The Annals of Mathematical Statistics
1972, Vol. 43, No. 6, 1914-1926

FREDHOLM DETERMINANT OF A POSITIVE DEFINITE
KERNEL OF A SPECIAL TYPE AND
ITS APPLICATION!

By SHASHIKALA SUKHATME
lowa State University

Let p(x, y) be a positive definite symmetric kernel defined over the unit
square such that p(x, y) = K(x, y) — 2¥_, s(x)ps(»), 0 < x, y < 1, where
K(x, y) is a bounded symmetric positive definite kernel defined over the unit
square, and ¢s(x) € Ly(0, 1). Methods of finding Fredholm determinant D(2)
of p(x, y) in terms of the eigenvalues and the eigenfunctions of K(x, y) are
given. A kernel of the type of p(x, y) arises as the covariance function of
a Gaussian process in the limiting distribution of. the modified Cramér-
Smirnov test statistic in the k-parameter case which may be described as

follows: Let Xj, -+, X, be n independent observations (random variables)
from a population with a continuous distribution function G(x). Suppose
for every @ = (61, - -+, 0x) € I, I being an open interval in the k-dimensional

Euclidean space R¥, F(x, @) is a continuous distribution function. Let On
be an estimate of @ obtained from the sample. A test of the hypothesis
H: G(x) = F(x, 6) for some unspecified 8 € I based on the statistic

Ca = n §*2 [Fu(x) — F(x, 62)] dF(x, 62) ,

is considered and the characteristic function of the asymptotic distribution
of C»? is shown to be the Fredholm determinant of a kernel of the type of
o(x, y) with K(x, y) = min(x, y) — xy whose eigenvalues and eigenfunctions
are known. Results are also used to obtain the limiting distribution of /-
sample analogue of Cy2.

1. Introduction. Let p(x, y) be a positive definite symmetric kernel defined
over the unit square such that

(1.1) p(x, y) = K(x, y) — i $(0)9i(y) » O=xy=1,

where K(x, y) is a bounded symmetric positive definite kernel defined over the
unit square, with 0 < 4, < 4, --- as its eigenvalues and f(x), fy(x), - - - corre-
sponding normalized eigenfunctions and ¢,(x) € L,(0,1), i=1,2, ..., k. In
Section 2, methods of obtaining D(2) the F.D. for p(x, y) are given by Theorems
2.1 and 2.2. It may be pointed out here that D(2) is also called Fredholm’s
function (Pogorzelski (1966)) and that K(x, y) can be unbounded satisfying certain
conditions, (see Pogorzelski (1966) page 77). Theorem 2.2 gives an expression
for D(2) in terms of the eigenvalues and the eigenfunctions of the kernel K(x, ).
Thus if K(x, y) is a kernel whose eigenvalues and eigenfunctions are known then
Theorem 2.2 gives a method of finding D(2).

A kernel of the type (1.1) arises as the covariance function of a Gaussian
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process involved in the limiting distribution of the modified Cramér-Smirnov
test statistic in the k-parameter case which may be described as follows. Let
X,, - -+, X, be n independent observations (random variables) from a population
with a continuous distribution function G(x). For testing the hypothesis
H,: G(x) = F(x), where F(x) is some specified distribution function, a test based
on w,?, defined by (1.2), was proposed by Cramér (1928), Smirnov (1936) and
von Mises (1931).

(1.2) 0, = n {IZ[F,(x) — F(x)] dF(x),

where F,(x) denotes the sample distribution function i.e. F,(x) = v/n, v being
the number of X; (i = 1, 2, ..., n) that are less that x. The hypothesis H, is
rejected for large values of ,2. Following a suggestion of Cramér (1946) Darling
(1955) extended the theory of w,*test to the case when the distribution function
F(x) is not completely specified, but depends upon a parameter that must be
estimated from the sample. Section 3 of this paper is concerned with the ex-
tension of w,’-test to the general case when F(x) depends upon many parameters,
say, k of them. Assume that for every 8 = (0,, 0,, - - -, 0,) € I, I being an open
‘interval’ in the k-dimensional Euclidean space R*, F(x, @) is a distribution func-
tion and 6, = (0,,, 0,,, - - -, 0,,) is an estimate of & obtained from the sample.
Without ambiguity we denote §,, by §,. Consider a test for the hypothesis
H: G(x) = F(x, 8) for some unspecified @ ¢ I, based on the statistic

