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ON THE BEST OBTAINABLE ASYMPTOTIC RATES
OF CONVERGENCE IN ESTIMATION OF
A DENSITY FUNCTION AT A POINT*

By R. H. FARRELL
Cornell University

Estimation of the value f(0) of a density function evaluated at 0 is
studied, f: Rm — R, 06 Rn. Sequences of estimators {y», n = 1}, one
estimator for each sample size, are studied. We are interested in the
problem, given a set C of density functions and a sequence of numbers
{ax, n < 1}, how rapidly can a, tend to zero and yet have

lim infy—e infye ¢ Pf(irn(Xl,' v, Xa) — fO)] = as) >0

In brief, by ‘‘rate of convergence’’ we will mean the rate which a. tends
to zero. For a continuum of different choices of the set C specified by
various Lipschitz conditions on the kth partial derivatives of f, kK = 0,
lower bounds for the possible rate of convergence are obtained. Combi-
nation of these lower bounds with known methods of estimation give
best possible rates of convergence in a number of cases.

1. Introduction. This paper is to be considered a continuation of Farrell
(1967). Throughout {X,, n = 1} is a sequence of independently and identically
distributed m-dimensional vector valued random variables such that X, has a
density function f relative to m-dimensional Lebesgue measure. In Farrell,
op. cit., and in this paper, the problem considered is that of estimating the
value of f(0). In some recent literature, for example Leadbetter [3], the prob-
lem of estimating the entire density function is considered, i.e., given m = 1,
simultaneously estimate the value of f(x) for all xe R,. However for the
problem considered in this paper we restrict attention to the point estimation
problem.

There are many different reasonable methods of constructing consistent se-
quences of estimators. The kernel method was introduced by Rosenblatt[6],and
basic properties of the kernel method, when used for point estimation, were
obtained by Parzen [4]. It was shown by Parzen that when m = 1, and f has
two continuous derivatives, then many different kernels give rise to estimator
sequences for which the square error converges to zero at a rate, a constant
timesn~t. The constant is the product of a factor depending only on the kernel
and a factor depending only on the particular f. It is thus possible to choose
an optimal kernel, something apparently first done by Epsnecnikov [1]. The
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same aymptotic rate seems invariably to come up when other methods are
used. For example Weiss and Wolfowitz [12], who used a maximum likelihood
method. The fact that different approches to the estimation problem (including
M.IL.S.E.=mean integrated square error) give the same asymptotic rate suggests
that in fact this might be best possible, which we show to be the case in this paper.

Using mean integrated square error and working on the problem of estimat-
ing the entire function, Leadbetter [3] and Watson and Leadbetter [10] studied
question, the if f is known, what kernel minimizes the asymptotic M.I.S.E.
Pickands [5] has used Watson and Leadbetter, op. cit., to study the asymptotic
efficiency of a large class of kernels. Schuster [8], using Russian work as a
start, has necessary and sufficient condition that an estimator sequence con-
verge uniformly to f with probability one. Density estimators may be con-
structed using orthogonal series, e.g., see Schwartz [9] and Watson [11]. The
series methods yield the same asymptotic rates as do the other methods.

Several recent articles have begun the process of generalizing the one-dimen-
sional methods to estimation of density functions of several variables. The
paper by Epsnecnikov [1] is of interest here in that his asymptotic rates of
convergence are best possible, as will be shown in the sequel.

Most authors consider the problem of estimating one density. The methods
they develop in fact give a uniform rate of convergence over a class of density
functions. Rosenblatt [7] as well as Farrell [2] consider problems involving
the uniform asymptotic rates of convergence over a class of density functions.
Rosenblatt, op. cit., has initiated the consideration of a class of density func-
tions specified by Lipschitz condition rather than by bounds on the derivatives
or asymptotic rates in the tails of the Fourier tranform of f. Rosenblatt’s type
of condition is considered further in this paper and bounds are obtained on the
asymptotic rate of convergence which may be obtained.

