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AN EQUIVALENT TO THE MARTINGALE SQUARE
FUNCTION INEQUALITY*

By Louls GORDON
Stanford University

A direct proof is given for an inequality relating the expected absolute
value of stopped Brownian motion to the expected time to stopping. This
inequality was originally proved by means of the martingale square func-
tion inequality. The latter is then derived from the former through use
of a Skorokhod embedding. The first inequality is also applied to prove a
martingale strong law of large numbers.

1. Introduction and summary. The square function inequality for independent

random variables with zero means,
m(p)E(ZT X'y = E(Zt X)) = M(p)E(Zt X, for p >3

is proved in Marcinkiewicz and Zygmund (1938). The result is extended to
martingale difference sequences in Burkholder (1966). Burkholder’s result is
used in Millar (1968) to study the sample function behavior of continuous-time
martingales. A corollary to Millar’s work is found in Burkholder and Gundy
(1970), which extends the results of Burkholder. There, it is shown that for
W(t) a standard Wiener process and T a bounded stopping time,

(1) k(p)ET” = EIW(T)|” < K(p)ET”

for p > 1 and constants k(p) and K(p).

In Section 2, we provide a conceptually simple direct proof of (1) by means
of the It6 calculus for Brownian motion. The left-hand inequality is somewhat
improved in that we only require that a moment of T of sufficiently large order
be finite.

Section 3 is devoted to a proof of the martingale square function inequality
using the Skorokhod embedding for martingales and equation (1). It follows
that (1) and the square function inequality are equivalent.

Chow (1967) employs the square function inequality to prove a strong law of
large numbers for martingales. An alternative proof using (1) is found in Sec-
tion 4. The similar use of the two inequalities here and in Chow (1960) first
suggested the possibility of the equivalence shown in Section 3. We also provide
a partial generalization to martingales of a strong law due to Chung (1947).

An esthetic justification for new proofs of old results is perhaps in order.
Inequality (1) may be of sufficient interest in itself to deserve a direct proof. A
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debit and credit for the above program is its use of purely probabilistic methods;
the origins of and insights into the square function inequality gained via
orthogonal series and analysis are thereby obscured. Neither does the proof
yield maximal inequalities as in Burkholder and Gundy (1970). Hopefully, the
combination of the Skorokhod embedding and Itd calculus to obtain information
about functions of martingales may also be of interest.

2. Inequalities for Brownian motion. We here present sufficient conditions on
a stopping time 7 for the standard Wiener process W so that there exist constants
k(p) and K(p) independent of the choice of T for which k(p)ET» < E|W(T)|* <
K(p)ET», for p > L. The proof involves use of a result from the It6 calculus
(e.g., see McKean (1969)).

We first pause to give a heuristic discussion of the necessary results. We may
write W(t + dt) = W(t) + dW(t) where the Brownian differential sticks out into
the future and so is independent of the past. The differential has mean zero and
we approximate (dW(f))* by dt because of the law of the iterated logarithm and
Lévy’s theorem on the almost sure behavior of sums of the squared differences
of the Wiener process for increasingly fine partitions of time (e.g., see Freedman
(1971), page 42). Hence, if (¢, w) is sufficiently smooth,

Edf(t, W(1)) = E{fi(t; W(1)) + 3fu(t, W()}dt,
where f; = df/ot and f,, = 0°f/ow*. If we can add the differentials we obtain
Ef(t, W(t)) = E §§ fi(s, W(s)) + L fau(s, W(s)) ds. Further, the same argument
applies to differentials dW(T + ¢) for T a stopping time by the strong Markov
property. We therefore expect that

Ef(T, W(T)) = E §{ f(t, W(1)) + bfults W(1)) dr.
This argument is made rigorous by means of the Itd integral discussed in
McKean (1969). In particular, for T a stopping time, f(0, 0) = 0, and f well-
behaved,
ST, W(T)) = §7 fot, W(0) dW (1) + §5 fult, W(1) + 3 fu(t, W(D)) dt
where f, = df/ow and the right integral is an It6 integral. Further, if

E \§ £} (t,W(r)) dt < oo then E ] fy(t, W(t)) dW(t) = 0. We refer to these two
identities as It6’s formula.

