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PREDICTION AND NON-GAUSSIAN AUTOREGRESSIVE
STATIONARY SEQUENCES!

BY MURRAY ROSENBLATT
University of California, San Diego

The object of this paper is to show that under certain auxiliary as-
sumptions a stationary autoregressive sequence has a best predictor in
mean square that is linear if and only if the sequence is minimum phase
or is Gaussian when all moments are finite.

1. Introduction. We consider a stationary autoregressive sequence, that
is, a stationary sequence x; satisfying the system of equations

(11) xt—qblxt_l—---—d)pxt_p:ft, t:---,—1,0,1,---,

with the ¢,’s independent identically distributed, the ¢;’s real and E&; = 0,
E¢2 =0%> 0. Let
(12) ¢)(Z)=1—¢)12—..._¢pzp'

The system of equations is satisfied by a strictly stationary sequence (which
is uniquely determined) if and only if ¢(z) has no roots of absolute value 1.

In [4] a simple result of the type considered in this paper was established for
a first order autoregressive scheme x; satisfying

(13) xt_th—lzé‘:t: t=""_1’0,1""’ 0<|B|<1
Clearly the best one-step predictor (predicting ahead) of x;y; is the linear

predictor Bx;. However, the best one-step predictor with time reversed for the
process (1.3),

E(xt | x¢41),

is linear if and only if the distribution of x; is Gaussian. Let G be the distri-
bution function of ¢; and let F' be the distribution function of x;. It is clear
that F' satisfies the equation

F()=G()«F(g™'),

where the asterisk (*) denotes the convolution operation. If ¢ is the charac-
teristic function of &;, n is the characteristic function of x;,

n(r) = [ o(B77),
j=0
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240 M. ROSENBLATT

and ¢(71,72) = Eexp(iTix_1 + iT9x0) is the joint characteristic function of
x_1 and x¢, the following relation is satisfied:

,(0,72) = 2(r3) — S/ (r2)n(Br2)
(1.4) B B

:fexp(irzx)iE(x_l | x0 = x) dF(x).
Let
E(x)zfx udG(u).

The relation (1.4) implies that E(x_; | xg = x) is given by
1 1,
i —'B—{G * F(B1)}(dx)/F(dx).

A related problem for heavy-tailed distributions is considered in [2].
Factor the polynomial (1.2),

#(2) = 9" (2)¢*(2),

where
¢t (2)=1—-601z—---—0,2"#£0 for|z| <1,
¢ (2) =1-0,412—---—0,2°#0 for|z|>1
and r, s > 0, r+s = p. Given that m1,...,m,,m,;1,...,m, are the p zeros of

d(z),let |m;|>1,i=1,...,r,and |m;| <1,i=r+1,...,p. Then

r p
ot (z)=[]1-m;'2), ¢ ()= [] A-m;'2).
i=1 i=r+1
The autoregressive sequence (1.1) is called minimum phase if r = p and non-
minimum phase otherwise. If the sequence is minimum phase, clearly one can
write

(1.5) Xy = Zajft—j,
j=0
where
(1.6) d(2)' =) aj2/,
Jj=0

and the «;’s decay to zero exponentially fast as j — oo. The relations (1.5)
and (1.6) imply that the o-algebras generated by {¢;, j < ¢} and {x;, j < ¢}
are the same. This implies that in the minimum phase case the best predictor
in mean square of x;,1 given xj, j < t, is linear and given by

o0
xf=) ajéaj.
=1
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Our object is to show that in the non-minimum phase non-Gaussian case,
the best predictor in mean square of x,,; given x;, j < t, is nonlinear if
all moments of ¢; are finite and the roots m;, i =r +1,..., p, are distinct. In
Section 2 we show that the stationary solution of (1.1) is pth order Markovian.
This implies that the best one-step predictor in mean square in terms of the
past is a function of the p preceding variables. That the solution of (1.1) is
pth order Markovian is obvious in the minimum phase case since the solution
is causal, implying that ¢; is independent of the past of the x process, that
is, %;_1, X;—2,.... In the non-minimum phase case the x; process is noncausal
and so &; is not independent of the past of the x process. The Markovian
property of the x process is used in Section 3 where the principal result on
the nonlinearity of the best predictor in mean square of x;,1 given x, j < ¢,is
derived in the non-minimum phase non-Gaussian case when all the moments
of the ¢; are finite and the roots m;, i =r +1,..., p, are distinct. One should
note that the first order autoregressive scheme with time reversal discussed
in this section is not minimum phase.

2. The Markov property. Our object in this section is to show that the
stationary autoregressive sequence is pth order Markovian, whether it is min-
imum phase or not. Part of the argument parallels one given in [1]. The argu-
ment is carried out in the case r, s > 0, since it is obvious otherwise.