The results of this paper are concerned with the question of how good, asymp-
totically, a sequence of estimators may be. Our results are stated for confidence
intervals. Use of standard inequalities allow derivation of bounds for measures
of loss other than zero-one loss functions. Our results depend on assumptions
that a given estimator sequence is uniformly “good” over a specified class of
density functions. The assumptions, made explicit below, hold for kernel type
methods if the kernel has compact support (the optimal kernel obtained by
Epsnecnikov [1] has compact support), and satisfies an orthogonality condition.

We now describe the classes of density functions to be considered. In order
to do this some definitions are needed. We let 7 : [0, co) — [0, co) be a con-
tinuous function satisfying

(1.1a) the derivative 5’ exists on [0, o) and »(0) = »'(0) = 0.

(1.1b) 7’ is a strictly increasing concave function .
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(1.1¢) lim,_, 7'(bx)/7'(x) = w(b) exists, is finite, and lim,_, p#(b) = oo .

In the sequel ||x|| = (x? + - -+ + x,°)}, where x* = (x,, -+, x,,). A function
S of m real variables will be said to be in the class C,, if

(1.2a) all the kth order partial derivatives of f exist and are continuous;

(1.2b) there exists a polynomial p of degree k in the variables x,, - - -, x,,
such that for all x, | f{x) — p(x)| < 2(kY)7||x]|*7'(||x]]) -

A limiting case of condition (1.2) is the function 5(x) = x, x > 0. We shall
say that fe C,, if

(1.3a) fand its first k — 1 derivatives are continuous;

(1.3b) the (k — I)st partial derivatives of fare absolutely continuous rela-
tive to each of the m possible kth order partial derivative of f;
(1.3¢) the kth order partial derivatives exist almost everywhere and satisfy
orf
- J < ki + - +k,=k.
8x1"1~~8xm"m=a’ 1+ + K,

In the sequel, Case I will refer to the estimation problem restricted to a set
C,, k = 0. CaseII will refer to the estimation problem restricted to a set C,,,
k = 1. The proofs given in Section 3 for Theorems 1.1 and 1.2 are given only
for Case I since similar proofs give the corresponding results for Case II.

When m = 1, in terms of Farrell [2], the class of density functions considered
in that paper is a subset of C,,. In this paper, Case II, we are concerned with
m>1and k> 1. When m = 1 it is known, see for example Parzen [9], that
given k > 1, one may write a sequence of estimators {y,, n = 1} such that if
n = 1 then 7, is a measurable function of n variables and

(14) 1 =lim,__lim,__inf,., PAlr.(X, - X,) — fO)] < an-Haesy
This uniformity may be established for a large class of kernel functions including
those of compact support that are orthogonal to x, x?, . . ., x*~'. This may be

established by use of Lemma 1.4 given below. Using results of Epsnecnikov
[1] a similar result probably can be established when m > 2 for which the
appropriate asymptotic rate of convergence is n~*/ @™ We have not checked
this guess.

The theorems below establish, subject to a uniformity condition, that for
density functions of m variables in C,,, the rate n=*/*m js the best possible
rate. To describe our results for Case I, some additional notation is needed.
We define a function 2 by

(1.5) B = @A@Y " ((A(B)[2)) -

It is easy to chek that x?(y(x))* is a strictly increasing function that takes all
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values from 0 to co. Thus A(8) is uniquely defined. We show that relative to
C,, the best possible rate is (n(4(n~*))™)~%. In case 5(8) = B* a calculation shows
this rate to be p~tk—1+o/@k—2tmt20) - Case II is a special subcase in which z = 1.

In the sequel we suppose always thatifn > 1, (X, - - -, X,) is the estimate
based on X7, .- -, X,,.

THEOREM 1.1. Suppose {a,, n = 1} is a real number sequence such that
(1.6)  liminf, . inf, ., PAlr.(X. -+ X,) — f0) S a,) = 1.
Then,

(1.7) lim inf,__ n(2(n7))"a,? = oo .
In Case II, k > 1, (1.7) still holds.

THEOREM 1.2. Suppose {a,, n = 1} is a real number sequence such that
(1.8) limsup, ... SUp;eo,, @ E(ru(Xys - -+, X,) — f0)) < So.
Then,

(1.9) lim inf,__ n(2(n~")"a,? > 0 .
In Case II, k = 1, (1.9) still holds.

