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EXTREMAL BEHAVIOUR OF STATIONARY MARKOV
CHAINS WITH APPLICATIONS

BY ROLAND PERFEKT

University of Lund

In this paper the extremal behaviour of real-valued, stationary Markov
chains is studied under fairly general assumptions. Conditions are ob-
tained for convergence in distribution of multilevel exceedance point
processes associated with suitable families of high levels. Although appli-
cable to general stationary sequences, these conditions are tailored for
Markov chains and are seen to hold for a large class of chains. The extra
assumptions used are that the marginal distributions belong to the do-
main of attraction of some extreme value law together with rather weak
conditions on the transition probabilities. Also, a complete convergence
result is given. The results are applied to an AR(1) process with uniform
margins and to solutions of a first order stochastic difference equation
with random coefficients.

1. Introduction. Markov models are valuable in a very wide variety of
applied problems. Examples are random coefficient autoregressive models
which find widespread use in nonlinear time series analysis and as the ARCH
processes in econometrics (see, e.g., [21] and [6]), the Lindley process in
queueing theory and the max-autoregressive sequences introduced in [2]. In
many of these situations extreme values are of vital importance; for example,
in economics they may correspond to bankruptcy or to a forced exchange rate
realignment, and in queueing theory an excessive queue length may cause a
breakdown of the entire system. Although the extremal properties of the
specific models mentioned can be examined by a direct approach (see [9], [19]
and [2], respectively), all three fit well into a more general setting considered
here.

Let {X,; & > 0} be a not necessarily Markovian stationary sequence with
marginal distribution F. Assume that for each 7 > 0 there exists a sequence
{z,(7)} of real numbers such that

(1.1) n(l-F(u,(r))) > 7 asn —

Our main concern is the asymptotic distribution of the point processes N7,
7> 0, of time-normalized exceedances of u,(7) by {X,}, defined by

NM(A) = #{k; k/n €A, X, > u,(1)}
for Borel sets A C [0, ). ‘
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Fix an integer »r > 1and 7; > -+ > 7. > 0. Write N,, for the vector of point
processes (N{V,..., N()) and, with a slight abuse of notation, let N, (I)
denote (N™(I),..., N{™(I)), I being an interval in [0, ®). Suppose that {X,}
satisfies a mild long range dependence restriction and let { p,} be a sequence
of positive integers that is increasing with n at a suitable rate; see Section 2
for details. Hsing [11], [13] shows that if {X,} has extremal index 6 > 0 (see
Section 2), then a necessary and sufficient condition for convergence in
distribution of N, as n — « is convergence of the conditional distribution of
N, (0, p,/n] given that there is at least one exceedance of u,(r,) in [1, p,].
He further characterizes the limit (NV,..., N"), In particular it is seen
that the marginals N9 are compound Poisson processes with intensity 67;
for the Poisson events and compounding probabilities independent of 7.
Rootzén [19] gives conditions for convergence of N, for r = 1 which are
equivalent to those of Hsing. These conditions are easier to verify for Markov
chains.

The extremal index, which measures “the clustering of extremes,” is
important for the extremal properties of stationary sequences. O’'Brien [17]
and Rootzén [19] give similar characterizations of the extremal index which
are tailored for applications to Markov chains. In a recent paper, Smith [20]
assumes standard Gumbel marginals and the existence of a well behaved
transition density, and shows that the chain looks like a random walk when
the initial value is chosen large enough. More precisely, given X, = u tending
to o, X; — X, X, — X;,..., X, — X,_, are asymptotically i.i.d. random vari-
ables (r.v.’s). As a consequence, the extremal index is found as the solution to
a Wiener—Hopf integral equation.

In the present paper we introduce the notion of a tail chairn which
determines the extremal characteristics of (a stationary version of) the origi-
nal Markov sequence. It is shown that the assumptions of absolutely continu-
ous marginals and the existence of a transition density are not needed for the
result of [20]. In fact we only require that the marginal distribution of the
chain is in the domain of attraction of some extreme value law together with
rather weak conditions on the transition probabilities. Furthermore we estab-
lish convergence in distribution of the multilevel exceedance point processes,
N,., and thus give a rather complete description of the extremal properties.
Expressions are given for the extremal index and for other quantities charac-
terizing the distributional limits. Explicit calculation is seldom possible, but
the expressions are well suited for simulation. The results give, for instance,
asymptotic joint distributions for the kth largest maxima under appropriate
normalizations.

In Section 2 we consider criteria for weak convergence of N, and make
extensions of the one-level result of [19] to the multilevel case and to
, complete convergence; see Theorems 2.5 and 2.6, respectively. Extremes of
stationary Markov chains are considered in Section 3, whereas Section 4
contains two examples. The first, concerning an AR(1) process with uniform
marginals, is mainly of theoretical interest. The second one finds the ex-
tremal behaviour of solutions of first order stochastic difference equations
with random coefficients, generalizing results of [9].
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2. Exceedance point processes for general stationary sequences.
In this section we find conditions for convergence in distribution of the point
process N, = (N, ..., N{) defined in Section 1. The conditions are conve-
nient for applications to Markov chains, a subject that will be further
developed in Section 3. Each marginal, N{"?, of N, is a point process on [0, «).
Weak convergence of N,f"‘) is as defined in [14] and convergence of the vector
Nn is with respect to the product topology. Thus, N, converges to some

= (N, ..,N) if and only if (NIX(B, )); i = 1 ,ry j=1,...,k)
converges in d1str1but10n to (N"X(B, )); i = 1,...,r, j= k) for k =
1,2,... and B, ; bounded Borel sets with P{N: )(o"B D> O} 0 where r?B
is the boundary of B.

Assume, as in Section 1, that {X,; & > 0} is stationary with marginal
distribution F and that for each 7> 0 there is a sequence {u,(7)} of real
numbers satisfying (1.1). The sequence {X,} will be required to satisfy certain
long range dependence restrictions. Loosely speaking, extreme events situ-
ated far apart are assumed to be almost independent.

