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SELECTION PROCEDURES'

By Davip G. HoEL?

Oak Ridge National Laboratory

1. Introduction. Paulson [13] has given a sequential procedure for selecting the
normal population with the largest mean when the k available populations have a
common known variance. His formulation employed the indifference zone
approach, which, briefly described, is the situation where the probability of making
a correct decision is required to be at least a given amount whenever the greatest
mean exceeds all the others by a certain specified amount. This approach has been
studied extensively by Bechhofer, Kiefer and Sobel [2] in the context of ranking and
identification problems.

Paulson’s procedure combines two properties which other indifference zone
procedures do not typically possess, namely: the procedure is truncated and fully
sequential. Truncation is self-explanatory, but by fully sequential we mean that the
procedure is able to discontinue taking observations from a particular population
before the procedure terminates sampling altogether. A fully sequential procedure
will often make a substantial savings in the total number of observations taken by
quickly eliminating ‘““bad” populations if they are present among the populations
under consideration. However, in studying the performance of ranking procedures
the parameters are usually assumed to be in the “least favorable configuration”
(all populations the same except one, which is at the minimum required distance
for which detection is expected) or in the “equal parameter configuration” (all
populations the same). In both instances ‘“bad” populations are not present.
Therefore, this should be kept in mind when comparing a fully sequential pro-
cedure with one which is not fully sequential.

Paulson’s procedure for normal means has been extended [10] to the Koopman-
Darmois family with the same measure of distance as that considered by Bechhofer,
Kiefer and Sobel [2]. The procedures of this extension are not truncated. However,
it has been shown by Bechhofer, Kiefer and Sobel [2] that for many members of
the Koopman-Darmois family and for this particular distance measure, no
truncated procedure exists.

We present in this paper a technique for the construction of Paulson-type
procedures which are both truncated and fully sequential. Briefly, these proce/dures
are formed by choosing a statistic of the observations from any two of the popu-
lations and performing a modified sequential probability ratio test (SPRT) based
on this statistic. This is done simultaneously for all pairs of populations, and if a
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particular SPRT terminates then an appropriate population is removed from a set
of contending populations. This is continued until only one population belongs
to the set at which time sampling terminates and this population is selected as
“best.”” It is shown how Paulson’s procedure may be obtained in this manner. In
Section 3 a procedure for selecting the normal population with the smallest variance
is obtained by this method. The procedure is both location and scale invariant and
uses the ratio of variances as the distance measure between populations. Finally
in Section 4 a procedure based on rank-order statistics is given for the selection
of the stochastically largest population. Also, Monte Carlo results are presented

for both procedures.

2. The sequential procedure. Let T1,, IT,, ---, I, represent k& populations (kK = 2)
and X;; denote the jth observation from population II;. It is assumed that the
observations {X;;} are independent random variables for all / and j. The distri-
butions associated with the populations I, IT,, ---, I1, are not completely known
and we wish to construct a selection procedure which attempts to pick the “‘best”
(in some sense) population from the above set of k populations. For example,
if the observations drawn from II; are normally distributed with unknown mean
6.i = 1, ---, k) and known variance ¢ then we may be interested in selecting the
population with the largest mean.

The selection procedure will depend upon the observations through a sequence of
statistics T;;(n)(n = 1, 2, ---) which are defined to be functions

(1) Tij(n) =fn(Xi1"",Xin;Xj1,""Xjn)

of the first n observations from populations Il; and IT;(Z,j = 1, ---, k). In a given
problem the function f, is chosen so as to indicate the differences between the
populations in a reasonable way. In the above normal mean problem, for example,
a choice of f, might bed i_, (X — X ;). Now we assume that T;;(n) = (T;;(1), -,
T;;(n)) has a joint probability density function g, ., (T;;(n)) depending on the para-
meter 7;;. (Usually T;/(1), T;4(2), -~ has been chosen so that it is both a sufficient
and transitive sequence and also invariantly sufficient for 7;; (see [8]).) We use the
parameter 1;; as our measure of distance between the populations IT; and TII;.
Next define T = max;min; ;.;{t;;} and let IT* dencte the population II; for
which min; ;4;{r;;} = 7. If more than one population has this property we pick
one to be IT* and refer to it as the “‘best’ population. Again returning to the above
normal mean problem, we find that 7,; = 0;—0; and © = Oy — 0y _1(0;1; = -+ =
Oy and thus IT* is the population with the largest mean 0. If instead
7;; = 0;—0, then IT* would be the population with the smallest mean.

