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CONVERGENCE IN DISTRIBUTION OF RANDOM MEASURES

By MILOSLAV JIRINA

Flinders University

Let (S, &) be a measurable space, M the set of all finite measures on
&, Fu the g-algebra generated by the family of all measurable cylindrical
sets N¥_, {u€ M: p(A4;) < a;}. With each probability measure P on & i
the family {Py4,,...,4,} of all finite-dimensional probability measures of the
cylidrical sets is associated. The following problem is considered: Given
a sequence P of probability measures on #» such that each sequence
P . 4, converges weakly to a k-dimensional probability measure Pa,,...,
4y, does the family {P4,,..., 4 ) generate a probability measure P on & p?
It is proved that the answer is affirmative if (S, &) is the Euclidean n-space
with the g-algebra of Borel sets.

1. Introduction. In the whole paper, R = (—o0, o0), Z* = the o-algebra
of all Borel sets in R¥, R, = [0, o). Let T be an arbitrary index set, F a subset
of R” = the set of all real functions on T, &, the least o-algebra containing
all sets { fe F: f(t)eE}, te T, Ee ™. If P is a probability measure on &,
then the probability measures P, .., on Z® (k = 1,2, ..., 1,eT) defined by
P, (Eix - x E) = PNk, {feF: f(t;,)eE}), E; e £V, will be called the
finite-dimensional probability distributions (f.d.p.d.’s) of P. We shall adopt the
following two definitions:

DEerFINITION 1. Let P™, P be probability measures on . ,. We shall say that
P™ converge in distribution (or D-converge) to P, if each f.d.p.d. of P™™ con-
verges weakly to the corresponding f.d.p.d. of P; P will be called the D-limit
of P,

DEFINITION 2. A sequence P™ of probability measures on .& , will be called
fundamental in distribution (or D-fundamental), if each f.d.p.d. of P™ converges
weakly to a finite-dimensional probability measure. It is clear that the D-limit
P, if it exists, is unique. Using the well-known Kolmogorov theorem we can
see easily that each D-fundamental sequence is D-convergent if F = R”. This
need not be true if F is a proper subspace of R7; e.g., take T = [0, 1], F = the
set of all continuous functions on T, P —= the probability measure concentrated
on the one-point set {f,}, where f,(r) = r*. Itis therefore rather a surprising fact
that each D-fundamental sequence P™ is D-convergent, if F is the set of all
finite measures on (R™, <#'™) or, more generally, on any measurable space
(S, &) satisfying the conditions C listed below. This is the main result of this
paper—see Theorem 2.

2. Random measures. Let S be an arbitrary set, .5 a g-algebra of subsets of
S, M the set of all finite measures on .%. Since M is a subset of R, F , is the
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least g-algebra containing all sets {ze M: p(A)eE}, Ae S, Ec V. IfPisa
probability measure on F 4, then the probability field {M, .5, P} is one of the
possible models for a random measure. It is easy to see that the corresponding
f.d.p.d.’s P, .., (With 4;€ &) satisfy the following conditions M:

(M1) PA1,~-~,Ak(E1 x - x E)= PAP,,,,AIVAHI(E1 x .-+ x E x R);
(M2) PA1,~~~,Ak(R+k) =1
M3) If 4N A4, =@ and 4, = 4, U 4,, then P, , , isconcentrated on the
plane x; = x, 4+ x, in R®.
(M4) If A, D A;,,, N7 A; = @, then for each x > 0
PA,-((X’ ©0)) ;. 0 .

We shall say that the measurable space {S, .7} satisfies conditons C if there exists
a countable algebra %7 and a class = of subsets of S such that

(C1) & is generated by .97
(C2) C, Cee=C NCe7;
(C3) C, ez, C;,DCiyys C;+@Q, k=1,2,...=NC +J;

(c4) To each A4 e .97 there exist sequences B; ,€.% and C; , €% such
that B, , € B;,, ,» B; ,CC; ,C A and N3, B; , = A.

{R™, £8™} and some other metric or topological spaces satisfy conditions C.

The following theorem is a generalization of Theorem 3.1 Chapter III of [2].
The Appendix 1 to Chapter III of [2] contains the basic ideas of its proof and
some details are implicitly contained in the proof of slightly different assertion
in[3], Theorem 1.4. We shall therefore present the main steps of the proof only
and omit the details.

THEOREM 1. Let measurable space {S, &} satisfy the condition C and let a family
{Py,....a,} of probability measures on Z* (k=1,2, ..., 4,€5) satisfy the
conditions M. Then there exists exactly one probabilty measure P on &, such that
Py ..., areitsfd.p.d.’s.

Proor. The uniqueness follows from the fact that the family of all sets
L {reM: p(4)eE} is a half-ring generating . ,,. The existence follows
from the following construction:

Step 1. Let F, = R = the set of all set functions on the algebra % of (Cl).
Using (M1) and the well-known Kolmogorov theorem we can construct a prob-
ability measure P on %, such that P, .., (with 4;e ) are its f.d.p.d.’s.