DEFINITION 2.1. Let {u™; n>1}, m =1,2,...,r, be sequences of real
numbers. For 1 <i <j <n, define B =B/(uD,...,ul”) to be the o-field
generated by the events {X, <u{™}, i <k <j, 1 <m <r, and let /! be the
subclass of B/ consisting of intersections of events in the generating class. For
1<l<n-—1,write

B, =max{P(ANB) ~P(A)P(B): Ac®{, BB, 1<j<n-1}

and let a, ; (< B, ;) be the corresponding maximum when the A’s and B’s are

restricted to /] and " 7", 1, respectively. The condition A, ..., u()) is said to
hold for {X,} lf Bn,i, > 0 as n — © for some sequence 1, = o(n). Similarly,
the condition D(u),...,u’) holds for {X,} if a,;, — 0 as n — « for some
l, = o(n).

The condition D(u{, ..., u{") is a frequently used mixing condition due to
Leadbetter, whereas the slightly stronger condition A(x{Y, ..., u{”) was intro-

duced by Hsing [11]. Both conditions are implied by strong mixing.
Typically, exceedances of a given level u, appear in clusters. To identify
these we divide {1, 2, ...} into intervals of equal length, depending on n, and
assign exceedances from different intervals to separate clusters. The follow-
ing definition makes precise the interval length, p,, needed to accomplish
asymptotic independence of extreme events in separate intervals (cf. [11]).

DEFINITION 2.2. Suppose that {X,} satisfies the condition AW, .., u{").
A sequence of positive integers {p,; n > 1} is said to be Au'D,..., u{’)-sep-
. arating if, as n = », p,/n = 0 and there exists a sequence {l,} such that
l,/p, > 0 and np,; /p, > 0, where B, ; is given in Definition 2.1.

Of course the [, in the definition must satisfy 8, ;, — 0. Conversely, any
l, =o(n) satlsfylng B.,;, = O can be used in constructing a A()-separating
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sequence p, by taking p, to the integer part of max(ng,”? (nl,)"/?). A
DD, ..., uV)-separating sequence is defined in the same manner using the

{a,, z} instead.

Let M, ;= max(X,,,,..., X} for i <j and write M; for M, ;. The se-
quence {Xk} is said to have extremal index 0 (0<6<1) 1f P{M, < u, (7)) -
e”"" or equivalently if P{M, < u,(7)} ~ F"%(u, (7)) as n — «, for each 7> 0.
For easy reference we next state O’Brien’s [17] result on the extremal index
for a stationary sequence (cf. also Rootzén [19]). Here D(u (7)) is the version
of D(u$,...,ul") with r = 1 and & = (7).

ProrosITION 2.3. Suppose D(u,(7)) holds for {X,}, for each 7> 0. Then
{X,} has extremal index 0 if and only if for some 7, > 0 there is a D(u,(7,))-
separating sequence {p,} such that

(2.1) P{Mp” <u,(7)lXy > un(TO)} -6 asn — »,

We remark that if {X,} has extremal index 6 and {u,(7)} is any sequence
such that n(1 — F(u,(7))) = 7> 0 and D(u,(7)) holds, then it can be seen
that (2.1) holds with u,(7,) replaced by u,(r) for every D(u,(7))-separating
sequence.

Now, fix an integer » > 1 and let 7; > --- > 7, > 0. Then, by (1.1), we have
u,(r) < -+ <u,(r,) for all sufficiently large n. It will here be convenient to
work with a simple transformation of the exceedance processes. Specifically,
define N () to be the point process of exceedances of u,(7;) that do not exceed
u (T+1) ‘that i is, N9 = N — N®+v, j=1,. —1,and N = N, and
let N, = (NO,..., N®). Further, for fixed i = (zl, e 1,)€ZT=1{0,1,...},
let A; =Ai) denote the set {l €27; l;=i;-1, 1, 21, k#j} and put
A=A ={1ezl; l,>i, k=1,2,...,r}. The following lemma, which
will be the key part in proving Theorem 2.5, relates the unconditional law of
the processes to the conditional law given X|. In the proof we make use of the
following observation: For events E,,..., E, such that every intersection
consisting of more than m (< n) different E;’s has zero probability, it holds
that

n m
Y P(E)= Y p{ U (E.n- nEij)}.
i=1 Jj=1 e <1

1<

LEMMA 2.4.  Suppose that {X,} satisfies D(u,(7,)) and let i;, j = 1,.
be nonnegative integers with at least one distinct from zero Then, wzth
Top1 =0 and u,(7,,,) = o,

T
| B nP{N”((O’ % ) er}/(pnﬁ) >0 asn—o

for every D(u,(7,))-separating sequence {p,}.
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PROOF. Assume first that each i; is strictly positive. Let ({ p,} be
D(u,(7,))-separating and let vj(m) = max{l < p, + m; NY(l/n,
(p, + m)/n]) =i} for m >0, j=1,...,r; that is, v(m) is the last time
before p, + m for which the interval [, p, + m] contains i; exceedances of
u,(1,) not exceeding u,(7;, ;). With ¢ = L7_,i; and using stationarity, we
have

r pp—ctl

; P{vj(O) =k, v,(0) > »,(0); 1 %]}

Y P(X, € (un(7) ua(21)],
N,((k/n, p,/n]) € A;)

(2.3) =L L Pl m)hulml

N,((k/n,(p, +k)/n]) €A}

- ¥ X Py(k) =k, M, 5, > u(n))

> ¥ (py - e+ DR{X, & (uy(5), 1a(00))

1Q'n((o’ pn/n]) = AJ}
—cP{M, >u,(r), M, 5, >u,(r)}
In the third step we used P(A) > P(B) — P(B N A°) for each of the sum-
mands. The last inequality follows from the discussion just preceeding the
lemma, since at most i; of the events {v(k) = &}, k < p, — ¢ + 1, can occur at
the same time.
For an inequality in the other direction, partition the sample space accord-

ing to whether there is an exceedance of u,(r;) or not in the interval
(p,,2p,]. In the same manner as before, we get

P{Nn((o’ pn/n]) € AO}

< ¥ (po— ¢+ DP{X, € (ua(r), (7, )]s
(2.4) =
1qn((o’ pn/n]) € AJ}

+ P{MPn > un(Tl)’ M 2P, > un(Tl)}‘
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Now, combining (2.3) and (2.4), (2.2) will follow from (1.1) if we show that
nP{M, >u/r), M, 5, >u,(r)}/p, > 0 as n — = However, this follows
using standard arguments; see, for example, the proof of Lemma 3.3.1 in [16],
since D(u,(7,)) holds and {p,} was assumed D(u,(7,))-separating.