As an error requirement for the selection procedure we use the indifference zone
approach (see [2] for a detailed discussion). Basically, two constants t* and P*
with t* > 1;;, 1 > P* > 1/k are specified and we wish to select the best popu-
lation TT* with probability at least P* whenever t = t*. When IT* is chosen we
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say the procedure has made the correct selection (CS). Thus we require a procedure
for which

2 P(CS) z P* whenever t2=1t*

Next we make the assumption that the functions {f,} have been chosen so that
there exists a monotonically decreasing function 4 such that

(3) Tji = h(rij)'
In the above example of normal means, we have A(#) = —¢ which is decreasing

and satisfies (3).
Using the function 4 to specify 7, = A(t*) we define the log-likelihood ratios

4) L(T:j(n)) =1og gp,.,(Ti}(n)) —10g g -,(Tij(n))

upon which the procedure is based. In (4) we assume 7, is a fixed constant greater
than 7.

Sequential selection procedure. Begin at stage one by taking a single observation
from each of the k populations. Next calculate the values of the k(k—1) log-
likelihood ratios /;(T;(1)) (i = 1, ---, k;j = 1, .-+, k; i # j). If for some i

I(T;;(D) 2 a

where a = log {(k—1)/(1—P*)} we eliminate population II; from further con-
sideration. If only one population remains we terminate the sampling and declare
this population to be the best. If more than one population remains we proceed
to the next stage (second) and take a single observation from each of the remaining
populations. The log-likelihood ratios for the contending populations are again
computed and the same elimination rule is used except that /,(T,;;(2)) everywhere
replaces /,(T;;(1)). We continue in this manner until only one population is left at
which time the procedure is terminated with the declaration that this remaining
population is best. If at any stage (n say) in the procedure all the remaining popu-
lations are eliminated, we then select as best from among those populations
sampled at stage » that II; for which min;; [,(T;;(n)) is a maximum.

Varying the choice of the constant 7, clearly changes the selection procedure.
The only restriction is that t; > 7, and thus we have a family of selection pro-
cedures for a given problem. If we pick 1, = t*(= A(t,)), then by considering the
log-likelihoods as functions of the original observations we see that /,(T;;(n)) =
—1(T;{(n)). This implies that the comparison made by the procedure between any
two populations is a sequential probability ratio test with stopping boundaries
(—a, a). So in a sense the procedure consists of k(k—1)/2 simultaneous SPRT’s
when 7, = t*. In all applications so far observed, the procedure is truncated
whenever 1, is chosen in the open interval (t,, T*). Also it has been observed that
there is less over protection (P(CS)—P¥*) if the restriction t, = 7, is made where
7, = h(t;;). Therefore we generally will choose 1, < t; < 7* and recommend
7, = (1, -+ 1*)/2. Some further discussion on the choice of 7, is given in Section 5.
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We now give in the following theorem sufficient conditions for the procedure
to satisfy the error requirement (2).

THEOREM. Assume that for each i and j
©) Prij{[n(Tij(n)) = a forsome n}

is a non-decreasing function of t;;. Then the sequential procedure satisfies the error
requirement (2) provided the procedure terminates with probability one.

Proor. Without loss of generality we assume that IT, is the best population IT*.
Since the procedure terminates with probability one, we have

1—-P(CS)< Y 2! P[I1; eliminates II,]
<YK P [1(Tu(n)) = a for some n].

Now since I, is the best population we have by assuming © = t* that 7,; = © >
(@ =1, .-, k—1). It then follows from (3) and the definition of 4 that 7, =
h(t,;) £ h(t*) = 1,. By the monotonicity condition (5) of the theorem we then
have 1-P(CS) < (k—DP, [/ (Ty(n)) = a for some n]. Finally, using a basic
inequality of Wald’s (page 146 of [16]) we have P [/,(T;(n)) = a for some n] <
e~ * and thus 1 -P(CS) < (k—1)e”™* = 1 —P* which completes the proof.

