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EQUIVARIANT PROCEDURES IN THE COMPOUND DECISION
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By JAMEs HANNAN AND J. S. HUANG?
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0. Summary. Let (227, &, P) be a probability measure space for each
Pe P =|{F, ---, F,}, .% be an action space and L be a loss function defined
on 2 x.9° x.57 such that for each i,

¢; = §_V, L(x, F;, @) dFy(x) < oo .

In the compound problem, consisting of N components each with the above
structure, we consider procedures equivariant under the permutation group.
With

0 = Ve |F(B) — Fy(B)]  and  K(p) = .5012--- p(1 — p)1,
we show that the difference between the simple and the equivariant envelopes
is bounded by

(T1) {2K(p) X 2PN where o =V, 0,
and by
(T2) 2"2K(0') T ¢ N where o' = V{p,|py; < 1}.

The bound (T1) is finite iff the F; are pairwise non-orthogonal and (T2) is
designed to replace it otherwise.

1. Notations and history. Let (227, <%, P) be a probability measure space
for each P¢ .&” = {F,, F,, ---, F,}, % be an action space, L be a loss func-
tion which is defined on 27 x 9” x . to the nonnegative reals with value
variously expressed

(1) L(x, F;, a) = L(x, F;)(a) = ,Li(a) .
We assume that for each i, v, L,(a) has finite lower integral with respect to F;,
2) ¢, =V_V,L(a)dF; < oo .

Since the space .9 serves only as a parameter space for the class & =
{L(a)|a € 57’} of loss functions on &2~ x &, it is without loss of generality to
assume that .97 contains no duplicates in this sense. To avoid the notational
buildup attendant on the introduction of randomization at this and higher
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EQUIVARIANT PROCEDURES 103

levels, we assume that .97 is its own extension to the class of all probability
measures on the o-field of subsets of .97 generated by {L(x, P)|x ¢ 2, P ¢ P}:
given any such probability measure &,

3) da. €. 5 L(a;) = § L(a) d&(a) , Vx, P.

a; is unique by the assumption of no duplicates. We observe that for each x
and P, L is linear in a. For a, = ta, + (1 — t)a, is in .97 if a,and q, are, and

4) L(x,P,a,) = § L(x, P, -)da, = tL(x, P, a)) + (1 — )L(x, P, a;) ,

where the first equality follows from (3) and the second one follows from
linearity of integrals.

Hereafter we shall write integrals in operator notation, e.g. the integral in
(3) would be expressed &[L(a)] or, and preferably, &[L].

Let &2 be the family of all functions d on &2 to .% such that L, o d, the
function which maps x to ,L,(d(x)), is “#-measurable for each i, Forde &
we define the risk of d at F;, as the integral of L; o d with respect to F,,

(%) R(F;,d) = F[L;od] < ¢c;.
If G is a distribution on {0, - - -, m} we define the Bayes risk against G by
(6) $(G) = A5 GIF[L; - d]] .

We refer to the decision problem described above as the component pro-
blem. When N decision problems each with above generic structure are
considered simultaneously, the resulting N-fold global problem is called a
compound decision problem with finite state components.

Specifically, let xe 277, (X, B) = (2, Z),PeP=F", acUA ="

and let ® be the family of all functions d = (d,, - - -, d,) from % to 9 such
that

™) sali © da(X)

is B-measurable for all a« and i. Letting N, = # {a | P, = F;} and

(8) Wx,P,a) = N*>Y Lx, P, a,),

we define the risk of de © at P e 3 by

©) R(P, d) = P[W(x, P, d(x))] < N™* 3, Nic; .

deD is called a simple (sometimes, simple symmetric) procedure if
d(x) = d(x,) for all a, for some de . Let S be the class of all simple
procedures and let d € S be denoted by 4¥. It will follow directly from the
definition of & in Section 2 that S — &, the subclass of ® equivariant under
the permutation group. As functions of P, As R(P, d) and A, R(P, d) will be
called the simple envelope and the equivariant envelope, respectively. It is
well known (cf. (27) ff.) that the former coincides with the component Bayes
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risk ¢(N) with N denoting the empiric distribution of Py, - - -, Py.