Step 2. Let F, be the set of all finite, nonnegative and two-additive set func-
tions on 7. Since .% is countable, F,e %, and (M2) and (M3) imply that
PO(F;) = 1. Hence, the restriction PV of P to &, = F, N .5, is a prob-
ability measure on %", such that P, ., areits f.d.p.d.’s.
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Step 3. Let F, be the set of all v € F, such that for each 4 e .57
1) A — By 4) =i 0

where B, , are the sets mentioned in (C4). Again F,€.%, and PY(F,) = 1 be-
cause of (M4) and (C4). Hence, the restriction P® of P% to 7, = F, N .F 7,
is a probability measure on % such that P, .., are its f.d.p.d.’s. Each
v € F, is finite, nonnegative and finitely additive set function on .7 satisfying
(1) with B, , satisfying (C4). Using this and the properties (C2) and (C3) we
can prove that v is countably additive on .97 and can be therefore extended
uniquely to a finite measure o on &, For each fixed 4 € .5, v(A) is (as a func-
tion of v € F,) %, -measurable. This is trivial for 4 € % and it can be proved
for all 4 ¢.5” by means of the monotone-class theorem. ([1], Chapter I, Section
6, Theorem B).

Step 4. Let h be the transformation (of F, into M) assigning to each v € F, its
extension v. The transformation 4 is .5, — .% ,-measurable and the set func-
tion P on &, defined by P(D) = P,(h~'(D)) is a probability measure on .5 .
It remains to show that P, ..., are its f.d.p.d.’s. This is trivial for 4;e ..
To prove it generally, the monotone-class theorem is to be applied successively
to each of the indices 4,, ..., 4,. The following four relations are essential in
that part of the proof.

If A, ;, C A, ;4 A, = U1 4,5, then
) PqueM: p(A)eEyi=1,2, - k — 1, u(4,) < x})

— lim, . P(ne M: p(A) € Eyyi=1,2, - k — 1, p(4, ;) < x))
and
3 P (B, x -+ x Eg_y x [0, x])
(Eyx -+ x E,_; x[0,x]).

Aysredp—14g
= lim,_,, PA]""'Ak—lvAk,j

If A,; D A, ;11 A, = N1 A,;> then

(4) P({‘LteM:/l(Al)eE“i:l’Z’""k_l’/’l(Ak)<x})

=lim,_, P{preM: p(A)eE,i=1,2,...,k — 1, p(4,,) < x})
and
(5) P, (Ey x -+ x E,_, x[0, x))
(Eyx - x E,_, x[0,x)).
The relations (2) and (4) are easy; (3) and (5) must be derived directly from the
conditions M. Let us do that for (3). To simplify writing, we shall omit the
indices 4,, - .-, A,_, (asif E, = ... = E,_, = R) and we shall write B;, B instead
of 4, ;, A,. Using the 3-dimensional distribution Py 55,5 and (M1)—(M3),
we see that for any x > 0and e > 0

Py([0, x]) = Py, ([0, x]) = P5([0, x])

Py (10, x]) < Py([0, x + €]) + Py_y (e 00)) -

1 Ag—1p AR

= hmf"“ PAlv"',Ak—vAk,j

and
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Hence, by (M4),
P,([0, x]) < lim P, ([0, x]) < P,([0, x + ]) .

Since ¢ > 0 was arbitrary, Py([0, x]) = lim P, ([0, x]), which proves (3). The
proof of (5) is similar.

3. D-convergence of random measures.

THEOREM 2. Let the measurable space {S, 5} satisfy the condition C. Then each
D-fundamental sequence of probability measures P™ on {M, 5} is D-convergent.

Proor. Let us denote the f.d.p.d.’s of P by P) ., (n = 1). By assump-

tion, to each sequence 4,, - - -, A, (4; € &) there exisis a probability measure
P .. 4, O ¥ such that
(6) PP 4, —noe P).s, (Weakly).

By Theorem 1, it is sufficient to show that the family P} .. , satisfies the con-
ditions M. Since, for each n > 1, the family P .. , satisfies M, it is sufficient
to show that the conditions M are preserved under (6). This is trivial for (M1),
(M2) and (M3) and only (M4) remains to be proved. To an arbitrary ¢ > O there
exists @ > 0 such that

(7) Py((a, )) < 3¢ and  Ps({a}) =0.
Put
f(x)=20 if x<0
=x if 0x=<Za
=a if x=a and

M (A) = § (oo, [(X)PL5(A(x, 7))
for all Ae % and n = 0. The function f, as a function of (x, y), is bounded
and continuous on the domain R X (— o0, a) and the boundary of this domain
has P{)¢-measure zero by (M1) and (7). Hence the weak convergence (6) implies

3) M, (A) — My(A) for each 4¢.&.
Since pu(A4) < u(S) for all pe M,
) P{s((a, 00) X (—o0,a)) =0

for all n = 1. Hence
M, (A) = $z, o0 xPP(d(x, ¥)) = §ipem: wisr<a) (AP (dp)

for all n > 1. The second integral shows that M, is, for each n > 1, a measure
on % and that the sequence M, is uniformly bounded (by a). Hence, by (8)
and a well-known theorem, M, is also a finite measure on .&*. (9) is clearly
preserved under (6) and, therefore

(10)  M(A) = §yximw,m XPLs(A(X, 3)) Z XPL((X, 00) X (=00, a))
for all Ae.5” and an arbitrary x > 0.
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Consider now a sequence 4;e S 4; D 454, N7 A; = @. Since M, is a
finite measure, My(4,) —,_., 0 and therefore, by (10), there exists j, such that

(11) PLis((x, 00)) X (=00, ) < 4e forall j = j,.
Finally, by (7), (11) and (M1)

PL((x, 00)) = PLIL (%, 00) X (=00, ) + PP ((x, o) X [a, 00)) < ¢
for all j > j,, which proves that (M4) holds for PP

At
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