One can interpret P, {/,(T;(n)) = a for some n} as the probability of accepting
H, in an SPRT of Hy:t = 1, vs H;:T = 7, with stopping boundaries (— o, a).
Therefore, condition (5) of the theorem is satisfied if this SPRT has a monotone
operating characteristic (OC) function. A sufficient condition for this mono-
tonicity is the one given by Ghosh [7]. His condition is that the family of densities
9n,. POssesses a monotone likelihood ratio. For other sufficient conditions and
further discussion of the OC of an SPRT the reader is referred to [8] and [9].

As a simple illustration of the procedure, we continue with the example of
selecting the normal population with the greatest mean. Since we chose
Tij(n) =i, (Xy—X )it follows that

(6) L(T;j(n)) = [(z,— 70)/20%] Zﬁ: 1 (X=X ) + n(to® — 712)/402-
Now if II; and IT; both remain up to stage n then IT; is eliminated if
n n 20%a
(7 2 Xu= ) Xik_,c . —n(to+1,)/2.
k=1 k=1 1 0
Thus the procedure is equivalent to the one which eliminates IT; if
" n "20%a
(8) Y Xj < max; ) Xy,— —n(to+1,)/2
k=1 k=1 T1—7T9

where the max is taken over those IT; which are in contention at stage . If for some

n

0'2a

—n(to+1,)2 2 Py
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then sampling is terminated and the population with the largest value of Y 7_, X,
is chosen as best. Thus if 7, < —71, = t* the procedure is truncated and since
J»,. POssess a monotone likelihood ratio we have by the theorem that the procedure
satisfies the error requirement (2) for 7, £ —14(t; = —1, is permitted, since
although the procedure is not truncated, it terminates with probability one.)

This procedure is recognized as precisely Paulson’s [13] procedure for selecting
the normal population with the largest mean. He requires that 7, < 7, < —1,
and recommends the value ©; = —1,/2 which is equal to (7, +7*)/2.

3. Normal variances. In this section we apply the selection procedure to the
problem of choosing the normal population with the smallest variance. To begin,
assume that X;; is normally distributed with unknown mean y; and unknown
variance ¢;>. Let the ranked values of ¢;* be denoted by 6, < 0% < - < 02,
and define the best population IT* to be the one with the smallest variance of;;.

Bechhofer and Sobel ([3], [4]) have given both a fixed sample and a sequential
procedure for choosing IT*. However, their sequential procedure is neither trun-
cated nor fully sequential. The measure of distance between IT;; and II;;; they
consider is 67;)/of;; for i Z jand for this measure the error requirement (2) becomes

©) P(CS) 2 P* if ofyjof;Z ™.
In applying the procedure to this problem we define
X—im = Z?:l Xij/m
Sim = 27=1(Xi; = Xim)*/(m—1)

and assign T;(n) = s}/s},, n =2,3,---. This choice of T;; seems to be a natural
one if we wish to have the ratio of variances as the distance measure. Now from the
results of Hall, Wijsman and Ghosh [8], the sequence T;;(2), T;;(3), --- can be seen
to be invariantly sufficient for o,*/o,. Thus 1,(T;;(n)) is a function only of T;(n)
and in particular

10 Lr,o0) = (n- D tog () 2 )

with 1;; =0;*/6 and © =0{y/6f;;. If we instead defined t;; =,%/c;? then
T = 6}y/of—1; and the procedure’s objective would be to select the population
with the largest variance.

To show when the procedure is truncated we consider only the comparisons made
between II; and II;, namely, /,(T;;(n)) and /,(T;(n)). Now since T}; = 1/T;; we

have from (10) that if .
110+ T;j(n) (10 \*
- — =) L >
(11) (n 1>]Og{1/11+T,~j(n) o) (29
population II; is eliminated and if

v

a
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population IT; is eliminated. The left-hand side of (11) is a decreasing function of
T;;(n) and thus either I1; or IT; must be eliminated by the time that

1to+1 10\
—1> -1 —
n—1zalog {1/11+1<11> }

provided that the expression within the braces is greater than one. Since this is true
for any pair of populations, the procedure can continue for at most

_ JYre+1 (1)}
) oo i (2
stages provided 1, < 1/t,. Finally, by setting T,i(n) = 1 we see from (11) and (12)
that the procedure is not truncated for 7, = 1/t,.