The case when some i ’s equal zero is treated similarly. O

Before stating the main result of this section, we introduce some further
notation. For a fixed integer r > 1, let ' ={ie€2?%; i; > - >1i,, i; > 1}.
Further, for fixed i € 7 write i; for the r-vector with Zth component equal to
i, —1if £ <jand i, otherwise, j =0,1,...,r (ie, iy = i). Finally, let P; be
the conditional distribution of {X,} given X, > u,(7), j=1,...,r. We have
the following multilevel version of Theorem 4.1(1) in [19].

THEOREM 2.5. Suppose the stationary sequence {X,; k > 0} has extremal
index 0 > 0 and that A(u,(oT,),...,u,(01.)) holds for {X,} for each o> 0
and some 7, > -+ > 7.> 0. Then N, = (N{™),..., N{™) converges in distri-
bution to some point process (N, ... N) as n - « if and only if for all
i €.7 there exists a constant w(i) such that

25) ¥ %(Pj{N,,((o,% ) =ij} —Pj{N,,((o,% ) - ij_l}) > om(i)

j=1T1
as n — », for some A(u,(1,),...,u,(7,))-separating sequence {p,}. In this case,
w is a probability measure on .~ and (N{°™, ..., N{°™) converges in distribu-

tion to a point process with Laplace transform

EeXP(— > [t dN“’”’)
(2.6) j=170

= exp(—eaa-lj:(l = L(fi(2),..., (1)) dt)

for each o > 0, where N°"? is the jth marginal of the limiting process, ;=0
and L is the Laplace transform of .

Proor. It follows from [11], Theorems 4.2.3 and 4.2.4, that it is enough to
show that (2.5) is equivalent to

P(N,((0, p,/n]) = iINSY((0, p,/n]) > 0} > w(i) asn — w.

" Using Lemma 2.4 with r = 1, i; = 1, together with Proposition 2.3 and the
subsequent remark, we see that nP{N((0, p,/n]) > 0}/(p,7,) > 6 as n —>
o, for every D(u,(r,))-separating sequence {p,}. Since any A(u,(r)),...,
u,(r.))-separating sequence is also D(u,(7,))-separating, we therefore only
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have to show that

E 2 (mfwlfo ) o) -nfulfo 5] i)
- nP{Nn((O, % ) - i}/(pn'rl) 50 asn oo

However, this follows from Lemma 2.4 by a straightforward although some-
what tedious calculation; we omit the details. O

The Laplace transform L appearing in (2.6) is independent of o (see the
proof of Theorem 4.2.3 in [11]) and hence the probability measure 7 appear-
ing in the theorem depends on 7;,7,,...,7, only through 7,/7,,73/7,...,
r./7, and is independent of 7, if r = 1. In the sequel the w(i)s will be
referred to as the compounding probabilities. Also, it follows from (2.6) that
each marginal N of the limiting process is a compound Poisson process
with intensity for, for the Poisson events. If we only assume that
A(u,(o7)),...,u,(c7,)) holds when o = 1, the conclusion of the theorem is
still valid for the restrictions of the N("’s and N“"’s to (0, 1] with, in (2.6),
o = 1 and the integration being over (0, 1]; see [11].

We remark that it is straightforward, using Theorem 2.5, to give a multi-
level version of Corollary 4.2(ii) in [19], which concerns extremes of stationary
and regenerative sequences. This, in turn, can be used to derive an extended
description of the extremal characteristics of the Lindley process as given in
[19], Section 6(i). The Lindley process {W,; n > 0} is a Markov chain con-
structed from an i.i.d. sequence {D,} by the recursion W, ,; = (W, + D, ),
n=0,1,..., where x,:= max(0, x). In the tail, {W,} will certainly look like a
random walk and in Section 3 it will be seen that a similar tail behaviour,
determined by functions of i.i.d. sequences, is shown by a large class of
Markov chains. In fact, the extremal behaviour of the Lindley process may
equally well be derived from the results in Section 3.

By slightly strengthening the assumptions, it is possible to state a com-
plete convergence result for {X,} (cf. [12]). Specifically, in addition we require
u,(7) to be continuous and strictly decreasing in 7 > 0 for each n so that the
inverse function u;! is well defined. Further, assume A(u ,(7,),...,u,(7.)) to
hold for {X,} for each r = 1,2,... and each choice of 7,,7,,..., 7, > 0. For
convenience we call this slightly stronger mixing condition the A condition.
Let N* denote the point process of [0, ) X (0, ®) with points at (k/n, u, X)),
k=0.

THEOREM 2.6. Suppose that the stationary sequence {X,,; k > 0} has ex-
tremal index 0> 0 and satisfies the condition A. Then N¥ converges in
distribution to some point process N* on [0, %) X (0,) if and only if for each
r > 1 and each choice of T, > --- > 7. > 0 there exist constants 7(i), i €.7,
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satisfying (2.5) for some A(u,(7,),..., u,(7,))-separating sequence {p,}. In this
case, N* has the representation

w K;
(2.7) XX S(S,,T,YU)’
i=1j=1

where (S;,T;), i > 1, are the points of a homogenous Poisson process on
[0, ) X (0, %) with mean 6,Y;;, 1 <j < K,, are the points of a point process m
on [1,°) with 1 as an atom, 7y, n,,... being i.i.d. and independent of the
Poisson process, and 3, ,(A) = 1 if (x,y) € A and zero otherwise.