(1.3) C,}=n {2 [F(x) — F(x, 8,)} dF(x, 8,)

such that H is rejected for sufficiently large values of C,2. In Section 3 we ob-
tain the limiting distribution of C,? under the hypothesis H. The characteristic
function of the asymptotic distribution of C,? is shown to be the Fredholm de-
terminant of a kernel of the type (1.1) and Theorem 2.2 is applied to find the
required characteristic function. Kac, Kiefer and Wolfowitz (1955) considered
a test based on C,?, when F(x, ) is a normal distribution N(x, ¢, ¢°) when both
1 and ¢% are unknown. We shall obtain the results of Kac, Kiefer and Wolfowitz
(1955) as a special case of the theory developed here. The methods used in [6]
do not seem to be general enough to be used for an arbitrary F(x, ). However
a suitable combination of techniques of Darling (1955) and Kac, Kiefer and
Wolfowitz (1955) is employed here to generalize their results to the present case
of continuous F(x, #) involving k unknown parameters.

Kiefer (1959) has studied the limiting distribution of /-sample Cramér-Smirnov
test statistic C? , (defined by (4.1)) for testing the hypothesis of goodness of fit.
Section 4 indicates the application of Theorem 2.2 in deriving the limiting dis-
tribution of modified C?, in the parametric case under consideration.

2. Fredholm determinant for p(x, y). For simplicity we find the F.D. associated
with p(x, y) defined by (1.1) when k = 3. The method used is quite general and
extension to the case when k is an arbitrary positive integer is clear. Now we
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introduce the following notation: Let
21 ol y) =Kx)y) — Tiad)¢y),  0=xy=1 4i(x)eLf01),

where K(x, y), {4;} and {f;(x)} are as defined in Section 1 and d(4) denotes the
F.D. associated with K(x, y). Further, let

(2.2) a;; = B o()fix)dx,  i=1,23j=12...3
(2.3) ci(9) = §5 di(x)g(x) dx , i=1,2,3;
(2.4) PM(Z)_1—|-ZZ:]11_Z/2 A2, i=1,2,3;
(2.5) zk(l)—lz,ll_‘;% AEd, ik i k=1,2,3.
Set

(2.6) oi(x, y) = K(x, y) — 4u(x)$(¥) > 1=1,2,3;

2.7)  oi(x, ) = K(x, ) — $u()9()) — $u(X)Pu(y), 1#m Lm=1,2,3.
{#;P}and {f;V(x)} [ = 1, 2, 3, denote respectively the eigenvalues (in the order of
magnitude) and corresponding normalized eigenfunctions of the kernel p,(x, y)-
{#;4™} and {f;*™(x)} are the eigenvalues and the normalized eigenfunctions of
Oun(%, y). a2, 1= 1,2, 3, (affm, | # m) are defined as in (2.2) with f,(x) replaced
by f;V(x)(f; ‘“’”(x)) P{¥(2) and PL(A)(PE™(2), Pm(2)) are obtained by replac-
ing a;; by all(af™) and 2; by 2;'(2,'™) in the expressions (2.4) and (2.5) that
define PM(Z) and P;,(2) respectively. D,(2)(D,,(4)) represents the F.D. for
o1(%s Y)(O1m(%> 3))-

LEMMA 2.1. D, (2), the F.D. associated with the kernel p,,(x, y) defined by (2.7)
is given by
(2.8) D, (A) = dQ)P(APL,(2) = d(A)P, ()P, 1+#mlm=1,23.

ProoF. We prove the first equality in (2.8). Since p(x, y) is a positive definite
kernel, o,(x, y) being the sum of positive definite kernels is also positive definite.

By Theorem 6.2 of Darling (1955) the F.D. of the kernel p,(x, y) is Dy(2) =
d(2)P,(2). The integral equation

(2.9) 9(x) = 255 p1m(x, ¥)9() 4y »
can be written as
(2.10) 9(x) = —2¢,(9)Pa(x) + 4 §5 ou(x, y)9(¥) dy .

