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REPEATED SIGNIFICANCE TESTS!
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1. Introduction.

1.1. Regression analysis considered herein will deal with the fitting of linear
models for the purpose of prediction. The method of least squares provides a well-
defined mathematical procedure for obtaining a unique prediction equation when-
ever it can reasonably be assumed that the data arose from a situation which can
adequately be represented by a linear model having one dependent variable and a
definite number of independent variables. The usual additional assumption of
independently normally distributed errors having zero mean and a constant
variance allows application of additional statistical theory to test selected
hypotheses of interest and to set confidence intervals.

In application of the theory of regression analysis to experimental data, un-
certainty often arises as to the exact number of independent variates to include in
the final model. Many situations are such that among the total set of independent
variates only a small subset is of real value when attempting to predict the behavior
of the dependent variable.

Several different procedures have been recommended for use in determining a
suitable subset of independent variables for use in predicting the dependent variable
of interest (see Abt [1], Draper and Smith [9], Efroymson [10], Gorman and
Toman [12], Hocking and Leslie [13]). These procedures involve the use of repeated
tests of significance and rely upon inferences based upon the outcome of such tests.
The decision rules used in these procedures were, for the most part, selected for
their intuitive appeal and little consideration has been given to the consequences,
with respect to the fitted model, of the effect on subsequent inferences of such
repeated testing.

The problem of model building in regression is one of the general class of
problems called problems of incompletely specified models involving the use of
repeated tests of significance. This classification serves to clarify the nature of this
regression problem and to emphasize the need for more relevant theoretical
development in this problem area. The development of model building techniques
in general has been carried out under the assumption that no a priori information
is available to the experimenter concerning which variables should remain in the
final model. '

1.2. Objectives of the present study. The present study will concern itself with two
different model building procedures, called “Forward Selection” and “Sequential
Deletion”. We will consider these for use in model building when the experimenter
believes that the usual error assumptions are appropriate in his full regression
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model, however, he feels that many of the independent variates will be of no real
value in a predictor of the predictand y.

Each of the two procedures assumes that the experimenter has sufficient
knowledge in the area of application to allow him to select the “‘basic set” of r
independent variables (which could be the null set) and to designate an “‘order of
importance” for the remaining k—r variables with x,,; being most important
and x, least important. In many cases such knowledge is gained from theoretical
considerations or from a substantial amount of experience in the applied area.
In other cases, such as polynomial regressions, a natural order is given.

The model building procedures are described by the following:

(Sequential Deletion). The experimenter has » measurements available on the
k+1 variables (y, x,, -, x,). He wants to predict y on the basis of the values the
x; will assume. He first tests the hypothesis that the coefficient of x; is zero (i.e., x;
is not needed in the equation). If he accepts this hypothesis he deletes x, and tests
that the coefficient of x, _ ; is zero. If heaccepts thesecond hypothesishedeletes x;_ ;
from the prediction equation and tests the coefficient of x,_,, etc. He continues
deleting variables in this manner until he rejects a hypothesis that a coefficient is
zero, or until he reaches the coefficient of x,(r < k), then he retains in his prediction
equation the variable corresponding to that coefficient and all other variables whose
coefficients he has not yet tested.

(Forward Selection). The experimenter has » measurements available on the
k+1 variable (y, x,, x,, -*-, x;). He also assumes that the first r(r < k) of the k
independent variables are necessary for prediction of y. He then tests the hypothesis
that the coefficient of x, , , is zero. If he rejects this hypothesis he adds x, . | to the
list of necessary variables and tests that the coefficient of x, , , is zero. If he rejects
this second hypothesis he adds x, , , to the list of necessary variables and tests that
the coefficient of x, , 5 is zero, etc. He continues adding variables to his prediction
equation in this manner until he arrives at a variable whose coefficient does not
differ significantly from zero, at which point he does not add that variable to the
equation, nor does he add the variables whose coefficients he has not yet tested.

The objectives of the present study are threefold. First, to provide a means for
examining, with respect to bias and mean square error of predictand, the con-
sequences of using the two model building procedures. The second objective is to
give a summary of the results obtained in a numerical study of the efficiency of the
two procedures relative to one another and to the procedure wherein all independent
variates are retained. Finally, to recommend, based upon the results of the numerical
study, significance levels for use in model building in various circumstances.