Proor. This follows at once by combining Theorem 2.5 with Theorem
4.4.2 and Corollary 4.5.8 of [11]; compare also Section 4 of [12]. O

The point processes 7, describe the local dependence structure of the
sequence asymptotically. Write n for an arbitrary 7,. Using [11], the second
part of Theorem 4.4.2 and the representation of the limiting process of
Theorem 2.6, it is seen from the structure of N* that the following relation
between the distribution of 7 and the compounding probabilities holds:

(2.8) w(i) = f”/"’“p{n([1,x7,/71)) =i;j=1,2,...,p}x % dx,

rl/rp

where p = max{j > 1; i; > 1} and 7,/7,,, = . For an example where the
structure of N* may be explicitly written down, see Section 4, Example 4.1.

3. Exceedance point processes for stationary Markov chains. In
this section we investigate extremal properties of a fairly large class of
stationary Markov chains using Proposition 2.3 and Theorem 2.5 together
with ideas from Smith [20]. Smith concentrates on computing the extremal
index in the absolutely continuous case. However, his observation concerning
tail behaviour of the chains applies also in more general circumstances.
Following [20] we will use the basic assumption
(3.1) lim limsupP{M, , >u,|X,>u,} =0

frywe p.p,

n—o

for suitable sequences {p,} and {u,}.

Let {X,; £ > 0} be a Markov chain with state space E ¢ R. Write x5 =
sup E and for a stationary chain with marginal distribution function (d.f.) F
let xp:=sup{x; F(x) <1} <. If xy <», we assume that E N [xz, ) is
empty, implying x5 = x; regardless of whether the right endpoint of F is
finite or not. The stationary chains under consideration will be restricted to
- those for which F belongs to the domain of attraction of some extreme value
law. This guarantees that the conditional law of X|,, properly normalized,
given that X, > u, converges to a generalized Pareto distribution as u 1 xp;
see Proposition 3.1. Also, whenever the extremal index exists and is strictly
positive, there is a linear normalization of the maximum, M,, which con-
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verges in distribution as n — © to some nondegenerate r.v., necessarily
having an extreme value type distribution.

For ease of reference we supply the following result, which is a reformula-
tion of Theorem 1.6.2 in [16].

ProposITION 3.1. A d.f. F is in the domain of attraction of some extreme
value law if and only if for some y, —0 < y < o,

(32) lim [1-F(u+g(w)x)]/[1 - F@)] = (1 - yx)}?, —» <z <2,

where y, = max{0, y} and

xp=oandg(u) = —yu ify<o,
xp<xwandg(u) =y(xp—u) ify>0.

If v = 0, then the auxiliary function g is unique up to asymptotic equivalence
and strictly positive on (x, xz) for some x, < xp. Hence, if (3.2) holds, there
exist a, > 0, b, such that

F*(a,x +b,) - exp(—(1 - 7x)£r/y) asn — o,

Consider the Lindley process {W,} mentioned in Section 2. Under assump-
tions on the distribution of D, a stationary version exists satisfying P{W, >
u} ~ Cexp(—au) as u — « for some constants C, a > 0; see, for example, [3].
Hence (3.2) holds for the marginal distribution with y = 0, g(z) = a~! and
xp = . Further, the transition probabilities satisfy

P{W, - W, <x|Wy=u} > P{D, <x} asu— x.

Aldous [1] calls Markov processes with this behaviour additive. Using a
heuristic argument he approximates the extremal index by P{Z + M < 0},
where Z and M are independent, Z has an exponential distribution and M is
the supremum of a random walk generated by an iid. sequence {D,}.
According to [19], Section 6(i), this is an exact result in the case of the
Lindley process.

Suppose now that {X,; £ > 0} is stationary with marginal d.f. F such that
(3.2) holds for some y, —© < y < . Define ¢(x) == (1 — yx);'/” and let —,
denote weak convergence. Further, suppose the transition probabilities sat-
isfy

(33) P(u([X, - ul/g(w)) <xIX, = u} >, H(x) asulxp uck,
for some d.f. H on [0, ). If H({0}) > 0, suppose in addition that

(3.4) lim lim sup sup P{X, > ulX, =x} = 0.
810 41 xg x€E

y({x—ul/gw)<s

Observe that (3.3) is equivalent to P(X,/X, < x|X, = u} —», H(x"1/7) and

P{(xz — X,) /(x5 — X)) <x|X, =u} -, H(x/7)for y < 0and y > 0, respec-
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tively, and x > 0. When y = 0, (3.3) is the same as P{(X; — X,)/g(X,) <
x| Xy = u} -, H(e*), —» <x < ». Similarly, (3.4) can be stated in three
different versions with the sup taken over x € E such that x <ué, x <u +
g(w)log 8 and x < x5 — (xz —u)/6 when y <0, y=0 and y > 0, respec-
tively. The Lindley process satisfies (8.3) with H(x) = P{exp(aD;) < x}; some
other examples are discussed in Section 4.

It should be pointed out that the case H({0}) > 0 is possible; for instance,
asymptotic independence of X; and X, in the tails corresponds to H({0}) = 1.
Condition (3.4) is a generalization of condition (2.9)(ii) in [20], which is
assumed to hold throughout [20]. Berman [4], Theorem 11.4.1, uses a similar
condition, which implies (8.4), when proving a limit result for the maximum
of a not necessarily stationary Markov sequence satisfying Doeblin’s hypothe-
sis.

Now, let {A,; n > 1} be an iid. sequence with marginal distribution H
and let Y, be a r.v. independent of {A,}. Define the tail chain {Y,; n > 0} by
setting Y, = A,Y,_; for n > 1 and denote by P* the law of {Y,} when Y, has
distribution u. The use of the word “tail” refers to the fact that the behaviour
of the original chain is determined by {Y,} if the initial value, X, is
sufficiently far out in the right tail of the marginal distribution, F'; see
Theorem 3.2 and Lemma 3.3. Further, let R(x) be the number of times the
tail chain exceeds x(> 0) for n > 1; that is,

(3.5) R(x)=#{n=>1,Y,>x}, x>0.
Finally, for fixed 7, > 7, > =+ > 7, > 0, let the r-vector A ; be given by
Aj=(R(Tj/Tl)""’R(Tj/Tr))’ j=1,...,7’.

