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L?> CONVERGENCE OF TIME NONHOMOGENEOUS
MARKOV PROCESSES: 1. SPECTRAL ESTIMATES

By JEAN-DOMINIQUE DEUSCHEL AND CHRISTIAN Mazzal
ETH Zurich and University of Fribourg

We study the convergence of nonsymmetric annealing processes, ex-
tending the classical Dirichlet form approach to a broad class of Markov
chains with exponentially vanishing transition functions. We show that
both the true and symmetrized spectral gaps are logarithmically equiva-
lent, and give robust estimates for the gap using geometric methods.
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L? CONVERGENCE OF MARKOV PROCESSES 1013

of minimizing elements of U. In probabilistic terms, the algorithm consists of
a time inhomogeneous Markov chain {X,: ¢ > 0} generated by irreducible
transition matrices Ly, = {gz(%, ¥), *, y € Q} depending on a parameter
B: R*— R*. The transition matrices have the property that for fixed ¢ € R*
the corresponding invariant distribution 77, concentrates on the set U, for
large B(t). The increasing schedule B is then chosen to make the distribution
of the chain converge to m,,, as t — «. Since the early developments of
Metropolis, there exists an extensive mathematical literature investigating
the convergence of the algorithm; see Hajek (1988), Chiang and Chow
(1988a, b), Holley and Stroock (1989) and its various applications. One of the
main interests is to estimate the rate of convergence in terms of the structure
of the set ) and the profile of the function U. In particular, Holley and
Stroock have proposed a universal L? method based on Dirichlet forms and
spectral gap estimates. This approach has been implemented by Goetze
(1992) yielding explicit constants for symmetric annealing of the Metropolis
type. The aim of this paper is to extend the method of these two works to
nonsymmetric situations, more precisely to the Freidlin—-Wentzell family %
of transition matrices L, = {g,(x,y), x,y € O}, B> 0 with exponentially
vanishing coefficients:

(1.1) gg(x,y) xexp(—BV(x —>y)) as B> owithV(x—->y)=>0.

The broad family .# contains various dynamics used for simulations in
several contexts like statistical mechanics (Glauber dynamics), image pro-
cessing (sequential and parallel Gibbs samplers), neural computing (Boltz-
mann machines, evolutionary algorithms) and optimization (simulated an-
nealing).

Our starting point will be the following general convergence result for
nonhomogeneous, time continuous Markov chains. Assume that the invariant
distribution m, is constant on U,;, and concentrates exponentially fast on
U.

min*

(1.2) me(Ulin) < Ae™P5,
for some A = A(US,,), B = B(Ug;,) > 0, and that

<M, xeQ,

d
(1.3) ’EEIOg m(x)

for some M > 0. Next, let C(B) be the spectral gap of the symmetrized
operator L, = (Lg + Lj)/2, where Lj; denotes the m-adjoint of Lg, and let
m, K € R* be such that

(1.4) C(B) = Ke™™*.
Tﬁen, choosing B of the form

2mK

1
=1 + pt) wh =
B(t) = —log(1+pt) where p=-—r,
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yields
Px(X(t) & Umin) = 5A(1 + pt)_B/m
(1.5) +A1/2(170(x)_1 _ 1)1/2(1 + pp)~Br2ID/Em)

Here P, denotes the law of the Markov chain starting at x € Q. The
symmetric Metropolis process (see Example 3.1.9) is a generic example where
(1.2) and (1.3) hold.

In the discrete time case, Azencott (1988) obtains a very similar result
under stricter conditions, using the Jordan decomposition. The Dirichlet form
method is much simpler and gives explicit constants. On the other hand,
Azencott’s result is apparently better since it is formulated in terms of the
true spectral gap, C(B), of L,, which is in general larger than C(B).

We prove in our main result, Theorem 3.2.11, that for transition matrices
of the Freidlin-Wentzell form (1.1) both the true spectral gap, C(B), and the
symmetrized spectral gap, C( 8), are logarithmically equivalent:

.1 o1 .
(1.6) [yg}o Elog(C(B)) = él_l’}:o Elog(C( B)) = —m.

Our proof is based on Wentzell and Freidlin’s graph method, which also gives
an adequate expression for the invariant distribution m; and easily verifies
assumptions (1.2) and (1.3). However, this method is not suitable for estimat-
ing the constant K in (1.4) and thus we apply a geometric Poincaré tech-
nique, as in Diaconis and Stroock (1991) and Goetze (1992). We show the
asymptotic equivalence of both techniques in Theorem 4.1.13 and give a
robust estimate of K in terms of the spectral gap of an associate Metropolis
chain using a filling method. We also derive some related spectral estimates
for the first hitting time of U,;, using a collapsed chain technique.

The argument, based on the underlying ultrametric structure, sheds a new
light on the geometric bounds. In particular, we illustrate the interplay
between getting the optimal rate m and the biggest K in (1.4). Moreover, the
spectral estimates give some information concerning polynomial time simula-
tions with Metropolis dynamics on large combinatorial sets Q,, for which
|Q,| grows exponentially fast in d € N.

The paper is organized as follows: In Section 2 we derive some properties
of the spectral gap and present the general convergence result (1.5) for time
nonhomogeneous Markov chains. Section 3 introduces the Wentzell-Freidlin
class .# and proves (1.6). In Section 4, we derive the geometric estimates for
the spectral gap and give some examples related to Metropolis chains in
Section 5. In Section 6, we show the logarithmic equivalence for the sym-
metrized and true spectral gaps of diffusion on a compact manifold with small
noise. Finally, the Appendix contains the proof of the convergence result (1.5).

2. L? convergence.

2.1. Preliminaries. In this section we introduce the basic notation and
recall a few elementary facts about spectral gaps.
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Let L: O X Q > R, L ={q(x,y), x,y € Q}, be a transition function on a
finite set Q:

g(x,y) >0 forx#y and q(x,x)=— ) q(x,y).

y#FX
We will assume that L is irreducible and denote by 7 its unique invariant
distribution: 7 (x)q(x, y) = 0, y € Q. For g, f € L*(w), we write

(f 8= L f(x)g(x)m(x) and [Ifllz:=lflrzm.

xe

By irreducibility 7(x) > 0, for x € Q, and we can define L*, the 7 dual of L:

q*(x,y) = ﬁy—;_%;—(i) for x #y and
@14 ¢*(%,%) = - L a*(%,3).
yFEX

Define the symmetrized operator L := (L + L*)/2. Then,

(frLgde=CL*f, 8>, (f Lg)a={Lf &), f.8€L?(m).

Let {0 = A, Ap, ..., Ag} € C and {0 = Ay, Ag, .. /\I J} € R be the eigenvalues,
counted with thelr algebraic multiplicities, of L (or L*) and L. Define C and
C € R,

Ci= —max(®(x);i# 1}, €= —max{i;i=1},

to be the spectral gaps of L and L. Next let &, be the Dirichlet form
associated with L:

(212) &,(¢,¢) = (Lo, 0¥ =1% L Qx,5){e(y) — o(2)}’,
x,Yy

where
Q(x,y) = Q(y,x) =g(m(x)q(x,5) + 7(y)a(y, x)).
Then the spectral gap C of L is given by variational formula

(2.1.3) C =inf{€,(¢, ¢); lol.=1,{e,1), = 0}.

2.1.4. LEMMA. We have
C<cC.

ProoF. Without loss of generality, we may assume that C = — R(Ay) and
’ C = —,. Let ¢ be a eigenvector of L such that Lo = A,¢ and [¢ll, = 1.
Since A, # 0, we get (1, Ro), = (1, I ¢)» = 0. Thus

—2R(Ay) = <&, (~L)@)n + {0, (—L)%)r = 2{ 0, (—L) ®)x
=2((Re, (—L)Re)n + (S, (-L)Se)r) = —24,. O
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The spectral gap C controls the rate at which a Markov chain converges to
its invariant distribution. More precisely, let » be a given probability distri-
bution on Q and let f(x) = (v(x)/7(x)). Set

fi(x) =eT'f(x), f,=eTf(x).

Then v,(x) = f,(x)m(x), respectively, 7,(x) = f,(x)m(x), is the distribution of
a continuous-time Markov chain with initial distribution v generated by L,
respectively, by L, and

”Vt - '77”var = ”ft - 1”L1(1r) < ”ft - 1”71,

where || - ||var is the variational distance between the probability measures v,
and 7 [see Diaconis and Stroock (1992) and Fill (1991)]. We have

If, = U2 =<fi=1,f =D =X(f= D, (f— D) )n
={(f-1),e" e (f- 1)),
and
I = Ui=<fi—1,f = 1 ={(F=1),,(F— 1))n
=((f=1),cTetL(f= 1)), = {(f— 1), " T f = 1)),.

In particular, we have the following lemma.

2.1.5. LEMMA. Assume that L is normal; that is, L and L* commute. Then
C = C with

If, — U2 =IIf, — 1.

ProoF. Simply note that, for normal operators, L and L* have the same
eigenvectors and e‘l - el = L+ g

In general, we have
d -
e - 17 =26 (f = 1), (f = Dodw = 2L(f = )0, (f = D )n

= -2&.((f- 1), (f-1),) < —2CIf, - 113
Thus
If, = U, < e CHif - 1l,.
The same argument shows
I = Uls < e CtIf— 1.

However, although by the spectral decomposition theorem for L,

1 ~ ~
m%—hm;bﬂﬁ—lmnv—1m¢o}=a
t—o oo
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it may well be that by the Jordan decomposition of (the not necessarily
diagonalizable) L,

1 ~
inf{— lim —logll, = Llxs IIf = 1l # 0} -c>C.
t—o00

2.1.6. ExamMPLE (Random walks on the the torus). This is a generic situa-
tion where L and L* commute and, therefore, C = C. Let Q be a finite
Abelian group, for example, the N-torus. Assume that L is the generating
matrix of a random walk on Q:

q(x,y) =q(x—y), =x#y,
with invariant distribution w(x) = 1//Q|. Then

q*(x,5) =q(y,x) =q(y —x)
and, therefore,

L*L(x,y) = ¥ ¢*(x,0)q(w,y) = ¥ q(0—x)q(w—y)

we we)
= an(w+y—x)q(w)= Zﬂq(y—w)Q(x—w)
= ZQQ(x,w)q*(w,y)=L'L*(x,y)~

Thus L and L*¥ commute.

Finally, let us introduce the notion of collapsed chain, which we will use in
the next section as a tool for estimating the probability of first hitting times.
Let O, < Q be such that Q, # Jand Q, # Q. Set Q* = Q\ Q.

2.1.7. DEFINITION. Let L[Q ] be the transition function on Q = Q* U {8},
obtained from L by collapsing the elements of (), into one element 4,
defined by

a[Q](x,5) = q(x,y) forx,y € QF,
q[Q.](x,8) = X a(x,y), =x€0,

yEQ,
q[Q.1(8,x) = 7[Q,](8)™ ZQ m(y)q(y,x), x € Q¥
YEL, R
q[Q*](S,S) = Z‘Q*Q[Q*](S’x)’

where [ Q,](*), the invariant measure associated with L[Q ], is given by

m[Q.](x) = 7(x), forx € Q*, and =[Q,](8)= ZQ m(y).
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We denote by &[Q,],q,, the corresponding Dirichlet form and by Clo,]
its spectral gap:

C[Q ] _lnf{g[ﬂ ]71[9 ](¢’ ) <¢ (P>1r[Q*] 1 <§03 1)17[0 ]_0}
= inf{&, (¢, ¢); ¢|Q, is constant, (¢, ¢), = 1,{¢,1), = 0} > C.

