The Annals of Mathematical Statistics
1972, Vol. 43, No. 1, 303-307

A VARIATIONAL CHARACTERIZATION OF
FINITE MARKOV CHAINS

By FRANK SPITZER
Cornell University

Summary. We prove a one-dimensional version of a theorem of O. E.
Lanford and D. Ruelle [4]in equilibrium statistical mechanics which character-
izes Gibbs states as those states which minimize the free energy. It is shown
that a stationary Markov process is the most random (has the large stentropy)
among all strictly stationary processes: with the same energy. This energy is
based on a potential U which determines the transition'matrix M of the Markov
chain with minimal free energy.

Let .7~ be the class of translation invariant states (strictly stationary processes)
defined as follows. The statement x € .7~ will mean that (Q, &, p)is a prob-
ability space, with Q@ ={1,2, ...,n}%, & is the o-field generated by the
cylinder sets of Q, and y is a countably additive probability measure on
(2, %) which is invariant under the shift 7 which is defined by (Tw), = w,,,,
keZ. If I, is the cylinder {1, 2, ..., n}i**¥1 then the cylinder set proba-
bilities will be denoted

pN(i) = p{w: W, =1, -, 0y :iN}, i= (il,iz, "',l.N)GIN,Ng 1.
For each 1 € .7 and each N > 1 we define the entropy (randomness in [1, N])
by
Sy(p) = — ZiEIN Lx(i) log e,

with convention 0 log0 = 0. Clearly 0 < S,(¢) < NlogN, and it is known
(the proof goes just as in 7.2.3. of [5] in the case n = 2) that the specific
entropy
(1) s(p) = limy_, N7'Sy(p) re o
exists and is an affine, upper semi-continuous function on .7~ (in the vague
topology of .7" as a subset of the continuous positive linear functionals on
C(Q)).

Now we introduce a nearest neighbor pair potential U(i, j), 1 < i,j < n, to
be thought of as an energy of interaction between v, and w,,, when w, = i,
and w,,, = j. Then the average energy in an interval [1, N] is

Ey(p) = ZieIN (i) 285 Ui i) -
Clearly the limit

(2) ey(p) = limy NTEy(p) = 270 Xioes pal(rs $)U(r, 5)
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exists. It is called the specific energy of y with respect to U, and is a continuous
affine function on .7”. As in statistical mechanics ([5] Chapter 7) we now
define the free energy in the interval [1, N] as F,(p) = Ey(¢) — Sy(z), and
the specific free energy as

3) Solp) = eylpr) — s(p) » res .

It will be crucial that f;(y) is a lower semi-continuous affine function on 7.
Consider now the class _# c .7~ of positive stationary Markov processes

(briefly Markov states) defined as follows. An element p of 9 isin _# if

there exists a strictly positive n X n stochastic matrix M = {M(i, j)}, such that

“4) py(i) = @(G)M(iy, i) M(i5, i) - - - M(iy_,iy), iely, N=1,
where ¢ is the unique invariant probability measure for M (that is ¢(k) > 0
forl <k=<m 1)+ -+ + on) =1, oM = ¢).

Given a potential U we define the positive matrix Q = @, by the Boltzmann
formula
(5) 0(i, j) = eV | 1<ij<n.

Let 2 = A(U) be the largest (positive) eigenvalue of Q. Let / and r denote the
left and right eigenvectors of Q corresponding to 2, normalized so that I(i) > 0,
ri) >0for 1 <i<nand!.r= 3 I@i)r(i) = 1. Define M as the positive
stochastic matrix

o106, )r() o
6 M@ij)= =2/ M/ | 1<i,j<n.
(6) 1) = 35y s <ijsn
Note that M has the invariant probability vector ¢(¢M = ¢) given by
(7) o(i) = Ii)r(i) I<i<n.

Finally, let v = v denote the Markov state defined by the transition matrix M
and its invariant vector ¢ in accordance with (4), (5), (6) and (7). Now we
can formulate the variational characterization of v. It asserts that v is the
most random of all states z e .7 which have the same specific energy as v
(i.e., such that e,(¢) = e,(v)). An analogous, more general, result can be
stated and proved for the class of all stationary Markov processes (not neces-
sarily with strictly positive M) if one permits the potential U to assume the
value + co.

THEOREM. Let U be given. Then
8) fole) = —log AU) forall pe

with equality if and only if y is the Markov state v = v defined above in terms
of U. Conversely, given v € _#, one must choose a potential of the form

9) U(i, j) = —log 2 — log M(i, j) + h(i) — h(j), 1<i,j<n,
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where h is an arbitrary function, if one wants v to minimize the free energy f,, and
to give it the minimum value —log 2.

The converse of the theorem is a direct consequence of its first part, and
of the definitions (2), (5), and (6). The main first part will be proved in three
stages. Stage I will show that (8) holds with equality when p = v“". In Stagell
we assume that g # v™ but that g is ergodic, and show that f;,(x) > —log A(U).
Finally in Stage III we prove strict inequality in (8) for an arbitrary e g
such that y == v, Throughout the proof we shall write v = v.