THEOREM 1. For p > } there exist constants k(p) and K(p) for which E\W(T)|*» <
K(p)ET?, for T a stopping time. If, in addition, ET? < co then k(p)ET? < E|W(T)|*.

Proor. We write W instead of |W|" and apply It6’s formula to functions of
the form #7W?~*, The reader should not worry that the functions be non-
differentiable at 0. We may approximate by t’(¢ + W?y*~7 or observe that W
spends O time at 0 on a closed subset of time. We further note that

E (trW»=)?dt < oo
when T < B < oo, for B a constant. To obtain the bounds, we may truncate
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the time 7 and prove the result. The upper bound then follows immediately
from Fatou’s lemma. We therefore make free use of It6’s formula.

First, we prove the inequalities in the following table and then apply Holder’s
inequality. We write p = 1 4 a.

To prove:
TABLE 1
k(p)ET\te < EW *+2«(T) K(p)ET'+« > EW2+2«(T)
a>4 (1 + )ETeW¥T) 2 ET1*« CYETW(T) z EW2+2«(T)
“€la -lk 1’ %) (1 + )ET*WXT) = ET'+ CHOETI-neW2n+0a(T) = EW2+24(T)
a€(—4%0) ETrWta=(T) 2 {yET« (1 + o)ET*W¥T) < ET'+«
7=+ 2a)/4

The inequalities are proved in order. Note that
EW?t(T) = (*2)E \T W?(t) dt
by Itd’s formula where (%) = fa(a — 1). For example, EW*T) = ET.
(1) A+ aET“W¥T) = (14 a)E\J t*+ at*'W(t)dt = (1 + a)E §] t* dt for
a > 0.
(2) CEVETW(T) = (59E §W(t) + (W0 dt Z (4=)E §§ W (1) dr
for a > 1.
(3) (2§2a)ET1—naW2(n+l)a(T) — (2-22&)E Sg‘ W2a[(1 - na,)(W2/t)na _|_ (W2/t)na—1] dt
for a e[1/(n + 1), I/n). But (1 — na)x™ 4 x**=* = 1 for x € (0, o0).
(4) Choose a € (—1%, 0) and consider y = (1 + 2a)/4. Then
ET'We=(T) = E I t*[y(t/W?*r—** + (1 4 2a — 2p)(¢/W?)~*] dt .
Also, x> 4+ L(1 4 2a — 27)x™"* = 7. So
ETTW*a=2(T) > yE \I 1= dt .
5) (1 + )ET*WXT) = (1 + a)E ] at*'W?*(t) 4+ t*dt < (1 + a)E ] t* dt for
ae(—1,0).
We now apply Holder’s inequality to the previous table. For example, if
a > L, EW*(T) < (*3*)ETW?**(T) so that
(2-22&)(ET1+0[)1/(1+L!) ; (EW2+2a(T))1/(l+a) .
We exhibit the following table of constants:

TABLE 2
a3 wel[—L i) ae (40
=72 n + 1 E) n 2
k(1 + ) (1 + @)-a+e (1 + ay-i/e @), 1= (1 + 2a)/4
K(1 + a) (@t (a1 a0+ (1 + a)-a+a

for which k(p)ET? < EW?*(T) < K(p)ET? when T is bounded.
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We now have that the right inequality holds for all stopping times 7' while
the left holds for all truncated times T A B for B a finite constant. Let

W*(T A B) = sup, |W(T A B A 1)

and assume ET? < oco. Then W(T A B A t) is a martingale with continuous
sample paths so that by the martingale maximum inequality and Doob (1953),

page 317,
E[W*(T N B)]* < CJEW™(T A B).

We now apply the right-hand inequality of (1) to obtain
E[W*(T A B)]» < C,E(T A B).
By monotone convergence we obtain .
E[WX(T)» < C,ET” < oo .
Since W(T A B) — W(T) and |W(T A B)| < W*(T) it follows from the dominated
convergence theorem that
k(p)ET» < EW™(T) .

The reader may also note that the same proof we use for the right-hand ine-

quality in (1) yields
EW?*(T) < p~?ET*

for0<p <.

3. The square function inequality. We next show that the preceding ine-
quality implies the square function inequality. The reader should observe that
Khintchine’s inequality is used here and in Burkholder (1966). We use Theorem
1 to give a partial proof of this inequality.