1.3. Related papers. Previous, related papers which deal with the problems of
incompletely specified models involving the use of single and repeated tests or
preliminary tests of significance include investigations by Bancroft [5], Bechhofer
[6], Bennett [7], Bozovich, Bancroft, and Hartley [8], Huntsberger [14], Kitagawa
[16], Mead [19], and Paull [20]. Publications which deal more specifically with the
theory of model building in regression analysis using sequential testing include
Anderson [2], Anscombe [3], and Larson and Bancroft [17], [18].
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2. The sequential deletion procedure. This procedure, as previously described,
can be summarized mathematically as follows. (The estimator of the true value of y
for any case is denoted by y*; the superscript on y denotes the number of independ-
ent variables included in the fitted prediction equation.)

Event y* Situation
A4; Yik-i Reject H;: Bi—; =0; Accept H;_:
Bi_iz1=0;-- Accept H,: -, =0;
Accept Hy: B, =0. (i =0,1,2, -, k—r—1).
A, y, Accept H,_,_{:P,+1 =0; Accept Hy_,_,;
B,,, =0;--- Accept H;: f;,_,; =0;
Accept Hy: p, =0.

This mathematical form also serves to emphasize the fact that the data themselves
are used as a basis for determining which of the k—r+1 linear models to use in
predicting values of y. We will assume throughout that all repeated tests are made
at the same level a.

2.1. The bias in y*. Assume that the true model generating our datais ¥ = Xf+e
where Y is the nx 1 vector of observed y values, X is the nx (k+1) matrix of
x values, and e is the n x 1 vector of error components. We assume that E(ee’) = o1,
that the independent variates are transformed so that the columns with the excep-
tion of the first column have mean zero, and that X' X = I. (In Section 5 we show
that the bias and mean square error of y* is not affected by this transformation.)

The test criterion for the hypothesis 8; = 0 is b;*/v, (i = r+1, -, k) where b; is
the least squares estimate of ; and v is the residual mean square obtained by fitting
the full model. The hypothesis is rejected if 5,2/v = J (the 100(1 —«) percent point
of F, ,_,_,)and accepted otherwise. Then the expected value of y* is

(1) E(y*) = E(yk IAO)P(A0)+E(yk—l | AI)P(A1)+ T +E(yr I Ak—r)P(Ak—r)’
where, due to the fact that the b; are independent, we have fori = r+1,r+2, ---, k
that
E(y; | Ak—i)P(Ak—i) =[Bo+Bixi+ - +PimiXi—y +xiE(bi ' Ak—i)]P(Ak—i)
and
E(y, | Aimy) = (Bo+ Y51 Bx;)P(Ai-,).

We introduce the notation 4; = ;?/26%, m = n—k—1, and use F(z | A) to denote
the cumulative distribution function of the noncentral chi square having s degrees
of freedom and noncentrality 1. For any 0 < i < k—r the probability P(4,) is
expressible in the form

(2) Cioi = P(Ai) = §8° [l—[§=k—i+1 Fl()’y | 'lj)][l“Fl()’y | Ak—i)]g(y)dy
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where y = 6/m, g(y) is the p.d.f. of x,,%, and we define ]—[1 k+1F1(x| A) = 1 If we
let r(by_;, by—; 41, -+, by, v) denote the joint density of the independent random
variables b, _, bk_l“, .-+, by, vthen we have

() P(4) = Jy o [ (b, by 0) do [ Tocy b

where B is the region defined by {y:b2 < dv;---;bi_,,1 < v; b?_; = 6v).
Differentiating C, _ ; with respect to 8, _; gives

aCk z ﬁk i

St =)~ p(a)]

where
H(Ai) = 530 [ﬂ§=k—z+ 1 Fl()’y | )'j)][l _Fs()’y I Ak—i)]g(y) dy.

Differentiating (3) with respect to g, _ ; gives

oP(4; )

0B
Equating the two derivatives gives
4) E(by_; | A)P(4;) = B H(4,) 0<i<k=r).
Using Equation (4) we substitute into Equation (1) to obtain E(y*). Using the
convention Y ;% P(4,) = 0, the bias in p* is then expressible as
(5) bias (y *) =Y iort1 tht[zls:(t)_ ! P(As) + H(Ak—t) -1].