2.2. L? convergence results for time nonhomogeneous Markov chains. We
give some general results about the convergence of nonsymmetric Markov
chains using the ideas of Holley and Stroock (1989) and Goetze (1992).

Let L: R*X QX Q - R, Ly ={qz(x,y), x,y € Q}, be a one-parameter
family of transition functions of ). We will assume that L; is irreducible and
denote by 7 the unique invariant probability distribution, by Lj the m; dual
of Ly [see (2.1.1)], by L = (Lg + Lj)/2 the symmetrized operator by &, the
assomated Dirichlet form [see (2.1. 2)] and by C(B) the spectral gap associ-
ated with L Next suppose that B(-) € C1(0, +«) with B(¢t) = (d/dt)B(¢) >
0, Vt>0, and consider P, , = (p, (x,y), x,y €Q), 0 <s <t <, the
Markov semigroup generated by L), that is, the solution to the forward
equation

P ,p)(x) = ( [Lﬂ(t)‘P])(x)a
(Ps,s¢>)(x) = ¢(x).
Let P}, = (pf (x,y), x, y € Q) denote the m,, adjoint of P, ,

by, (5, x)”'ﬁ(t)(y)

Moty (%)
For simplicity, we write P, = P, , and P;* = Py ,. For an initial probability »,,
let », be the distribution of the Markov chain at time ¢ > 0. Introduce the
densities

p:,t(x’ y) =

v(x)
77'[s(t)(-’c) ’

Now, we make our main assumptions: There exist positive constants K, m
and M € (0, +) such that

t>0.

f(x) =

(2.2.1) C(B) = Ke™P™
and
d .
(2.2.2) ’ﬁlog m(x)| <M Vaxe.
. 2.2.3. LEMMA. Assume (2.2.1) and (2.2.2), and choose B such that
1 2mK
(2.24) B(t) = Zlog(l +pt), t=0where p= YT
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Then
(2.2.5) If, = Ulay,, < 1+ exp(—MB(£))lIfo = Ly,
Next, let O* c Q with O, = O\ QO* # J, and assume that

7‘TB(i) .
(2.2.6) —= is constant on (1, .

()
Then

(22.7) N, = Ulny, < 47 (Q*)" + exp(—MB(£))lI fo — Uy,

The proof is given in the Appendix.

2.2.8. COROLLARY. Let A = A(Q*) >0 and B = B(Q*) € (0, M) be such
that

(2.2.9) o (0F) < Aexp(—B(t)B).

Assume (2.2.1) and (2.2.2), and choose B(-) as in (2.2.4). Then, for each
x e,

P(X, 20,)
_ 1/2
< T @)(1 + exp(~MB(1)) (maoy(#) = 1)) + Ty (@%)
1
< BAVE(L+ pt) B 4 (mye)(2) TN — 1) AVE(L 4 pr) T BRIO/Cm),
If (2.2.6) is also satisfied, then
_ 1/2
=< TrB(t)(‘Q'*)1/2(5773(0(9*)1/2 + exp( _MB(t))(”ﬁ(O)(x) T 1) )
<BA(L+ pt) " 4 (myq(2) TH - 1) T AVE(L + pr) BRI,
Proor. Simply note that v, = 8,. Then
v, (Q*) = 77'ﬂ(t)(*Q'*) + fn*(ft -1) d”'ﬁ(t)
< My (QF) + WB(t)(Q*)l/ZH(ﬁ = D)l

s with || fo = 1lla,, = (me(x)™1 = DY2. 0

TB(0)

If (2.2.6) is not satisfied, we can modify the original Markov chain as in
Goetze (1992), and get a similar result for the probability of the first hitting
time of Q.. Consider the collapsed chain L[ ,] (see Definition 2.1.7). We
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denote by &1 Q 1 0,1 the corresponding Dirichlet form and by ClQ, I B)its
spectral gap. Thus C[Q I(B) = C(B), and under (2.2.1) we have

(2.2.10) ClQ.](B) = Kexp(-miB),

for some m < m and K > 0. Let 7 v, be the initial probability distribution of
the Markov chain generated by L[Q,] #1p) and let v, be its distribution at
time ¢ > 0. As above we write

v,(x)

AREETCREY

Note that (2.2.2) and (2.2.9) imply

t>0.

o) 2]

(2.2.11) PTG <Mp(t), =xeQ, u{s),

o) 2
and

wﬁ[Q 1(0%) = m(Q*) < Aexp(—BB),
W1th M <M. Let {X,: t > 0} (X,: ¢t > 0}) be the Markov process generated by

Ly (Ll 4D Set
7:=inf{t > 0: X, ¢ O*} and 7=inflt>0: X, ¢ Q*}.
Then for any v, concentrated on O*,
P(r>t) =P,(7>t) < inf P,(X, € Q%) <5,(0%).

O0<s<t

Thus we get the following proposition.

2.2.12. PROPOSITION. Assume (2.2.2), (2.2.9) and (2.2.10), and choose B(-)
of the form

2m
3M

&

1
B(t) = _m‘IOg(l + pt) where p:=

Then for each x € Q¥,
P(7>t) <P/(X, € Q%)

— _ 1/2

< ’Tﬁm(ﬂ*)1/2(5773(t>(9*)1/2 + exp(—MB(1))(mo(x) " - 1) )
— 1 _
<BA(L+pt) P + (o))t = 1 7? AV2(1 + pt)-(BrRID/Gm)

2.2.13. REMARK. From the above we see that the speed of convergence is
of the order O(t 2/™) or O(¢t~8/2™), depending whether (2.2.6) is satisfied or
, not, and O(¢ 3/™) for the first hitting time. It thus depends on two constants:
m (or m) and B = B(Q*). The first constant m, linked to the spectral gap of
the process, gives the logarithmic scale at which B8 tends to infinity, whereas
the second constant B provides information about the rate at which the
invariant distribution concentrates on (.
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3. Definition and basic properties of .Z.

3.1. The family #. In this section we introduce the family #* of exponen-
tially vanishing Markov chains and show that it satisfies assumption (2.2.2).
Let # be the family of all functions ¢: R*— R* with bounded logarithm and
let ! be the set of ¢ € € with bounded (d /d ) log(¢( B)).

3.1.1. DEFINITION. Let .# be the family of irreducible transitions func-
tions Lg: A X Q- R, B> 0, of the form

(3.12) qp(x,y) =exp(—BV(x > y))A, ,(B), x+#Y,

where 0 < V(x > y) <+ and A, (VEF, Vx+ycQ If A, egl, Vv
x,y € Q, we write L €.2'. We adopt the convention that V(x —» y) = +
when gz(x, y) = 0. Given L, €%, we associate a connected oriented graph

(3.1.3) g=(Q,FE)
with node set Q and edge set E, which compose the underlying combinatorial

structure supporting the Markov chain: e == (e" > e*) € E iff ggle”,e") > 0
for some B > 0 [or V(e™— e*) < + in this setting].

This family contains various stochastic algorithms which are used in
contexts like image processing [Geman (1984), and Geman and Geman
(1988)], neural computing [Aarts and Korst (1989)] or optimization [Azencott
(1992), Goetze (1992), Mazza (1992) and Trouvé (1992, 1993)]. First let us
characterize the invariant measure 7, associated with L, €%, using the
Freidlin—-Wentzell framework [Freidlin and Wentzell (1984) and Wentzell
(1972)].

3.1.4. DEFINITION. Let W C Q. A directed graph g with vertex set (),
consisting of a family of arrows (x — y), x,y € Q, is called a W-graph if it
satisfies the following conditions: (1) V x € O — W, g contains a unique
arrow starting at x; (2) g contains no cycles; (3) if x € W, g contains no
arrow starting at x. Define G(W) to be the set of all W-graphs and set
G = Uy coGW).

Here is the matrix tree theorem of Bott and Mayberry (1954):

3.1.5. LEMMA. Let L = (q(x,y); x,y € Q) be the transition function as-
sociated with an irreducible Markov chain on a finite set Q. Let m be
its invariant measure. Then m(x) = (L, coR(y)) 'R(x), where R(x) =
Ty c o (&) and L(g) = Ty . nyc ga(m, 1.

[For the proof, see, e.g., Freidlin and Wentzell (1984).] In view of (3.1.5), let
us introduce the weight function V: G —» R U {+}, defined by

(3.1.6) V(g)= L V(x—y).
(x—>y)eg
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3.1.7. DEFINITION. Let V.: ) — R be the function

V.= min V(g),
geGix}

which is bounded by irreducibility. Moreover, set
V!i=minV,
x
and
V,

min

={xeq;V, =V

3.1.8. LEMMA. Let L, €. and let m; be its invariant measure. Then
m(x) = exp(—B(V. — V1))A.(B),
where A, () € #, Y x € Q. Moreover, if Vi, # O, then
3 (Vamin) < A( Viin)exp(—BB(Viin)),
where

B(Vg,) = m1n V,-V! and A(VS,) =sup ), A(B).

€ Vi c
hin B xeVg,

Finally, if Ly €', then A () € €,V x € Q, and

d
dBlog(wB(x)) Vxe,
with
d
M < sup|—(V, = V1) + ——=log A,(B)|.
% B dB

ProOF. By Lemma 3.1.5 each Rg(x) is a sum of products of transition
probabilities ‘

Ry(x)= Y exp(-BV(g)) T1 A, .(B)
g€ G{x} (m—-n)eg
= exp(—BV,)A(B),

for some A, () €% and, therefore, ¥, R (B) = exp(— BV)A(B), for some
AC) € @. Thus ms(+) takes the form TrB(x) = exp(—B(V, — VI)A,(B), with
A, = A ANt e % Clearly the same argument applies for L, ezl O

3.1.9. ExaMPLE (The Metropolis chain). Let g,(x, y) be a given transition
function on a finite set  and let 7, be a probability measure on (). Suppose
that 7, is L,-symmetric, that is,

Qo(x,y) = mo(x)qo(x, ) = Qo(y, x).
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Next, given U: ) — R, define the Metropolis chain

ao(x, y)exp(—B(U(y) - U(x))"),  x+y,

(3.110) gy(x,y) =
? _Zyaexqﬁ(x’y)a X =Y,

with invariant measure s of the form

my(x) = exp(—BU(x))mo(x)Z(B) ',
where Z(B) = L, c omo(y)exp(—BU(y)). Thus L, €.#! is symmetric with

Qu(x,y) = m(x)qs(x,y) = exp(—B(U(x) V U()))Z(B) " = Qp(y, ).

Here (2.2.2) is satisfied with M = max, ., U(x) — min_ ., U(x) and 7, is
constant on U_. . Inequality (2.2.9) holds with

min*

A(Ugin) = 7o(Unin) " =1 and B(Ug,) = min U(x) - min U(x).
xeUg x€ Upin

min

_ 8.2. Asymptotic behavior of the spectral gap. We show that C(B) and
C(B) are logarithmically equivalent.

3.2.1. LEMMA. LetL €. Then:

(6] L* ey andL eZ.
(i) V*(x - y) = V(y - x) +V, =V, where V*(- > -) is the weight func-
tion associated with Lj.
(i) V(x —» y) = min{V(x - y), V¥(x — y)}.