Now, the procedure terminates w.p.l for ©; = 1/7, (see [8]) and the densities
{9n.} possess a monotone likelihood ratio. Thus the procedure satisfies the error
requirement (2) for 7, £ 1/7,. Finally, the procedure clearly depends only on the
T;/’s and is therefore both location and scale invariant.

To illustrate the procedure a series of Monte Carlo trials was performed at the
points kK =3, 1, = .5,7, =1,1.5, 2 and P* = .75, .90, .95, .99. The chosen
values of 7, correspond to 7, (7, +7*)/2, 7* which were discussed in the previous
section. At each point 500 trials were run with the parameters in the least favorable
configuration (i.e. 0% =08, =1t*0};;.) The results are given in Table 1 with
E(N) and E(S), respectively, denoting the average number of observations and
stages observed. Column 5 gives the number of stages required for the fixed sample
procedure with probability of correct selection equal to the P* of Column 1. These
values were obtained by interpolation in the tables of Bechhofer and Sobel [3].
Column 6 contains the procedure’s truncation point as given in (13). Finally, in
Table 2 the observed number of stages are given with the parameters in the equal
parameter configuration (i.e. of;, = 0f5; = 0{3;.)

On inspection of Table 1 it is first noticed that for 7, = 1 there is considerable
amount of over-protection (P(CS)— P*) especially for smaller values of P*. Next
E(S) and E(N) for the recommended value 7, = 1.5 come fairly close to the cor-
responding values for 7, = 2. However, when one goes to Table 2 we see that
7, = 1.5 comes out best. This is particularly true when 7, = 1.5 is compared with
the non-truncated procedure 7, = 2. In fact, for the case P* = .99 and 7, = 2 it
was found that 189, of the trials took more than 139 stages, the upper bound
for the procedure with 7, = 1.5. Also one of the 500 trials tcok more than 400
stages to terminate. Therefore it appears that truncated procedures can often
make considerable savings in undesirable cases without giving up too much when
the parameters are in the least favorable configuration.

One further point should be made concerning Table 1. It is that E(N)is not much
smaller than 3E(S). A fully sequential procedure will make its best savings when
several ““bad’” populations are present which are then quickly eliminated. We could
for example set 0[23] quite high and would then expect to observe £(N) much closer
to 2E(S) than 3E(S).
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Before leaving the problem of normal variances it should be mentioned that
another measure of distance has been considered by Bechhofer, Kiefer and Sobel
[2]. They give a sequential procedure for selecting [1* when the distance between
I, and Iy, is 1/o},— 1/}, for i = j. Also they show that there does not exist a
truncated procedure for the problem and thus we would not expect our method to
be of use. However, a copy of Paulson’s procedure for normal means is as follows.

DAVID G. HOEL

TABLE 1

Empirical properties of the variance selection procedure with the parameters
in the least favorable configuration

T, =1 Number of stages
for Truncation
P* P(CS) E(N) E(S) fixed sample case point
75 910 45.6 (.6) 16.5 (.2) 10.7 36.3
.90 .960 65.3 (.8) 23.7 (.3) 22.7 51.9
95 .986 79.1 (.9) 28.6 (4) 32.6 63.6
.99 996 107.2 (1.1) 38.2 (.4) 56.5 91.0
7, =15 Number of stages
for Truncation
P*  P(CS) E(N) E(S) fixed sample case point
75 .860 359 (.6) 13.3 (.3) 10.7 55.0
.90 930 52.3 (.9) 19.6 (4) 22.7 78.9
.95 962 63.0 (1.1) 23.3 (4) 32.6 96.9
.99 .996 91.3 (1.4) 33.6 (.6) 56.5 138.7
Ty =2 Number of stages
for
P* P(CS) E(N) E(S) fixed sample case
75 .828 330 (.7) 12.5 (.3) 10.7
.90 932 51.7 (1.2) 19.6 (.5) 22.7
95 972 62.6 (1.2) 23.8 (.5) 32.6
.99 996 87.1 (1.6) 32.8 (.7) 56.5

(t* = 2, 500 simulations per point)