The compound decision problem was introduced by Robbins (1951). He
argued that a bootstrap procedure which first estimates the empiric distribu-
tion of P,, - - -, P, and then plays Bayes against the estimate within each com-
ponent may have its compound risk uniformly close to the simple envelope.

Hannan and Robbins (1955) considered 2x2 & x % and (Theorem 3)
bounded the average loss of a bootstrap procedure by the sum of an error of
estimation and a loss-weighted Glivenko-Cantelli measure of deviations of the
empiric distribution of x,, - - -, xy, thus obtaining strong convergence to zero
uniformly in P of the difference of the average loss from the simple envelope
for all correspondingly good estimators.  Risk convergence (Theorem 4)
followed as a corollary. Oaten (1969) permits loss dependence on x, replaces
Bayes by any of a wide class of e-Bayes and otherwise generalizes these results
to mxn Z x.o7 (Theorem 1 and its Corollary) and to certain compact .7 x
compact .&” with L continuous for each x (Theorems 4 and 5). Under
continuity and other restrictions on densities, analogues of generalizations to
mxn P x. were given earlier by Suzuki (1966a).

Hannan and Robbins (1955) also introduced the class of equivariant pro-
cedures and showed (Theorem 5) that the difference between the simple and
equivariant envelopes converges to zero uniformly in P as N' T co. The proof
depended heavily on a measure theoretic lemma specializing Theorem II.1
of Hannan (1953). Our Theorems 1 and 2 ((T1) and (T2) of our Summary)
are a strengthened generalization of their result, with Theorem 1 correspond-
ingly related to Theorem 3 of Hannan and Huang (1972) and Theorem 2
following as a somewhat involved corollary to Theorem 1.

Hannan and Van Ryzin (1965), for 2x 2 P x .5, and Van Ryzin (1966),
for mxn .2 x .57, have established a rate of O(N~*) (and under additional
restrictions on .22 and L, O(NY)) for uniform risk convergence of bootstrap
procedures based on estimators which are averages over x;, ---, Xy of a
suitable kernel.

The importance of our results stems from the basic character of equivariant
procedures in the compound problem. Until Oaten’s (1969) ¢-Bayes relaxa-
tion, all of the bootstrap procedures considered were essentially equivalent (cf.
Lemma 3 of Oaten (1969)) to equivariant procedures. The equivariant envelope
is then a clearly more appropriate yardstick of performance than the simple
one. The results themselves have already been used by Oaten (1969), together
with his afore-mentioned Theorem 1, to prove risk convergence for a wide
class of equivariant uniformly-e-Bayes procedures (Theorem 2).

As noted in Section 3 of Hannan and Huang (1972), a generalization of the
underlying measure theoretic lemma, Theorem 2 of Horn (1968), turns out to
be distinctly improved by an immediate extension of the afore-mentioned
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Theorem II.1. Her corresponding result on the difference between the
envelopes (Theorem 1) inherits the deficiencies of her Theorem 2 and only
shows convergence to zero for each P with a stronger restriction on & than
mutual absolute continuity, with _% finite and with L constant with respect
to x. :

Considerable other work relates to equivariant procedures in the compound
problem. Stein (1956) and James and Stein (1961) (cf. Stein (1966), where
the heuristic of the procedure is revealed, and Cogburn (1965)) obtained strong
results with a Gaussian squared-deviation-loss estimation component problem.
Section 4 of Samuel (1967) (cf. Robbins (1962)) investigates a procedure Bayes
against uniform prior on proportions for the simplest 2 x 2 example.

In an important general development, Cogburn (1967) imbeds the com-
pound and empirical Bayes problems in a general theory of stringency. The
analogues of his Lemma 3.2 and Theorem 3.3, which follow from his methods
in our case, conclude increasing convergence of the equivariant envelope on
the special sequences {kN,|k = 1, 2, - - .} and, under the very strong assump-
tion that min-max regret relative to the equivariant envelope converges to 0
as N 1 oo, identify the limit as the simple envelope. This assumption is not
always satisfied in our case and, indeed, is only known to obtain as a conse-
quence of the corresponding result for the simple envelope (Theorem 3 of
Oaten (1969) when the F; are linearly independent), together with weakened
forms of our present theorems.