PrOOF. As we have seen in Lemma 3.1.8, mg(x) = exp(—p(V, —
VI)A,(B), where A (-) € €. Thus we can write

ai(x,y) = m(x) ' m () ey, x)
exp(—B(V, + V(y = x) — V,))A% ,(B),

where A%, (-) €  (see the proof of Lemma 3.1.8). It remains only to see that
vV, + V(y % x) =V, >0,V x #y € Q. Obviously this is the case if V(y — x)

= 4o, Thus assume that V(y — x) <o and let g € G{y} be such that
V(g) =V, (which is finite by irreducibility). Let (x — s(x)) be the unique
arrow of g which starts at x. Thus V(x — s(x)) < +. Consider the graph
g =g\ (x—s(x)U(y > x)e G{x}, with V(g) <.+ since V(y — x) <
+ oo, Therefore,

V(g)=V(g) = V(x—>s(x)) +V(y—x)
=V, +V(y->x) - V(x—>s(x)) 2V,

(3.2.2)

and thus Lj €% with weight function given by _ V¥(x = y):=V(y > x)
+V, - V,. Furthermore L €. since by definition L = (Lg + L 5)/2. O
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Wentzell (1972) gives a theorem which yields spectral estimates for
stochastic matrices with exponential vanishing transition probabilities. For
each L; €% we can associate a stochastic matrix P, in the following way.
Consider a diagonal element of L,

Qﬁ(xax) = - Z qﬁ(x’y) = - Z exp(_BV(x_)y))Ax,y(B),

yFEX y#Fx

and let B =|Qlsupg sup, , A, ,(B). Then T, qz(x,y) <B, Y B < (0,).
For x #y, set Py(x,y) = qﬂ(x y)B~1. From the above we have Py(x, x) =
1-%,,,.P(x,9)>0,¥ B (0,), and it follows that the matrix

(3.2.3) P,=B 'Ly +1d
is stochastic for all B € (0, ). Moreover, P;(x, y) = exp(—BV(x — y))Axy( B),
where A, ,() € #, and thus has the same welght function as L,.

3.2.4. DEFINITION. Let Gi, 1 <i <|Q/|, be the set of all W-graphs, where
W runs through all possible i-element subsets of (). Define the constants

Vi=minV(g), 1<i<I|Q|-1,V=0,
geG!

where V(-) has been defined in (3.1.6).
3.2.5. THEOREM [Wentzell (1972)]. Let u,(B) = 0 and uy(B),..., mo(B)

denote the eigenvalues of the matrix P; — Id, arranged in order of decreasing
real part. Then, fori = 2,...,|Q|,

(3.2.6) R(—m(B)) < exp(— (V™1 - V')B),

where =< means that limg, _,,, B~ log(—=R(p(B)) = (V! -VH Vi>2.
Moreover, the polygonal arc through the points (i, V) is convex downward:

(3.2.7) VI-V2>V2_V3x .. > VIOl _yil
Assume that A(B) is some eigenvalue of L, €.%. Then B~](B) [see
(8.2.3)] is an eigenvalue of P, —Id. Let A,(B)=0,1,(B),... denote the

eigenvalues of L; arranged in order of decreasing real parts. Then, according
to (3.2.6),

(32.8)  R(-A(B)) < exp(—B(VITl-VY), i=2,..,lql

Let C(B) [resp. C(B)] be the spectral gap associated with L, (resp. L ).
Then, by (3.2.8),

lim B! log(C(B)) = —(V! - V?),
Box .

for the family of weights V(x — y) associated with L, and
lim g1 log(é( B)) = —(VI - V?),
B »
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for the family of weights V(x — y) associated with I:B. Thus, using Lemma
2.1.4, we have

(3.2.9) Vi-VZx>Vi-VZ
In the sequel, we will see that
(3.2.10) Vi-vZ=V!-

for any element Lg of .#. With the graph theoretlc interpretation, (3.2.10) is
related to the so- called directed spanning tree problem [see Lawler (1976)],
which is well known in the context of combinatorial optimization.

3.2.11. THEOREM. Let Lﬁ €. Then

Vi=Vvi, i=1,...,10
and, therefore,

R(-A(B)) = —A(B), i=2,...,10l

The proof proceeds in several steps. Let L be an irreducible transition
function on ) and let Q, € Q. The following lemma deals with the collapsed
chain L[Q,] on O = O* U {8} (see Definition 2.1.7).

3.2.12. LEMMA. Let L be an irreducible transition function on Q and let L
be its symmetrized version. Let O, C Q be such that Q, # &,€. Then
L[Q.] = L[Q.],
where L[ Q] is the symmetrization of L[Q ] on Q* U {5}.

Recall first that

q(x,5) = 3(a(x,y) + 7(x) '7m(y)q(y, x))
and
[0 1(x, ) = 2(al Q. 1(x, y) + 7[ Q. ](x) "7[ 2, 1(9)a[ Q:1(v, x)).

For x and y € Q* the statement is obvious. Next, remark that ¢[Q,(x, 8)
=Y, cq,d(x,y) for x € O*. Hence,

q[Q:](x,8) = %(Q[Q*](xa 8) + 77'[Q*:I(-’C)_17TI:Q>!<](S)Q[Q*]((‘S’x))

=3 ye%*q(x,y)
+w(x)‘lw[a*l(swm*](a)‘lyezn*w(y)q(y,x)

= yg* Ha(x,y) + (%) 'm(y)a(y, %))

= X d(x,9)

yEQ,
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and thus ¢[Q,1(x,8) =q[Q,](x, §). Finally, let us consider §[Q,1(8, x)
and q[ Q. ](8, x):

qa[Q4]1(8, x)

#[Q,1(8) " X #(y)d(y,x)

yEQ,

[ Q.1(8) '3 Z;.) (m()a(y, x) + 7(x)q(x,)),
YE,

since L and L have the same invariant measure 7 = 7. Moreover,

O3, %) = 5 (L0213, %) + 7[2.15) w2, (1)l 0.](x, 5))

1
5 7[Q,.1(8)" ¥ 7m(y)q(y,x)
yeQ,

+a[0,1(8) 'm(x) T q(x,y))

yEQ,

= my}é* (m(y)q(y,x) + m(x)q(x,¥)).

The following lemma is an easy consequence of the definitions.

3.2.13. LEMMA. Let Ly €%. Let O, C Q be such that &, # &,Q). Define
VIQ.] to be the weight function associated with LB[Q*] on QF U {8}. Then
we have

VIQ, (x> y) =V(x—>y) forx,ye€ QF,
VIQ,](x—8) = miQn V(x - p), x€QF
PELL,

V[Q,](8-x) = miﬂn (V, +V(p—>=x))—min,.,V,, x€Q*
peQ,

3.2.14. LEMMA. Let Ly €%, let Q, with |Q,| =i and assume that Vi=
V(g) for some g € G(Q ). Then
V[Q*]l:= min V[Q,], =V[Q,], =V,
peQ*U(5)
where V[Q 1. is the function (3.1.7) associated with Lg[Q ,].

ProoF. First let us check that V[Q,], =V’ Let g be an arbitrary
element of G[Q )8}, the set of {5}-graphs with vertices in ). Then,

V[Q*](é)= Z V[Q*](m*n)*’ Z V[Q*](m—>8)

(m—-n)eg (m—8)eg
m,ne*

= Y Vm-n)+ Y  minV(m - p).
(m—n)eg (m—8)eg PE~
m,neQ*
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Thus for each § € G[Q ,){ 6} we can associate a graph &' € G(Q ) such that

(3.2.15) VIQ,1(8) = V(&) > min V(g) =V
geG(Q,)

By hypothesis there exists g € G(Q) ) such that V(g) = V. Set

£=|g U (m-p) U (m-29).
(m—-p)eg (m—-p)eg
meQ* pe, meQ*, pe,

Thus we have
v[Q,1(g) =V

because V(g) = V' for g € G(Q,) implies that V(m — p) = min, .,  V(m
-4q), YV (m - p)leg, pe Q,. It follows that V[Q,]; =
ming g5 VIQ (&) = Vi

It remains to see that V[Q,]; = V[Q,]'. Let o € Q* and take some
8GO, w} As above V[Q , J(m > n)=V(m - n)V¥ m,n € Q*. Let (§ —»
') be the unique arrow of & which starts at §. By definition V[Q ,1(6 — «')
=min, o (V, + V(p > @) —min,_, V,. Let p, be any element of ,
which achieves the minimum min,.q (V, + V(p - ©')). For any arrow
(m —> 8) e g we associate an arrow (m — p(m)) for p(m)< Q, such
that V(m - p(m)) = min, .o V(m - p). In this way we get a graph g’ €
G(Q, \{p;} U {w})) defined by

g=18 U (m——)B)U(6—>w’))
(m—-8)eg
U (m->p(m))U(p, = o),
(m—>8)eg

which satisfies

V[Q,1(8)= Y V(m-p(m))
(m—8)eg
+ Y V(im-n)+V, +V(p; > &)— minV,
(m—n)eg peQ,
m,neQ*
> Y Vim-op(m)+ Y V(m-n)+V(p - o)
(m—-d)eg (m-n)eg
m,neQ*
V() =V

The statement is proved since we have already shown that V[Q,],= V' O

PrOOF OF THEOREM 3.2.11. The proof proceeds by induction on the size N
of Q. Let us first check the statement for N = 2. Assume that Q = {x, y} and
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ProOOF OF THEOREM 3.2.11. The proof proceeds by induction on the size N
of ). Let us first check the statement for N = 2. Assume that Q = {x, y} and
V(x > y) < +2, V(y = x) < + (by irreducibility). In any case V, = V(y —
x) and V, = V(x — y), and, therefore,

V(x> y) = m1n{V(x—>y),V(y—>x)+Vy—Vx}
= min{V(x > y),V(y > 2) + (V(x > y) - V(y - x))}
=V(x—-y),
and thus V! := min{V,, ~} min{V,,V,} = V'. Next assume that Vi=vVi
1<i<N, foranyL E,‘Zonﬂwwh IQI<N Take someL onaseth1th

Q] =N+ 1. Let Q, with [Q=i,2<i<N+1,be such that there exists
g € G(Q,) with V(g) = V. By Lemmas 3.2. 14 and 3.2.12 we have

(3.2.16) ‘—V[Q ] —V[Q] =V[Q]

where the last equality is a consequence of the induction hypothesis, since, as
2<i<N+1, Q=0*%U {5} has at most N elements. As we have seen in
Lemma 3.2.14, V[Q, ' = V[Q, ] is realized for a graph g € G[Q,[8}. As
Ly[Q,] and L,[Q,] have the same invariant measure, it follows that
V[Q*]l = V[Q*](é) for some g e G[Q K8}). Working as in the proof of
Lemma 3.2.14 we can find a graph g’ € G(Q ) such that V[Q,(8) = V(g")
> V' [see (3.2.15)], and it follows from 3.2. 16) that V¢ > V¢, which implies
that Vi = V' since by the definition of the symmetrized operator V(m - n)
<V(m - n),V m,n € Q. It remains to see that V! = V1: by (3. 2.9) we know
that in any case V! — V2> V' -V2 V L, €, therefore, V! =V! as
V1 < V! by definition. O

3.3. Processes drifted by a potential function. The weight function vV
associated with LB has some interesting properties which will be useful for
the estimation of the spectral gap.