We now formulate the main result concerning the extremal properties of
the class of Markov chains under study.

THEOREM 3.2. Suppose {X,; k > 0} is a stationary Markov chain which
satisfies (3.2) and (3.3) for some y, —» < y < ®. Also, if the limit H in (3.3)
puts positive mass at 0, assume in addition that (3.4) holds. Let the initial
distribution of the tail chain be given by u(dx) =x"%dx, x> 1, and let
{u, (1)}, 7> 0, be sequences satisfying (1.1).

(i) Assume D(u,(7)) holds for each 7> 0. If for some 7, > 0 there is a
D(u,(r,))-separating sequence {p,} such that (3.1) holds with u, = u,(7,),
then {X,} has extremal index 6 given by

(3.6) § = PH{R(1) = 0}.

(i) Suppose {X,} has extremal index 6 > 0 and, for some 1, > - > 7. >0,
satisfies Au,(o1,),...,u,(07,)) for each o > 0. Suppose further there is a
A(u (79), ..., u,(7,)-separating sequence {p,} such that (3.1) holds with u, =
u,(t,). Then, for each o> 0, (N{™,..., N{™) converges in distribution to
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the point process (N™, ... N(™) characterized in Theorem 2.5, with com-
pounding probabilities w(i) given by

,,
387 w@)=6" 1 ) [P" {(Aj =1} -PHA;=i,_}})], iex
J=
For the proof of the theorem we observe that one may without loss of

generality assume that the auxiliary function g has the following properties
when u 1 xp:

(38)(3) g(u)/u— —vy if xp=c0,
(3.8)(ii) g(u)/(xp—u) >y ifxp<oo,
(3.8)(iii) yg(u) +u—-xp ifyy<l,
(3.8)(iv) g(yg(u) +u)/g(u) > 1-yy

locally uniformly for y with yy < 1.
This is trivial for y # 0 and follows when y = 0 from [18], Propositions 1.1
and 1.4 and Lemmas 1.2 and 1.3, which show that if (3.2) holds for some
auxiliary function g which does not have the properties (3.8), then there
exists another auxiliary function § which satisfies (3.8) and (3.2), with g
replaced by & and with § ~ g as u 1 xp.
The following lemma has an interest in its own right since it describes the
local behaviour of the chain when it is started from “a high level.”

LEMMA 3.3. Let {X,; k > 0} be a not necessarily stationary Markov chain.
Suppose the transition probabilities satisfy (3.3) with H({0}) = 0, for some v,
—» < y< o, and some function g(u) which is strictly positive in some
interval (x,, x5) and satisfies (3.8) with xp replaced by xg.

Then, for every p > 1, the conditional law of (Yy(X, —ul/g(w); k=
1,..., p) given that X, = u converges to the law of (IT1*A;; k =1,..., p} as
u?txg, u € E, where{A,; n > 1} is an i.i.d. sequence with marginal distribu-
tion H.

PROOF. Assume y < 0. Then using (3.8), x5 = « and (38.3) is equivalent to
H(x) =P{X,/X, <x|X, = u} >, H(x™1/7) = H(x), say, for x> 0. Let
C(H ) be the set of continuity pomts of H and choose 0 < x}, < x,, 0 < x,,
such that x), x;, x, € C(H). Then, using the Markov property,

|P{X,/X) < x5, ¥ <X1/Xy < 2,1 Xy = u} — H(x,)[H(x;) - H(x)]|
< - ]|P{X2/X1 <%l X, = uy) - ﬁ(x2)|1E/u(y)Hu(dy)
X1, X1
+1H,(%,) — H(x,)| + |H,(x}) — H(x))l
< sup IP{X,/X; < x,|X; = uy} — H(x,)| + o(1)
" yelx|,®)nE/u
-0 asu—-»>x,uck.
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Since H({0}) = 0 by assumption, it follows that
P{X,/X; < x5, X1 /Xy < x1|1Xy = u, X; > 0} =, H(x,)H(x,).

With the same type of arguments it is straightforward to show inductively,
that for any p > 1,

P{X,>0;i=1,...,p—1X,=u} - 1
and

P{X,/X, ,<x;i=1,...,plXg=u,X;>0;i=1,...,p — 1}
P
-, [TH(x;) asu—>»,u€ckE.
i-1

The result for v < 0 now follows from the continuous mapping theorem.
The cases ¥y = 0 and y > 0 can be treated similarly; we omit the details. O

We remark that when v = 0, the lemma says that the cond1tional law of
(X, —u)/g(u); k =1,..., p) converges to the law of (Lflog A;; £ = 1,..., p),
which is the random walk behaviour observed by Smith [20].

PROOF OF THEOREM 32. Fixr>1landr >17y> - > 7 > 0. Write u{’
=u (7) j= , 7, and recall that P; denotes the condltlonal law of {Xk}
given that X > u(” Usmg 3.1 it follows from Proposition 2.3 and Theorem
2.5 that it is enough to show

lim hmP{N ((0, p/n]) =i} = PHA; = i}
poon—
fori=(,,...,i,),i;, > >2i,>0and j=1,...,r
Let A? be the r-vector with %£th component

A(f,’}e=#{1$m$p;Ym>7j/7k}’ k,j=1,...,r,

where {Y,} is the tail chain. Since PH{A <i}| PHA; <i} when p - =it
suffices to prove that

P{N,((0, p/n]) =i} » PHAP =i} asn - =
However, this follows if we show that
(3.9) PJ-{Xms <uld;s= 1,...,t} - PHY, < 'Tj/‘Tls; s=1,...,t}