2.2. The mean square error of y*. Having derived an expression for E(y*) we need
E[(y*)*] in order to obtain the mean square error of y*. Using previously defined
relationships between estimators and events it is easily seen that

(6) E(y*)* = E(yi | Ao)P(Ao) + E(yi- | A)P(A,)+ -+ +E(3,2| A_,)P(Ar_,).
Expanding these terms we have
E(y? [ A=) P(Ai-) = [(Bo+ Li2h b)) + (U n+ iz x 7)
+2(Bo+ 2521 Bix)xiE(b; | A=)+ x2E(b% | A= i)1P(Ay— )

ﬁkl

— 3 (b AYP(4) -5 P,

forr < i < kand

(M) EQ [ A )P(A=y) = [(Bo+ 251 B +0*(1n+ Y-y x2)IP(A, ).

The expectation of the ;> depends on that of ;2. To derive a usable expression for
E®b? | A,—;)P(A,_,) we proceed as follows. First differentiate P(4;) in (3) twice
with respect to 7 _ ;. The result is easily seen to be

azP(Ai) 1 )
oPi_; = ;I{E(bkz—i | Ai)—zﬁk—iE(bk—i | Ai)+ﬁkz—i—62}P(Ai)'
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Similarly, differentiating C, _; we obtain

6aﬁc,%k__,~i=ﬂk“l[P(A) 2H(A)+T(A)]+ 2[H(A) P(4)]

where

T(A4;) = [§ [T T5=k—iv 1 Fa(vy | A) L= Fs(vy | Ae—:)1g(v) dy.

Again using the equality of partial derivatives we obtain
E(bi_;| A)P(4;) = BZ_.T(4;)+0*H(A4;).
Substitution into (6) gives, upon simplification,
E(v*)? = Yiore i {(Bo+ XI=1 Bixi)* +0?(1n+ X2 1 x2)}P(Ax- )
(8) +23 et (Bo+ 2420 Bix)xBiH (A )+ Y= 1 X [B T(Ai— ;)
+02H(Ay_ )1+ [(Bo+ Y=y Bix:) 2 + 0 (Un+ Y52 x2)]P(4, ).
We now obtain the mean square error of y* as
0) mas(y*) = Ey*)= LB ")F +Doiss (7)1
re1 [QZI2 1 Boxi) P(Ay= ) =2k 1 Bixi) By, A2 P(4)
+02(1/n+z { x2)P(Ap= ) +(02x 2 =2 ,x; Y %y Bix)H( Ay ;)
(10) +B2x 2 T( Ak )]+ 02 (Un+Yi= i xP)P(Ar=,) + Tkt Bix)?
where Y ¥Z}! Bix; = 0.

There are partial checks which can easily be shown to hold for this expression.
If 6 = 0 corresponding to always rejecting H,, the mean square error is known to
be o*(1/n+Y 5 x;*). As § - oo corresponding to always using only the first r
variates to predict y, the mean square error is o*(1/n+Y5_; x;*)+ (X 5o+ Bixi)*
Finally, this mean square error agrees with that obtained by Larson and Bancroft
[17] for the case of r = k—1.

3. The forward selection procedure. This procedure, as previously described,
can be summarized mathematically as follows:

Event  y* Situation

A

1

Ver; Accept Hi:f, . i1 =0, Reject H;_;:f,,; =0,
Reject Hy: B, =0,i =0,1,---, k—r—1,

A, Vv Reject H,_,_:B,=0; Reject Hy_,_,:B,_, =0;--

Reject Hy: B, =0.
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As was the case in sequential deletion, the forward selection procedure includes a
sequential testing of hypotheses and the particular model arrived at through use of
this procedure is determined by the results of these tests.

3.1. The bias in y*. We make the same assumptions about the linearity of model,
the orthogonality of x vectors, and the distribution of errors, as were made in
Section 2.1. Again the assumption of orthogonality of x vectors is not restrictive
because an appropriate transformation to non-orthogonal data does not alter the
bias and mean square error of predicted y.

The criterion used in testing the hypothesis 8; = 0is b2/v (i = r+1,r+2, -+, k),
where v is the residual mean square from the full fit. The expected value of y* is
expressible as

(11) E(y*) = (Bo+ =1 Box) + LT Y5Lh e 1 x;E(b; | 4)P(4).