3.3.1. DEFINITION. We say that a function ¥: Q — R is a potential func-
tion for the family (V(x — ), , < o if
V(ix—-y) —V(y »x) =¥(y) — ¥(x) Vx,y<Q,
when V(x - y) < +oo,

Note that by definition a potential function ¥ is bounded. For exampie the
Metropolis chain has the potential function ¥ = U, cf. Example 3.1.9.

3.3.2. LEMMA. Assume that Ly €2 has a potential function V. Then
Vixoy)<+o o V(y—->x)<+o

3.3.3. LEMMA. Let LyeZ and let L €Y be its symmetrized version.

ThenL has
V: O-R

(see Definition 3.1.7) as a potential function.
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PrOOF. First assume that V(x — y) < +o, Thus, as V. is finite by irre-
ducibility, either V(x —» y) < 4+ or V(y - x) < +o and then V(y —» x) =
min{V(x — y); V(y - x) + V, — V,} is finite. Therefore, we can write

V(x -y)— V(y - x) =min{V(x -y),V(y >x)+V, - Vx}
- min{V(y -x),V(x—>y)+V, — Vy}
=V, -V, O

3.3.4. LEMMA. Assume that Ly €% has a potential function V. Then
V.-V, =¥(x) —¥(y) Vx,ye€Q,

Vix—>y)=V(x—>y) Vzx,yeQ,
V.=V, Yxeq.

ProOF. Let x,y € Q and consider G{x} and G{y}. Let g € G{x} and let
Y. be the unique geodesic of g which takes y to x and let v,, be the
reversal of y,,. Let F(-): G{x} » G{y} be the mapping given by F(g) = (g \
Yy) U Yy € Gly}. As the function V(&) = £, , ,yc ,V(m — n) is additive,
we get

V(F(g)) =V(g) = V(%) +V(n,) =V(g) + ¥(y) — ¥(x)
since V(:,-) has ¥ as potential function. Thus,

V.= min V(g) = min (V(F(g)) +¥(x) = ¥(»))

ggl(i;a)V(F(g)) +W(x) - V()

= min V(g) + ¥(x) — ¥(y)
ge€Gly}

=V, +¥(x) - ¥(y),
since F(-) is onto. Thus V, — V, = ¥(x) — ¥(y) V x, y € Q and the first part
of the lemma is proved. By hypothesis,
V(x=y) = V(y—=x) =¥(y) - ¥(x),
so that
V(y=»x)=V(x—y) +¥(x) -¥(y) =V(x>y) +V, -V,
and it follows that
Vi(x-y) =V(y—->x)+V, -V, =V(x > y)
and thus
Vix—>y)=V(x—>y) Vx,ye. O
3.3.5. REMARK. Assume that L; €% has a potential function W(-). The

preceding lemma implies that we can without loss of generality take ¥ = V.
as its potential function.
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Let T' be a maximal connected spanning tree and let x € Q. Define T, to
be the directed spanning tree of G{x} obtained by pointing T at x.

3.3.6. LEMMA. Assume that Ly €% has a potential function V. There
exists a maximal connected spanning tree T, such that

V,=V(T,), VzeQ.

Proor. Let T be any directed spanning tree for G such that V(T,) = V,.
Then for x +y, T, = (T, \ ¢,,) U ¢,,, where ¢, is the unique geodesic of 7T,
taking y and ¢, as its reversal. Then

V(T,) = V(T,) - V(¢t,,) + V(tey)=V.—(V,-V,) = V,,
since by Lemma 3.3.4, V. can be taken to be the potential function which
exists for L; by hypothesis. O

3.3.7. ExaMPLE. The following processes have potential functions:

(1) Processes running on trees.
(ii) Symmetric processes.

First assume that L; is running on a tree T, that is & = (Q, E) is a tree
and that {V(e)} runs over directed edges. In this case, G{x} = {T)HLVxeQ
[see (3.3.6)] and obviously V, = V(T,) for all x € Q. Therefore, V. is a
potential function for the family {V(e)}, c 5. 3 3

Next, consider a symmetric L; €2, that is, L, =Lg. Then, V(x > y) =
V(x — y) and thus the result follows from Lemma 3.3.3.

4. Spectral estimates for ..

4.1. Geometric bounds and ultrametrics. In the previous section, we have
seen that #!-chains satisfy (2.2.2). In order to apply Corollary 2.2.8 and
Proposition 2.2.12, we must check that C(B8) > K exp(—B8m) for some K > 0
and m > 0. Moreover, we should try to have m as small as possible and K as
large as possible. As pointed out by Goetze (1992), this is a major problem. In
this section we will verify (2.2.1) using the Poincaré geometric method, as in
Diaconis and Stroock (1991), Sinclair (1991) and Goetze (1992), and show
that our estimate is consistent with Wentzell’s (3.2.8). B 3

In the remaining text, we assume symmetry, that is, Ly = L, and C(B) =

C(B).

4.1.1. DEFINITION. The main ingredient for bounding C(8) is the choice
of a collection of oriented paths I' = {g,, € & = (Q, E); x, y € Q}, connecting
each x € ) with each y € ). The paths may have repeated nodes but a
given edge appears at most once in a given path.

Next, let |g,,| be the length of g,, and set
' 1
lg.,le, = 2 m,

Qngy
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where, for an oriented edge e = (e"—> e") € g, we write
Qp(e) = Qp(e™,e") = %(Wﬁ(e_)qﬁ(e_’e+) + m(e*)gp(e”,e7))
=Qz(—e).

Consider the Poincaré bound [see Diaconis and Stroock (1991)]
1
(4.1.2) C(B) = 5=
K

where

kK(T) == sup X lg,,lo,m(x)m(y)
ecZ(I) g, e

and ¥(I={e€¥%;3g,,De, g, €T

4.1.3. DEFINITION. Let L; €% be symmetric. Set
@(e) =V, -+ V(e —e").
Note that, by Lemma 3.2.1 and symmetry, ©#(-) is orientation independent;
that is,
&(e) =0(—e),
where —e = (e" — e7). Let C,, be the set of all the paths of & taking x to y.
For y € C,,, let Evel(y) == max, .., @(e). For any collection of paths T" set

xy? eEy

m®(T) = max(Evel(g,,) + V' =V, -V,), m® = inf m®(T).
X*y r

For x, y € Q, define
F, ,(B) = A B)A(B) L (Ac-(B)A,- (B,
ecg,,

with F, €&, x,y €Q [see (8.1.2) and Lemma 3.1.8].

4.1.4. LEMMA. Let Ly €% be symmetric. Then, for all collections of paths
I', we have

(415)  O(B) = exp(~pm(D)( max T F,,(8)] -

ec¥M 4

ProorF. By (4.1.2), it suffices to show
K[(gl)(I‘) < exp( BmP(I')) max Y F, ,(B).
eeZ(I' ’

NI
By definition, k§{"(I') = maxe;g(r) Ly, 5eM(2)m(¥)l8 ,ylq,, where
| 1
les ™ L L)

éeg,,
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Using Lemma 3.1.8 we obtain

k¥ = max Y exp(—B(V,+V, - 2VH)A,(B)A,(B)lg,,le,
eefM g S,

and
8eyla, = X exp(=B(VE = Vi) As(B) exp( BV(6™— ¢*)As o+ (B) "
éeg,,
= X exp(=B(V' = Vim V(67> 6)))(Ae(B)Aso+(8))
éeg,,
Therefore,

kg"(T) < max gZB [exp(—B(Vx +V, - 2v))

Xexp(—B(— max (Ve+ V(e é+))))

Xexp(—BVY)F, ( /3)]

s p(Br(D) may, T Fo(8) ’
gxyae

4.1.6. ExAMPLE (Metropolis chains). Consider the general symmetric
Metropolis chain (3.1.10), which has U(-) as a potential function. By Lemma
3.3.4 there exists a constant D € R such that V.= U(:) + D. Therefore, @(e)
= U(e™) v U(e*) + D and thus

Evel(g,,) = max (U(e™) + (U(e*) - U(e—))+) +D
= maxmax(U(e”),U(e*)) + D
ecg,,

max{U( %); % is a node of 8y} +D
and it follows that
m®(T) = max, , (U, + max,., (U(e)) — U(x) - U(y)),

where U, = min, U(x) and U(e) = U(e™) vV U(e*).
Ultrametrics and hierarchies. Consider the distance p(-,-) on Q given by

(4.1.7) p(x,y) = min Evel(y), x,y €Q,
'YGny

with p(x, y) = p(y, x) by symmetry (see Definition 4.1.3), which satisfies the
so-called ultrametric inequality

(4.1.8) p(x,y) <p(x,w) Vp(w,y), x,y,w € Q.

Given a finite set O and an ultrametric p on , that is, a so-called
ultrametric set ({), p), we can associate an indexed hierarchy (see Figure 1)
on () [see Roux (1985) or Rammal, Toulouse and Virasoro (1986)], which
yields a representation of ({2, p) in a simple way: The elements of Q) are the
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]

Fic. 1. The indexed hierarchy.

leaves of a tree T, where the distance p between nodes is an increasing
function of the height of the closest common ancestor.

4.1.9. DEFINITION. Set
D(x) = maxy;éx(p(x,y) + V-V, - Vy), A=max, o D(x),
Viin = {x€Q;V, =V}, R:= max p(x,y),

» ¥ € Vmin

p(x) = min p(x,y), p(x)= max p(x,y),
yeVy .

min yG min
Prmin = {x € Q;p(x) = minp(y)}-
yeQ

If Vi, = {x), we set p(x,) =V, =V! and R = V' Moreover, let 5* be
the set of collections of paths I' = {g,,} such that

(4.1.10) Evel(g,,) = p(x,y), x#y.

4.1.11. LEMMA. Let Ly €% be symmetric. Then, for all collections of
paths T', we have

(4.1.12) m®(T) = A.
Let T € %*. Then,

mP(T) = m® = A.
Moreover,

p(x) =RV p(x) and A=rxn:())((p(x)—Vx).
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Proor. The first two statements are direct consequences of the defini-
tions. Assume next that [V_; | > 2. Cut T at each node n which has height R,
where T is the tree of the indexed hierarchy associated with the ultrametric
set (0, p). The deleted portions of the tree form a collection of subtrees of T,
and one of them, say T, rooted at n, contains V,, , and V_, is not contained
in any one single branch emanating from rn (f this is the case, necessarily
R = V). Define p,,;, to be the subset of O which consists of the leaves of T',.
The above considerations show that p(x) = p(x,y) >R,V yeV_, ,V xe
Q\ Ppin- Therefore, p(x) = p(x), V x € O\ ppin and p(x) =R,V x € 5.
Thus p., = Pmin- Finally, let us prove the last statement. Trivially A >

max (p(x) — V). Next let x, y € Q and z € V_, . Then by (4.1.8),

p(x,y) —Vx—Vy-i-VlS (p(x,z) _Vx) N (p(y,z) _Vy)
= (p(x) _Vx) v (p(y) _Vy)
< max(p(x) = V). 0

Recall that the aim is to obtain an inequality of the form C(B) >
K exp(—Bm) with m as small as possible. Using (3.2.6) we get that, in
general, m > V! — V2, From the above lemma we know that Lemma 4.1.4
yields at best m® = A. The following theorem shows that V! — V2 can be
realized by «{"(I') for some well chosen collection of paths I

4.1.13. THEOREM. Let Ly €% be symmetric. Then

(4.1.14) Vi-VZ=A.

