Y, being the
only variable coordinate, by the definition of an estimator for s € S T,(Y) is some
function f(Y;) of Y; alone, and for s e S;*, T(Y) is equal to some constant K.

Thus
(11i) T.(Y) = f(Y) forseS§;, YeR,;
(11i1) T(Y) = K, forseS*, YeR,.

Note: By the definition of an estimator, (11ii) must hold also at the origin, i.e.
at the point ¥; =0,i= 1,2, ---, N, forall se S.

Put,

(12) K= (1-n)"" Y, 54 PK,, if <1,
=0 if n,=1,

and

(13) FY) = (@)™ Yees, P ALY

Note that in (13), 7; > 0 by (3).

We now define a new unbiased estimator T = {T(Y)} by

(14i) T(Y) = f(YD)+Y jes. j#: YilT;, for seS;, YeRy; and
(14ii) T(Y) = Ki+) e, Yi/n; for forseS;* Ye Ry.
Note that the set S;* is empty if 7, = 1.

Now for Y e R;,
(15) the population total Y = Y;

and hence by (11), (12) and (13), the unbiasedness of T implies that
(16) nf(Y)+(1-n)K, = Y,.

Using (16) it is easily verified that T in (14) is an unbiased estimator of Y for all
Y e Ry.
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Next consider the admissibility of T for Y € R(i). Since Y; = 0 forj # i,
(17) Risk of the estimator T

= Zsegg PSW(I./;( Yl)_ Y:D"‘ZSES‘.* PSW(|K5_ Y:|) by (8) and (11)’
2 7 )5, W(A(Y) - Y+ =) W(|K,— Y)) by (12) and (13),
= risk of the estimator T by (14).

In (17) we have used the well-known Jensen’s inequality. Now in (17) the 51gn of
strict inquality holds for some Y evR(i), unless

(181) J(Y) = f(Y) for all se S; and all Y; # 0, and
(18ii) K, =K, for all se S,*.
Since by assumption, T is admissible in R(i), both the equalities in (18) must hold.

Using condition 4.1 we next show that K; = 0. For let s€ S*nS*. Then using
the definition of an estimator, we obtain that

(19) K, =K,

We now obtain the result by induction. Suppose that
(20) K, =K, for r=1,2,--,j,1 <j £k—1 where k is the
constant in Condition 4.1.
Next consider,
seSk n{Ji-: S
Then by the definition of an estimator, (20) implies that

21 ' K‘-”l =K.

Hence by induction

(22) K, =K for r=1,2,-,k.
Since by Condition 4.1 S = ( J¥_, S, , (22) and (18ii) imply that

23) K, =K forall seS.

Now consider the unbiasedness of T at the origin, i.e. at the point Y; =0, i =
1,2, ---, N. We obtain from the note below (11ii), together with (18ii) and (23) that

(24i) K =0,

(24ii) K, =0 forall seS, and
(24iii) K, =0 i=12-,N
Hence by (16), (18) and (11) for Y € R(i),

(251) T(Y) = Y,n; if se§;,

(25ii) T(Y) = 0 if seS*.
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We now complete the proof by induction. We make the following inductive
assertion:

ASSERTION 4,,: Let m be a given integer < N. For given m, let [i}, i;, -+, i,n]
be any set of distinct integers, each < N. Then R(i,, i, -+, i,,) being the subspace
of Ry defined by (9),

(26) T(Y) = Y jes Yjinj, for Ye R(y, i, i, andall seS.

(25) means that the Assertion A4, is true for m = 1. Now suppose the assertion is
true for all m < h—1 where 4 is some integer < N. We shall show that the
assertion must then hold also for m = A.

Let S(i, i,, -+, i,) denote the subset of S consisting of all those samples s € S

which contain each of the units U;,, U;,, ---, U, , i.e.
@7) 5eSGy, iy, oy dy) i,
seS, U, es, for r=1,2,--,h
Let
(28) S*(iy, iy, -+ 1) = S=8(i}, iy, -+, iy).

Consider a particular sample s’ € S*(i,, i,, ---, i,). Let Ui, Uj,, ooy Uj! be the
distinct units contained in s’ such that for

(29) Ye R(ila i29 Tty ih)

Yj’_ # 0, r = la 29 ""f:
It is seen that (28) implies that
(30) : [ h-1)

and that the set of integers [jy, j,, :-+, j;] is a proper subset of the set [i;, i,, -, #;].
Now by the definition of an estimator,

TS'(Y) for Ye R(il’ i29 BT lh)
(31) = Ts’Y) for YeR(jl,j25"'5jf)
= ZjES' Y,I/nj by the

inductive assertion which is assumed to hold for all f < (h—1).
Hence
(32) TYY) =Y,cs Y;/n;, forall seS*(iy, iy -+, i,) and Y€ R(y, iy, -ip).

