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ON ESTIMATION OF TAIL END PROBABILITIES OF THE SAMPLE
MEAN FOR LINEAR STOCHASTIC PROCESSES

By K. C. CHANDA
University of Florida

Let {X;,j =1} be a linear process defined by the relation X; =
Yy_08v Yi—», where {¥;;j =0, £1, - - -} is a sequence of i.i.d. random vari-
ables which possess a mgf My(t) over an open interval I = (—c, ¢) (c > 0).
Let a be a fixed positive constant and denote the mgf of Z; = Y1 — a by
M,(t). Assume that E{Y1} =0, [gs] = Cpo? (v = 0) for some finite positive
constants po (< 1), C and X5, 9. %+ 0 (we can take 35> g, = 1 without
loss of generality). Further assume that there exists a constant ¢ € Iy,
Iy = (—cA=',cA-1), A = 15_ 19|, such that p = Mz(z) = infie 1 M2(f) < 1
and M7'(z) = 0. Then it is proved that for each u =0, 1,2, - -- we can find
a bounded sequence {Bu,.} of constants such that for any integer r > 3
P37, Xjin 2 a) = (0™ An/tona))[ 5023 Bunon=* + Oan=(7—2))] as n— oo,
where {1} and {s,} are sequences of positive constants, and, as n — oo, 1y is
bounded away from 0 and oo and n—1s,? approaches a finite positive constant.

1. Introduction. Let{Y;; —oco < j < oo} be a doubly infinite sequence of inde-
pendent and identically distributed (i.i.d.) random variables (rv) which possess
a finite moment generating function (mgf) M, (7) over an open interval I =
(—¢,¢), (¢ > 0) with E{Y,} = 0. Let {X;;j = 1} be another sequence of rv’s
defined by

(1) Xj — T:Ongj—v’ 28091}#:0’

where we assume that there exists a positive constant o, < 1 such that |g,| <
Cp,*, C being a generic symbol which denotes a finite positive constant. For a
fixed number a > 0 consider the probability

) P.(a) = P{3j, Xj/n = a} .

The object of this article is to obtain an estimate Q,(a) of P,(a) which is precise
in the sense that

3) P,(@)/Q.(a) = 1 + O(1) as n— oo .

The above formulation has been largely motivated by the rather ingenious
result derived by Bahadur and Ranga Rao [1] a few years ago about P,(a) when
the X;’sarei.i.d.; i.e., g, = O forall v > 0. These authors have used the results
concerning the asymptotic expansion of the characteristic function of Y*_, X;
derived by Cramér [4] and Esséen [5] for the special case when the mgf of X,
exists and satisfies certain regularity conditions. One important result due to
Koopmans [6] regarding the validity of the strong law of large numbers for linear
processes (1) and an extension due to Chanda [3] of the results by Berry [2] and
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others so as to apply to linear processes have suggested the possibility of extend-
ing Bahadur and Rango Rao’s results to linear processes.

In order not to make the discussion too complicated mathematically, we as-
sume throughout that the cumulative distribution function (cdf) of Y, satisfies
Cramér’s condition (C) [4, page 81]. Also, without loss of generality we assume
that 2,9, = 1.

Write Z; = Y, — a. Then E{Z,} = —a < 0. Denote the mgf of Z, by M ()

and let us assume that there exists a finite positive constant = such that
(4) p = My(r) = inf,.; M,(r) < 1
and M,'(r) = 0.
Condition (4) is satisfied if, for example, M, (f) < oo for all finite t and P(Y; >
a + 06) > 0 for some d > 0. Since M,(f) < oo for all tel, it follows that
M, "(f) < oo for all finite r and rel. Write [, = (—cA™", cA™") where 4 =

*ol9,l=1. Then Iy C I

The main result of this article can now be stated in the form of the following

THEOREM. Assume that v el,. Then for each u =0,1,2, ..., there exists a
bounded sequence of constants B, ., B, ., - - - such that for any positive integer r = 3

©) P(a) = (0"2,[t0,(20))[ 2055 Pu,n 00" + O(0,~"77)],
as n— oo, where{2,}and {o,} are sequences of positive constants such that, as n — co,
2, is bounded away from 0 and co, and n='c,? approaches a finite positive constant.

2. A few lemmas. Let W, = X; — a. Then
W= 209, Z;y»
where Z; = Y; — a. Now define for every n, the cdf G, by
(6) dG,(w) = exp(w) dF,()/¥,(7) ,
where F,(w) is the cdf of Y}7_, W, and ¥,(¢) is the mgf of ;7 W,. Let V, be a
rv with the cdf G,(v). Then
™ mgf of ¥, = M, (1) = ¥,(t + )T, () .

LEMMA 1. There exists a function 4,(f) (> 0) of n and t bounded in n and t €I,

such that
V(1) = [M4(1)]"4,(2)
forall tel,.