PrOOF. We only need to show that A < V! — V2 Set for convenience
E(y) =Evelly) + V' -V, -V, x,y €Q, y€C,,. Let (x, y) € Q® be such
that D(y) = A and D(y) = E(f) for some f € C,,. Let h € G{x} be such that
V(g) =V, and let h , be the unique geodesic of A which takes y to .
Assume that A,, has the normal form h, = (ey,...,e,_;,e,e;,,...,¢,),
where e is the arc of A, which realizes Evel(4,,). Therefore, we have

(4115)  A=E(f) <E(h,,) =V' +Evel(h,,) -V, - V,.

Set hi=h — h,,U(epii,...,e,) U(—e,_y,..., —¢)) € G{x,y}. Then we
have
V(R) =V(R) = V(h,,) + V((ers1r--r€0)) + V((—€4_15---, —¢5))
= V(h) - V(e) - V((eo""’ekvl)) + V(( TCh—1500 _eO))
=V(h) —V(e) -V, + |
=V(h) —&(e) +V,,
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since e;_, = e~ and e; = y. However, because 4 € G{x, y}, we have by (4.1.15)
V2 <V(h) =V(h) —&(e) +7,
(4.1.16) <V(h)+VI-V, -A
—=Vi-A,
since A € G{x} is such that V(h) = V. O

In view of Lemmas 2.1.4, 3.1.8, and 4.1.4 and Theorems 3.2.11 and 4.1.13, we
get the following theorem.

4.1.17. THEOREM. Let Ly be any (not necessarily symmetric) operator of
the Freidlin—Wentzell type #*. Then both (2.2.1) and (2.2.2) are satisfied with

-1
m=A=V!-V2 K=max(max F )
res* ee?(r)gxée y(B)

and

M < sup

d
_ _y! -
Sur (VJc 1% )+ d,BIOgA"('B)"

We conclude this section with some related estimates and show their
asymptotic equivalence.

Let T, ={g,,, €¥%; x € O} be a collection of paths connecting each x € Q)
with x, € . The paths may have repeated nodes, but a given edge appears
at most once in a given path. Define

kP(T) = sup 0.(0) Y lgaylm(x)m(y),
ecZ(I) ¥ gxy9e

k ( 0) eef(l"xo) QB(e) gxxoae Y

where £(I, ) ={e€%;3 g,, De, g,, €T} Note that k{?(T') is Sinclair’s
constant and k§(T, ) is Goetze’s. Set

m®(T) = sup sup (@(e) -V, -V, + V'), m®:= iIl}f m3(T),

e€¥ g, e

and
m®(T,,)= sup sup (F(e) -V,), m®:= inf inf m® (T, ).

eeZ(T,)) 8xzy2¢ x0€Q Ty
As in Lemma 4.1.4 we have
1
C(B)z > C(B)= g7
k(T xP(T,,)

k$P(T) < FO(T)exp( Bm®(T))
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and
<(T,,) < FO(T, Jexp( Bm(T,,)),

where F®(T) and FC(T, ) are positive constants. The following lemma
shows that the value V! — V2 can be attained by the estimates «$(T') and
k(T,), for well chosen collections of paths.

4.1.18. LEMMA. Let L; €. be symmetric. Then
A=m®=m® = p,®.

Proor. To see the first equality choose I' as in (4.1.10) and use the
definition of m®. Next, for e €g,, we have Evel(g,,) > @(e). Thus,
mI(T) > m3(T). Also setting y =x, in m®(T) we get that m®(I") >
m®(T, ) if V, = V', and thus m® > m®. It remains to see that m® < m®.
Recall that [see (4.1.14)] m® = A =V?! - V2 Then use the inequality of
Lemma 4.1.4 and (3.2.6), by applying — 87! log() to both sides and taking the
limitas B -« O

4.2. The spectral gap of the collapsed chain and first hitting times. In this
section we describe the asymptotics of the spectral gap of the collapsed chain
using the terminology of Section 2.2. The following theorem establishes a link
between the speed at which a symmetric L; €.# concentrates on V,;, and
the distribution of the first hitting time of V_, (see Corollary 2.2.8 and
Proposition 2.2.12).

min

4.2.1. _'I_‘HEOREM Let Ly €% be symmetric and consider the symmetric
operator Ly = Ly V.1 (cf. Deﬁnztlon 2.1.7). Let C(B) [resp. C(B)] be the

min

spectral gap assoczated with Lg (resp. L ) Then Lﬂ is symmetric with

A=V[Vyu]' = V[Vpiu]* = — lim B~" log(C( B))
B—»oc
given by
A= max (p(x) - V,).
erxf)in
Moreover,

A=AV (R-V?Y.

PROOF. Let us first check that A= max, g, (p(x) — V). Remark that

L[ V.1 is symmetric since L [ V..]=L 8l Vininl = Lg[V,;,] by Lemma 3.2.12.
By definition, Lg[V,,;,] acts on Q= V,f,m U {8}, Where & is any element of
Voin- Thus we can use the setup of Lemma 4.1.11 to obtain that A =

max, . 5(p(x) — V). Recall that
if x,y e VS, V(x - §) = min, .y, V(x > y) and
V(8 —»x)=min,.y, (V,+V(y—=>=x))—min,., V,

=min,.y  V(y - x).
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Our basic observation here is that the weight function V has a potential
function since L;[V,,;,] is symmetric. By Lemmas 3.3.3 and 3.3.4,

V(ix—=y) = V(y—x)=V(x—>y) - V(y—>x)
=V, -V, forx,y eV

and therefore \7 V.=V, -V, x,y € V,, where V. = VIV,.],. It follows
that there ex1sts a constant D such that V.= V.+ D on V,,. Let us show that

V== VIV, ] = {8). Since V has a potential function, V, — V; = V(y,)
—V(—4,,), where v, € C;, is simple, and —1v;, is the reversal of 7,.
Suppose that y;, has the normal form (e,,...,e,), where e; =68, eg=y # 8
and e, = x. Let %,, be the segment of v;, Which takes y to x, and 1et Y, be

its reversal. Then
Vx - ‘—76 = V(Y&x) - V(_Yﬁx)

=V(%.) = V(=%.) + V(8 >y) = V(y > 8)

= V(%) = V(=) + V(8 >y) = V(y — 8)

=V,-V,+ min V(p >y) — min V(y - p)
p min peVmin

=V,-V,+ min (V(y »p)+V,-V,)— min V(y - p)
PEVnin P E Viin

=V, -V>0

since x & V... and, therefore, we have just proved that V,

in = 18}, that is,
V.>V,, V x €V . Next let us recall some definitions: p(x, ) =
min, .o Evel(y), Evel(y) = max,, @(e) and @(e) =V, + V(e > e*). We
have p(x) = p(x), R =V, since ImeI 1. Observe that it is sufficient to
consider simple paths y of C,; [by symmetry Evel(y) = max, ., @(e), with
@(e) = @(—e)). Suppose that y has the normal form y = (e,,...,e,), with
e, =x and e, = 6. Then

Evel(y) = gl:l;(ﬁ_(e) = ( max éf’_(e)) v @(e,) = ( max ﬁ(e)) vV é(e,).

e€y\e, e€y\e,

On the other hand,

d(e,) = ‘7‘3;4- V(e,—el) = V.-+D+min,_y V(e,—~y).
Therefore

Evel(y) =D + (maxeey\en @(e) vV (min, .y (e, > y)))
and thus

p(x,8) = min Evel(y) =D + min ( max &(e) V ( min ﬁ(e;ﬁy)))
yelC,s yeC,s \e€y\e, Y€ Viin
=D+ min min Evel(y') =D + mln p(x,y) =D + p(x)
ermmyeC me

= (Vx - Vx) + p(x)
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Finally,
A= max(p(x) -V,) = max (p(x) - V.) = max (p(x,8) - V,)

xe) x€ x ‘min

= max (p(x) + (V. - Vx) -V,)= max (p(x) = V,),

x€ me

as required. _
Next let us show that A = A vV (R — V'1). By definition

A= maxD(x) = max(p(x) -V,)

= max (p(x) - V,)V max(p(x)—V)

pmln pml
= max (R-V,) V max(p(x)—V)
xepmln pmln

=(R-VHv macx(p(x)—Vx),

min

since V,;, C ppin- Therefore, we must check that
(R-VYH Vv max (p(x) - V,)=(R-V) VvV max (p(x) - V,),
x ;1 rflin

where p,. C V&, Let x € V& N p.... Then by Lemma 4.1.11, p(x) < p(x)
= R and, therefore, max, . y: ,, (p(x) —V,) <(R—V?'),since V, > V',V

x = Vncun

4.2.2. REMARK. Take a symmetric Metropolis chain, as in, Example 3.1.9.
The assertion A = A V (R — V1) corresponds to a result of Chiang and Chow
(1988Db).

4.3. The filling method. We give an alternative approach to (4.1.4). We
start with a general result. Let L, €% and 7, be given and assume symme-
try, that is,

-Qﬁ(x$y) = 7"'[3(""")‘][3(-7‘:’y) = Qﬁ(yax)'

Consider an arbitrary weight function W(x — y) with potential function ¥(-)
on Q (W does not need to be nonnegative!). Define the new transition

qs(x,y) =exp(—BW(x - y))qg(x,y), forx+y,
with invariant distribution
m(x) = exp(—BY(x))m(x)Z(-B) ",

where Z(B) =L, exp(—B¥(x)m(x). Note that L; €< if and only if
Vix >y)+ W(x >y) >0,V %,y € Q). We have

Qu(x,y) = m(x)ds(x,y) = exp( —B(¥(x) + W(x = ¥)))Z(B) ' Q(x,)
= exp(—BO'(x > ¥))Z(B) 'Qs(x,y) = Qs(y, x),
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where @'(x — y) = ¥(x) + W(x — y). Let C(B) and C'(B) be the spéctral
gaps associated with L; and L.

4.3.1. LEMMA. Let L; €% be symmetric. Then
C(B) = exp(—B(M - mQ))C’( B),

where

M = max¥(x) and mgy:= min &'(e).
x€Q e: Qole)>0

PrOOF. For any edge e € E set ¢(e) == p(e™) — ¢(e”). Then
&(0,0) =35 L ¢(e)’Qy(e)

eckE

v

1Y o(e)’Qs(e)Z( B)exp( Bmyg)

eck
> C'(B)le — (1, @)mll7, exp(—B(M — mq))
> C'(B)lle = (1, )nll7, exp(—B(M — myg)). O

Consider the new potential
V(x) =p(x) =V,

where p(x) == max, .y p(x,y) (see Definition 4.1.7) and the transitions

W(x—y)=(p(y) = p(x) = V(x~9).
Clearly W has potential ¥(-) with
g'(x—>y) =p(x)Vp(y) —0(x—y).
Note that &’ > 0, so mq > 0, and by construction
M = maxV¥(x) = A;

xe
see Lemma 4.1.11. This yields
C(B) = exp(—pA)C'(B),
where C'(B) is the spectral gap associated with the Metropolized chain
L, €2 defined by gp(x, y) = A, (Blexp(—B(p(y) — p(x)1). As we will see
later, the inequality permits a better understanding of the estimation proce-

dure and reduces the problem to the estimation of the spectral gap of a
Metropolis chain. In the sequel, we will prove the following theorem.