Stage 1. With M and ¢ defined by (5), (6), (7),
5 UG Byy) = —log TIRS Qs Bi)
= —(N — 1) log AU) — log [I¥=! M(iy, i)
—log r(i,) + log r(iy)
= —(N — 1)log 2(U) — log v, (i) + log ¢(i;) — log r(i))
+log r(iy) , iel,.
Hence, averaging with respect to y,
E\(p) =—Nlog A(U) — ZiEIN py(i) logvy(i) + ¢,
where c is a constant (depending on U and g, but not on N). Thus

(10) L (1) = Ey(1) ; Sy(r)

—log X(U) + ~ zwwyAOIg”§;+

The sum in (10) is nonnegative in view of the elementary inequality x log x >
x — 1 for x = 0. Therefore

N-Fy(p) = —log A(U) + ¢/N
with equality when 4 = v. Hence, letting N — oo,
(11) fuolp) = lim, . N=Fy () = —log (U), pe s,
with equality when p = v.
Stage II. Observe that

(12) s(1) < NS,u(p) » Nz=1,
in view of the well-known subadditivity property (cf. [5] 7.2.10)

Sypem(t) S Su() + Su(), Mz, N, =1, pe”.
Also note that
(13) Ey(p) = (N — Dey(p) , N22 ped.
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It follows from (12) and (13) that for each N > 2

Jo(p) 2 N7Fy(p) + Ney(p)
and in view of (10) there is a constant ¢’ (independent of N) such that

(149) St = —10gA(U) + 1| & + Tier, ma(i)log ”NE’;] Nz2.

Let & denote the subset of .7~ consisting of ergodic states (states p such that
A = & and A = TA implies p(A4) = 0 or 1). We shall prove that

(15) Sfo(p) > —log A(U) forpe &, p+v.

This will be done by showing that the sum in (14) tends to +oco as N — oo,
when pe &, ¢ + v. First note that the Markov state v is in &, since the
shift T is mixing for v, by the ergodic theorem for Markov chains. Next
observe that y and v are mutually singular if # e & and p + v. This follows
from Birkhoff’s ergodic theorem by choosing a cylinder set 4 € 7" such that
1(A) + v(A), setting

fN(w) = N7 3L 1 (T') , weQ
and noting that the set on which f,, — y(A4) has p-measure one, and v-measure

zero. Following Doob ([2] page 343-348) we now define the stochastic process
of likelihood ratios

(16) xy(w) = vyli(w)]/pyli(w)]  if ppli(@)] + 0
=0 otherwise,

for N > 1, onthe probability space (Q, 7, ¢). As shown by Doob this process
is a martingale with respect to the increasing family of o-fields &, generated

by {i(®), iy(w), - - -, iy(w)}. As shown by Doob, the martingale x, converges
(a.e. p) to the Radon-Nikodym derivative of v with respect to z—hence to
zero since p and v are mutually singular. Now let y,(w) = —log xy(®). If
E denotes expectation with respect to 4 measure, we have
i
(a7 ELs] = Tieryieal) log 2203
N

and (15) will be proved if Ey, — +co as N — co. Since y, — + oo (a.e. p)
it suffices to show that the negative part of y, has uniformly bounded expec-
tation. This follows from

E[y,] = E[(log x,)*] < E[(xy — )*] < E[x,] =1, Nz1.

Stage II1. Let %% = 5%, be that subset of .7~ on which f;, assumes its
minimum value. We have seen in Stage I that ve . %" Since f; is a lower
semi-continuous function it follows that .5¢"is closed, and since .7 is compact,
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so is 7" Since f, is affine we know that .9 is convex. We want to show
that . 92" consists of the single point v. By the Krein-Milman theorem ([1]
page 95) this will be so if and only if 22" has only one extreme point. From
the definition of .5 it is immediate that every extreme point of .2 is also an
extreme point of 7. But if pis an extreme point of .77, then it is in &. (If
p were not in & we could choose 4 e .7, with 0 < u(4) < 1, TA = A, and
express p as a convex combination of the measures y,, ¢, both in .77, defined
by 11(B) = [1(A)]" (A N B), 11(B) = [1(A)]"¢«(4° N B), Be #~) Thus the
problem is reduced to showing that %" contains no ergodic states other than
v, and this was the result of Stage II. Therefore the proof is complete.

REMARK. We wish to thank H. Kesten for suggesting the use of martingale
theory in Stage II of the proof. This approach is much simpler than the proof
of Lanford and Ruelle [4] which depends on the study of how .9 behaves as
U varies in a suitable Banach space of interactions. Another indirect proof
was given by R. Holley [3] depending on the time evolution of a Markov
process with state space .7”. In principle the present method seems adaptable
to the case of Gibbs states on Q = {0, 1}2¢ with d > 2, since the process
analogous to {x,} in (16) (with N replaced by a sequence of expanding cubes)
continues to form a martingale. However, the estimates leading to (15) seem
to break down since there are boundary.terms present which must be shown
to be small compared to the expectation in (17).
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