THEOREM 1.3. Suppose in Case I the hypotheses of Theorem 1.2 hold and that
n(t) = t° for some © = 1. Suppose

(1.10) lim sup, ., a, pl+e—Dl@kmize=n & oo

Let k* < k and n*(t) = t~* where t* < t. Assume k 4 t© > k* + t*. There exists
a sequence of functions { f,, n = 1} in C,.,. such that

(1'1 1) limn—wo Pf,,,(lrn(Xl’ R Xn) —fn(o)l = an) =0.

Theorem 1.3 says in effect that a sequence of estimators good relative to the
class Cy, will not give uniformly good results over the larger class C,.,.. Thus
the statistician who constructs his sequence of estimators relative to the wrong
class of functions is likely to obtain bad estimates.

Theorem 1.1 to 1.3 assume that the estimators used satisfy a uniformity
condition. The kernel method of Parzen, if the kernel satisfies conditions
listed above, automatically has the requisite uniformity expressed in (1.4).
This is easily shown using the following Lemma 1.4.

LemmA 1.4, Let {x,,n = 1} and {y,, n = 1} be real number sequences in the
interval [a, b] such that lim,_, (x, — y,) = 0. If {f,, n = 1} is a sequence of
functions in C,, then lim, _,, (f,(x,) — f.(¥.)) = 0.

Proor. Let m > 1 be the least integer such that for some constant a,,
max,,, SUP,crq, 01 | fo ™ (¥)] < @, where f,™ is the mth derivative of f,. By
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definition of C,,, it follows that m < k. We show an assumption that m = 2
is contradictory. If m = 2 then there exists a subsequence {f,,, n = 1} of the
functions and sequence {w,, r = 1} in [a, b] such that

(1.12) lim, . | fav(w,)| = o .

n oo

Smce | fim=D(x) — fir=(y)| < a,|x — y|, n =1, the relation (1.12) implies

im,_, |fi»V(x)| = co uniformly in xe[a, b]. Choose ¢ = +1 so that
llmnw & fimY(x) = oo uniformly in x € [a, b]. Then

(1.13) lim, ., &(f2(y) — fin2(x)) = lim,__, (Ye, frV(t)dt = o .
This implies that in one of the intervals [a, (2a + b)/3] and [(a + 2b)/3, b], for
some number ¢, = +1, thatlim,_,, ¢, f»~?(x) = co uniformly in x. Repeat-
ting this argument m times we see thereisa nondegenerate subinterval[a’, b'] C
[a, b] and ¢,, = =+1 such that lim,_, f20(x) = lim,_, ¢, f,.:(X) = oo uniformly
in xee¢fa’, b’]. However, f,, =0 and (= f,.(9)dt =1, n = 1. Therefore
¢, = 1 and we obtain the contradiction that

1 =lim,__ §=. f.(¢2)dt = lim,_ §b f,.(¢)dt = oo .
Consequently m = 1.

We complete the proof of the lemma by denying the conclusion of the lemma
and obtaining a contradiction. Using the hypotheses of the lemma, by taking
a subsequence if necessary, we may suppose |f,(x,) — f,(»,)| = e. Using the
mean value theorem, there exists a real number sequence {x,,, n > 1} such
that if » > 1 then x,, is between x, and y, and such that

(1.14) X = Yul [/ ()l = € -
Sincelim,_,_(x,—,)=0, the inequality (1.14) implies thatlim,__ | £,/(x,,)| = o
This clearly contradicts the conclusion of the first paragraph that m = 1. []
The method of this paper is to investigate modifications f 4 e of a density
function f'such that e(0) is “large” but f + e changes the probabilities of events
“very little.” In Section 2 we construct a sequence of functions {e,;, k = 1,
0 < § < oo}. InSection 3 by considering density functions of the form f + e,
we obtain proofs of the three theorems.

2a. Constructions for Case II. In this section we construct recursively a
sequence {g,;, k = 0} of functions satisfying
(2.1a) if x¢ [—2%d, 2%9] then g,;(x) = 0.
(2.1b) 9,5 is an odd function of the variable.
(2.1¢) the (k — 1)st derivative of g, is absolutely continuous.
(2.1d) SUp,cr |9::(%)| = 270%, where y = (k — 1)(k — 2)/2.
(2.1¢) There exists a real number sequence {c,, K = 1} such that

2w Jha(X) dx = ¢, %V,
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Here k is an integer index, and § a real number > 0. The main technique of
computation in the sequel is the Fourier transform.
Define

(2.2) 9os(x) = 1 if —0<x<0, and
0 = —1 if 0<x<og.