4.3.2. THEOREM. Let Ly €% be symmetric and let T € *. Then

(m)P(T) = (m)? =0
and

C(B) = exp(—pA)C'(B)
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with

-1
inf C’ > max | max F > 0.
B>0 (B) Fe(S’*(ee?(I‘)gxyZBe xy(B))

For an illustration of the application of Theorem 4.3.2, see Examples 5.1.6
and 5.1.7. The proof proceeds in two steps.

4.3.3. LEMMA. Let T € ™. Then p(-) is decreasing along any path g .,
of T such that p(x) = p(x, s(x)), s(x) € V..

PrOOF. Take some x € O and let s(x) € V,;, be such that p(x) =
p(x, s(x)). Choose any node y of g, Define g, ,, to be the oriented
segment of g, ., which takes y to s(x). By assumption p(p, q) = Evel(g,,) =
min, ¢ Evel(y), V p,q € Q, and, therefore, Evel(g,,,, > Evel(g,,,).
Then we have

ﬁ(y) = plél‘i,nA Evel(gyp) = Evel(gys(x)) = Evel(gys(x)) < Evel(gxs(x))
= p(x),

since

Evel(gys(x)) = max{é’(e); e € gys(x)} < max{ﬁ(e); e e gxs(x)}. O

4.3.4. LEMMA. Assume that T €* and let £, = (py;,, E,) be the sub-
graph of & = (Q, E) with node set p,;, and edge set E, = {e € E; e” € p;,,
e" € pyin). Then £, is connected.

Proor. For x € p,;, [i.e., p(x) = R], let s(x) be the element of V_; such
that p(x) = Evel(g,,)). By Lemma 4.3.3 we know that p(p) < p(x) < R, for
all nodes p of g, and thus that g, ,) C pnin and g,y C Pmin, for
%,y € Ppin- It follows that the construction of a path vy,, € C,,, %, C pnin
will be achieved as soon as we can find y € C,,, ¥ C ppin> ¥ P, q € V- Take
any node r of g,, and let g,, be the oriented segment of g,, which takes p
to r. Thus if —g,, is the reversal of g,,, we have

Evel(g,,) =max{@(e); e € g,,} > max{@(e); e € Z,r)
= max{@(e); e € —§,, €C,,}
> Evel(g,,)
> min Evel(g,,) = p(r),

te Vmin

since @(e) = #(—e). Thus if r were notin p_;,, that is, if 5(r) > R, we would
have p(p, q) = Evel(g,,) > R, which is a contradiction. O
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ProoF OF THEOREM 4.3.2. As %, is connected, let T,, be any directed
spanning tree of £, pointing at x,. By definition V,(x — y) = (p(y) — p(x))*
and, therefore, V;(Txo) = (. Consider the following algorithm:

() Take any x, € p5;, and consider a path g, ., such that p(x,) =
. B x18(x -

Evel(g, sx,), With as usual s(x;) € V.. Stop it as soon as it meets the
spanning tree T, , at some node x,. Let g, ., be the oriented segment of
gxls(xl)Awh%ch takes %y to %y, We have V, (g, ,,) = 0 since by Lemma 4.3.3,
() = p(+) is decreasing alcong 8,502y

(ii) Take some x; € p5;, \ &, ,, and proceed as above to get a segment
8,2, With V.(g, ) = 0, with the difference that the path is stopped at the
first index at which it meets T, U g, , .
. (>iid) Re.p((eiat tze all)\j)ve operatioon untif Prin \&x 1y Nz, \ " \Erixp,, = D>
or some index % € N.

Set T,=T, UE, . U Ug,, € G({xy)), which satisfies, by construc-
tion, V(T,) = 0. Therefore, V' = V? = 0 and (m)® = 0. O

4.4. Spectral properties of subchains of a given chain. In this section, we
diverge slightly from the symmetric setting of the previous sections. Let us
start with a simple remark. Consider two irreducible transition functions
L= (x,y);x,y € Q)and L = (q(x, y); x, y € Q), with invariant distribu-
tions 7' and m. Suppose that L' < L in the sense that ¢'(x, y) < q(x, y),
x #y. Then 7= 7' implies that C' < C, where ¢’ and C are the spectral
gaps of the symmetrized versions of L' and L. This follows from the varia-
tional formula (2.1.3) and the fact that L' < L implies L* < L*¥ when 7' = 7.
Next consider two transition functions Lg; and Lj; €.2. We write

qp(x,y) <qg(x,y) if gig}oﬁ“ log gj(x,y) < ;iir:oﬂ’l log q5(x, y)
and
L’B < LB R
if the above inequality holds for all x # y € Q. In terms of the corresponding
weight functions V and V', this simply means V'(x - y) > V(x > ), x + y
€O.If Ly < Lg and Ly < Ly, then L, < Lj.

4.4.1. LEMMA. Let Ly and Ly be two transition kernels of & such that
Ly < Lg. If the corresponding invariant distributions satisfy m; < g, then

C'(B) <C(B).

~ Proor. Since 57([3) = C'(B) and C(B) =< C(B) by Theorem 3.2.11, it is
enough to prove that

(4.4.2) C(B) < C(B).
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First note that m; < m; implies the existence of a constant 2 € R with
V!= V.+ k. From this we have

V(e) = min{V'(e); V'(—e) + V)i V/-} = min{V'(e); V'(—e) + V,.— V,-}
> min{V(e); V(—e) + V,.— V,-} = V(e),

that is, f’;< I:B. As both f’; and f’B are symmetric, we can use the setup of
Section 4.1. In particular, we have

@(e)=V-+Vi(e—e )=V, +k+ V(e —>e")
>V, +k+ V(e —>e") =c(e) + k.
This yields p'(x,y) > p(x,y) + k, x # y, and
A= r;l:;((p'(x,y) + V-V -V

> max(p(x,y) +k+ V' +k-V,—k—-V,—k)=A.
xXFYy
Now (4.4.2) follows from Theorem 4.1.14. O

Let L; €% be a transition function on () and let & = (Q, E) be its associated
graph. For any subset E° C E of edges, consider the subchain L% of L, given
by qg(e) = gg(e)Igo(e), where Io is the indicator function. As is easily seen,
L) €.7 if and only if the graph £° := (Q, E°) is connected, that is, the chain
L% is irreducible. Let us denote by 7 its invariant measure and C%(B) its
spectral gap. Let V%e) = V(e), e € E°, and V%e) = +x, e & E°, be the
corresponding weight function. A natural question in this setting is to com-
pare the asymptotics of 7y and m; and of C°( ) and C(B). One knows that,
in general, supp(m,) # supp(w?) Fsee Mazza (1992) and Trouvé (1992)]. We
can view L% as a deletion operation on E \ E°. In contrast to the collapsing
operation (see Lemma 2.1.5), the deletion operation does not necessarily
commute with the symmetrization. More precisely we have the following
lemma.

4.4.3. LEMMA. The following are equivalent:

~ -0
(4.;1.4) L) < (L,)
an
(4.4.5) E°= —E°={—-e;e €E°} and == m,.

PROOF. Assume (4.4.4) and take e € E \ E°. Then (V)%(e) = » and
V(e) = min{VO(e),VO(—e) + V.2 — V,2} = minfeo, VO(—e) + V2 — V,2}.

If both lines agree by assumption, then ﬁ(e) = » and V% —e) = . There-
fore, —e € E \ E°. This implies E° = —E°. Next take e € E°. Since —e € E°,
we have

VO(e) = V(=e) = VI - V2
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and
(V)’(e) = (V) (—e) = V(e) = V(—e) = Vo= V. ;

see Lemma 3.3.3. Thus V2 — V2 =V,.—V,. for each e € E°. As £° is
connected by assumption, there is a constant 2 € R such that V=V + &
and, therefore, ) =< ;.

Next assume (4.4.5). Then, for e, —e € E°,

VO(e) = min{V°(e),Vo(—e) + V.2 — V)
= min{V(e),V(—e) + V,.— V,-} = (V) (e)
whereas for e, —e € E\ E°,
V9(e) = min{V(e), VO(—e) + V2 — V2} = o = (V)’(e). 0
4.4.6. THEOREM. Let L} €.% be a subchain of Ly with spectral gap C °B)
and invariant distribution m). If L} < (I:B )0, then
(4.4.7) m < m; and C°(B) < C(B).
In particular, (4.4.7) holds when both L} and L, have potentials.

PROOF. In view of the above lemmas, we only have to show that the last
line implies (4.4.4). If both L) and L, have potentials, then Lyx L} and

I:B = Lg. Thus (ZB)O =< L) < Ly O

4.4.8. EXAMPLE.

@ L and L, are symmetric.
(i) L has a potent1al function and £° is a tree.

See Example 3.3.7.
4.4.9. REMARK. When one of the two chains L, €% and L} €.% does not
have a potential function, both the situations A < AO and A > AO are possible.

An example of this situation is the case of sequential and parallel annealing
on Gibbsian fields [Deuschel and Mazza (1994)].

5. Examples.

5.1. Illustration with Metropolis chains. Let us see what happens with
_the spectral estimate (4.1.5) for symmetric Metropolis chains. Define %, to be
the subfamily of .# containing the transition matrices of the form

qs(x,y) = qo(x,y)exp(—BV(x »y)) forx+y,
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with g, irreducible on Q) and #,-symmetric for a given probability measure
7. For the transition kernels of this family we have

my(x) = exp(—BV,)mo(%)Z(B) ',

where Z(B) =L, .o exp(—BV,)m,(y). The estimates of Section 4 have the
closed form

C(B) = k(1) ™! = exp( BV)Z( B)k{(T) ' exp(— Bm(T))
> exp(—BmO(T))mo(Vein) k() ', i=1,2,

and
(511)  C(B)=«P(L,,) " = exp(—Bm®(T,))x®(T,,) .
For I' €. .5, the filling method yields

C(B) = exp(—BA)C'(B) = exp(—BA)(«)(T) ™

= exp(—BA) 7o( pmin) <E(T)
since 7y = m, and k() = («)J(T). Note that V_;, C p,;, and, therefore,
7o( Pmin) could be much bigger than 7 (V,,;,). In particular if p_;, = Q, that
is, p(-) = R, then g5 = q, and C'(B) = C'(0) = C(0), V B > 0, and, therefore,

C(B) = exp(~BA)C(0).
Inequality (5.1.1) decomposes in three parts:

1. Set B = 0. Note that «{"(I') is a bound for the second largest eigenvalue of
L,. Define I'; to be the collection of paths which best approximate the
spectral gap C(0).

2. As we have seen, mI(I') > A=V!—-V?2 V I. Choose I', such that
mI(T,) = A [see (4.1.10)].

3. The extra factor exp(—BV1)Z(B)~! does not depend of I' and can be
taken as a systematic bound.

For an arbitrary collection I', we have m™(I') > m™(T,) and «{"(I') >
k{)(T,), and, therefore, m™(T;) > m™(T,) and «{(Ty) = x§(T,). This illus-
trates the competition between the speed of diffusion of the basic chain L, on
Q) and the difficulty for the chain to reach the barrier A.