TABLE 2

Observed number of stages for the variance selection
procedure with the parameters in the equal population

configuration
E(S)
P* 7, =1 7, = 1.5 T, =2
75 20.1 (.3) 16.6 (4) 172 (.5
.90 31.6 (4) 282 (.5) 32.4 (1.0)
95 40.5 (.5) 36.7 (.7) 46.0 (1.5)
.99 61.4 (.6) 59.2 (1.0) 92.7 (3.1)

Note: The values in the parentheses are the observed
standard errors.
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At stage m population IT; is eliminated if s2, > min; sf-,,, +2a/A where the minimum
is taken over the remaining populations. To see that this procedure satisfies

P(CS)= P* whenever 1/of;,—1/c%; 2 A

simply write s%/o;> as a sum of independent chi-square variables and apply
Paulson’s argument.

4. Selecting the stochastically largest population. In this section we consider the
more interesting application of the selection procedure; that of choosing the
stochastically largest population. We accomplish this by using Lehmann alter-
natives and applying the sequential rank test of Bradley, Merchant and Wilcox
in [6].

First, we assume that an observation X;; from population IT; has a distribution
G®% where G is an unknown continuous dlstrlbutlon function and 6, is a positive
unknown parameter. With this set up, the stochastically largest population IT*
is that population associated with G where 6;;; < 0,; < -+ < O

Following the method of Bradley ([5], [6]) we set T;;(n) equal to the vector of
ranks (s,(i), -+, S,.(ij)) of the n observations X;,, ---, X;, among the combined
sample X;,, - X,,,, X1, Xj,. Now, since we may write G% = (G%)*/% we have
from [11] that the density of T;;(n) is

l—I r(svn U +V(Tu 1))F(Sv+1 n(U))
(2") 1 TCsu 1a(1) + (5 = D)(s5(i))
where t;; = 0,/0; and s,., , = 2n+1. Also T;i(n) is sufficient for T,;(n) (see [8])
and thus

(14) 1L(T,,(n)) = nlog(t, /roHéI {log

L(s,,(if) +v(z; = 1))
r(svﬂ,n(i.i)“"’(f_ 1))
N L(s,u(if)+V(to—1)) }
B (ur 1.(1) + W(To— 1))

From 1,; = 0,/0; we see that © = 0p,/0y _,;and h(t) = 1/t. This in turn yields the
error requirement

(15) P(CS) = P* whenever 0,/0-1, = 1"

Here 6;1/0 - 1 is the power which you must raise the distribution of the second
stochastically largest population to obtain the distribution of the stochastically
largest. Also the right-hand side of (15) implies that

(16) P[XpgZ Xpe-nn] 2 t¥/(1+17%)

where Xp,_;; and Xy, are random variables with distribution G’*-" and G°*,
respectively. This gives some insight into what different choices of t* imply. Also
useful is Table 5 of [17] which gives the mean and variance of G° for various 0
when G is the normal distribution function.
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In applying the theorem to establish that the procedure satisfies (15) several
difficulties are encountered. The main one concerns the monotonicity condition (5).
It has not been established that the sequential rank test which draws observations
in pairs has a monotone OC function which would be sufficient for (5). However,
empirical evidence [5], [6] certainly indicates that the OC is in fact monotone.
Also, it has been established [9] that the sequential, rank test which draws its
observations singly (alternating between populations) [12] does have a monotone
OC function.

Turning now to the problem of truncation, consider, as before, only the two
populations II; and II;. Suppose, after n observations are drawn from each
population and the combined sample ordered, that the observations appear in
alternating order from II; and II;. Specifically, we set s,,(ij) = 2k where s,(ij)
is the rank of the kth observation from IT; in the combined sample. Similarly, if
U,(ij) is the rank of the kth observation from Il;, we have u,,(ij) = 2k—1.
From (14) we then find

Ty To+ 1\ "=t (to+1+1/k\(t 70 +1
(17) Lt (n) = log{<rorl +1).,1:I1 <f1 +1+1/k 11, +1

and
n(to+1—1/k\(1,10+]1
1,(t;(n)) = log {kﬂl (Tl +1-1/kNtgt,+1

where t represents a realization of the random variable T. Now a term in the
product defining /,(t;;(n)) can be shown to be < I if kK = 1/(ty7,—1) provided
T, 2 l/ty = 7*. Since

(18) L(t:;{(n)) = L(t;(n))

we then have that this alternating sample will terminate the procedure only if
I(t;;(k)) = a where k is the greatest integer in 1/(to7, —1). Thus for a sufficiently
large a we have exhibited a realization for which the procedure does not terminate
with 7, = 7*. On the other hand if 7, < 7* then it can be shown that /,(t;(n))
becomes arbitrarily large as » increases.