LemMA 2. (Khinchine’s Inequality). Let Q; be i.i.d. random variables taking
values 1 or —1 with probabilities } each. For p > i, there exist positive constants

b(p) and B(p) for which
b(p)(Z x/'y = B(X Q;x,)* = B(p) (X x>
for arbitrary constants x;.
Proor. Let W(r) be a standard Wiener process and R, = >;» T; where T, = 0,
Tn = lnf{tl IW(t + Rn—l) - W(Rn—l)l = Ix'nl} :
By the usual scale change transformation, T, = x,*T,* where the T,* are i.i.d.
as the hitting time of || to 1. We use Jensen’s inequality and Theorem 1 to
conclude that
K(Z xETy = E(Z % Q) = KL X/ PE(T)
Where K, = k(p), K, = K(p) if p = 1 and K, = K(p), K, = k(p) if p < 1.
The Skorokhod representation for sums of independent variates with zero mean
is well known. The representation can be easily generalized by a conditional
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argument to martingale difference sequences (e.g., see Freedman (1971), page
90). For our purposes the approach in Breiman (1967) is most conveniently
generalized.

In particular, we choose to represent every martingale S, as a Wiener process
stopped at times R,, with S, = W(R,), where R, =0, R, =T, + R,_, and
T, =T,(U, V), the first hitting time of W(t + R,_)) — W(R,_,)to Uor V. Here
(U, V) is chosen independent of the post-R,_, process according to

P{Uedu, Vedvy = alv|l <o u0vcaF(du| Sy, <+, S,_)F(dv|Sy, « -, S,_)
where F is the distribution of §, — §,_, = X,,, conditional on §, - .., §,_, and
a™ = E{|X,||S,,- - -, S,_,} whenever the latter is non-zero; we concentrate U, v

on (0, 0) otherwise. The X; constitute a martingale. difference sequence.

We now give a proof of the square function inequality using the Skorokhod
representation and Theorem 1. The crucial observation is that if R, is an in-
creasing sequence of Brownian stopping times, then for X, = W(R,) — W(R,_,},
k(p)ER,” < E(}]1 d; X,)* for any sequence d; of 1’s and —1’s. This enables us
to combine Theorem 1 with Khintchine’s inequality to obtain a proof of the
square function inequality.

THEOREM 3. (Square function inequality). Let X, be a martingale difference
sequence. Then if p > % there exist constants m(p) and M(p) for which

m(p)E(L: X'y = E(Xt X;)" < M(p)E(Li XY -

Proor. We assume in our proof that all stopping times have finite moments of
all orders. The general theorem follows from this specialization by truncation,
and a limiting argument. Either the X; themselves may be truncated or one
may truncate the stopping times in the Skorokhod representation at the first
exit time from [ — N, N] for large N.

Let d, be an arbitrary sequence of 1’s and —1’s, and R, an increasing se-
quence of stopping times with finite moments of large order. From Theorem 1,
k(p)ER,» < E(X 1 d; X;)* < K(p)ER,? for X; = W(R;) — W(R,_,), R, = 0, be-
cause a sign change of the post-R, process alters neither its Brownian character
nor its relation to the R, ; as stopping times. In particular, for Q; independent
of everything else, as described in Lemma 2, k(p)ER,» <E(>* Q, X;)”» <K(p)ER,?.
Hence, for Skorokhod representation times R ;» we have from Khintchine’s ine-
quality and Theorem 1, that

k(Pb(P)E(Z X;) = k(p)E(L X;Q;)™ < k(p)K(p)ER,> < K(p)E(Y, X;)* .

Hence, for m(p) = k(p)b(p)/K(p) and, similarly, for M(p) = K(p)B(p)/k(p) we
have
m(p)E(XLT X' = E(Xt X;)™ < M(p)(Zt X,°) -
4. A martingale strong law. We employ the upper inequality of Theorem 1 to
give a proof of a strong law for martingales found in Chow (1967). The use of
Theorem 1 in this proof parallels the use of the square function inequality in



1932 LOUIS GORDON

Chow’s (1960) proof. This similarity first suggested that Theorem 3 might be
proved in the manner above.

THEOREM 4. Let R, = X1 T, be an increasing family of stopping times. Then,
for p > 1, on the set {3, T *[j**» < oo}, n7'W(R,) — 0 a.s.