Using the series expansion for g(x), (Pogorzelski (1966) page 145; Whittaker
and Watson (1928) page 228) and arguing as in ([4] page 12) we can prove that
only for those values of 1, which are either zeros of P;),() or are the eigenvalues
of p,(x, y) the equation (2.10) can have a nontrivial solution, i.e., 2 is a zero of
the entire function D,(2)PY,(2), with D,(0)P(),(0) = 1. To prove that D,(2)P,;.(2)
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is the F.D. of p,,,(x, y) we have to show that for any 1 such that D,(Q)P{,(1) = 0,
there exists a solution g(x) of the integral equation (2.10) such that §{} g*(x) dx = 1.
In the course of the proof of Theorem 6.2 of Darling (1955) we observe that
the zeros of D,(2) are either simple or double. Hence we have to consider the
following three cases:
(i) 1 + Zj‘”,
(i) 4= 2,2, when 2, is a simple zero of D,(2), al; = 0,
(iii) 2 = 2;, where 2, is a double zero of D,(2), say,

) — 2 ) — (1) —
A =20 ay = =0.

In case (i) since 1 is not a zero of D,(2), it is such that P{),(1) = 0. Noting that

4 is real and P{) () > O for all real 2, g(x) given by

009 = [~ g LU et T
I A e o [ R
is a solution of (2.10). Thus for any 1 under (i) g(x) given by (2.11) is a solu-
tion of (2.10).

In case (ii) it is necessary that any = 0, because if &) + 0, A cannot be a zero
of D,,(4). Similarly in case (iii) it is necessary that a}) = a{!’;,, = 0.

In case (ii) we have two subcases: (a) 4 is such that D,(1) = 0and P, (1) + 0.
This means that 1 is a simple zero of D,(2)P{,(2) and f,"(x) satisfies (2.10) (Note
that P (2) # 0 implies that ¢, (g9) = 0 and f;(x) satisfies (2.10)). (b) 4 is such
that D,(4) = 0 and P{),(4) = 0, i.e. D,(2)P{,() has a double root at 1 = 2,
In this case f;"(x) and g(x) given by (2.11) are the solutions of (2.10).

Under case (iii) if 2 is such that: (a) D,(d) = 0 and P{!,(1) # 0, then 1is a
double root of D,(2)P,(2) and f;(x), f1,(x) satisfy (2.10); (b) D,(A) = 0 and
P{.(d) = 0 i.e. 1 is a triple zero of D,(2)P, (), and [P(x), fiH,(x) and g(x)
given by (2.11) are solutions of (2.10).

Thus for each zero of D,(2)P{!),(2) we obtain solutions of appropriate multi-
plicity to (2.10). Hence the first equality in (2.8) follows. The remaining
equality in (2.8) follows in the same fashion by writing (2.9) as

9(x) = —Ac(@)4u(x) + 255 ou(x, )9(y) dy -
Application of Lemma 2.1 yields the following theorem.

THEOREM 2.1. Let p(x, y) be a positive definite symmetric kernel defined by (2.1).
Then D(2) the F.D. associated with p(x, y) is given by

(2.12) D(2) = d(A)P,(A)PP(APEI(A) , i#=j+kij,k=1,2,3.
Proor. The integral equation
(2.13) 9(x) = 4§ [K(x, y) — Ll 9u(x)¢:(0)19 () dy

can be written as
(2.14) g(x) = —2¢;(9)Pi(x) + 2 §o0;(xs )9(y)dy i #j+k, i, j,k=1,2,3.
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Observe that p,,(x, y) is a positive definite kernel which can have eigenvalues
of multiplicity at the most equal to three (see the proof of Lemma 2.1). Using
series expansion and proceeding as in [4] an application of Lemma 2.1 yields
the result (2.12).

Even if Theorem 2.1 gives a method of obtaining the F.D. associated with
p(x, y), the method requires the laborious task of finding the eigenvalues and
the eigenfunctions of the kernels K(x, y), p,(x, y), and p,,(x, y). The following
theorem which is a generalization of Theorem 6.2 of Darling (1955) avoids
this difficulty by giving an expression for the F.D. of p(x, y) in terms of the
eigenvalues and the eigenfunctions of the kernel K(x, y).

