AN IMPROVED INEQUALITY FOR BALANCED INCOMPLETE BLOCK DESIGNS

By S. KAGEYAMA

Hiroshima University

For a resolvable balanced incomplete block design (BIBD), Bose (1942) obtained an inequality $b \ge v + r - 1$. Stanton (1957) showed that this inequality is equivalent to an inequality $r \ge \lambda + k$. The main purpose of this note is to improve Bose's inequality to $b \ge 2v + r - 2$ for a resolvable BIBD which is not affine resolvable.

1. Introduction and summary. In a balanced incomplete block design (BIBD) with parameters v, b, r, k and λ , we have the following relations:

$$(1.1) vr = bk, \lambda(v-1) = r(k-1), b \ge v.$$

If the blocks can be separated into r sets of n blocks each (b=nr) such that each set of n blocks forms a complete replication, the design is called resolvable. Moreover, if two blocks belonging to different sets have the same number of treatments in common, the design is called affine resolvable. Bose [1] proved that if a resolvable BIBD with parameters v, b, r, k and λ exists, then $b \ge v + r - 1$ and that the necessary and sufficient condition for a resolvable BIBD to be affine resolvable is b = v + r - 1 and k/n an integer. Stanton [2] showed that Bose's inequality is equivalent to an inequality $r \ge \lambda + k$. The purpose of this note is to improve these inequalities.

2. Theorem. In a BIBD with parameters v = nk, b, r, k and λ , if b > v + r - 1, then

$$(2.1) r \ge \lambda + 2k$$

and vice versa.

PROOF. From (1.1) and $b = vr/k = \{vr + k(v+r-1) - k(v+r-1) - r + r\}/k$, we have

$$(2.2) b - (v+r-1) = (v-1)(r-\lambda-k)/k.$$

In (2.2), if b > v+r-1, then $(v-1)(r-\lambda-k)/k$ must be a positive integer. Since v = nk implies (v-1, k) = 1, $(r-\lambda-k)/k$ must be a positive integer. Thus we obtain $(r-\lambda-k)/k \ge 1$, i.e., $r \ge \lambda+2k$. Conversely, if $r \ge \lambda+2k$, then from (2.2) we have b > v+r-1.

Our theorem shows that the result due to Stanton [2] is improved to an inequality $r \ge \lambda + 2k$ for any BIBD with parameters v = nk, b, r, k and λ provided that

Received December 8, 1970.

b > v + r - 1. From (1.1), since $(r - n\lambda)k = r - \lambda > 0$, we obtain $r - n\lambda \ge 1$. Hence $r - \lambda \ge k$. Thus the inequality $b \ge v + r - 1$ holds for any BIBD with v = nk.

Multiplying (2.1) by n, we obtain $b \ge n\lambda + 2v$. On the other hand, our theorem also shows that if for a BIBD v = nk and b > v + r - 1, then b = v + r - 1 + t(v - 1)where t is a positive integer and hence $b \ge 2v + r - 2$. Since $r - \lambda = (r - n\lambda)k$ and $r \ge \lambda + 2k$ imply $r - 2 \ge n\lambda$, we have the following corollary from a necessary and sufficient condition for a resolvable BIBD to be affine resolvable.

COROLLARY. For a resolvable BIBD which is not affine resolvable, an inequality

$$b \geq 2v + r - 2$$

holds.

Note that since $v \ge 2$ in a BIBD, Bose's inequality $b \ge v + r - 1$ can be replaced by a more stringent inequality $b \ge 2v + r - 2$ for a resolvable BIBD which is not affine resolvable.

EXAMPLE (i). Consider a resolvable BIBD with parameters v = 15, b = 35, r=7, k=3 and $\lambda=1$ which is not affine resolvable. Then $b \ge v+r-1$ implies $35 \ge 21$ and $b \ge 2v + r - 2$ implies $35 \ge 35$, i.e., the bound is attained by our inequality.

Example (ii). Consider a resolvable BIBD with parameters v = 28, b = 63, r = 9, k = 4 and $\lambda = 1$ which is not affine resolvable. Then $b \ge v + r - 1$ implies $63 \ge 36 \text{ and } b \ge 2v + r - 2 \text{ implies } 63 \ge 63.$

EXAMPLE (iii). Consider a resolvable geometrical BIBD with parameters v = 16, b = 140, r = 35, k = 4 and $\lambda = 7$ which is not affine resolvable. Then $b \ge v+r-1$ implies $140 \ge 50$ and $b \ge 2v+r-2$ implies $140 \ge 65$.

3. Acknowledgment. The author wishes to thank the referee for his valuable comments.

REFERENCES

- [1] Bose, R. C. (1942). A note on the resolvability of Balanced Incomplete Block Designs. Sankhyā Ser. A 6 105-110.
- [2] STANTON, R. G. (1957). A note on BIBDS. Ann. Math. Statist. 28 1054-1055.

¹ Note added in proof. The author would like to remark that W. F. Mikhail (1960) gave an alternative proof of the result which the inequality $b \ge v + r - 1$ holds for any BIBD with v = nk in Ann. Math. Statist. 31 520-522 (An inequality for balanced incomplete block designs).