,asn—-oofort=1,...,p,1<m; < - <m,<pandly,....l,e{l,...,r}

To this end, let «, denote the conditional law of (X, — u)/g(ul’) given
that X, > u$. W1th IL={x>0,xy<1l}and E, =1,N ([E - u(”]/g(u“)))
we have K (E ) = 1. Also, from (3.2) «, =, «, Where K(x) =1—(p(x)~ ! =
1—(1—'yx)1/7 xel,.
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Assume first that H({0}) = 0. For x € I, put a,(x) = u$ + xg(u})) - xp
as n — » and define

h(x)=P{ (—L—&)<¢(M)'l<s<th =a,(x)
" gla(x)) |77\ gla(x)) |77 70

if a,(x) € E and equal to 0 otherwise,
h(x) = P{:l‘ilA,. <(¥(x) 'r/m51<s < t}.
Observe that from (1.1), (3.2) and (3.8) we have
(3.10) o([wl - a,(x)]/8(an(%))) = (¥(2) '7/7,

locally uniformly in x as n » o for s =1,...,¢.

Formulating (3.9) in a different notatlon we have to show [; A, (x)k,(dx)
- [ (x)k(dx). This will follow from a slightly extended version of Theorem
5.5 in [5] if we can show that the set

C={xel;3{x,}, x, €E, with x, - x but h,(x,) » h(x)}

consists of an at most countable number of elements and hence has
zero probability under the limiting measure . Let D denote the set of dis-
continuities of the d.f. of (I1[A,,...,II7"A,) on the line segment
(W) Mr;/7p .00, 7/7); x €L} in ER” Since x € E, implies a,(x) € E, it
follows from Lemma 3.3 and (3.10) that C c D, thereby completlng the proof
when H{0}) =

Next, suppose (3.3) holds with H({0}) > 0 and that (3.4) holds as well.
Using the Markov property, we see that for every p > 1,

sup P{X, > ulX, = x}
x€E
-//([x—u]/g(u))sa
Z sup P{X, >u+g(u)y (8P /P)|X, = x},

x€E
l//([x ul/g(u)<sP=i+1/p

where ¢ 1(y) = (1 —y77)/y, y € (0,%), is the inverse function of ¢ on L.
From this it is straightforward to show, using (3.8), that (3.4) implies
(3.11) lim limsup sup P{Xp > ulX, = x} =0 forevery p > 1.

810 utxp x€E
y(x—ul/gw)<s

For fixed t=1,...,p, 1<m; < - <m,<p and [,,...,], €{1,...,r},
define », = min{l <k <t; X,, >u{Y}and v=min{l <k <t;Y, >7/7,}
To show (3.9), we this time find it more convenient to prove

(3.12) - P{v,=s} » P*{v=s} asn—> x

J

Since (3.12) implies (3.9) this will be sufficient to complete the proof.
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If m, =1 the proof of (3.12) is completely analogous to the case when
H({0}) = 0, so we can assume that m, > 1. Proceeding as in the proof of
Lemma 3.3, we get

P (X_X )e X, =
{‘/’ g( 1) (aw l.] i = ’ s P O_u}

- E(H(bz) - H(ai))

as ulxp, u €E, provided 0 <a;<b; < fori=1,...,p -1, —©0<aqa,<

b, < © and a;, b; are, when finite, contlnulty points of H Choose 6 > 0 to be

a contmulty pomt of H such that H(8) < 1if H{0}) < 1. For £k =0,1,... let
={g(X;)>0;i=0,...,k} and define

_ Xii1 =X, X — X,y
Dk+1—Bkﬁ{(//(g—(‘X5—)SB ( ( 1) )>3 1= .,k}

and

X -X,_,
D;;+1=Bkn{ ( 2(X, ‘))>a;i=1,...,k+1}.
1

From (3.8) one finds that {X, > u$’} ¢ U2;'D, U D}, _, for all n sufficiently
large. Thus, for such n,

(3.13)

-1
P{v, =s} = Z P({», =s} nD,) + P({v, =s} N D _,)

i=1
= 5,(8) + T,(8), say.
It is straightforward, but somewhat lengthy, to show from (3.11) and (3.13)

that lim,  , limsup, ., S,(8) = 0; we omit the details. Furthermore, similar
reasoning as for the case when H({0}) = 0 shows that

T,(8) > P*v=s,A,>8;1<k<m,—1} asn — .

Since 8 can be taken arbitrarily small and P*{v = s, A, = Osome £ < m  — 1}
= 0 the proof is complete. O

The following corollary points out some situations in which the one-level
compounding distribution {w(i); i > 1} has a simple form, being geometric
with the extremal index, 6, as parameter; that is, 7(i) = 6(1 — )"}, i > 1.

COROLLARY 3.4. Suppose {X,; k > 0} is a Markov chain satisfying the
conditions in Theorem 3.2.

G) IfA, <1la.s., then 6=1—EA,.

) IfAl—pr p>0and A, >1w.p.1—p, then 6 = P{A, = 0}.
In either case the one-level compounding distribution {m(i)} is geometric with
parameter 6.
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PrROOF. This follows from straightforward calculations using the expres-
sions for 6 and {7 (i)} given in (8.6) and (3.7) of Theorem 3.2, respectively. O

An extension of the theorem when y < 0. Suppose (3.2) holds with y < 0,
that inf{x; F(x) > 0} = — and that

(3.14) P{X,/u <x|X,=u} >, H(x) aslul> >, uckE,

for some d.f. H on (—o,»), where we allow H((—x,0)) > 0. If H{0}) > 0,
assume in addition that (3.4) holds or that

(3.15) lim limsup sup P{X,|> ulX, =x} = 0.
8l0 45w xeE
|x|<éu

.3 1 = 1} be an ii.d. sequence with P{A, < x} = H(x) and define the
tail chain through Y, = A,Y,_;, n > 1, Y, being independent of {A,}. Then,
if {X} satisfies the conditions in (i) and (ii) of Theorem 3.2, the result of the
theorem holds with the initial distribution u replaced by wu(dx) =
ly|"'x/7 dx, for x> 1 and A; replaced by KJ- = (R((7;/7)77),...,
R((7;/7)77)), j=1,...,r, where R(') is given in (3.5). Also, if Al <1 as.,
then

Let {A ;

— _ 2 % — i
0=1-|EIAI" "1z, 0+ (BIAIT 15 o) T (BIAIT " 1550) ]
i=0
Specifically, if —1 <A; <0, then 9 =1 — (E|A;/7"/7)? and also if 4; =0
wp.p>0and A, < —1w.p.1—p,then §=1— (P{A, < —1})2 In both of
these cases, {w(i)} is geometric with parameter 6. This extension can be
proven in exactly the same way as Theorem 3.2 and Corollary 3.4.