THEOREM 2.2. The F.D. of a positive definite symmetric kernel o(x,y) =

K(%,y) — Xiu $(0)(y) defined by (2.1), is given by

(2.15) D(2) = d(HAQR),
where A(A) denotes the determinant of the symmetric matrix
(2.16) P(2) = (P;;()) , iL,j=1,2,3;

and P;,(R), P;,(R) are defined by (2.4), (2.5) respectively.

Proor. Write (2.13) as
(2.17) 9(x) = —2 Ll c9)¢i(x) + 2§ K(x, y)9(y) dy -
Then, for 2 + 2;

(2.18) 9(x) = —4cy(9) 215 FZLZ(/);)— — Acy(9) Z;‘o=1 I%i-f‘]z(/x%

~daf) T7a {0

Multiplying (2.18) by ¢;(x) and integrating we get
(2.19) c(9)Pu(2) + ¢(9)Pia(2) + ¢o(9)Pis(2) = 0, i=1,2,3;

a system of homogeneous equations in ¢,(g9), which can have a nontrivial solu-
tion if and only if A(2) = 0. If 2 & 4; all ¢;(9) cannot be zero simultaneously,
because ¢;(9) = cy(9) = ¢;(9) = 0, implies that (2.17) is homogeneous which
cannot have nontrivial solution unless 4 = ; for some j, i.e., d(2) = 0. Thus
if 2.3 2;, then we must have A(1) = 0. If 2 = 4; it is necessary that a;; = 0
(see case (ii) in the proof of Lemma 2.1). P,;;(4) have simple poles at 1 = 4,.
Hence A(%) is finite when 2 = 2; and we have d(4,)A(4,) = 0. Therefore, (2.13)
has a nontrivial solution only when either 2 is such that A(2) = 0 or 2 is a zero
of d(%), i.e., d(A)A(4) = 0.

To complete the proof, it remains to show that for every zero of d(2)A(4)
there exists a solution of appropriate multiplicity to the integral equation (2.13).
For this purpose, it is sufficient to prove that the zeros of d(4)A(4) and those of
D(2) in (2.12) are the same. Suppose 1 is a zero of d(2) then obviously d(4)A(4) =
D(A) = 0. Suppose 4 is such that A(4) = 0 and d(4) # 0. Since A(4) = 0, there
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exists a nontrivial solution of (2.19) so that at least one c,(g) = 0. Without
any loss of generality, let ¢,(g) # 0. Then from the equation

9(x) = —Ac(9)e(x) + 2 §5 pualx, ¥)9(y) dy »
we have

12 12
(2.20) o(x) = ~2c3(g)z:;°=1féf;_’f§7z—:%, S
Multiplying both the sides of (2.20) by ¢,(x) and integrating we get c,(9)P3?(1)=0.
As c,(g9) # 0, it follows that PE»(1) = O and A is a zero of d(2)P,,(2)PR(A)PL¥ ().
Thus a zero of d(4)A(2) is a zero of D(A) given by (2.12).

Now we prove that a zero of D(2) given by (2.12) is also a zero of d(1)A(4).
Suppose 4 is a zero of D(2) but d(4) # 0. Here we have to consider the follow-
ing subcases: :

(i) 1 # 4; and 1 is such that P,(1) = Pyu(4) = Py(4) = 0. By Schwarz’s in-
equality it follows that P, (1) = O foralli = k, i, k = 1,2, 3 and hence A(4) = 0.

(ii) 4 # 4;, one P(4) is not zero and the remaining are zero, say P,(4) # 0,
Py(2) = Py(A) = 0. In this case Schwarz’s inequality yields P, (d) = Py(4) =
P,(4) = 0 and hence A(4) = 0.

(iii) 4 # 2;, two of P,(1) are not zero and one P;(4) is zero, say Py (4) # 0,
Py(2) # 0, P,(1) = 0. Again by Schwarz’s inequality we have Py(4) = Py(4) = 0
which means that A(2) = 0.