ProoF. It is easy to see that

11“n(t) = ::—oo MZ(cn,u t) ’
where
Cou = itz 01-u Jo -

For every n, ¥ () exists for all 7 € I, (see Koopmans [6]). Also
log wn(t) = Z=l KZ(cn,u t) + Z::O KZ(dn,u t) ’
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where d, , = ¢, _,, u = 0 and K,(f) = log M,(t). Again
(8) |28 Ko(dnu 1) = 1] 27 |4 ] M5 (1, I M(2,,0) 5
where 1, , lies between 0 and d, ,¢. But for u = 0

Idn,ul é Z?—:ﬁ |gvl é C Z:I{l+u 1001) é CPOH—M .

Also |d, ,| < A. Hence for all tel, t,,el and consequently [M/(t, )| < C.
We can, therefore, write

) TeoK,(d, 1) = log 2,0(z),
where 4,%(f) > 0 and is bounded in n and ¢ € [,. Again since |M,'(t)] < oo for
all ¢ e I implies that |K,/(f)] < oo for all t € I, we have

|28 KglCaut) — nKH(1)] < € Tl |Caut — 1]
S Ol i Zhan-unn 194
SOl i Zu o < Cll
whenever ¢ € I,.
Thus

(10) 21 K, 1) = nK (1) 4 log 2,%(1)
where again 2, (f) > 0 and is bounded in n and t € I, Combining (9) and (10)
and writing 2,(7) = 4,V(#)4,(¢), we easily have the result of the lemma.

COROLLARY. Assume that I is such that v € I,. Then
(11) T,(c) = o4,
where p = M,(t) < 1 and 4, = 4,(7).
Proor. The result follows easily from Lemma 1, and condition (4).
LEMMA 2. Let for any fixed number a > 0
P.(a) = P{}7., X;/n = a}.
Then
(12) P, (a) = p"4, $¢ exp(—1w) dG, (W) .
Proor. By definition,
P,(a) = P{Z5. W; = 0}
= (¢ dF,(w)
=T, (7) (¢ exp(—1w) dG,(w)
= p", {¢ exp(—tw)dG, (w), (by corollary to Lemma 1).
LemMma 3. If y, , denotes the rth cumulant of V, defined in Section 2 then v, ,
exist for all finite r and |y, | < Cn.

Proor. By (8)
log M, (t) = log W,(t + ) — log ¥,(7)
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so that
Tra = [d"log My (1)}d17],_,
(13) = [d"log ¥, (1 + 7)/dr"],,
= n[d"K,(t 4 t)/dt"),_o + [d"W,(t + 7)/dt"],_,
— nKZ‘”(z') _I_ wn(r)(z-) ,
where w, (1) = log 2,(r). It is easy to see that both K 2"(r) and w,")(7) exist for

all finite r and are of order unity. The result of the lemma, therefore, follows
immediately.

Note that if x, =y, , = E{V,} then 4, = w,/(z) (since K,'(r) = 0) is of order
unity. Write ¢,2 = 7,,. Then n-1g,? — K,"(t) as n — oo. Note that K,"(r) >
0; equality cannot hold for otherwise Z, is a constant a.e., which is impossible
under our assumptions.

3. Proof of the theorem. Let H,(x) denote the cdf of U, =, — p,)]o,. Then
sgo exp(—f)’) dGn(.y) = exp(_fﬂn) S:on exp(_"‘"’n)’) dHn(.y)

(14) = exp(—rl’ln)ﬂjn S?,, exp(_Tany){Hn(y) - Hn(an)} dy
= exp(_rﬂn)ln Sa’y’

where a, = —p,/0,. Again since 7, , is of order n we can use the arguments

leading to the theorem in Chanda [3] to prove that for any finite y

(15) Hn(.y) = Kn,'r(.y) + Rn,r(.y) ’

where

Kn,r(y) = (D(y) + Gn,r(y) ’
P(y) = {Lup(x)dx,  $(x) = exp(—}x?)/(2n)t .
(27)}6(0)1a,,(i0) = §=.. exp(i6y) dG, ,(y) ,
Xa,~(i0) is a polynomial in i# obtained by expanding Y728 si/j! (s = s(if) =
2525 (i0)'7, /(v 0,*)) and retaining terms of order ¢,~"~* and higher, and
IR, ()] < Clo,72.
If we denote by P; = P,(if) the polynomial in i¢ in y, (i) of order ¢,
(1 £j < r — 3) then we can write

Now define
(16) fa(y) = exp(—1a,y) if y=za,
=0 if y<a,.
Let for all real ¢
9.(0) = §=. exp(i0y)f,(y) dy
(17) = sjfn exp(iy — o, y) dy
= exp(ty, + ia, 0)/(zs, — if),
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and
Tu,(0) = §2. eXp(i0Y)K,) () dy
= (2r)}(0) L35 P; (Po=1).
Then to order ¢,~"2
I, = 70, {3, exp(—rto, K, () — K, .(2,)} dy
= {2, exp(—ro, »)K; () dy