Introduce the causal and purely noncausal sequences

Ui = ¢*(B)xy, Vi=¢"(B)xs,
with B the one-step backshift symbol, that is, Bx; = x;_;. We then have

Ut=2aj§t—j’ Vt=Z:Bj§t+j’
=0 j=s
where
PH () = a2, ¢ (2)t=) Bz
J=0 J=s

Let us also note that we have

Xy = Z ¢j§t—ja
Jj=—00
where
(2.1) $(2)t= 37 sl
J=—00

We shall carry through the argument assuming the existence of positive den-
_ sity functions. However, essentially the same argument can be carried through
without this assumption using a more elaborate notation. Let the density
function of the ¢ random variables be g. The random variables U, I < ¢, are
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independent of V;, I > t — s + 1, and so the joint probability density function

Of(U1’~ . "Un’ Vn—s+1’° ) Vn) is

ho (U, U»{ [1 &= 0Ues— = 0,0 |y (Voo Vi),

t=r+1

where Ay and Ay are the joint probability density functions of (U3,...,U,) and
(Vu—s+1,.-., V), respectively. Consider the linear transformation 7', given by

[ U | | U,
. . B Ul T
Us Us .
Usia Xey1 — Orp1%s — - — Opx1 :
i Us
= = Tn
. . X1
Un Xn—Orp1Xn_1— -+ — O0pXn_s .
Viast1 Xn_st1— 01X s — ... — 025 41 :
. | Xn |
| V. B Xp—01%pn-1—...— 0r%p_»

Using this transformation one can see that the joint density of (Ujy,...

X1,...,%p) 18

~ ~ p ~ ~ ~
@, U] 1T &0 = 0r0cs =+ - 0,0}

t=r+1

X{ I1 g(xt—d>1xt—1—~-~—¢pxt—p)}

t=p+1
x hy(¢T(B)xXp—ss1,..., ¢ (B)x,) det(T)l,
where

U = Uy, ifl <s,
L= X — Orp1xp-1 — - — Opx1, ifl>s.

’US’

If s > 0, In|det(T,)| ~ In|6,|""P. Let us compute the conditional density of
XnyXn—1s-..Xn_p GIVeN Xp_d, Xn_1-d,..., %1, Us,..., U.l‘ The one-step (d = 1)

conditional density is given by

“hy (¢ (B)xn-si1,, T (B)xn) |det(Th)|

§lom = brxn-1 = = o) p T T T (B xt) A6 Tyr)]”
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whereas if 1 < d < p + 1, one obtains

d-1
{I:Lg(xn—u —P1Xp_1—y—— ¢pxn—u—p)}

" hy (¢t (B)xn-s+1,--., ¢ (B)xn)  det(T)
hyv(¢T(B)xn—q—s+1,..., ¢ (B)xn_q) det(Tr_q) '
If d > p + 1, the conditional probability density is

//{ ]_[ g(xt - d)lxt—l J _d)pxt—p)}dxn—d+1"‘dxn_p_1

t=n—d+1
hv(¢*(B)xn—si1,..., 9" (B)x,)  det(T,)
hv(¢T(B)xn—q—s+1,..., ¢ (B)xp_q) det(Tr_q) '
Notice that in all these cases the conditional probability density depends on

Xn—ds Xn-d—1,---, %1, Us, ..., Uy only through x,_g4, ..., xs_q_p+1. However, this
implies that the conditional probability density of x,, x,-1,...,%n—p given
Xn-d, Xn—1-d,-..,%x1 is the same by a standard argument using conditional

expectations. The argument is that if f is integrable and # and & are o-
algebras, then if E(f | 4,%) = h is % measurable, it follows that E(f |
B)=EE(f|%4,~)| #B)=Eh| %) =h. Thus {X,} is a sequence that is
pth order Markovian.

3. A functional equation for the characteristic function. The char-
acteristic function of x; is clearly

o0
()= ] e(gst).
k=—00
The joint characteristic function of the random variables x_s, x_s41,..., %0 i8
S (o] S
(75, Ts-1,...,70) = E{exp[i Zsz—z:“ = J1 ¢(Z Tl‘l’k—l),
1=0 k=—0c0 =0

whereas the joint characteristic function of x_g, x_¢41,...,%-1 18

o0

W7o Te-1,--,71) = [] GD(ZTzlﬂk-z)-
=1

k=—00

It is clear that

d
3“77(7'3, e T1, TO)IT():O = 7’7’0(78’ vy 7170)
T0
S .
= f 1x0 exp(i Z nx_l> dF(x_g,...,%_1,%0),
=1

= ifE(xo | x_l,...,x_s)exp<i an_l> dF(x_g,...,%_1),
=1
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where F(x_s,...,x_1) is the joint distribution function of x_s,...,x_;. In the
case of the pth order autoregressive sequence x;, since the sequence is a
Markov process of order p, it is sufficient in considering the best one-step
predictor (in mean square) to consider s = p, since the one-step predictor
of xo given the whole past will depend only on the p immediately preceding
random variables. Now