(iv) 2 # 2;, Py(A) #= Oforalli=1,2,3. Since 1 # 2;, ¢,(9), ¢x(9), ¢,(9) can-
not all be zero simultaneously. Suppose cy(g) # 0. When 1 # 2;, ¢,(9), ¢(9),
c(g) satisfy (2.19) with P;,(2) and P,,(2) replaced by P,,(4) and P;,(4) respectively.
This system has a nontrivial solution only if A() = 0. This completes the proof
of the theorem.

ReEMARK. It is clear from the method of proof of Theorem 2.1 that the
eigenvalues of the kernel defined by (1.1) can be at the most of multiplicity
(k + 1).

3. Asymptotic distributions of C,>. Now we consider an application of Theo-
rem 2.2 to obtain the characteristic function of the asymptotic distribution of
C,? defined by (1.3). Henceforth it is assumed that F(x, &) is absolutely con-
tinuous and f(x, #) denotes the corresponding density function. We shall use
the following basic transformations:

3.1 u=F(x,8), u; = F(X;, 0), i=1,2,...,n.
By (3.1) x is defined implicitly as a function of u and @, except possibly at a
denumerable set of values of #, at which x can be defined arbitrarily so as to
make the function monotone non-decreasing.
Define
3.2) dy(x) =1 if x<t,

0 if x=>t¢t;
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then we can write
(3.3) Fo(x) = n7! 350 $u(X;) = 17! Tio duwy) = G(u)
where G,(#) = (1/n) (number of u,’s less than ).

3.1. Case of regular estimates. First we consider the case of regular estima-
tion, Cramér (1946), when V(6,) = 4;/n, i = 1,2, - .-, k for some positive A,.
If further the estimates 0 are such that plim,_,, n% ‘*(0 —6,) =0 for 6 > 0,
then we have an extension of Lemma 3.1 of Darling (1955) given below.

LemMA 3.1, If
(i) plim, ., ni((?i — (7,.) =0, i=1,2,...,k; for almost all x

(ii) %F(x,0)|§Mi<oo, - i=1,2, -, k;
(i) 5%-2F(x,0)‘<mi(x), i=1,2, 0, k;
(iv) a(faa Fx, 0)| < mi(s) P o= 1,2, ek
M |2 0)| < 49 i=1,2 0 k;

where the functions q,(x) and mj(x)q;(x) are integrable over (— oo, + c0); m;(x),
m;;(x), qi(x) are square integrable over (— oo, + 00), independent of @; and the ex-
ceptional set does not depend upon 8, and further if

§r2mi(x)f(x, 8) dx < oo, temi(x)f(x,0)dx < oo, ihj=1,2,..+,k;
then

(3.4) C'=C*+9,,

where

(3.5)  Cr=nits l:Fn(x) — F(x, 8) — X, (6, — 6, % F(x, 0)]2

X f(x, 0) dx , and plim,_.d, = 0.

Proor. Expanding F(x, §) and f(x, é) in Taylor’s series about the true value
0, substitute these in the defining expression (1.3). Use of the assumptions made
and the fact that sup, nt|F,(x) — F(x, 8)| is bounded in probability, Kolmogorov
(1941), yield the required result.

From Lemma 3.1 it is clear that the problem of finding the asymptotic dis-
tribution of C,? is equivalent to finding that of C,**. If we define

(3.6) g,-(u):gi(u,ﬂ):g%F(x,ﬂ), O<u<l,i=1,2 - k;

(3.7) Z,(u) = m(G,() — 1),
(3.8) Y,() = Y,(u, ) = Z,(u) — T, w0, — 0),(x)
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then we can write

3.9 Cr= Y} (u)du+9,, where plim,_.d, =0.

n—oo

Henceforth we drop the argument @ and write Y, (4) = Y, (1, 8) and g,(u) =
9:(u, 6) only for the sake of simplicity. The following lemma gives, the limiting
form of the stochastic process Y,(u) defined by (3.8), required to obtain the
asymptotic distribution of C,2.

