CONVERGENCE IN DISTRIBUTION OF RANDOM MEASURES

BY MILOSLAV JIŘINA

Flinders University

Let (S,\mathscr{S}) be a measurable space, M the set of all finite measures on $\mathscr{S},\mathscr{F}_M$ the σ -algebra generated by the family of all measurable cylindrical sets $\bigcap_{i=1}^k \{\mu \in M \colon \mu(A_i) \leq a_i\}$. With each probability measure P on \mathscr{F}_M the family $\{P_{A_1},\dots,A_k\}$ of all finite-dimensional probability measures of the cylidrical sets is associated. The following problem is considered: Given a sequence $P^{(n)}$ of probability measures on \mathscr{F}_M such that each sequence $P^{(n)}_{A_1},\dots,A_k$ converges weakly to a k-dimensional probability measure P_{A_1},\dots,A_k , does the family $\{P_{A_1},\dots,A_k\}$ generate a probability measure P on \mathscr{F}_M ? It is proved that the answer is affirmative if (S,\mathscr{S}) is the Euclidean n-space with the σ -algebra of Borel sets.

1. Introduction. In the whole paper, $R = (-\infty, \infty)$, $\mathscr{B}^{(k)} =$ the σ -algebra of all Borel sets in R^k , $R_+ = [0, \infty)$. Let T be an arbitrary index set, F a subset of $R^T =$ the set of all real functions on T, \mathscr{F}_F the least σ -algebra containing all sets $\{f \in F : f(t) \in E\}$, $t \in T$, $E \in \mathscr{B}^{(1)}$. If P is a probability measure on \mathscr{F}_F , then the probability measures P_{t_1, \dots, t_k} on $\mathscr{B}^{(k)}$ $(k = 1, 2, \dots, t_i \in T)$ defined by $P_{t_1, \dots, t_k}(E_1 \times \dots \times E_k) = P(\bigcap_{i=1}^k \{f \in F : f(t_i) \in E_i\})$, $E_i \in \mathscr{B}^{(1)}$, will be called the finite-dimensional probability distributions (f.d.p.d.'s) of P. We shall adopt the following two definitions:

DEFINITION 1. Let $P^{(n)}$, P be probability measures on \mathscr{F}_F . We shall say that $P^{(n)}$ converge in distribution (or D-converge) to P, if each f.d.p.d. of $P^{(n)}$ converges weakly to the corresponding f.d.p.d. of P; P will be called the D-limit of $P^{(n)}$.

DEFINITION 2. A sequence $P^{(n)}$ of probability measures on \mathcal{F}_F will be called fundamental in distribution (or D-fundamental), if each f.d.p.d. of $P^{(n)}$ converges weakly to a finite-dimensional probability measure. It is clear that the D-limit P, if it exists, is unique. Using the well-known Kolmogorov theorem we can see easily that each D-fundamental sequence is D-convergent if $F = R^T$. This need not be true if F is a proper subspace of R^T ; e.g., take T = [0, 1], F = the set of all continuous functions on T, $P^{(n)} =$ the probability measure concentrated on the one-point set $\{f_n\}$, where $f_n(t) = t^n$. It is therefore rather a surprising fact that each D-fundamental sequence $P^{(n)}$ is D-convergent, if F is the set of all finite measures on $(R^m, \mathcal{B}^{(m)})$ or, more generally, on any measurable space (S, \mathcal{F}) satisfying the conditions C listed below. This is the main result of this paper—see Theorem 2.

2. Random measures. Let S be an arbitrary set, \mathscr{S} a σ -algebra of subsets of S, M the set of all finite measures on \mathscr{S} . Since M is a subset of $R^{\mathscr{S}}$, \mathscr{F}_{M} is the

Received October 13, 1971; revised January 1972.

least σ -algebra containing all sets $\{\mu \in M : \mu(A) \in E\}$, $A \in \mathcal{S}$, $E \in \mathcal{B}^{(1)}$. If P is a probability measure on \mathcal{F}_M , then the probability field $\{M, \mathcal{F}_M, P\}$ is one of the possible models for a random measure. It is easy to see that the corresponding f.d.p.d.'s P_{A_1, \dots, A_k} (with $A_i \in \mathcal{S}$) satisfy the following conditions M:

$$(M1) P_{A_1,\dots,A_k}(E_1 \times \dots \times E_k) = P_{A_1,\dots,A_k,A_{k+1}}(E_1 \times \dots \times E_k \times R);$$

(M2)
$$P_{A_1,\dots,A_k}(R_+^k) = 1;$$

(M3) If $A_1 \cap A_2 = \emptyset$ and $A_3 = A_1 \cup A_2$, then P_{A_1, A_2, A_3} is concentrated on the plane $x_3 = x_1 + x_2$ in \mathbb{R}^3 .