Proceeding recursively, g,,_, , has been defined then

(2.3) 9%(X) = %15 Gynys(t) At , if —20-15 < x
< 201§ and 9%(x) = 0 otherwise .

Define

(2.4) Jus(¥) = Glemnyo(x + 2¢790) — g _y(x — 2%714) .

The following four lemmas require only simple calculations and their proofs
are omitted.

LemMa 2.1. Ifk > 1 and xe R then
(2.4a) g5(x) =0, and
(2.4b) 95(24) = 0.

LemMMA 2.2. If k = 1 then g,; has (k — 1) continuous derivatives and the
(k — 1)st derivative is absolutely continuous. The function g,; is an odd function.
LeEMMA 2.3. The Fourier transform of g,; is

(2.5) 90s(t) = 2(it) /(1 — cos t9) .
LEMMA 2.4. The Fourier transform of g9,,, k = 1 is
(2.6) Gro(2) = 2¥44 1= B (sin £9) - - - (sin 2¥7%8)(1 — cos 13) .
LEMMA 2.5. g,; has its maximum at t = —2*71§ and g,,(—2*~'0) = 276* where

7= (k — 1)k — 2)/2.

Proor. If t < 0 then g,,(¢f) = 0, and if ¢t = 0 then g,,;(f) < 0. Thus the
maximum of g,; is the maximum of

(2.7) gi5(t + 2¥710) = §2EN gy 5(x) dx
Since g;_,); is an odd function which is positive for negative arguments and
negative for positive arguments, the value of ¢t maximizing (2.7) ist = —2*14.

In order to compute the value of the maximum let 2 = 2¢-25. Make two
changes of variable and use the fact that the functions g,; have compact support
to obtain

(2.8) Ira(—24) = §2,dy §2, 9po(2) dz .
We may evaluate the integral (2.8) by computing the Fourier transform of

(2.9) §$22 9u—s(2) dz
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and evaluating the Fourier transform at zero. This process yields
(2.10) G —22) = 1im,_y —(it) "G s s(1) = 270",

where
v =k —1)k—2)2.

In this calculation we have used formula (2.6). []

We complete this section by stating and proving

LEMMA 2.6. There exists a sequence of positive real numbers {c,, k = 1} such
that
(2.11) §°e (915(X)) dx = ¢, 0%+ -

Proor. We use Parseval’s identity for the Fourier transform, see Wiener
[13]. Thus, using (2.6) and making the change of variable s = ¢J in the integral
§ |Geo(2)| dt yields (2.11).

2b. Constructions for Case I. In this section we construct a sequence of func-
tions {g,;, k = 1}, 6 = 0, used to modify density functions in Case I. We
suppose given 7: [0, co) — [0, co) such that

(2.12) n(0) = 0, the derivative 7’ exists and is continuous, 7'(0) = 0, 7’ is
a strictly increasing concave function.

A standard result about concave functions then states that
(2.13)  if x, y €0, oo) then |7'(x) — n’(M)| = 7'(Ix — y|) -
In the sequel we will need to assume
(2.14) there exists a real valued function x such that if b e (0, co) then
lim,_,, »(bx)/n(x) = wu(b) > 0, and lim,_,_, p(x) = oo .
The sequence of functions to be constructed satisfy
(2.15a) if x ¢ [—2%0, 2%d] then g,,(x) = 0.
(2.15b) 0,5 is an odd function.

(2.15¢) the kth derivative of g,; is continuous and satisfies |g{¥ (x + pd)| <
7'(|x|) for all x ¢ R and integers p.

(2.15d) SUP, e |9us(¥)] = 277047 9(9/2) , 1 = (k — I)(k — 2)/2.