Lemma 3.2, If

(i) we assume the conditions of Lemma 3.1 (so that C,* can be written in the
form (3.9)),

(ii) n¥@; — 0,) is a sum of independently identically distributed random variables,
i=1,2, ...,k

(iii) the asymptotic joint distribution of (n*(6, — 0,), n¥(f, — 0,), - - -, ni(d, — 0.))
is normal with mean zero and nonsingular covariance matrix £ = (a,;),

(iv) lim,_., E(Z,(u)n}(0; — 0,)) = h(u), 0<u< 1, h(0)=h(l)=0, i=
1,2, -, k,

then Y (u) converges in distribution to a Gaussian process Y(u) with mean zero and
the covariance function p(u, v, @) given by
(3.10)  p(u, v, 8) = min(, v) — uv — T, g (0)h(v) — T, g()hi(w)

+ 2ii=1059:(0)9,(v) O=suw,vs1.

Proor. The stochastic process Z,(u) converges in distribution to a Gaussian
process with zero and covariance function K(#, v) = min(u, v) — uv, 0 < 4,
v < 1, see for example Anderson and Darling (1952). Under the assumption
(iii) the asymptotic distribution of Y %, ni(@; — 0,)g.(u) is normal with mean
zero and variance % ._ g,,0,(#)g(#). By multidimensional central limit theo-
rem it follows that Y,(u) given by (3.8) converges in distribution to a Gaussian
process with mean zero. To find the covariance function we have

0u(> v, 6) = E(Y,(1)Y,,(v))
= E(Z,()Z,(v)) — E(Z,(w) Tt nh(0; — 0)94v))
— E(Z,(v) Tt nb(0; — 0)9:(w))
+ E(BEm(0: — 09:0)( Tk m¥(0: — 0)9:(0)] -
Under the assumptions (i)-(iv), lim (u, v, 8) = p(u, v, @), where p(u, v, 8)
is given by (3.10).

Here we observe that Lemma 3.2 of Darling (1955) is proved under somewhat
different conditions from those of the above lemma. In one parameter case
Darling assumes that ﬁn is “weakly biased,” i.e., lim,_,, nE(ﬁn —0)=0. It
may be that 6, is not weakly biased but at the same time lim,_, EZ,(u)n}(§ — 6) =
h(u) exists. For example in the case of normal distribution N(x, ¢, ¢%) the usual
estimate S? = n~!' 3%, (X; — X)? for o® is not weakly biased but it will be seen

i=1

later that h(u) defined above exists.

n—oo pn
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3.2. Case of efficient estimates. Now we consider the case when d,, - - -, 8, are
regular, jointly efficient or asymptotically jointly efficient in the sense defined
by Cramér ((1946) pages 490-495). (We assume that the covariance matrix X
of 6 is nonsingular. If the rank of X is r < k then b, .-, 91: are linearly de-
pendent and as they are unbiased estimates of 4,, - - -, 6,, we shall have only r
parameters to consider). In this case £ = A~! where A = (4,;) and

3 9 .
3.11 /'li.—_—E<_1 ,8). 21 ,o), =12, k.
(3-11) j 20, og f(x, 6) 30, og f(x, 9) L
We also have
(3.12) @, — 6,) = gzl[@m:lilogf(xj,a)], i=1, k.
n a0, .

By Cramér’s definition of an efficient estimate, conditions (i) and (v) of Lemma
3.1 are satisfied. We further assume that the remaining conditions hold. In
this case h;,(u) = E(Z,(u)n}(; — 0,)) is seen to be independent of n and it is
equal to

(3.13) hi(u) = hi(4) = L 009:(8) ,
and since g,(1) = g,(0) = 0, A,(0) = A,(1) = 0. Using (3.13) in (3.10) we have
the following result.

Lemma 3.3. If (0 - - -, 0,) are regular, unbiased jointly efficient estimates of
0, ---, 8,) then the process Y,(u) given by (3.8) has mean zero and covariance
function

(3.14) o(u, v, 8) = min(u, v) — uv — 3¢ ., 0,;0,(u)g;(v) , 0u,v1.

Here we observe that under the conditions of Cramér ((1946) pages 500-504)
and those of Lemma 3.2, it can be shown (as in [4]) that if §,, - - -, §, are maxi-
mum likelihood estimates of ,, - .., 6, then the process Y, () given by (3.8)
converges in distribution to Y(u), a Gaussian process with mean zero and
covariance function given by (3.14).