(M4) If
$$A_j \supset A_{j+1}$$
, $\bigcap_{j=1}^{\infty} A_j = \emptyset$, then for each $x > 0$

$$P_{A_i}((x, \infty)) \longrightarrow_{j\to\infty} 0$$
.

We shall say that the measurable space $\{S, \mathcal{S}\}$ satisfies *conditons* C if there exists a *countable* algebra \mathcal{S} and a class \mathcal{C} of subsets of S such that

(C1) \mathcal{S} is generated by \mathcal{A} ;

(C2)
$$C_1, C_2 \in \mathscr{C} \Rightarrow C_1 \cap C_2 \in \mathscr{C};$$

(C3)
$$C_j \in \mathcal{C}$$
, $C_j \supset C_{j+1}$, $C_j \neq \emptyset$, $k = 1, 2, \cdots \Rightarrow \bigcap_{j=1}^{\infty} C_j \neq \emptyset$;

(C4) To each
$$A \in \mathscr{A}$$
 there exist sequences $B_{j,A} \in \mathscr{A}$ and $C_{j,A} \in \mathscr{C}$ such that $B_{j,A} \subset B_{j+1,A}$, $B_{j,A} \subset C_{j,A} \subset A$ and $\bigcap_{j=1}^{\infty} B_{j,A} = A$.

 $\{R^m, \mathcal{B}^{(m)}\}\$ and some other metric or topological spaces satisfy conditions C.

The following theorem is a generalization of Theorem 3.1 Chapter III of [2]. The Appendix 1 to Chapter III of [2] contains the basic ideas of its proof and some details are implicitly contained in the proof of slightly different assertion in [3], Theorem 1.4. We shall therefore present the main steps of the proof only and omit the details.

THEOREM 1. Let measurable space $\{S, \mathcal{S}\}$ satisfy the condition C and let a family $\{P_{A_1, \dots, A_k}\}$ of probability measures on $\mathcal{B}^{(k)}$ $(k = 1, 2, \dots, A_i \in \mathcal{S})$ satisfy the conditions M. Then there exists exactly one probability measure P on \mathcal{F}_M such that P_{A_1, \dots, A_k} are its f.d.p.d.'s.

PROOF. The uniqueness follows from the fact that the family of all sets $\bigcap_{i=1}^k \{\mu \in M : \mu(A_i) \in E_i\}$ is a half-ring generating \mathscr{F}_M . The existence follows from the following construction:

Step 1. Let $F_0 = R^{\mathscr{S}} =$ the set of all set functions on the algebra \mathscr{M} of (C1). Using (M1) and the well-known Kolmogorov theorem we can construct a probability measure $P^{(0)}$ on \mathscr{F}_{F_0} such that P_{A_1,\dots,A_k} (with $A_i \in \mathscr{M}$) are its f.d.p.d.'s.

Step 2. Let F_1 be the set of all finite, nonnegative and two-additive set functions on \mathscr{S} . Since \mathscr{S} is countable, $F_1 \in \mathscr{F}_{F_0}$ and (M2) and (M3) imply that $P^{(0)}(F_1)=1$. Hence, the restriction $P^{(1)}$ of $P^{(0)}$ to $\mathscr{F}_{F_1}=F_1\cap \mathscr{F}_{F_0}$ is a probability measure on \mathscr{F}_{F_1} such that P_{A_1,\cdots,A_k} are its f.d.p.d.'s.

Step 3. Let F_2 be the set of all $\nu \in F_1$ such that for each $A \in \mathcal{A}$