J Nro(Tpy. .., 71,0)
—1 RN B} T0=0 = i & -
70 og n(7p 71, 70) |ro=0 R
p
Z re (Z Tk z)/€0<z Tzd/k—z),
k=—00 =1
whereas
9 _ p
Tlog NTpye.nsT1) = Z Ur-jo (Z TR z)/‘P(Z Tlll’k-l)
Tj k=—o00 =1
for some neighborhood of the origin |7p|,...,|71| < &, & > 0. If the best predic-
tor is linear, we must have
p
(3.1 nTo(Tp,-“’Tl’O):ijﬁTj(pr'--’Tl),
j=1

where the b;’s are the coefficients of the best linear predictor of x¢ in mean
square

p
xg=Y bjx_j.
j=1
This is in turn equivalent to
p
(3.2) Z (ll’k - Zbl‘/’k z) (Z lel'k-j) =0,
k=—00 Jj=1
where h(7) = <p’(7')/<p(r) for (71,...,7p) such that %(7p,...,71) # 0. That (3.1)
is equivalent to (3.2) follows from the fact that
I”Irj(pr ceey TO)I = {E(xi)}l/z

and that the ¢ tend to zero exponentially as |k| — oo. The equation (3.2) is
similar to the type of functional equation taken up in [3].

The ¢, are the coefficients in the Laurent expansion of ¢(z)~1. The b; can
be read off from the polynomial with constant coefficient positive, having the
same absolute value as ¢(z) when z = e~/* and with all its zeros outside the
unit disc. Let

82 = (120 (5
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Notice that the roots of ¢**(z) are the inverses of the roots of ¢*(z). Thus the
polynomial

{(2) = 7 (2)¢™(2)

has all its roots outside the unit disc and has the same absolute value as
¢(z). Notice that the coefficients 5, — Zle bip_; are those in the Laurent
expansion of

{(2)p(2)" = ¢™(2)d* ().

If the sequence is minimum phase, this function is 1 and so the coefficients
are O for £ # 0 and 1 when k& = 0. Further, in the minimum phase case, ¢, =0
for £ < 0. The relation (3.2) is automatically satisfied in the minimum phase
case whatever the distribution G (as long as E¢; = 0 and E¢? < co). However,
we had already seen this before using another argument.

PROPOSITION 1. Consider the stationary solution x; of the system of equa-
tions (1.1), where the &; are independent, identically distributed with E¢; = 0,
E¢; = 0% < 00 and characteristic polynomial ¢(-) [clearly ¢(z) # 0 if |z| = 1].
Then the best one-step predictor for x; is linear if and only if (3.2) holds where
the ¢1’s are given by (2.1) and the b;’s are the coefficients of the best linear
predictor.

It is of some interest to essentially characterize the sequence
p
’)’k=‘/’k'—2bll/fk—l, k=...,-1,0,1,....
=1

The generating function of the i, is ¢(2)~! [see(2.1)]. Since the coefficients b;
correspond to best linear one-step predictor in mean square,

E Po((1=miz)m;t
1= Y el = eba) [] |
l———zl i=l:!-1 (1- m; lz)
with ¢ a nonzero constant. It then follows that
& P (1 — miz)m.‘l
3.3) y(z) = yrzt =c {————f‘}
kgoo i=1—r-[i-1 (1-m;'z)
Since
w . .
mI1-—zm)(1-m2) 1=m+(m?-1) Zml—lz—J
j=1

when |m| < 1, if follows that

v =0 fork>0.
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THEOREM 1. Consider the stationary autoregressive sequence {x;} satis-
fving (1.1) and assume that the random variables &; have all moments fi-
nite. Further let the sequence be non-minimum phase with all the zeros m;,
it =r+1,...,p, simple. Then if the best one-step predictor is linear, the ¢
distribution is Gaussian.

Suppose that the ¢ distribution is non-Gaussian. There are then an infinite
number of nonzero cumulants w, # 0, a > 2, of the ¢ distribution. Also

p
(/j_k= Z ajmlj-, k>0,
J=r+l1

for some coefficients a; #0, j=r+1,..., p. If ugq1 # 0 for some a > 2, the
relation (3.2) implies that

(3.4) Z)’—klﬁ—k—ll "'¢—k—l,, =0’ ll,-'->la = 1)"-7p'
k=0

For the ath order partial derivative of the expression in (3.2) with respect to
Tiyeooy Ty, @t 7y =+ =175, =0, i% 1y, 10! is multiplied by the expression on
the left of (3.4). The equations (3.4) can be rewritten

p 00
. . mb la . Ve —
Z aJl'”aJamjl'”mjaZ’y—k(mJl'”mJa) _0,
J1sesJa=r+1 k=0

li,...,ls = 1,...,p. Consider the set of equations obtained by letting
li,...,la =1,...,s. The matrix of this set of equations is

M=(M;;)={a; -a;mi mh}
j = (jla---:ja)’ l = (ll,---,la): jly---aja =r+ 1:""pal1:-~"la = 1,...,3.
The determinant of this matrix is ([T5_, +1@y)® times the ath power of the
Vandermonde determinant

|mlj; j=r+1...,p, l=1,...,s|

Since the determinant is nonzero, we must have

')’((mh .o 'mja)_l) = Z fy_k(mjl . mja)k — 0’
k=0

Jji,..-sja=r+1,..., p. These are too many zeros for the function y(z) and
so we must have u,,.1 = 0. Since this holds for any a > 2, the ¢ distribution
, must be Gaussian .
Non-Gaussian non-minimum phase autoregressive sequences arise natu-
rally when considering transects of certain classes of random fields.
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