In order to obtain a more informative expression for E(b; | A;)P(A4;) we again
express P(A4;) in integral form as

(12) Ci=P(A) = [ [1/= s [1=F1(yy | Apx )IF (¥ | Arsis1)9(») dy,
where

H?=1 [1_F1(V)’|1r+j)] =1
Alternatively we have

(13) P(At) = j ”'IB r(br+ 15777 br+i+19v)l—[;if‘ill db} dv
where B is the region defined by {y: b}, = dv; b2, = dv; -3 b4, = 6v;

b,+;+1 < dv}. Forany integer ¢ in the range 1 < ¢ £ i we differentiate P(4;) in (13)
with respect to 5, ;. , and obtain

oP(4)
_a—l}: = ;EE(br+t_Br+t | Al)P(Al)

Using (12) we again differentiate with respect to 3, ., and obtain

aci Br+t
By v, = —[Hr+t(Ai)_P(Ai)]

_0_2

where

Hr+t(Ai) = j80115‘=1;j¢r[1_F1()’y | }'r+j)][1_F3(‘yy | /1r+t)]F1(Vy | Aeviv 1)9(J’)dY-

Using equality of these partial derivatives gives E(b, ., | ADP(A4;) = B, H, . (4),
and substituting into (10) we have

(14) E(y*) = (Bo+ izt Bx)+ 2121 Y5ihe 1 By H (4).
Thus, the bias is expressible in the form
(15) bias (y*) = Zf;; ;J;lr+ 1 BjxjHj(Ai)—Zi'(=r+ 1 Bix;.

3.2. The mean square error. We will use the general approach employed in
Section 2.2 to obtain mse (y*). As before we have
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(16) E(y*)* = E(y,* | Ao)P(Ao)+ E(y7+1 | Ar)P(A)+ -+ + E(y,? | Ae-r)P(Ai—,)-
Considering individual terms in this sum we see that
E(yi® | Ai-)P(A;-,) = [(Bo+ Ym=1 BuXw)* + 0 (1n+ 3 0= 1 X,7)
(17) +2(Bo+ Y= 1 Bum) 2i=rs1 X;E(b; | Ai,)
2 fri2 mert 13 <m X XmE(b;bm | i)
+ Y1 X E(b? | A )IP(Ai,), i = r+ L e 42, k.

This equation points to the need for expressing E(b;b; | A)P(A,) in some more
usable form. First consider the case where i = j. Taking second partial derivatives

we have
0*pP(4,) 1 1 2
) P~ b~ | A)P(4)

Azct iz 1
Z_ﬁ? = % [P(At)—2Hi(A,)+ T;(At)] +;_—-2-[Hi(At) _P(Ar)]
where
T(A) =[5 T1sE0 s 130w LU= Fo(yy [ )WL = Fs(vy | 2)1F (59 | A )9 (v) dy

i< r+t, Fi(yy | 2 +1) = 1. Equating the two derivatives and using the expression
for E(b; | A)P(A,) given in Section 3.1 we obtain

(18) E(b? | A)P(A,) =B T(A4,)+6*H(A,).
For the case of i # j we use the following derivatives.
*°P(4,) 1 .
Fpap, = o ELbi= (b= ;) | AJP(4),
>*C, Bb,
7 ltf,» =7—’~[si (A)—H{(A)—H,;(4,)+P(4)],
where

Sij(At) = _"80 ngﬁ ns#ig L —F1(Vy | /13)][1 _Fs(Vy | /Ii)][l _Fs(V,V I )'j)]
Fy(yy [ Araes1)g(v) dy.
Using the equality of the two derivatives we have
(19) E(bibj | A,)P(A,’) = ﬂzﬁjsij(At)'
The results given by (14), (15), (18), and (19) are now used to obtain
mse (y*) = E(y*)*~[E(y*)]*+ [bias(y*)]?
(20) =o’(In+ Yo x2)+ 5 s 1 % (B’ Tl Aj) + 02 H (4]
+2 th=r+ 1 th=r+ 25i<t ﬂiﬁtxixtsit(Aj)}
- 2(Z?=r+ 1 ﬁixi) 1 ;:;+ 1 ﬁjxjHj(Ai) + (Z’f:w 1 :Bixi)2~
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The partial checks used for Sequential Deletion can also be shown to hold in the
right member of (20).

4. Relative efficiency. The final stated objective of this study is to investigate the
efficiency of the two model building procedures. We will first define relative
efficiency for each of the procedure pairs to be studied.