= 2 fu(DK;(y) dy
(18) = 21_ * 0.(0)7, ,(0) do (by Parseval’s Theorem)
T
= (exp(za,)/z0,(27)}) §=. exp(—ia, 0) (1 L )_1 $(0) 5 P, db
70,

n

= (exp(tp,)/ro,(27)}) 312 0,7 §=. exp(—ia, 6)p(0)h, ,(i6) db ,
where
by W (i0) = 3% (—1)¥(i60)70,*~IP,_; /77 .
Note that since P; is of order ¢,77, k, ,(if) must be of order unity. Finally,
therefore, combing (12), (14) and (18) we obtain (5), where 2, = 4,(r) and
(19) Bun = 12 exp(—ia, 0)p(O)h, (i) d0 ,
B.,, being uniformly bounded in n for all finite ». Again,
2. exp(—ia, 0)(i0Y$(0) db = (2m)(—1)idig(a,)/da,’
= (2n)ig(a,)Hy(a,) ,
where H,(x) is the Hermite polynomial of degree j in x. Hence if we write
o n(i0) = 2540 b0 (i0)7 5
where A, are constants, then
(20) Buw = 2n)id(a,) X5k b3 Hi(a,) -
(a) Special cases.
r=3:
o (i) = Py =1, Bon = (2m)*d(a,)
P.(a) = (0"4, $(a,)[a,)[1 + O(a, )]
= (0" [ro,2r)H)[1 + O(a,™)] (7 ay = —pfo, = O(3,7)) .

r=4:
P, = (i0)*, ,/60,° ,

by (i) = 0, P, — 0]t = (i0)°7,.,/60,> — i)z .
Bin = (2m)td(a,)1s,0 Hy(a,)[60,> — Hy(a,)/7] .

Recall that a, = O(s,™"). Using the appropriate polynomial expression for H,(x)
and retaining terms to order ¢,!, we have then

P.(a) = (0"2,[z0,(2m))[1 + O(s,7%)] -

Hence
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r=2 P, = (i0)'1, ,/240,* + (i0)%% ,/720,°
hy ,(i0) = 0,*P, — (i/7)0, P, + (i0)*/7*
= (i0)°73.4/120," + ((i0)*/2470,*) (774 — 47s0) + (0)/7".
Hence

ﬁ2,n = (2”)595(“”)[?’3,” Hﬁ(an)/720n4
+ (T4 — 4750 Hi(a,) /2470, + Hy(a,)[7*] .
On simplification we have
P(a) = (0"4,[t0,2r)))[1 — .2 — a,[t0, — 15, a,/20,°
- 1/‘!‘20'”2 + (Tr4,n - 473,7»)/87%4 - 57’§,n/24”n6 + O(Un_s)] .

4. Two examples. (i) Let Y, be distributed normally with mean zero and
variance unity. Then M,(f) = exp(—at + %), I = I, = (— o0, ), ¢ = a and
p =exp(—4a®) < 1. Alsolog¥ (1) = —ar ) }2__.c,,+ 3 0., Note
that

Z$=—°° c'n,u =n Z;o=0 gv =n
and
z=—oo ci,u = Var(Z;:l WJ) =n Z:f:—oo pu - Z’loto=—°° |ullou + 0(400”) ’
where
Pu= 25090 9vs1ul -
It is easy to see that
Z:::—oo Iou, = (ZSO gv)z = 1 *
Hence
log 2,(r) = —%da® + O(p,") , where 6 =2 > > up,,
Pn = T1a= —0a+ O(p") and  7,,=9"=n—35+ 0(p"),
T'r,n = 0 r 2 3 >

n~g,> — 1 as n — oo. In particular, if {X;;j = 1} is linear Markov with g, =
(1 — )i (V2 0), 5= 20,1 — )™

(ii) Let Y, = T, — T, where T,, T, are i.i.d. rv’s with a common gamma dis-
tribution with parameter # > 0. Then M,(r) = exp(—ar)(1l — )%, I = (-1, 1),
I, =(—A1 A", A= 3¢l9,]- M,/ (r) =0 has only one solution in I viz.,
t=[(*+a)t —0lat < 1. celif a <20A(A — 1)7'. log ¥, (t) = —nat —
0 yr__.log(l —ct t),logd,(r)=0(—n__.log(l —c;,7%) +nlog(l —7%) =
6 Y=, r-ie*h, ,,where b, , = 31 ¢, —n. |k, | < QAT — A — 1)(4 —
D3, 0|9, 7y = 1K, () + 0 2o, r7'(2r), 7%, . In particular, if {X;;
j = 1} is linear Markov with g, = (1 — p,)p,"s (v = 0), then

R, = 2 O(=1res(l — o)™t + [1 + (=1)Jo(1 — o)™ + O(or") -
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