Proor. We may truncate the stopping times by examining R, A R*, where R*
is the first time (3] 7,*/j***) 4+ (t — R,)*/(n + 1y»** = D for R, < t < R,,, and
D a large constant. We write R, = 0. Hence we may as well assume the R,
have moments of all positive orders and that E 3} T;?/j**? < oo.

From the Jensen inequality and Kronecker Lemma, Y;? T,/nj and n—*R" — 0
in L?. It follows from the usual scale-change argument that W(R,)/n —,0. Also,
for &, the g-algebra generated by the process up to time R,,

[WR)[n]? — 23 [E{W*(R;)| F 5} — W (R;)]/j™
is a supermartingale. Therefore, it converges almost surely if
E YT [EW™(R))| 5} — EW™(R; )]/
is bounded. The sum whose expectation is taken is a sum of positive terms so
that if its expectation is bounded, W(R,)/n converges almost surely.

However,

E Yy [W(R,) — W(R,)]/j” < &,E i R2[n
ScE Xy T e

by Theorem 1 and Jensen’s inequality. The latter is just cE 33 T,7/j*** < oo.
We obtain as a corollary the martingale strong law of Chow (1967).

CoROLLARY 1. If X, is a martingale difference sequence and if 3,7 EX*[j"** < oo
for p = 1 then 317 X;/n — 0 a.s.

Proor. Use a Skorokhod representation, R,, of the partial sums for which
cE[W(R,) — W(R,_))]» > E(R, — R,_,)*. (See Theorem 5, below.) Then for
T; = R, — Ry, 57 T7[j* < o0 a.s.

We also partially generalize the following strong law of Chung (1947) to
martingale difference sequences.

COROLLARY 2. Let ¢ be a positive function on the positive reals for which ¢(t)/t*
is decreasing and ¢(t)[t" is increasing for some r > 1. Then E 35 o(|1X;])/e(J) < oo
implies Y7 X;/n — 0 almost surely.

Proor. We choose a Skrokhod representation with cEo(|X;|) = Ep(T,) (see
Theorem 5). Then }; o(T;})/¢(j) < oo implies o(T;})/¢(j) < T;/j* only finitely
often. Hence ). T,/j* < oo and Theorem 4 applies.

Both corollaries depend strongly on the construction of a Skorokhod represen-
tation as in Breiman (1967). It is described in Section 3 above. We here prove
a generalization of Breiman’s Proposition 1. The proof given makes use of
Theorem 1 rather than use of integration by parts.
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THEOREM 5. Let ¢ be positive function on the positive reals for which ¢(t)/t? is
decreasing and $(t)/t" is increasing for some p > r > 1.

Let X have distribution F with mean 0. Let (U, V) be distributed independent of
W as al o u=0,0<0|V|F(du)F(dv) where a=' = {5 vF(dv). Denote by T(U, V) the
first hitting time of W to U or V. Then there exists ¢ depending only on ¢ for which
cE¢(|1X]) = E¢(THU, V)) and W(T(U, V)) is distributed as F.

ProOF. Let 0 < a < 1 be a constant and T, be the first hitting time of W to
aora — 1. Then T, has moments of all orders and

P{W(Ta) = a} =1—a.
Hence for ¢ > 1 there exist constants d, and D, for which
ET, " < d,E|W(T,)|"

which equals
d[a(l —a) + (1 —a)a] < D,a.

We then have that E¢(T*U, V)) = E¢((|U| + |V|)T,}) where
A= (UL A VDIYL+ VD)

by the scale change formula, and T} depends on (U, V) only through the value
of A. Hence, under the hypotheses on ¢, E¢(T(U, V)) < E{¢(|U| + |[VI(T,” +
T *?) < DE{A¢(JU| + |V|)}, for some constant D, the latter inequality by con-
ditioning on (U, V). The remainder of the proof follows Breiman (1967).

Acknowledgment and Addendum. I wish to thank the referee for his helpful
suggestions, especially his improvements in Theorems 1 and 5.

Another proof of (1) for p an integer may be found in Rosenkrantz and Sawyer
(1972); their work and mine were done independently. Their constants are sig-
nificantly superior to mine. They employ polynomial martingales homogeneous
in t and W?*(f) whose leading terms are W"(r) — (3)tW"*(t). The expected mag-
nitudes of these terms are compared in the first table of Section 2.
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