2. Equivariant decision procedures and symmetrizations in a compound decision
problem. Let 7 be the permutation group on N objects. The generic element
g e <& will also be used to denote the transformation induced by g:

(10) 9y = (Vs =+ > Vyw)
Letting g(B) = {gx|xe B} for Be®, it follows from the transformation
theorem (Theorem 39. C, Halmos (1950)) that for each Pe p and g ¢ &, gP
is in B and satisfies
(11) P(B) = (gP)(yB), Be®B.
Furthermore, it follows from the definition of W in (8) that, for each ae ¥,
ga is in 9 and
(12) W(x, P, a) = W(gx, gP, ga) .
Thus the compound decision problem is invariant under <.

d € D is equivariant (under &) if for all ge &,
(13) d(gx) = gd(x) .
Hannan and Robbins (1955) and Ferguson (1967) use the term invariant pro-
cedures instead of equivariant procedures. The latter was suggested by
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Wijsman (1968) to describe functions which transform properly rather than
“invariantly.” In our further references we will presuppose this change has
been made. :

It follows directly from definition (13) that d € € if and only if there exists
a function y on &2~ x 227"~ to .97, symmetric on £27¥*, and such that for all «

(14) da(x) = r(xa’ im) ’
where
(15) )V(a:(xl,..., a_l,xa+l’...,xN).

Equivalently, d € @ if and only if there exists a function & on 2" x Z°¥ to
¥, symmetric on 277, such that for all «a,

(16) d(x) = d(x,, X) .
It follows from the definition of S and & that
(17) Scé¢.
For each d ¢ ® and g € ¥ define d?, the g-conjugate of d, by
(18) do(x) = g-[d(gx)] .
Thus d ¢ € if and only if d = d¢ for all g. Define the symmetrization d* of
d ¢ D as the average of its conjugates,

(19) d* = (N3, do.
It follows immediately that
(20) C=D*={d*|deD}.

Corresponding results hold for subgroups of the permutation group and
relate to certain extended (cf. Swain (1965), Johns (1967), Gilliland and
Hannan (1969) where only the sequence version is considered) compound
decision problems.

3. Representation of equivariant risk. As a basis for comparing the simple
and equivariant envelopes, we obtain in this section a convenient representa-
tion of the risk function of equivariant procedures and relate to the Bayes risk
against a certain uniform prior.

For each de ® and g ¢ 7, it follows directly from definition (9), (12) and
the transformation theorem that the risk of the g-conjugate is

R(P, d&7) = P[W(x, P, d*(x))]
21) = P[W(gx, 9P, d(9x))]
= R(gP, d) .

Averaging the above over < gives the risk of the symmetrization d*,
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(22) R(P, d*) = (N)) £, R(gP, d) .
Since d = d¢ for equivariant d, (21) also implies

(23) R(P, d) = R(gP, d), de@.
Letting Ny(P) = #{a | P, = F;}, and letting N(P) = (Ny(P), - -+, N, (P)) be a

convenient index of the P-orbit, we shall hereafter write R(N, d) for LHS (23)
with N = N(P), and denote the equivariant envelope by
(24) H(N) = A¢ R(N, d) .

Hannan and Robbins (1955) consider the class R of all d € D satisfying the
constant risk property (23). They show that ¢(N) coincides with Aq R(N, @),
the “risk-invariant” envelope. We wish to remark that the class 3%t need not
be considered separately because, for each d ¢ i, its symmetrization d* has

the same risk according to (22).
For d ¢ ® it follows from the definition of risk (9) that
NR(P, 8) = 3, P[L(X, Po) 0 9.(¥)]
= 2 Datpg=r; Fix P)[L; 0 0,]
where F, acts on x, and P, = (P,, - -, Po_y, Poyys - -+, Py) acts on X,,.

In particular, if 8 € &, then by (14) d, (and therefore L; o 9,) is symmetric
in x,, and, with N;, = N, — 1 or N, depending on j=1i or j+# 1 and Y
denoting sum over i such that N, > 0, we have the following representation
of equivariant risk,

(25) NR(N, 8) = Y NJF; x; FNi[L; , 0,],

where F; acts on x, and X, F;”ii acts on X,. The order of the F; in X ; F;"4
is immaterial since the integrand is symmetric. Let x be any measure domi-
nating 7 and let f; = dF,/dp. Abbreviating 3, N, f; X, F;"#[L; , ;] by T(d,)
for 8 € &, (25) is expressible as

(26) NR(N, 3) = ¢[T(3)] -
If 8¢S, say 8 = d”, then ¢, is a function of x, alone. Thus
(27) R(N, d¥) = Zi%Fi[Li od].