(2.15¢) there exists a real number sequence {c,’, k = 1} such that if k > 0
then
§20 (90(X))* dx = €,/0%(9(3/2))" -

The proofs required parallel those of Section 2a. Consequently we omit
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most detail. We note that we now define

(2.16a) if x > 0 then gy(x) = —gos(—X) 3

(2.16 b) if 0 < x < 9/2 then gy,(x) = —7'(x) .

(2.16¢c) if 6/2 < x < 6 then gy(x) = —7'(0 — x);

(2.164d) if 0 < x then gy,(x) =0.

The functions g¢}; and g,;, k = 1 are then defined recursively by the relations
(2.3)and (2.4). Then (2.15a) and (2.15b) follow immediately. (2.15¢) is an
immediate consequence of (2.15a) and (2.15d). It is easily verified that if
x € R then the kth derivative of g,; exists, is continuous, and satisfies (2.15c).

We now verify (2.15d). From (2.10) and (2.6) we require the value
(2.17) lim,_,, (it)7Y[2* 2~ =2 (sin 0¢) - - - (sin 2%~ 6£)§5(2)]

= 2792 lim,_, (it)7'g,5(f) = 277%0%'(9/2) .

2c. Functions of several variables. In this section we suppose x and x, are in
R, and that x* = (x,, ---, x,,) and x' = (x;9, « - -, X,,0). We define
(2.18) €s(%) = m™ N, Grs(X; — 28710) .

Then there exists a constant ¢, such that

(2.19) if ||x]] > c,0 then e, 4(x) = 0.

As defined the functions e,; have their maximum at 0. From (2.15d),

(2.20) e,5(0) = 27+15%=1p(5/2) .

A combination of (2.19) and (2.20) imply there exists a constant c, such that
(2.21) § (es(x)) dx < €% ™(7(9/2))" -

We now show that e, is in Cy,,,,. Using Taylor’s formula with remainder
one obtains at once for an expansion about (x,, — 2¢7'9, - - -, x,,, — 2¥719) that
(222))  ey(x) — m!T T Tn (D79 (xe0 — 2570)(x; — Xi0)|

= (mk!)™ T X — Xl 1945 (0 (xis Xi0)) — 915 (xi0 — 2¥710)]
where 6(x;, x,,) is a number between x; — 2*~'9 and x;, — 2. We use the

fact that |g{5(x + pd)| < 7/(|x|) for all real x and integers p, as stated in (2.15c).
Setting x, = 0 we obtain from (2.22) that
(2.23) lews(x) — m™ Ty Xia ()79 (= 2479)x|

= (Km)™ T, 1xf*19i8 (0(x:, 0))]

= (kD7 (el m™ i ]

= (k)7 n'(l]l]) -
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The mixed partial derivatives of e,; are all zero. We find (9*/dx;*)e,;(x) =
9¥(x;). Therefore the kth order partial derivatives of e,; are all continuous.
Thus e,; € C, 3,

Finally, since e,; has compact support, it is integrable and
(2.24) §es(x)dx =0.

3. Proofs of the theorems.

Proor or THEOREM 1.1. Case I may be treated as a special subcase of Case
IT with 5(x) = x for all x e R. Thus we do not treat the two cases separately.

The set C,,,, contains a function nonzero and constant near zero. Thus
let e > 0and @ > 0 and fe C,, ), such that if ||x|| < ¢, then f{x) = a. There
exists , > 0 such that if 0 < 6 < 9, then &; defined by
(3.1) hy(x) = fix) + ews(x) €5 € Cuiyy »

is a density function that is in C,,. The constant g, is to be chosen that
¢,0, < ¢, where ¢, is given in (2.19). Then the support of e,; is in the sphere
[|x]| < e. Thus

(3.2)  if [|x|| < e then hy(x) = a 4 e,;(x), and if ||x|| > ¢ then hy(x) = f(x).
Let x,be the indicator functionof theevent |7, (X}, - - -, X,) — #,(0)| < a,. Then
Piy(jra(Xy -+ o5 Xo) — h5(0)] < a,)
(3-3) =§ o §ox(as - %) T (B3] f(%0) THi- fix) T dx;
S Plra(Xes -5 X,) — By(0)] < a,))
X (§ oo § T (a6 (THs fOx) ™ T i)t -
Using (3.2) and (2.24) we obtain