4. Examples. In this section we apply the results of Section 3 to two
examples. The first one illustrates the ideas in a setting where it is possible to
write down the extremal characteristics of the involved random sequence
explicitly. The second example, which is more interesting from an applied
point of view, concerns first order stochastic difference equations with ran-
dom coefficients. Extremal behaviour was studied in [9] for the one-level case
and under the assumption that all variables are nonnegative. Here we
consider both multiple levels and the possibility of negative process values.

ExXAMPLE 4.1. Let X, be uniformly distributed on E = (0,1) and for 2 > 1
let X, be given by the first-order autoregressive scheme

1
(4.1) Xk = —Xk—l + Ep,y
r

where r > 2 is an integer, {¢,} are ii.d. and uniformly distributed on
A{0,1/r,...,(r — 1)/r} and {¢&,} is independent of X|,. The stationary sequence
{X,} was studied by Chernick [7] as an example where clustering of high
values occurs. He showed by direct argument that {X,} has extremal index
0 = (r — 1)/r. We will here use Theorem 3.2 to find both the extremal index
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and the limiting compounding probabilities associated with exceedances of
one and two levels. Furthermore, we will explicitly describe the limiting
process N* of the complete convergence result in Theorem 2.6.

Let F be the d.f. of X,,. Then (3.2) holds for F with y = 1 and using (4.1) it
is easily seen that the transition probabilities satisfy (3.3) with

(4.2) H(x)={(r—1)/r, O0<x<r,
1 r<x.

Since H{0}) = (r — 1)/r > 0, we also have to verify (3.4). However, for any &
and u with 0<8<1/r, u>1-8, we have sup, _;_q_,),5s P{X; > ulX,=x}
= 0 and (3.4) follows immediately.

Next, defining u,(7) = 1 — 7/n for 7 > 0, we verify A(u,(7y), ..., u,(7,)) for
r>1,7,> - >1 >0. Note that any event in B/ = c({X, < u,(7,)}; i <
k <j,1 < m < r) might be written as a finite, disjoint union of events of type

{wn(,) <Xy < up(Tn,11); i <k <j},

where m, €{0,1,...,r}, u, (7)) = — and u,(7,,,) = ©. Let &£ > 0 be given.
Then for fixed v with 0 < v < 1, using the same type of arguments as in the
proof of Theorem 2.1 in [9], it is seen that

Bu(nv) <1 Er: P{l-(r,+¢&)/n<Xy,<1—(1,—¢)/n}
i=1

2

+ 2nP{X,/ri"1 > g/(2n)}.

Since obviously nP{X, > erl"”1/(2n)} - 0 as n — « it follows that B, ,,; =
0 as n - » and A(u,(1y),..., u,(r,)) holds.

Now the results of parts (i) and (ii) of Theorem 3.2 both follow if we show
that

(4.3) im limsupP{M, , > u,(7)|X, > u,(7)} =0

;aoo PP

n-—o

for every 7 > 0 and every sequence {p,} with p, = », p, = o(n). However,
P{X; > u, (7)1 X, > u,(7)}
=P{X;>u,(r),&>0i=1,2,...,j — 11Xy > u,(r)}
+P{X; > u,(r), 5 ="0,s0mei=1,2,...,j — 11X, > u,(7)}
= (A) + (B), say.
Here (A) < ((r — 1)/r)’~! and

(4.4)

J—1
(B)y= LP{X;>u,(r),5=0,6>0;1<i-1X,>u,r)}
i=1
Jj-1 ,
(4.5) < Y P{X; > u, (DX, = 1/r)(r — 1) /ri
. i=1

Jj-1 _
= Y P{X,_,>u,(7)X, = 1/r}(r — 1)1 /1,
i=1
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where we used the Markov property and the fact that P{Xj > u,(1X, =},
0 <x < 1,i <j,is a nondecreasing function of x. The conditional distribution
of X, given X, = 1/r is uniform on {1/rP*Y +i/rP;i=0,...,r? — 1} and
therefore

P(X, > u,(1)IX, = 1/r} < P{X, > u,(7)} + 1/r?*!, p=>1
Hence, it follows from (4.5) that

(4.6) (B) < P{X, > u,(r)} + (J = D((r - 1/r)""".
Finally, combining (4.4) and (4.6) gives

P{Mp,p" > u,(7)1 X, > un(f)} <p,P{X,>u,(7)}+ X J((r- 1)/r)1_1,
Jj=p+1

and (4.3) follows provided p, = o(n). Compare also the derivation of the local

dependence restriction D®(u,) for {X,} in [8].

Thus the conditions of Corollary 3.4(ii) hold and {X,} has extremal index
0= (r—1)/r and the one-level compounding probabilities are =(i)=
(r—Dr % i>1.

In particular by Theorem 6.1 in [13], if M(® is the kth largest among
Xi,...,X,, then

X
lim P{M,g’” <=+ 1}
n

=exp( . x) |
[ Gl oy )

for x <Oand & > 1.