In order to find a truncation point for the procedure we would like to use the
following. If for some realization both /,(t;;(n)) Z a and /,(t;(n)) 2 a then the
procedure is truncated and # is an upper bound to the truncation point. This would
be true if following result is true.

CONJECTURE. Let t;;(n) and t(n) be two realizations of T;;(n). Now if

(19) L{ti(n)) = L(t5(n))
then
L(t;(n)) < L(ti(n)).

The idea here is that if /,(t;;(n)) = /,(t%(n)) then t;;(n) favors the elimination of IT;



SEQUENTIAL SELECTION PROCEDURES 639

more than t(n) does. Thus we would not expect /,(t;(n)) = /,(t}(n)) which indi-
cates t;;(n) favoring the elimination of IT; more than t}i(n) does. Also, if the family
of densities {g,.,,} which form these likelihood ratios has a monotone likelihood
ratio then the conjecture is true. Now if /,(t;;(n)) = a and /,(t;(n)) 2 a then for
any realization t(n) we have from (19) that either /,(t%(n)) = a or [,(t}(n)) 2 a.
Hence n is an upper bound to the truncation point. Thus from our example of the
alternating realization in the previous paragraph, we find that the procedure is
truncated for 7; < t* (provided of course that (19) is true.)

For the case t; = 7*, which corresponds to the SPRT, Savage and Sethuramen
[15] have established that the sequential rank test terminates with probability one
except at one point. They, however, strongly conjecture that the test also terminates
at this point.

In order to specifically construct an upper bound to the procedure we use the
following computing technique. Begin by letting s,,(ij) = 1. Now at stage n we
set 8y o (ij) = 8 ,—1(ij) for k =1, .-, n—1 and let

Snn l./) :2n_1 lf ln—l(tij(n_l))g ln—l(tji(n_l))
=2n otherwise.

This method produces a realization for which /,(t;;(n)) and /,(t;(n)) are close to
being equal for each n. Hopefully /,(t;(n)) and /,(t;(n)) will both remain below a
until they simultaneously exceed it for some n. Then by using the conjectured results,
the point, n, at which they exceed « is declared the truncation point for the pro-
cedure. In Table 3 some Monte Carlo results are given for the sequential procedure
and the conjectured truncation points are included. It should be mentioned that
for Tables 3 and 4, a total of 8000 trials were performed on truncated procedures
and no violation of the truncation points was observed. Also in each instance the
two likelihoods exceeded a for the first time with the same values of #. Thus we
know without the conjecture that the listed truncation point minus one is a lower
bound to the procedure’s truncation point.

As mentioned, Tables 3 and 4 contain Monte Carlo results for the selection
procedure. Both the format of the simulation and conclusions about the results
are much the same as with the variance selection procedure experiment given in
Tables 1 and 2.

5. Choice of 7,. In previous sections it was suggested that 7, be chosen equal to
(144 1*)/2. Some insight into the choice of 7, can be obtained by considering the
problem of selecting which of two normal populations has the larger mean.

Let X;; be normally distributed with mean §; and variance 1 (i =1,2;j =
1,2, ---). Then from Section 2 the selection procedure essentially is:

If Y %- (Xue—Xj) > al(ty—710)+n(to+1,)/2 stop and declare J; < ;.
If Y-t (Xu—Xj) < —al(t;—19)—n(1+1,)/2 stop and declare §; > J;.
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TABLE 3

Empirical properties of the selection procedure based upon
ranks with the parameters in the least favorable configuration

7, = 1.0
Truncation

P* P(CS) E(N) E(S) point
75 .900 24.8 (.3) 9.1 (.1) 19
.90 .960 34.7 (4) 12.6 (.2) 27
95 986 40.9 (4) 14.7 (.2) 32
.99 .996 57.8 (.5) 20.6 (.2) 46