Next consider the samples s e S(i;, i,, -, i,). Now two alternatives are possible
viz. that (A) the set S (i, i,, -+, i) in (27) is empty or (B) it is non-empty. Suppose
(A) is true. Then S*(i, i, -, i) = S so that (32) holds for all s € S.

Next suppose alternative (B) is true.

Put
(33) Y= ZSE E(il, i25.00sin) PS'
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Since S(iy, -+, i,) is non-empty and P; > O for every s€ S o S(iy, iy, -+, i})
(34) y > 0.

For any Y € Ry, let z, be the projection of Y on the subspace R(iy, i5, -+, i)
Then by the definition of an estimator, for all seS(i,i,, -, i,), and
Y € R(iy, i, -+, I,) T(Y) is some function of the vector z, alone, i.e.

(35) T.Y) = f{(z,), for seS(@i, i) YeR(3, i)
Now put

36 J@) = )7 Leestuvin i) P

and define a new estimator 7 = {T(Y)} by

(371) T.(Y) = Ty(Y) for YeRy and seS*(i,, iy, ...,0,),

(3711) TSY) =f(Zh)+ Zj¢[i1,izyn.,ih],j€3’ YJ/T[!, fOI‘ Seg(il,iz,"', i,,)YGRN.
Now since the estimator 7 is unbiased, by taking a point Y € R(iy, i, --+, i,), we get
(38) f=1 Yi, = Zses*(il,iz,,..,i;,) PSTS(Y)+ZSE§(1‘,,iz,..,,i;,) Psfs(lh)-

Substituting in the first term in the right-hand side of (38) by (32) and in the second
term by (36), we obtain after some algebraic simplification that

(39) flzy) = Zf=1 Y, i .
Combining (39) with (37ii) and (37i) with (32) we obtain that
(40) T(Y) = Y ;cs Yjim;, forall seS,YeR,.

The estimator T defined by (40), is the same as the H-T estimator which is unbiased.
Further considering the admissibility of the estimator 7 in the subspace
R(i,, i,, .-+, I,) and using Jensen’s inequality, we obtain as before,

(41) TS(Y) = Ts(Y) for se S‘(il’ iZ’ B lh)
Combining (41), (40) and (32), we obtain that
(42) T(Y) =, Yjn; forall seS and YeR(y,i,, iy

Thus whether the alternative (A) holds or the alternative (B), the relation (42)
is valid. Hence if the inductive assertion 4,, is true for m < h—1, it is true for
m = h. By (25), the assertion is true for m = 1. Hence it is true for all m < N.
From this it follows that the equality in (42) holds for all Y € Ry except perhaps at
the origin, i.e., at the point ¥; =0, i = 1,2, --, N. But by the note below (11ii)
together with (24ii) the equality in (42) holds at the origin also.

Hence we finally get

(43) T(Y) = Y jes Yilm; forall seS, and YeRy,.

This completes the proof of the theorem.
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5. General remarks. As observed before, Condition 4.1 will be satisfied by most
sampling designs considered in practice. To see the necessity of imposing this
condition, we give the following example.

ExampLE 5.1. The population consists of six units U,, U,, -+, Ug; the sampling
design assigns positive probabilities to only two samples s, = (U,, U,, U;, U,)
and s, = (U, Uy, Us, Ug, Us); let the probabilities of s,,s, be respectively
P1>P2, P> P2 > 0and p,+p, = 1. Then the estimator given by

(44) T, (Y) = (p)” (Y, + Yo+ Y3)+ K,
T,(Y) = (p)) " (Yy+ Ys+ Ye)+K,

where p K, +p,K, = 0 is seen to be an unbiased hyperadmissible estimator.

REMARK. The sampling design in Example 5.1 is a unicluster one, where S
contains two non-equivalent samples. It is easily seen that any non-unicluster
design which assigns positive probability to not less than three mutually non-
equivalent samples, necessarily satisfies Condition 4.1 of this paper so that the
H-T estimator is the unique hyperadmissible estimator. Hence the further part of
Theorem 5.1. of Hanurav is valid only for those unicluster designs which have only
two or one non-equivalent samples with positive probability.

To show the necessity of imposing Condition 4.1 for a non-unicluster design, we
give the following example.

ExAMPLE 5.2. The population consists of three units U,, U,, Uj; S consists of
three samples, s, = (U,, U,, Uy); s, = (U, U3, U;) and s; = (U,, Us, U,,Us)
with probabilities, p;, p,, p3, P1, P2> P3 > 0, py+p,+p;3 = 1. Consider the esti-
mator

T = {T(Y)},

T,(Y) = Y,/n + Y,/n,—(pra; +p3as)ps, if Y #0,Y,#0,
= Yl/nl+al’ Yl ?é 09 YZ = 0’
= Y,/n,+a,, Y,=0,Y,#0,
= —m3as/py, Y,=0,Y,=0,

(45) T,,(Y) = Y,/n,+ Y5/n3—(pia; +p3as3)lp2, Y, #0,Y; #0,
= Y,/n, +ay, Y; #0,Y; =0,
= Y3/7T3+a3, Yl = 0, Y3 # 0,
= —T,a,/p>, Y, =0,Y; =0,

T,(Y) = Y,/n,+ Y;[n3—(p1ay +pras)ps, Y, #0, Y; #0,
= Y,/n,+a,, Y,#0,Y; =0,
= Y;3/ny+a;, Y,=0,Y; #0,

= — ma,/ps, Y,=0,Y;=0.
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where a,, a,, a5 are arbitrary subject to the restriction that
T4, +Tma,+ a3 = 0.
In (45), n,, m,, m3 have the usual meanings i.e. 7, = p, +p,, etc.