Note that for a given potential U, the Metropolis chain L; with spectral
gap C(B) gives the fastest chain, that is, among all L; € %, with potential U
and spectral gap C'( 8), we have

ds(x,5) < qo(x, y)exp(—B(U(y) —U(x))" ) =qp(x,5), x#yeQ,

and, therefore, C'(8) < C(B)..
In the following example we consider only Metropolis chains.

5.1.2. EXaMPLE (A “Metropolized” Ehrenfest urn). Let Q :=1{0,1,...,d —
1, d} and consider the so-called “distance chain” g,(x, y) on Q given by the
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transition probabilities go(x,x + 1) ==1—x/d and gy (x,x — 1) =x/d,
which is 7 -symmetric where my(x) = Z_d(‘i). The second largest eigenvalue
is 2/d and the Poincaré bound is «{" = d/2 [see Diaconis and Stroock
(1991)]. Such a chain is a model of the classic Ehrenfest urn. Our “Metropo-
lized” urn will be the chain obtained by taking U(x) = x with U, = 0. Set for
convenience z = exp(— ). With this choice, the chain becomes gz(x, x + 1)
= qo(x, x + Dz and g4(x, x — 1) = gox, x — 1) and has

d
m(x) = zxﬂo(x)/ g,ozyﬂo(y)

as its invariant measure. As the graph £ = (Q, E) is a tree, there is a unique
collection of paths I' for which m™(I') = A = 0 since U(‘) is increasing,
namely, the set of geodesics. Therefore, (5.1.1) becomes K((,l)/Z;l=Ozy770(y).

Then we have
d d
kP <k X zy2‘d(d) =k§H2¢ [ Y zy(d)
y=0 Y y=0 Y

= kP2¢/(1 +2)%.

(5.1.3)

Thus when z < 1 is fixed, the bound is exponential in d. It would be of
interest to have the exact value of C(B) to see the loss in the estimation
procedure. Now let us see what happens with Goetze’s estimate K,§3) for this
example. As & is a tree, we take I, as the directed spanning tree 7,
obtained by pointing & at location x,, ¥ x, € Q. By (5.1.1), «{ <
exp( Bm® (T, NPT, ), V x4 € Q. By Lemma 4.1.18 we have m® =m® =0
since m® = A = 0. Concerning m®XT, ), it is not hard to check that m®(I')
= 0 and m®(T, ) > 0, x, # 0, and, therefore, as g > 1, the optimal choice is
x, = 0. By definition, x{(I'y) = 25up, c g(r,, Qo ()L, 5 el8x0lTo(%). Set e =
(j »j— 1), where 1 <j < d. Then we have

5" (e) T lgwlmo(x) = 75— T#(4) = g7 £ x(¢)
5] [5-1]

g.02€ _] (]/d) x>j ] 1 x>j

which is maximized at j = 1, and thus we get

k®(T,) = 5 x(gg) gy xz-d(d) — 24(d/2) = d2¢- 1.
x=1

X
x=0

Consider the limiting case B — « or z = 0: The matrix L, converges to the
triangular matrix L, which has (0, —(x/d): 0 < x < d) as diagonal and thus
as spectrum, so that C(«) = d !, which is far from (1) (x§"2¢/(1 + 2)")~! -
(d29"1)71 as z —» 0 and (2) (T~ = (247 1)~
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Now let us see what happens with the Goetze estimate K(3)(F0) as B — o,
without using (5.1.1). Any arrow e of £(Iy) has the form e =(j = j — 1)
1 <j < d, and, therefore,

F-=T] JQO(-]) x>j x>j

le(e) Y |g ol (x) = Y xztmo(x) = ( ) Y xz*- J( )
Jj—1

1 V4
< +

(as 0 < z < 1, the maximum of the above expression is obtained for j = 1.
Therefore, K(3)(F0) =2d(1 + z)d 1 for B > By(d). Thus lim, ., k§P(Iy) = 2d,
which equals lim,_, (2C( B! and is more than acceptable and shows that
the upper bound of (5.1.1) achieves the “barrier” A = m® = m® = 0, but is
poor as a function of d € N.

5.1.4. REMARK. Lemma 4.1.18 and (5.1.1) achieve the barrier A in the
limit B — «. Being general, they do not give information on C( B) as a
function of the problem size d € N (see Example 5.1.2). In his work, Goetze
shows that it is possible to give examples with more accurate estimates for
min, o k8T,

5.1.5. ExaMPLE (Collapsed symmetric Metropolis chains and hitting times).
Take a symmetric Metropolis chain L, on (), with cost function U): Q- R.
Using Corollary 2.2.8 and the results of this section, we see that the smallest
m that satisfies (2.2.1) is given by A = V! — V2. Consider Proposition 2.2.12,
which gives a bound for the distribution of the first hitting time of U,,. The
smallest 7 for which the analogue of (2.2.1) holds is A (see, for example,
Remark 4.2.2). The quantities A and A are linked by the relation A = A V (R
— U,), where U, = min, . o U(x), since U(") is a potential function. It is not
hard to check that

R= sup inf{h > 0;3y € C,, with go(y) > 0 and maxU(e) = h},
ecy

x,y € Uml.n
where we set F = U, if |U,;,| = 1. In the same vein we have

max (p(x) - U(x)) = max h(x),

X € Upin x min

where

h(y) = inf{h > 0;3 x € Q with U(x) < U(y)
andy € C,, suchthat U(p) <U(y) +hVpE€E 'y},

is the depth associated with y, with A(y) = 0 on the set of global minima.
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Therefore,
-V2=A=(R-U,)V max h(x)
%€ Upin
[cf. Chiang and Chow (1988a)].

In the special case of a symmetric Metropolis chain, one can consider
various hitting times. Assume that M = max, ., U(x) — min, . oU(x) > 0
and choose a number U between max, . , U(x) and min, . , U(x). Moreover,
assume that there exists y € Q such that U(y) = U. Set Q, ={x € Q;
U(x) < U} and consider the first hitting time 7:= inf{t > 0; U(X(¢)) < U}.
Let C[Q, ) B) be the spectral gap associated with L[ Q ], with C[Q (B) =
k exp(— Bm). Remark first that by Lemma 3.2.12, L [Q*] L [Q,]=
L,[Q,], since by assumption L, is symmetric and, therefore L, [Q ] is
symmetrlc It follows that we can use the setup of this section. Con51der the
weight function V[Q,]. Use Lemma 3.2.13 to get that:

Q) VIQ,Xx = y) = (U(y) — Ux)* for x,y € O* such that(x > y) € ¥
[see (3.1.3)],
(1) VIQ,x — 8) = 0 if there exists y € O, with(x > y) € Z,
Gii) V[Q Xé—>x) = min c o, U(p) + (U(x) = U(p)*) — min U(p),
which is equal to U(x) — U, 1f there exists y € Q, such that (p Sx)EEL.

Thus we can define a new Metropolis chain on QO* U {8}, with cost function
U(x) = U(x), x € O*, and U(8) = U,. By Theorem 4.1.13, we have

m=V[Q,]' - V[Q,]* = maxh(y) = maxh(y)
y yeQ*
(since there is only one global minimum), where A(y) is the height of y [see

Hajek (1988) and Holley and Stroock (1989)], and thus 7 = max,, ¢ o+ h(y);
compare Goetze (1992).

5.1.6. ExampLE (Illustration of the filling method).

Take, for example, a symmetric Metropolis chain on , with cost function
U(-), such that R = max, . o, U(x) (see Lemma 4.1.11). In this case, p(-) =

and, therefore, C(B) > exp(—B(R — U, ))C(0), where C(0) is the spectral gap
associated with the basic chain L,. Take, for example, Q, = Z¢, the space of
binary vectors of length d € N, with some cost function U,(-) and assume
that R,; = max, . z¢ U,(x). Then the filling method gives C(B) > exp(—B(R,
— U,))d"!, where C(0) has been estimated by " [see Diaconis and Stroock
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(1991)], whereas (5.1.1) yields

C(B) = exp(—Bm®(I'))x(T) " 'l;“’;“',

with m®(T) > (R, — U,) and P <d,VT,VdeN.

5.1.7. EXaAMPLE (The star).

Here & = (Q, E) is a tree with a central node O and n € N outside nodes.
Let L, be the transition function associated with the simple random walk on
Z. Then L, has 0, —1 and —2 as eigenvalues with —1 having multiplicity
n — 1. To avoid periodicity, put loops at each node, with the same holding
rate 9 — 1, for 0 < ¥ < 1. This yields a transition function L, given by

gs(x,0)=1-79, q4(0,x)=n""(1-9), x#0,

and Ly has 0, 9 — 1 and 2(9 — 1) as eigenvalues with the above multiplicites.
Diaconis and Stroock’s (1991) estimate k¥ equals

3n—-2 1 c - 2n

—— > [— .
2n 1-49’ > ( )3n -2
Let (V(e)), be the weight family given by V(e) = +» for e &€ E, and V(e) = V
> 0 for e € E, and consider the transition function L; €.# given by qB(e) =
go(e)exp(—BV(e)). Also, setting & =1 — exp(—BV), we see that L, =L,
and, therefore, we can use the filling method for the spectral gap of L. It is
easy to see that for this star V, = nV, @(e) = (n + DV, p(x,y) = (n + DV,
x#y, p(x) =p(x) =R and R = V(n + 1) (see Definition 4.1.9). The filling
method yields

C(B) = exp(—B(R — nV))C'( B) = exp(—BV)C'(B),

, where C'(B) is the spectral gap of L, since gj(e) = g,(e)exp(—B(p(e™) —
ple™)*) = g,(e). Therefore,

(5.1.9) C(B) = exp(-BV)C(0) = 9 — 1,

(5.1.8) k® =
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which equals the spectral gap. Note that the filling method reduces the
estimation procedure to the estimation of C(0).

6. Diffusions on compact manifolds.

6.1. Spectral estimates for diffusions with small noise. Let M be a com-
pact, connected, N-dimensional C”-Riemannian manifold. Denote by T(M)
the tangent bundle over M and by I'(T'(M)) the space of smooth sections. For
X,Y € T(M) we will denote by (X|Y) the inner product of X and Y and by
|X| = (X|X)V2, the length of X. For given B;, B € T(T(M)), B > 0, such
that uniformly on M,

(6.1.1) lim B, = B,

B—ox

consider the elliptic operator Lg: C*(M) —» C*(M),
Lyp = B(BB|V¢) +1Ap= B(BB|V¢) + 1V Vo,

where we use V, V- and A to denote, respectively, the gradient, divergence
and Laplace-Beltrami operator on M. Since the manifold is compact, there
exists a unique normalized Lg-invariant distribution 7, such that

(1,Lg@)q, =0 forall ¢ € C*(M).

Moreover, 7; has a smooth density p; > 0 with respect to the Riemannian
~ measure 7, which solves the equation

(6.1.2) — BV (psBs) + 3Aps = 0.

Next let Lj; and f,ﬁ = (L, + L})/2 be, respectively, the m-adjoint and sym-
metrization of Lg:

1 1
(6.1.3) L’gqo = B(B;"IVgo) + EAqo with B;;‘ = —Bg + EV log pg
and

1 - 1
LpGD B( ﬁ|V(P) 2A(P=-27BV~(pﬁV(p) with Bﬁ=2—BVlogpﬁ.