$$(1) \qquad \qquad \nu(A - B_{k,A}) \to_{k \to \infty} 0 ,$$

where $B_{k,A}$ are the sets mentioned in (C4). Again $F_2 \in \mathscr{F}_{F_1}$ and $P^{(1)}(F_2) = 1$ because of (M4) and (C4). Hence, the restriction $P^{(2)}$ of $P^{(1)}$ to $\mathscr{F}_{F_2} = F_2 \cap \mathscr{F}_{F_1}$ is a probability measure on \mathscr{F}_{F_2} such that P_{A_1,\dots,A_k} are its f.d.p.d.'s. Each $\nu \in F_2$ is finite, nonnegative and finitely additive set function on \mathscr{A} satisfying (1) with $B_{k,A}$ satisfying (C4). Using this and the properties (C2) and (C3) we can prove that ν is countably additive on \mathscr{A} and can be therefore extended uniquely to a finite measure $\bar{\nu}$ on \mathscr{S} . For each fixed $A \in \mathscr{S}$, $\bar{\nu}(A)$ is (as a function of $\nu \in F_2$) \mathscr{F}_{F_2} -measurable. This is trivial for $A \in \mathscr{A}$ and it can be proved for all $A \in \mathscr{S}$ by means of the monotone-class theorem. ([1], Chapter I, Section 6, Theorem B).

Step 4. Let h be the transformation (of F_2 into M) assigning to each $\nu \in F_2$ its extension $\bar{\nu}$. The transformation h is $\mathscr{F}_{F_2} - \mathscr{F}_M$ -measurable and the set function P on \mathscr{F}_M defined by $P(D) = P_2(h^{-1}(D))$ is a probability measure on \mathscr{F}_M . It remains to show that P_{A_1,\dots,A_k} are its f.d.p.d.'s. This is trivial for $A_i \in \mathscr{A}$. To prove it generally, the monotone-class theorem is to be applied successively to each of the indices A_1, \dots, A_k . The following four relations are essential in that part of the proof.

If
$$A_{k,j} \subset A_{k,j+1}$$
, $A_k = \bigcup_{j=1}^{\infty} A_{k,j}$, then

(2)
$$P(\{\mu \in M : \mu(A_i) \in E_i, i = 1, 2, \dots, k - 1, \mu(A_k) \leq x\})$$

$$= \lim_{i \to \infty} P(\{\mu \in M : \mu(A_i) \in E_i, i = 1, 2, \dots, k - 1, \mu(A_{k,i}) \leq x\})$$

and

(3)
$$P_{A_{1},\dots,A_{k-1},A_{k}}(E_{1} \times \dots \times E_{k-1} \times [0, x])$$

$$= \lim_{j \to \infty} P_{A_{1},\dots,A_{k-1},A_{k,j}}(E_{1} \times \dots \times E_{k-1} \times [0, x]).$$

If
$$A_{k,i} \supset A_{k,i+1}$$
, $A_k = \bigcap_{j=1}^{\infty} A_{k,j}$, then

(4)
$$P(\{\mu \in M : \mu(A_i) \in E_i, i = 1, 2, \dots, k - 1, \mu(A_k) < x\})$$

$$= \lim_{j \to \infty} P(\{\mu \in M : \mu(A_i) \in E_i, i = 1, 2, \dots, k - 1, \mu(A_{k,j}) < x\})$$

and

(5)
$$P_{A_1,\dots,A_{k-1},A_k}(E_1 \times \dots \times E_{k-1} \times [0,x))$$

= $\lim_{j\to\infty} P_{A_1,\dots,A_{k-1},A_k,j}(E_1 \times \dots \times E_{k-1} \times [0,x))$.

The relations (2) and (4) are easy; (3) and (5) must be derived directly from the conditions M. Let us do that for (3). To simplify writing, we shall omit the indices A_1, \dots, A_{k-1} (as if $E_1 = \dots = E_{k-1} = R$) and we shall write B_j , B instead of $A_{k,j}$, A_k . Using the 3-dimensional distribution $P_{B_j,B-B_j,B}$ and (M1)—(M3), we see that for any x > 0 and $\varepsilon > 0$

$$P_{{\scriptscriptstyle B}_{j}}([0,\,x]) \geq P_{{\scriptscriptstyle B}_{j+1}}([0,\,x]) \geq P_{{\scriptscriptstyle B}}([0,\,x])$$

and

$$P_{B_j}([0,x]) \leq P_B([0,x+\varepsilon]) + P_{B-B_j}((\varepsilon,\infty)).$$

Hence, by (M4),

$$P_B([0, x]) \le \lim P_{B_1}([0, x]) \le P_B([0, x + \varepsilon]).$$

Since $\varepsilon > 0$ was arbitrary, $P_B([0, x]) = \lim_{x \to \infty} P_{B_j}([0, x])$, which proves (3). The proof of (5) is similar.

3. D-convergence of random measures.

THEOREM 2. Let the measurable space $\{S, \mathcal{S}\}$ satisfy the condition C. Then each D-fundamental sequence of probability measures $P^{(n)}$ on $\{M, \mathcal{F}_M\}$ is D-convergent.