3.3. Characteristic function of the limiting distribution of C,*. The following
theorem gives the limiting distribution of C,2.

THEOREM 3.1. If @, ---, 0, are regular unbiased jointly efficient estimates of
0y, ---, 0, and g,(u) € Ly(0, 1) where g,(u) are defined by (3.6), then
(3.15) lim,_, P(C,? < x) = P({} Y*(u) du < x),
where Y(u) is a Gaussian process with mean zero and covariance function p(u, v, 8)
given by (3.14).

Proor. By Lemma 3.3 the process Y, () defined by (3.8) converges in distri-
bution to a Gaussian process with mean zero and covariance function p(u, v, 6)
given by (3.14). As X is a positive definite symmetric matrix there exists a



FREDHOLM DETERMINANT OF A POSITIVE DEFINITE KERNEL 1923

nonsingular matrix B = (b;;) such that & = B’B. Define

(3.16) Pi(u, 0) = () = X5 biz9,()
then (3.14) reduces to
(3.17) o(u, v, 0) = min(u, v) — uv — 5, &, (w)Pi(v) .

By a method similar to that used in ([6] pages 195-197) we can get Kac-Siegert
representation [7] for the Gaussian process Y(u) described above and show that
the sample functions of Y(u) are continuous with probability one. Hence an
application of Donsker’s Theorem (1952) gives the required result.

Now we are in a position to apply Theorem 2.2 to find the characteristic
function of the limiting distribution under consideration. The characteristic
function of the random variable C* = {} Y*(u) du is given by (see Anderson and
Darling (1952))

(.18)  Efexplir §} V') aul} = T3 (1 — 2)7 = (pein]-,

J

where {y;} are the eigenvalues of the kernel o(u, v, @) defined by (3.14) and D(z)
denotes the F.D. associated with it. We have seen that after making a suitable
transformation (3.16), o(u, v, ) can be put in the form (3.17) which is the form
of the kernel described in Theorem 2.2 with K(u, v) = min(u, v) — uv, ; =
©’j%, f;(x) = 2t sin mjx, d(4) = (sin A¥)/A}. Thus Theorem 2.2 is useful to obtain
the characteristic function of C2.

3.4. Some properties of C,? test and special cases. When no unknown pa-
rameters are involved, i.e., if 6, -.., 8, are all known, a test based on w,? is
used for testing the hypothesis G(x) = F(x, #). The asymptotic distribution of
w,’ is the distribution of w* = §j W*(u) du, where W(u) is a Gaussian process
with zero mean and the covariance function K(u, v) = min(#, v) — uv, 0 < u,
v < 1 and using Kac-Siegert representation for W(u), »* can be written as ® =
215, (G*/%*) where {G,} denotes a sequence of independently identically dis-
tributed normal variables with mean zero and variance 1. When§é,, ..., 6, are
unknown and are estimated from the sample, a test based on C,* can be used.
The limiting distribution of C,? is the distribution of the random variable C* =
§3 Y*(u) du, Y(u) being a Gaussian process with mean zero and covariance func-
tion given by (3.14). C? can be written as C* = 7., (G,;*/p;), {¢;} denoting the
eigenvalues of p(u, v, #). Noting that Y% .0, 0,(u)g,(v) = Jk, ¢.(u)¢,(v) is a
positive definite symmetric kernel, it follows by maximum-minimum property
of eigenvalues, Riesz and Nagy (1955), that the weights 1/x; in C* are not greater
than the weights 1/z%? in ?.

In particular if ¢(x) = f,(x)/2%, where m,, m,, - .., m, are k distinct positive
integers then P;(1) = 0 for i # k and P;(2) = 4, /(4,, — 4) and the number of
terms in the infinite product for D(2) is reduced by k and

D(z) = H;;'Inj(l - 2/2]) .
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This is analogous to reduction in degrees of freedom of usual y* theory.