4.1. Definitions. We define the relative efficiency R, of the forward selection to
the sequential deletion procedure to be, for a common set of n observations,

M;  n[Y g (mse;(y*) for forward selection)
M, = nfY s (mse; (y*) for sequential deletion)

(1) . R, =

where (1/n)Y o, mse;(y*) denotes the average of the mean square errors averaging
over the n observations. Here M, and M, are respectively the simplified form of the
numerator and denominator of R,. These average values used in defining R, are
estimates of the respective population mean square errors of predicted y over the
space of x’s. Using the previously derived expressions (10) and (20) along with the
properties of the X matrix we obtain R, in the form? R, = M,/M, where

My =Yy [1P(Ai=g) =24, 2 %26 P(A)+(1—4y)H(Ar—,) +24T(A4r-,)]
(22) +(r+1)P(A-)+2Y % i1 4y
M2 =r+ 1 +ZI;;; Z:n+=jr+ 1 [2/1me(AJ)+(1 _4/1m)Hm(A1)] +2ZJ!C=r+ 1 ’1j-

The relative efficiency of forward selection to the procedure wherein all independent
variables are always retained in the model (called the ‘““always keep‘‘ procedure) is
defined to be

n/Y obs (mse;(y*) for forward selection)
Ry = /Y s (mse; (y*) for always keep)

The ratio R, is easily seen to be (k+1)/M,. Using the same form of definition for
the relative efficiency of Sequential Deletion to the “always keep” procedure the
definition gives riseto R, = (k+1)/M,.

4.2. Results of numerical study. An extensive numerical study was made in order
to compare the two model building procedures and to determine at which level a
might best be used for tests made in model building®. The range of parameters
used was

[n: 20, 60, others in special cases], [k: 5, 10, 20], [4;; 0(1)5],
[k—r: 1(1)5].

For each combination of the parameters the value of Ry, R, and R, was obtained
at each of the levels o = 0.50, 0.25, 0.10, 0.05. Other combinations of these para-
meters were considered in regions where a “finer grid”” appeared to be desirable.

2 Note that ¢ is now included in the 4; .

3 The results obtained in computation are on file in the Statistical Laboratory at Iowa State
University, Ames, Iowa.
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The ratio R, was used for comparison of the two model building procedures.
The values of R, were generally in the range 0.50 £ R, < 1.20 with some excep-
tions. The majority of the R, values obtained were less than 0.95 in value and the
mean R, was 0.86. Figure 1 is a representative example of the results obtained.
The numerical values obtained indicated clearly that the forward selection pro-
cedure is relatively less efficient than the sequential deletion procedure for all cases
except those where the parameters A; are all very small.

Ry (1) ¢ = 0.50 n =10
(2) a=0.25 k=5
o r=1
'Y
A (3) a = 0.10 Moo= 1
(4) a = 0,05 M= 1
xk =1
s L (1)
"' (3)
(2)
(1)
o
o ! 1 1 A
(o)
1 3 5 7 k-3

F1G. 1. Representative graph of R, as a function of Ax_ 3.

The ratios R, and R, were used to study relative efficiency in relation to test
levels a. Results obtained proved that it is not possible to find a level « which can
assure that the relative efficiency R, or R, is maintained above some nominal level
(e.g., 0.80) for all possible combinations of the other parameter values. This result
was expected and the study was made primarily to see which levels o are most
appropriate according to the relative efficiency criterion. The majority of values
obtained in the study were in the ranges 0.70 < R, £ 1.15,and 0.70 < R, < 1.05.
The approximate median values for the R, and R, were 0.83 and 0.92, respectively.
No single « level was found to be universally superior. The conclusion reached,
based upon the numerical results obtained, is that a good choice of « is one in the
range 0.10 < « £ 0.25. Specifically for R, a level « near 0.25 seems best and for
R, an « near 0.10 seems best. Figure 2 is representative* of the numerical results
obtained.

In addition to the numerical study described above, the expressions derived by
Larson and Bancroft [18] for mean square error of predicted y when ¢ is known
were used to define the analogues Ry’, R,/, R, of Ry, Ry, R, and these ratios were
used in a second numerical study. The range of values used in this study was

[k — r:2(1)5], [k: 5(5)25, 50(25)100],
[Bifo:0(1)5 for k — r = 2,3, and 0(1)3 for k — r = 4,5].