Next consider exceedances of two different levels, u,(r;) and u,(7;) with
7, > 75> 0.Let x = 7, /7, > 1 and let m = m(x) denote the integer part of
log x/log r. It is straightforward to show that the two-level compounding
probabilities {7 (i, j) = w(i, j; x); i > j = 0, i > 1} are given by

(r—1)r 7, i<m,j=0,

ri=i —x71 i=m+1;j=0,
(4.7) m(i,J;%) = {x~1pl7i — pi, i=m+j,j>1,

ri=i—x"r i=m+j+1,j>1,

0, . otherwise.

The distribution (4.7) may be used to obtain the joint asymptotic distribution
for any two M, MP, k +# I; compare [11], Theorem 4.3.2.

Finally consider the point process N¥ on [0,%) X (0,%) with points at
(k/n,n(1 — X)), k > 0. With S;(x) = Zj-=17'r(j, 0; x),forx =7, /79> 1,i>1,
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it follows from (2.8) and S,(x) = [{P{n((1, y)) < i}y 2 dy. However, according
to (4.7),
-1 i
Si(x)={1 x_‘, 1.<x3r,
1-r7, rt<x,

and hence we see that P{n([1,x)) <i} =1if 1 <x <r’ and zero otherwise.
Therefore, the representation (2.7) holds for N* with Y;; = ri~las j>1,
that is, N* is distributed as ©j_,X7_;8s, 1 -1, where {S;, T}} are the points
of a homogenous Poisson process on [0, %) X (0, ) with mean (r — 1)/r.

ExampLE 4.2. Let Y, be ar.v. and let {(A,, B,); n > 1} be i.i.d. R%-valued

r.v.’s independent of Y|,. Define Y,, n > 1, by means of the stochastic differ-
ence equation
(4.8) Y,=AY, ,+B,.
Extremal behaviour of solutions of (4.8) was studied in [9] for the case where
both the A,’s and the B,’s are nonnegative a.s. The results, including
expressions for the extremal index and the one-level limiting compounding
probabilities, were applied to a first order ARCH process of interest in
econometric modelling. Here we will extend the results in [9] by allowing
P{A, < 0} > 0 and establishing a multilevel result.

Suppose that B;/(1 — A,) is nondegenerate and that the conditional dis-
tribution of log| A,| given A; # 0 is nonlattice. Further, suppose that there is
an a> 0 such that E|A,|* =1, E|A,|*log*|A,| < © and 0 < E|B,|* < .
Under these assumptions, results of Vervaat [22] and Kesten [15] show that
the equation Y, =,A,Y, + B,, where Y, is independent of (A,, B,), has a
solution unique in distribution, given by

w  j-1

j=1 i=1

If Y, =,Y,, then {Y,} is stationary and Y, converges in distribution to Y,
whatever the distribution of Y,. Furthermore, there exist nonnegative con-
stants ¢, and c_, with ¢, + c¢_> 0, such that

(49) P{Y, >t} ~c,t™ and P{Y, < —t} ~c_t™* ast—> .

Let Y, =,Y., so that {Y,} is stationary. We will henceforth restrict our
attention to the case when ¢, > 0. This is obviously satisfied when {(A,,, B,)}
are R2-valued and furthermore, using a result by Goldie ([10], Theorem 3.1),
we see that ¢, > 0 also when P{A; < 0} > 0.

Define u,(x) = xn'/*, x > 0. To verify the conditions in Theorem 8.2, we
first show that

(4.10) limsupP{M, , >axn'/*|Y, >xn/*} >0 asp -

n—©

for any x > 0 and any sequence {p,} with p, = ©, p, = o(n). As in the proof
of Theorem 2.1 in [9], introduce the auxiliary process

n
Yn# = YO]._IAJ’ n > 1, YO# = Yo,
j=1
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and write A, =Y, — Y,#, n > 0. Since {A,} is independent of Y;, we have

P{M > xn'/ Y, > xnl/"‘}

p)pn

1/a P xnl/a
<P V Y* > Y, > xn!/ V a>
j=p+1 j=p+1 2

=(A) + (B), say.

Writing @, for the conditional distribution of Y,/(xn'/*) given Y, > xn'/®, it
follows from (4.9) that @, converges weakly to @, where Q(dy) = ay ! dy,
y > 1. Recall that Y, =,Y,, and that ¢, was assumed strictly positive.

Now, for given £ > 0 choose % such that Q{(%, )} < &. We then have

(4= P v nA >1/(25) ) Qu(dy)
Q,°) | j=p+1i=1

(4.11)
=/, . { V HA > 1/(2y)}Q (dy) + Q{(%,)}.

Jj= p+ll

It follows from the assumptions made that Elog|A,| < 0; see, for example,
[10], Lemma 2.2, and therefore there exists a ¢ > 0 with ElAllt < 1; compare
[9], Section 3. Since the first term in (4.11) is bounded above by
TP (BIAY /(1/(25)), we get lim,_,, lim sup, _,.(A) = 0. Further,

(B)<P{ V IAl>—
J=p+1
Pn xn/® Pn xnt/®
(4.12) <P{ V |Y0|H|A|> (P V 1yl > y }
Jj=p+1 i=1 J=p+1
© J xnl/a xnl/a
<P{ V IYITTlA;> P{|Y,| > )
j=p+1 i=1 4 4

The first term in (4.12) converges to zero as n — « since E log| A,| < 0 implies
VZ_IT/_4lA;l <= as. and the second term also tends to zero, by 4.9),
pr0v1ded p,, = o(n). Hence (4.10) follows.

Next, it follows along similar lines as in Example 4.1 that the mixing
condition A(z,(x,),...,u,(x,)) holds for {Y,}.

By (4.9) the d.f. of YO satlsﬁes (3.2) with y = —a~1. Further, it is easily
seen both that (3.14) holds with H(x) = P{A, < x} and that (8.15) is satisfied
in case P{A; = 0} is nonzere. Hence the results of Theorem 3.2 hold for {v,},
. with u and A ; replaced by u and A , respectively, as given in the paragraph
following Corollary 3.4.

We finally remark that the assumption that {Y,} is stationary is not
crucial; the point process convergence result holds regardless of the distribu-
tion of Y.
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