Case of two unknown parameters. In this case if we write o, = 0,® 05, = 0,
0y = 0y = ro,0, and
> _ < o? r0102> _ <al(1 — it rol> <al(1 — it 0>
ro,o, 0! 0 g, ro, o)
i(u) = o(1 — rtgy(u), ¢o(u) = ro,9y(u) + 0,9,(1) ,
p(u, v) = K(u, v) — ¢(u)y(v) — o(1)Po(v) -

If F(x, @) = H((x — 0,)/0,) that is if 6, is the location parameter and 0, is the
scale parameter, then p(u, v, #) involved in the limiting distribution can be shown

to be independent of #,, 6, showing that the test is asymptotically parameter-
free in the sense that the limiting distribution does not depend upon the unknown

parameters.

Case of normal distribution. 1f F(x, ) is a normal distribution function
N(x, p, 6*) with unknown g and ¢, the usual estimates of # and ¢° are X =
(X2, X;)and §* = n~Y( 31, (X; — X)?). Here we observe that §? is not weakly
biased, however h,(x) and h,(u) defined below exist. Let Y; = (X; — p)/o, j =
1, ...,n,Ogugland

$(y) = Qmyte?,  O(y) = {Lad(x)dx,  Jw) ={y:u=CH)}.
Then
hy(u) = lim, ., E(Z,(u)n}Y) = lim,_, [muE{Y | Y, < J(u)} — nuE(Y)]
= —¢(/(1))
hy(u) = lim, ., E(Z,(u)nh(S* — 1)) = lim, .. E(S*|Y; < J(w)) = —J@)$((®)) -
In this special case 6> = 1, 6, =2, 6,, =0
() = —dUw)),  $o(u) = —27N(W)$(J())
and
o(u, v, 8) = min(u, v) — uv — FUIW)HU(®)) — FUWIW)SUE)FI()) -
This result was derived in [6] by quite a different method.

4. l-sample Cramér-Smirnov test in parametric case. Let X;; (i=1,2, -+, n;;

j=1,2,---,1)be independent random variables with contlnuous dlstrlbutlon

function G,(x). For every 6 ¢ I an open interval in R* let F(x, #) be an abso-

lutely continuous distribution function. For testing H,: G,(x) = Gy(x) =
G,(x) = F(x, ), when the functional form of F is known but @ is unknown, a

natural analogue of C,? defined by (1.3) is given by

(4.1) Cl, = 1¥2 Do n[F9(x) — F(x, 6,) dF(x, 8,),
where N = Y\!_ n;,, n= (ny, ny, - n,) F; ‘”(x) is the sample distribution func-
tion of the jth sample, & Oy (9 kN) is an estimate of @ obtained by

pooling all the samples.
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In this case, under the conditions of Lemma 3.1 and 3.2, it can be shown
that if (f,y, - - -, 0,,) are regular unbiased and efficient estimates for (6,, - - -, 6,)
and when N — oo, n; — oo for each j = 1, 2, ..., I such that lim,_, n;/N = a;
exists, then the limiting distribution of C} , is the distribution of C,?, where

(4.2) Gl = X G Vi) du,

Y;(u) is a Gaussian process with mean zero and covariance function p;(#, v, 8)
given by

(4.3) (4, v, 0) = min(u, v) — uv — a; 3t 0,,.9:(#)94(V) -

Y,(u) (j=1,2, --.,[) are mutually independent, X = (o;;) denotes the covari-
ance matrix of the joint limiting distribution of (N*(f, — 6,), - - -, N¥@, — 6,))
and g,(x) are defined by (3.6). If M,(r) denotes the characteristic function of
{5 Y,;*(u) du, then the characteristic function M(r) of C;* is

(4.4 M(t) = T1i- Mj(1) = 1L [D;2in]

D(4) denoting the F.D. associated with p,(u, v, #) defined by (4.3). D,(4) can
be obtained by means of Theorem 2.2. The characteristic function does depend
upon a; the proportion in which the jth population is sampled.

If F(x, @) is completely specified and does not involve any unknown parame-
ters the test statistic for testing H, is defined as

(4.5) o), = §13 Dhoa n[Fi)(x) — F(x)J dF(x) .
The limiting distribution of w} , given by Kiefer (1959) does not involve a;.
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