The infimum over &7 of LHS (27) is, by definition, the simple envelope. The
infimum over & of RHS (27) is, by (6), ¢(N/N), the Bayes risk against the
prior N/N. (This is also the infimum over ® of the (N/N)"-weighted risk but
we shall make no use of this interpretation). Hereafter we abbreviate ¢(N/N)
by ¢(N). )

We now show that ¢(N) is the Bayes risk in the compound problem against
the uniform prior on the orbit indexed by N. Let Uy denote such a prior.
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Applying the transformation theorem to the mapping g — gP, we obtain from
(22) that

(28) R(N, @%) = Yo R(Q, )Un(Q) -

The infimum over ® of the LHS above is $(N) by (20). The infimum of the
RHS is, by definition, the Bayes risk against Uy, say, R(Uy). Thus

(29) $(N) = R(Uy) ,
and therefore d € © is ¢-Bayes against Uy if and only if
(30) RN, 0%) < g(N) + <.

4. The difference between the two envelopes when & is pairwise non-orthogonal.
In this and the following section we bound the difference between the simple
and equivariant envelopes. Since V., |Fi(B) — Fy(B)| =1 when F; | F,,
Theorem 1 is of interest only when & is pairwise non-orthogonal.

THEOREM 1. Let p,; = Vg, |Fi(B) — Fy(B)|, c; satisfy (2), K(p) =
.5012... p(1 — p)tandlet p =V, ; p;;. Then
(31 P(N) — $(N) < {2K(0) X; cPN7H.

Proor. For each N and each equivariant 8, we will construct a simple
procedure d¥ whose risk at N is close to the risk of 4 at N. To bound the

difference in risks we use Theorem 3 of Hannan and Huang (1972), renotated
here for our application by the use of relation (14) of that paper:

For any positive integer N and any nonnegative integral partitions N and N’ of
N,

(32) V{x: FYilp] — X FMig]|0 < ¢ = ¢* < 1F
=< nK(p) Z: ATI(NS — N,
withn = #{k|N, += N/} — 1, A, = (N; AN;") + 1 foralli, and p = V{p,;;| N, +
N/, N; += N/}.
For 8 € € consider R(N, 8) in the form (25). For given i and x;, let
L;o o0,
\2 Li(a)

From (2), ¢ takes values in [0, 1]and, from (14), ¢ is symmetric in X;. Apply-
ing (32) to the integrand with respect to F; in RHS (25) for each i yields

(34) X; FNi[L; 00,1 = X ; F¥47[L; 0 6]
— {Va Li(@HK(p;)(N;* + N,

for any Je{0, - .-, m}. With Jsuch that N, = v,;N;, we weaken the bound
(34) by simultaneously replacing N,~* by N,~* and K(p,,) by K(p). Taking

(33) ¢ = the x-section of
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upper integrals with respect to F; and weighting by N;, we thus obtain
(35) NR(N, 8) = Y, N;F; x; F{"#/[L; o ;] — (2K(p))* 20: Nite,,

with ¢; given by (2).
We now construct the simple procedure d”. Since for each x, and i,
o Li e 0(x,, +) is a symmetric function of x,, it follows from the transformation

theorem that

(36) X FNa7], Ly 0 0y(%ys +)] = €[, Li(-)]

with & = (X ; F;¥i7)[0,(x,, -)]”*. We note that £ depends on x, but not on i.
By assumption (3), there exists a, € .%7 such that RHS (36) = , Ly(a,), Vi.
Letting d be the function mapping x, to such a, , we see that, for each x,,
(37) o Li o d(x) = . La,) = LHS (36),

which is “Z-measurable. Therefore d e &7, and 4" is simple. Also by (37)
we recognize the first term of RHS (35) as N times RHS (27) which is bounded

below by N¢(N). Thus

(38) NR(N, 8) = N¢(N) — (2K(p))} . Nife;
Applying the Schwarz inequality to the sum on RHS (38) yields
(39) RN, 8) = ¢(N) — (2K(p))! N"H( L ¢)* -

Since (39) holds for all 8 € €, this completes the proof of Theorem 1.