It is easily verified that the estimator in (45) is unbiased for all Y € Ry and is
hyperadmissible. Thus there is no unique hyperadmissible estimator. The estimator
in (45) however reduces to the H-T estimator if we impose the additional restriction
that the estimator should be continuous in Y, at the point at which all Y;,ies
vanish. This suggests that when the sampling design is a unicluster design which
does not satisfy Condition 4.1, the imposition of the additional restriction of the
estimators of continuity of the origin will secure uniqueness of the H-T estimator.
That this is so, is shown in the next session.

6. Non-unicluster designs. We consider a non-unicluster design, for which
Condition 4.1 is not satisfied. According to Theorem 3.1 of [1], in this case, the
H-T estimator is the unique hyperadmissible estimator in the class of unbiased,
polynomial estimators. We shall show that this uniqueness holds for the wider
class of unbiased estimators subject only to the restriction that for each s € S, T(Y)
is continuous in Y; at the point ¥; = 0 for all i € s. The proof requires only minor
modifications in the proof of Theorem 3.1 in [1].

PRrOOF. As the sampling design is a non-unicluster one, there exists at least one
pair i, j, satisfying

(46) 0<my <my.

Let T = {T(Y)} be a hyperadmissible estimator which satisfies the restriction
of continuity at the point ¥; = 0, i € s. Then by considering the admissibility of T
in R(i), we obtain from (16) and (18), on putting in (16) K,(i) = K; and K,(i) =
—(r)~'(1 —-n)K;,

for Y € R(i),
(471) T.(Y) = Y;/n;+K,(i) forall seS;,
(47ii) T(Y) = K,(i) forall se3,*

Similarly, for Y € R(j),
(481) T(Y) = Y,/n;+K,(j) forall se§;,
(48ii) T.Y) = Ky,(j) forall seS;*

Since 7;; > 0, there is one sample s, say, which belongs to both S; and §;.
Hence putting s = s, in (47i) and (48i) and taking the limit as ¥; — 0 in (47i) and
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as Y;--- 0 in (48i), and using the hypothesis of continuity of T, (Y) at Y; = 0,
Y; =0, we get

(49) K@) = K,()).
Also since 7; > m;; in (46), there is at least one sample s; which belongs to S,

and S;*. Hence putting s = s, in (47i) and taking the limit of 7, (Y) when Y; — 0,
and similarly putting s = s, in (48ii), we get

(50) K,(i) = Ky(j);

combining (49) and (50) we get that in (48), K,(j) = K,(j) and hence using the
condition of unbiasedness of T for Y € R(j), we get that in (48)

(51 Ki(j) = K5(j) = 0.

Next consider any integer r, r # j. r may assume the value i, which occurs in
(46). By considering the admissibility of T in R(r), we have as in (47),
for Y € R(r),

(52i) T(Y) = Y,jn,+K(r) if res,,
(52ii) T(Y) = K,(r), if reS,*

If §,* is empty, then K;(r) = 0 in (52) by the unbiasedness of T for Y € R(r).
Suppose S,* is not empty. Then it has a non-empty intersection with at least one
of the sets S; and S;*. Suppose that its intersection with S is non-empty, so that
there exists a sample s, which belongs to S; and also to S,*. Now put s = s, in
(48i) and in (52ii) and take the limit in (48i) when Y; — 0. We thus get

(53) K,y(r) = K,(j) = 0, by (5D).

Similarly if S,* has a non-empty intersection with §;* we get K,(r) = K,(j) = 0.
Thus always K,(r) = 0 and hence by the unbiasedness of T for Y € R(r), in (51)
K (r) also = 0.
It thus follows from (51), (52) and (53), that forany r,1 < r £ N,
for Y € R(r)

(54) T(Y) = Y./, if seS§,,
=0 if seS,*.

(54) is the same as the assertion A4, in (26). Hence the further proof is identical
with that from (26) onward of Theorem 4.1 in this paper.

REMARK 6.1. The above proof and Example 5.2 show, that when the sampling
design does not satisfy Condition 4.1, the H-T estimator may not be the unique
hyperadmissible estimator. Uniqueness is secured only by imposing on the esti-
mators the additional restriction of being continuous at the origin. But the require-
ment of continuity does not seem to be a natural one in the context of the notion of
hyperadmissibility.
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