7, =15

Truncation

P* P(CS) E(N) E(S) point
75 .874 19.1 (.3) 7.3 (.1) 28
.90 922 27.6 (4) 10.4 (.2) 40
95 984 334 (.5) 12.4 (.2) 49
.99 994 47.4 (.7) 17.4 (.3) 70

T, =20
P* P(CS) E(N) E(S)
75 .872 18.7 (4) 7.3 (.2)
.90 962 27.0 (.5) 10.3 (.2)
.95 .960 329 (.7) 12.5 (.3)
.99 .996 46.5 (.8) 17.4 (.3)

(t* = 2, 500 simulations per point)

TABLE 4

Observed number of stages with the parameters in the
equal population configuration

E(S)
P* 7, = 1.0 T, =15 Ty =20
75 11.1 (.1) 9.0 (.2) 10.0 (.3)
.90 16.5 (.2) 15.0 (.3) 17.0 (.5)
95 21.0 (.2) 19.4 (.3) 23.8 (.7)
99 32.0 (.3) 31.6 (.5) 48.3 (1.5)
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Now if we define Y, = X3 — X, and p = 6,—0; then the above selection
procedure can be considered to be a sequential test of

Hy:p=—t*vs.H:p=1*

where Y,, Y,, --- are normal random variables with mean pu and variance one.
This sequential test is:

(20) If Y%, Y, > —log(1—P*/(t,+1*)+n(t,—1*)/2 stopandaccept H,.
If di_, Y, <log(1—P*)/(ty+1*)—n(t,—1*)/2 stop and accept H,,.

The test’s error probabilities are « = f = 1 —P* and we still require 7, > —1*
(= 19).

The stopping region in the (n, Y%_, Y,) plane consists of two intersecting
straight lines. This is the same region as the one given by Anderson [1] (also
considered by Paulson [14].) From (20) we see that the x-intercept is 2 log (1 — P¥*)/
(t,>—1*?) and the y-intercepts are + log (1—P*)/(t, +t*). Now if we compare
the two regions 7, = d(< 0) and 7, = —J we see that their x-intercepts are the
same and the y-intercepts are larger in magnitude for t, = 4. Thus the 1, = —§
region will always terminate first and hence will offer less overprotection and smaller
sample sizes. This illustrates why it was suggested that 7; =2 7,(t, = 0 in this
example.)

Anderson has given an approximate expression ((4.73) of [1]) for the probability
of accepting H, in the test (20). It was observed using his approximation that the
overprotection decreased with increasing t,. For the recommended choice
7, = (1*+1,)/2 the overprotection based on the approximation was not too severe.
Also the simulation results in Table 1-Table 4 indicate a preference for
(t*4 14)/2 over either t* or 7,.

Finally we should remark that from Section 4 a truncated sequential rank test
can be developed on similar lines to (20). The test, however, is one of

Hy:0=1/t* vs. H;:0=1*
instead of the usual
Hy:0=1 vs. H;:0=1*

6. Final comments. The empirical results of Table 1-Table 4 showed that the
truncated procedure with 7, = (1, +1*)/2 compared favorably with the non-
truncated procedure T, = t*. However, more generally, a major difficulty with the
application of sequential procedures is the positive probability of requiring a
large number of observations. Often the experimenter is unwilling to take this risk
even though he realizes that he stands to save, on the average, many observations.
This aspect of the truncated selection procedure should be remembered when
making comparisons with nontruncated selection procedures.
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The second feature of the selection procedure, that of being fully sequential,
may in many instances be unimportant. Such a case is when the major cost involved
is with the sampling stage and not the observation itself. On the other hand, there
are many situations where the observations themselves are costly. A particular
example is the comparison of several medical treatments. In this situation it is
essential to quickly eliminate inferior treatments instead of continuing them until
sampling is completely terminated.

Finally, we may add that of the other two-sample sequential tests which may be
used to construct corresponding selection procedures, the two most notable are
Wald’s sequential double dichotomy test and the two-sample sequential z-test.
In the latter test, one may base the estimate of variance in the ¢-statistic upon all the
observations instead of only those from the pair of populations being compared.
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