(3.4 § ()| Ax))fix) dx = 1 4 a7 § (exs(x))* dx -
Using (2.19) and (2.21) and defining ¢, = a~*c, we obtain
(3-5) a7 § (exs(%))" dx < ¢, 0™ (5(3/2))" -

Defining a function 2 by (1.5) we make the choice

(3.6) 0 = A(f) where § = ¢,7'b’|n, and b’ is an arbitrary constant.
Abbreviating notation in an obvious way we obtain,

BT Py (e — hapO0) = a0) = (Pollre — lap(0)] = a))¥(1 + b'[n)™>.
The value

(3.8) hy(0) = a + 27 (B (A(B)/2) »

where y = (k — 1)(k — 2)/2. Our hypothesis is that

(3.9) lim, . Py(lr, — fO) = a,) =1,
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uniformly in fe C,,. Thus the left side of (3.7) tends to one so that
(3.10) lim inf, .. P(J7, — hys(0)] < @,) > 0.

Comparison of (3.9) and (3.10) show that there must exist an #, such that if
n = n, then the events [r, — f{0)| < a, and |r, — h,;,(0)| < a, have non-void
intersection. Thus

(3.11) 2a, = 27 A(B) T (A(B)[2) -

Let b = ¢,7'b', so that 8 = b/n. Square both sides of (3.11) and multiply by
2™ to obtain

(3.12) n(A(b/n))™(a,277)* = b.
Use (1.5) with 8 = b/n and = 1/n, divide the two identities, to obtain
(3.13) b = (b1 A(n) =2 p(A(bn)[2) [(A(n ) [2))* -

Substitution of (3.13) into (3.12) and cancellation yields
(3.14)  n(A(m))™(a, 277 2 (A(brt) A )= (b 2yp(Ar ) 2)) -
Let a(b) = lim inf,_,_,
(3.15) lim inf, ., 7(A(bn)/2)/p(A(n)/2) Z a(b)(a(B)—) -
See (1.1c) for a definition of p.
Thus using (3.14) and (3.15) we obtain
(3.16) lim inf, ., n(A(r™))"(a,27) = (a(b)*(u(a(b)—))*
Again from (3.13) we obtain
(3.17) b = (a(b))™*(u(a(b)+)) -
Since p(a(b)) > 0 and 4 is a nondecreasing function, it follows that
(3.18) lim,_, a(b) = .
Let b, be a constant such that if b = b, then a(b) = 1. Then, since 2k = 0, if
b = b, we obtain from (3.16) that
(3.19) lim inf,_, n(2(n~*)™(a,277)* = (u(a(b)—))*.
The constant b > 0 is arbitrary. Hence (1.7) follows from (3.19) together
with (1.1¢c). (]
Proor oF THEOREM 1.2. The hypothesis (1.8) implies that if {b,, n > 1} is
a sequence tending to co then
(3:20) lim, . inf,.0, PAly, — fO) < a,b,) = 1.
By Theorem 1.1, :
(3.21) lim inf,

n—oo

A(bn™)/2(n~"). Then one easily shows

n('z(n——l))m(a'nbn)2 = .
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This clearly implies that

(3.22) liminf, _ »n(A2(n')"a,* > 0.
ProoF oF THEOREM 1.3. In this proof we set
(3.23) hsi(x) = f(x) + ews(x), k* < k,t* <, and
let 6 = d(n) be given by (3.6), which for the special choice of z is
(3.24) d(n) = (b/m)tertmizer—a~t
Let {d,, n = 1} be a subsequence of the integers on which
(3.25) im inf, .o Payiy (17, — hoa (O < @) > 0.

Let {b,, n = 1} be a real number sequence increasing to oco. Repeating steps
(3.3) to (3.10) we obtain .

(3.26) liminf, o P(|rs, — hsa,y(0)] = ad,,b‘d,,) >0, and
lim inf, ., P(|rq, — o) = adnbd,,) =1.

Therefore, as in (3.11), there exists n, such that if n > n, then

(3:27) 2a; by, Z €454,)(0) = 2771((d,))"9(6(d,)/2) -

‘Substitution of (1.10) for a, and (3.24) for é(d,) shows (3.27) to be contradic-
tory. Thus (1.11) holds with f, = h;,,. [
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