Both L, and L, have discrete L*(m)- spectra {0 =A(B), A(B),...}, and
{o—Al(B) AZ(B§ .} with R(A,(B)) <0, i#1, and A,(B) <0, i # 1. Let
C(B) = —sup{R(A, (B)) i # 1} and C(B) = —sup{A,(B): i # 1} be the spec-
tral gaps associated with L; and L

The aim of this section is to show that C(B) and C(B) are logarithmically
equivalent. We will express the asymptotics of C(8) and C(B) in terms of
Markov chains, following the ideas of Section 6 of Freidlin and Wentzell
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(1984). Their monograph deals with operators of the form

2

L= (BIVe) + 4,

where &\ 0. The translation of their results to our situation follows from
L.=a/p )L, where B = 1/&”. In particular, the invariant distributions are
the same and for the spectrum we have A, (&) =Q/B)A(B).

The main tool of Freidlin and Wentzell is the theory of large deviations
based on the action functional S;: C1([0,T]; M) - R*,

T . 2
Sr(¢) =3[ |6~ B(e)[ dt,
0
and the weight function V: M X M — R*,
V(x,y) =inf{Sp(@): 0o =%, ¢r =y, T > 0}.
We will be working under Assumption A of Freidlin and Wentzell (1984):
AssUMPTION A. There exist a finite number of conpacta K, K,,..., K, C

M such that:

1. For any two points x,y € K;, V(x,y) = V(y,x) =0

2. If x €K, and y ¢ K, then V(x, y) # 0.

3. Every wlimit point of the dynamical system %, = B(x,) is contained in one
of the K.

Next introduce the weight funci;ion Von QXxQwith Q={1,...,n}

V(i—J) =inf{ST((p): €K, or €K}, ¢ eM \ U K, for0 <t < T}.

k+i,j

If no such function exists, write V(i — j) = . Consider the irreducible Markov
chain on E associated with the weights V and define the corresponding V:
Q - R*, V! and V2 as in Section 3. Finally, define W: M —» R* by

W(x) = min{V, + V(K;,x):i=1,...,n},

where V(K;, x) = min{V(y, x): y € K,}. The following theorem, proved in
Freidlin and Wentzell [(1984), Theorems 6.4.3 and 6.7.4], show that the
asymptotic behavior of the diffusion is determined by the Markov chain.

6.1.4. THEOREM. Let Assumption A hold. Let v > 0. Then for any suffi-
ciently small neighborhood G(x) of x € M, there exists B, > 0 such that for
B = B, we have

exp{—B(W(x) = V' + 7)}

6.1.5
( ) < m(G(x)) < exp{—B(W(x) — V'~ 7)}.
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Moreover,

lim [—llogC( B)] =Vi-vZ
poe| B

The main result of this section is the following theorem.

6.1.6. THEOREM. Let Assumption A hold and suppose that there is B* €
I'(T(M)) such that uniformly on M,

1
(6.1.7) gi_l:r:oB;;" =B* and lim BV (Bs —Bg) =0.

B—>x

Then
(6.1.8) lim[—llo ¢ ]—1' [—11 c ]—Vl—Vz
1. Jim Bg(B)—Bglgo 5108 (B)| = :

We believe that the hypothesis (6.1.7) should be true in the general setting
of smooth compact manifolds. In particular, by (6.1.3) and (6.1.5), B* should
have the form B* = —B — VW. Also one expects that

1
V-(Bj ~B;) = ~2VB, + SAlog p,

remains bounded as B — %, which of course yields the second limit in (6.1.7).
Note that C(B8) = C(8) and, in general, C(8) > C( B); see Hwang, Hwang-
Ma and Sheu (1992). In view of Theorem 3.2.11, a similar statement holds for
the real part of the first n eigenvalues of L, and L,. It would be very
interesting to study the asymptotics of the next eigenvalues.

In the symmetric case where mz(dx) = (1/Z(B))e PV (dx) and B, =
B} = — 3 VU for a given U € C* (M) Holley, Kusuoka and Stroock (1989)
have derlved a Poincaré estimate for C(B). They show that m = —lim,
(1/B)Nog C(B) can be expressed in terms of the potential U and a suitable
collection of paths on the manifold. Theorems 4.1.13 and 6.1.6 extend this
result to a much broader class of diffusions. However, the derivation of more
precise estimates of the type

C(B) = Ky(BV 1) N2 bm,

[cf. Holley, Kusuoka and Stroock (1989), Theorem 1.14] is well beyond the
scope of this section.
The main step in the proof of (6.1.8) is the followmg lemma.

6.1. 9 LEMMA. Let Assumption A and (6.1.7) hold. Let S(¢) = 3/ ¢, —
B*(¢t)| dt be the action functional associated with L* Consider ¢ € C([0,T];
M) such that ¢, = x and ¢ =y, and set ¢f = op_,, 0 <t <T.Then

7(¢*) = Sr(¢) + W(x) — W(y).
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PrOOF. By (6.1.1), (6.1.7) and the trivial fact that ¢} = —¢,_, we have
T
SH(¢*) =o(1) + 3 [ 161 + Bi (@)I" dt
_ 1 T . * 2
=o(1) + 5[ 16~ Ba(¢) + Bf (@) + By(o)" dt
T,
=o(1) + Sp(e) + fo (€!B5 (@) + By(,))dt

T
+3 [ (B*(9) = By(#)IBf (#) + Ba(9,)) dt.
In view of (6.1.3) and (6.1.5) we have

[ (80B5 (00 + By(o) de = 5 [(19 108 py(e) de

- l(log( ps(5)) — log( ps()))

= W(x) - W(y) +o(1).

™®

Next note that (6.1.2) implies
1 1
-V BB - -2—BVlog Pg| = BB - -2—BVlog pB|V10g Pg|>
but this together with (6.1.3) and (6.1.6) shows
1
(Bf — BylBj + B;) = _EV'(BZ; — Bg) =o(1)
and we get the result from the above. O
PROOF OF THEOREM 6.1.6. From Lemma 6.1.9 we see that if V*(i — j) are
the weights associated with S*, then
Vi) =V({i-)+V,-V.
In other words, the Markov chain associated with the asymptotics L} is the

adjoint of the chain associated with L;. Now (6.1.8) follows from Theorems
6.14 and 3.2.11. O

6.1.10. EXAMPLE (Perturbation of the symmetric case). Let U € C*(M) be
given and let C € I'(T'(M)) satisfy
| (6.1.11) V-C=0 and (CIVU) =0.

For instance, let A be a co-closed second order differential form with vanish-
ing exterior derivative dA = 0. Then C defined by

(CIVF) = A(VU, Vf), fecC* (M),
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satisfies (6.1.11). In particular, if M = T}, the N-dimensional torus equipped
with the usual Euclidian metric, we can choose C = AVU, where A is a
skew-symmetric matrix with constant entries.

Next choose

B,=B=--iVU+C.
Then m(dx) = e AVZ(B) 'my(dx) and
Bf=B*= —LVU-C. o
APPENDIX

A.1. Proof of the results of Section 2.2.

A.1.1. LEMMA. Assume that t — Ly, is differentiable. Then t — mp,, is
differentiable with

fi(x) = fz(x) L fi(x) - ’*"’( )f(x), xe€Q.

Ta(t)

ProOF. Let us first check that ¢ — m,, is differentiable. Let 7, be the
solution of

Z#B(t)(x)qﬁ(t)(x’y) = - Zwﬁ(t)(x)dﬁ(t)(x’ y), yeQ,
X X

Z 75';3(;)( x) =0
x
This system has a unique solution since £, qg,(x, ¥) = 0 implies X, G4.,,(x, y)
= 0 and Lg,, has rank (|| — 1). From this one gets
T+ ) X) = Tpy( ) = €75 (x) + 0()

and, therefore,t — 1, is differentiable. Nextletusverifythatf, = P;*(v,/ ;).
Take a bounded measurable A. Then

fnh- f, dmgp, = fnhdvt = fQPthdvo = fnPth-l)—de(t)

Ta(t)
= /Qh -P;"( ) dg sy

Ta(t)
Next note that

d
a-tfnhdut = fQPt[Lmh] dv,

V
dg sy
Ti3(t)

=/Q Lﬁ(t)h] Tor d”ﬁ(t) fh L P

= fnh Lo f; dmpy.-
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On the other hand, we have
d d T,
— [hdv,=— [k f,dmyy = [k -fidmy, + [h-f,L2d
dt fQ t dt fQ ft B(&) fQ f; T(t) f_(), ft Ta(t) et

and, therefore, f, = Lio [y — (g / ) fe O

A.1.2. LEMMA.

d 2 o)
@ o= D Ay = =28, (£ £) = [ (= D % d
_ 2[ (f, — B(t) dﬂp(t)-
T(t)

Proor. Using Lemma A.1.1 we see that

d 2 : 2 Ty
_d—tfﬂ(ft -1) d”'ﬁ(t) = fnz(ft -1)f, d”'p(t) + j;)(ft 1) T dﬂ'ﬁ(t)

Ty t)
2fﬂ(ft = VL, f, dmgsy — 2[Q(ﬁ - 1)1”:% dgr)

)2 Tty
+ f (fi = d )
Q ”B(t)

2 B(t)
—2&, (1i 1) f(ft o Ay s)
7T
-2 -1)2Qqn,,. O
[ (=D oy T80

Proor oF LEMMA 2.2.3. Note that (2.2.4) implies

M . .
(A.L3) K exp(~mp(t)) — 5 B(£) = MA(t).

Set u, = lf, — lll,rm) Then, by Lemma A.1.2 and (2.2.1), (2.2.2), (A.1.3) and
the Cauchy—Schwarz inequality, we get

M . , Tacs
i, < —2| K exp(~mp(t)) - ;B(t))ut —2f (fi= D

< —2MB(t)u, + 2MB(t)ul/?.
Thus if w, = u}’?, we have

~MB(t)w, + MB(¢),
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which implies (2.2.5). Next assume (2.2.6) and let 6 € Q.. Since
0= /Q(ft - dmy, = fﬂ*(ff = 1) d + fﬂ*(ft — 1) dm,

we have

Ta(t) Ty T
~[(fi = )22 dmy = - (f—l)( ——(8))dw
/9 ‘ () pO /9* ! Tty  TB() PO

IA

2MB(t) My () 2ul/?,

where we have used (2.2.2) and the Cauchy—Schwarz inequality. Remember-

ing that w, = ul/?, we get from the above that

. _ —~mB(t) M > %\1/2
w, < Ke — gﬁ(t) w, + 2MB(t) m,,(Q*)
= —MB(t)w, + 2MB(¢)my, ()2
Note that by (2.2.2), for 0 < s < ¢,

Jo (Tauy/ Taew)) 300
|10g(7rﬁ(s)(Q*)) - IOg(WBu)(Q*))' - -/st( ! ﬁ(f;*dfr;()z -

< M(B(t) = B(s))-

du

This yields

w, < e MBOy 4 2Mﬂ.ﬁ(“(9*)1/2 j:exp[—M( B(t) — B(s))
+ 3 10g (750 () — § log(my(2*))] B(s) ds

M .
— 5 (B(t) = B(s))| B(s) ds

<e MBOy, + 2M77B(t)(ﬂ*)1/2 ftexp[ 3
0

<e MBOw o + Ay, (Q%)V2. O
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