5. The difference between the two envelopes when .&° may have some pairwise
orthogonality. In this section we derive, essentially as a corollary to Theorem
1, a useful bound for the difference when . may have some pairwise

orthogonality.

THEOREM 2. Let p,;, c; and K be as in theorem 1 and let p = V{p;;|p;; < 1}.
Then

(40) $(N) — $(N) = 2"{2K(p) L ¢/ PN

Proof. The plan of our proof is first to decompose the whole problem into
pieces of sub-problems, each satisfying the pairwise non-orthogonality condi-
tion. For arbitrary 8 ¢ € and a special choice of d to be (2"*' — 1) e-Bayes
with respect to N, we represent the difference in risks of d¥ and & as the sum
of differences of simple and equivariant risks in the sub-problems with the
simple procedure being e-Bayes against the restriction of N to the sub-prob-
lems.

For each I C {0, - - -, m} let & = {F,|iel} and N = Y., N;. The sub-
problem determined by PV will be called the T problem. Let 55, &, 1(1, <,7J, gj,
R, T and % denote the I problem counterpart of these symbols without the
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delete sign . For simplicity we omit the delete sign on x and R hereafter.
Let 1 be a measure dominating &, f; = dF,/dy,

(41) 2, ={xe” | fi(x) >0 iff iel},
and let x, be the restriction of p to &27,. Since 27 = Y, 227, it follows that
r= 2ty

Let 3¢ ¢. The risk of 8 is of form (25), which is expressible as integrals
with respect to g,

(42) NR(N, 9) = 21y pd Zies Nifi Xjer Fit X jqr Fij[Li o 0,]},
where we take X ., F;"4 to act on (xy,,, - - -, X,;) for each I. For each / and

each (x,, ..., x3) in RHS (42), there exists, for the same reason behind (36),
a distribution & over .27 such that

(43) X jer FVI[L; 0 0,] = &[L;], iel.
By assumption (3) there exists a, € %" with L (a,) = §[L;] for alliel. Letting
0, be the function mapping (x,, - - -, x5) to such a, we see that L; o g, gives
RHS (43) and is thus ¥ -measurable for each ie . Furthermore, 3 ¢ @
implies the symmetry of ¢, in (x,, - - -, xy), and therefore 9, is the first com-
ponent of some § € & constructable by the use of (14). Thus (42) yields the
representation,

(44) NR(N, 8) = X, p,[T(3)] -

For each I, let d, be e-Bayes in 7 against N/]V andletd = Y, &£°,d, where
£, serves as the indicator function of itself. We notethatde < and d = d,
a.e. p;. Thus by (27), by # = 3 ¢, and by the fact that L, o d = L, o d, a.e.
¢, and is constant with respect to (x,, - - -, xj), it follows that

(45) NR(N,d%) = 3, ;[ T(d))] -
The difference between (45) and (44) is
(46) N{R(N,d") — R(N, 3)} = 3, 1,[T(d)) — T(4))] -

For each I, define h = (izl, cee lvzg,) ed by
, 8 (X, + vy Xy if x,e2
(47) By e, xy) = { AT o0 X €
d,(x,) otherwise.
By (14) we see that heG. By direct calculation using (26) and the definition
of fl,
(48) NREN, b) = [ T0)] + (¢ — ) T(d))]
= NR(N, d;") — p,[T(d;) — T(9,)] -

Since d, is ¢-Bayes with respect to N/N and h e €, (48) yields
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(49) il T(dy) — T(3)] < NGE) — §N) + Ne .
It follows from (38) that, with p = v{p,;|i, je I},
(50) RHS (49) < (2K(p))* Y;o; Nitc; + Ne.

Summing (50) over all I with z, + 0, we obtain an upper bound for RHS
(46). Since p; + 0 implies p < 1 we shall weaken (50) by replacing p by p,
and then dropping the restriction on the summand. Thus

(51) R(N,d") — R(N, 9) < 2K(0)!N™ 5} Tse; Nite; + N7e 3, N

Since (51) holds for all 8 € € and all ¢ > 0, and therefore for ¢ = 0, the proof
is complete upon using the Schwarz inequality in (51):

(52) 2 ZieINibci = 2" ZiNibci < 2mNt (2 C'iz)é .
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