4 The word “representative” is used to indicate that the majority of the graphs had this general
appearance.
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B (1) @ = 0.50 n =20
‘u"? | (2 a=0.25 k=5
- (3) a=0.10 r =3
() =005 A =1
o \ (l)
g  (2)
(3)
()
e L
)
2 L | | | 1 Mee1
© 0 T 2 3 i 5

FiG. 2. Representative graph of R; as a function of A;_;.

The results were much the same as those previously summarized for the case of
unknown o2, and the same conclusions were reached. This constitutes an extension
of the results obtained by Larson and Bancroft for the case of > known.

Based upon the numerical results obtained the sequential deletion procedure is
recommended for use. The level « = 0.25 for tests made in application of this
procedure appears to be very appropriate. The forward selection procedure is
generally less efficient and cannot be recommended over sequential deletion.

5. The nonorthogonal case. The preceding derivations of bias and mean square
error were made using a transformed X matrix. The transformation was made to
achieve orthogonal x’s. In this section we show that the bias and mean square error
of predicted y is the same for original and transformed x’s. Larson and Bancroft [17]
have derived similar results for the case of known error variance o?.

5.1. Equality of biases. The proof will be given for the Sequential Deletion pro-
cedure. The corresponding result for Forward Selection is derived in the same way.
Let X,_; i=0,1, -, k—r) be the nx (k—1i) matrix composed of the first k—i
columns of the original X matrix. Let b,_; (i =0, 1, ---, k—r) be the (k—i)x1
vector of regression coefficients on X _;. Let ¢, be an arbitrary 1 x k vector and
¢r_; i =0, -, k—r)be the 1 x (k—1i) vector containing the first k—i components
of ¢,. The bias in the estimator of ¢,f is denoted by g(X,, Xi—1, =+ X,; d; 07).
Using the basic assumption about the distribution of Y we have that
9( Xy, Xe— s 5 X3 B &5 02) is given as follows.

Define A; (j=r+1, -, k) to be A; = (R(X;; Y)—R(X;_,; Y))/v. Also, define
theQ;(i=1,2,---,k—r+1)tobe

Ql ={Y:Akgé}>
Q= {Y: Ay Z 6, Ak jur <8 A <8}, (j =2, k—0),
Qv ={Y1A 11 <6,A,4, <0, A <6}
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Then we have
(23) Q(Xk, Xe-1s "'9Xr;ﬁ;(/)k;62) = Z§;i+1jn,-¢k—j+ lbk—j+1
'N(Y;XB;UZI)H?=1in_¢kﬁ

where R(X,_;; Y) is the regression sum of squares obtained by regressing Y on
Xi_;, and N(Y; XB; 6*I) is the probability density function of the multivariate
normal distribution having mean vector Xf and variance-covariance matrix ¢21.

There exists a nonsingular upper triangular matrix 4, such that (X4,)'(X4,) = L.
(Several different orthogonalization procedures will give A; the well-known
Gram-Schmidt procedure is one such procedure.) Let 4,_; be the (k—i) x (k—1i)
principal submatrixof 4, (i = 0, 1, ---, k—r). Let Z, = XA, denote the transformed
X matrix and Z,_; = X,_;Ax_; (i = 0, 1, -, k—r) denote the first k—i columns
of the Z matrix. Using this notation the following relationships are easily seen to
hold.

(1) R(X ;3 Y) = R(Xy_;A_;; Y) forevery i=0,1,- k—r.
(2) by_; = Ay_;d,_; foreach i=0,1,---,k—r where d,_; is

the (k—i)x1 vector of regression coefficients on X, _;4;_;.
) Gp_iby—; = ¢pp_;Ax_;d,_; foreach i=0,1,---, k—r.

Using (23) and these three relationships it follows that
(24) Q(Xk, Xt X585 s 0'2) = g(XkAk> Xy 1Ap—15 X, A5 Ak_lﬁ; drArs 0'2)'

Thus, (24) shows that the bias in p* is the same for original and transformed x
variates whenever the Sequential Deletion procedure is used. The same is true for
Forward Selection and the proof follows readily using an argument similar to the
one given above.

5.2. Equality of mean square errors. An expression for the variance of predicted y
is obtainable by rewriting (24) with slighly modified integrands. Using the relation-
ships (1), (2), and (3) it follows immediately that the variance of y*, and, hence, the
mean square error of y*, is not affected by the use of transformed x variates.
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