PROOF. Let us denote the f.d.p.d.'s of $P^{(n)}$ by $P^{(n)}_{A_1,\dots,A_k}$ $(n \ge 1)$. By assumption, to each sequence A_1,\dots,A_k $(A_i \in \mathcal{S})$ there exists a probability measure $P^{(0)}_{A_1,\dots,A_k}$ on $\mathcal{B}^{(k)}$ such that

(6)
$$P_{A_1,\dots,A_k}^{(n)} \to_{n\to\infty} P_{A_1,\dots,A_k}^{(0)} \quad \text{(weakly)}.$$

By Theorem 1, it is sufficient to show that the family $P_{A_1,\dots,A_k}^{(0)}$ satisfies the conditions M. Since, for each $n \ge 1$, the family $P_{A_1,\dots,A_k}^{(n)}$ satisfies M, it is sufficient to show that the conditions M are preserved under (6). This is trivial for (M1), (M2) and (M3) and only (M4) remains to be proved. To an arbitrary $\varepsilon > 0$ there exists a > 0 such that

(7)
$$P_s((a, \infty)) < \frac{1}{2}\varepsilon$$
 and $P_s(\{a\}) = 0$.

Put

$$f(x) = 0 if x \le 0$$

$$= x if 0 \le x \le a$$

$$= a if x \ge a and$$

$$M_n(A) = \int_{R \times (-\infty, a)} f(x) P_{A,S}^{(n)}(d(x, y))$$

for all $A \in \mathscr{S}$ and $n \ge 0$. The function f, as a function of (x, y), is bounded and continuous on the domain $R \times (-\infty, a)$ and the boundary of this domain has $P_{A,S}^{(0)}$ -measure zero by (M1) and (7). Hence the weak convergence (6) implies

(8)
$$M_n(A) \to M_0(A)$$
 for each $A \in \mathcal{S}$.

Since $\mu(A) \leq \mu(S)$ for all $\mu \in M$,

$$(9) P_{A,S}^{(n)}((a,\infty)\times(-\infty,a))=0$$

for all $n \ge 1$. Hence

$$M_n(A) = \int_{R_+(-\infty,a)} x P_{A,S}^{(n)}(d(x,y)) = \int_{\{\mu \in M: \, \mu(S) < a\}} \mu(A) P^{(n)}(d\mu)$$

for all $n \ge 1$. The second integral shows that M_n is, for each $n \ge 1$, a measure on \mathcal{S} and that the sequence M_n is uniformly bounded (by a). Hence, by (8) and a well-known theorem, M_0 is also a finite measure on \mathcal{S} . (9) is clearly preserved under (6) and, therefore

(10)
$$M_0(A) = \int_{R_+ \times (-\infty, a)} x P_{A, S}^{(0)}(d(x, y)) \ge x P_{A, S}^{(0)}((x, \infty) \times (-\infty, a))$$

for all $A \in \mathcal{S}$ and an arbitrary x > 0.

Consider now a sequence $A_j \in \mathcal{S}$, $A_j \supset A_{j+1}$, $\bigcap_{j=1}^{\infty} A_j = \emptyset$. Since M_0 is a finite measure, $M_0(A_j) \to_{j\to\infty} 0$ and therefore, by (10), there exists j_0 such that

(11)
$$P_{A_j,S}^{(0)}((x,\infty))\times(-\infty,a))<\frac{1}{2}\varepsilon \qquad \text{for all } j\geq j_0.$$

Finally, by (7), (11) and (M1)

$$P_{A_j,\mathcal{S}}^{(0)}((x,\infty)) = P_{A_j,\mathcal{S}}^{(0)}((x,\infty)\times(-\infty,a)) + P_{A_j,\mathcal{S}}^{(0)}((x,\infty)\times[a,\infty)) < \varepsilon$$
 for all $j \geq j_0$, which proves that (M4) holds for $P_{A_1,\dots,A_k}^{(0)}$.

REFERENCES

- [1] HALMOS, P. R. (1950). Measure Theory. Van Nostrand, New York.
- [2] HARRIS, T. E. (1963). The Theory of Branching Processes. Springer-Verlag, Berlin.
- [3] JIŘINA, M. (1964). Branching processes with measure-valued states. Trans. Third Prague Conf. Inform. Theor. 333-357.

School of Mathematical Sciences Flinders University Bedford Park, South Australia 5042