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ON POSITIVE HARRIS RECURRENCE OF MULTICLASS
QUEUEING NETWORKS: A UNIFIED APPROACH
VIA FLUID LIMIT MODELS!

By J. G. DaI
Georgia Institute of Technology

It is now known that the usual traffic condition (the nominal load be-
ing less than 1 at each station) is not sufficient for stability for a multiclass
open queueing network. Although there has been some progress in estab-
lishing the stability conditions for a multiclass network, there is no unified
approach to this problem. In this paper, we prove that a queueing network
is positive Harris recurrent if the corresponding fluid limit model eventu-
ally reaches zero and stays there regardless of the initial system configura-
tion. As an application of the result, we prove that single class networks,
multiclass feedforward networks and first-buffer—first-served preemptive
resume discipline in a reentrant line are positive Harris recurrent under
the usual traffic condition.

1. Introduction. We consider a network composed of d single server sta-
tions, which we index by i = 1,...,d. The network is populated by K classes of
customers, and each class k has its own exogenous arrival process with inter-
arrival times {£,(n), n > 1}. We allow £,(n) = oo for all n for some class k. In
this case, the external arrival process for class k is null. We let & denote the
set of classes with nonnull exogenous arrivals. Hereafter, whenever external
arrival processes are under discussion, only classes with nonnull exogenous
arrivals are considered. Class k customers require service at station s(k), and
their service times are {n;(n), n > 1}. Upon completion of service at station
s(k), a class k& customer becomes a customer of class [ with probability P,
and exits the network with probability 1 — Y"; P;, independent of all previous
history. To be more precise about the last statement, let ¢*(n) be the rout-
ing vector for the nth class k2 customer who finishes service at station s(k).
The Ith component of ¢*(n) is 1 if this customer becomes a class I customer
and zero otherwise. Therefore, ¢*(n) is a K-dimensional “Bernoulli random
variable” with parameter P, where P; denotes the kth row of P = (Py;) and
primes denote transpose. (All vectors are envisioned as column vectors.) We
assume that ¢* = {¢*(n), n > 1} is iid, and ¢,..., ¢¥ are independent and
are independent of the arrival processes and service processes. Such a routing
mechanism is often called Bernoulli routing. The transition matrix P = (Py;)
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is taken to be transient. That is,
(1.1) I+P+P2+...1is convergent.

Condition (1.1) implies that the expected number of visits to class / by a class
k customer is finite. Therefore, all customers eventually leave the network.
Hence the networks we are considering are open queueing networks. We as-
sume that the waiting buffer at each station has infinite capacity. To avoid
trivial complications, we assume that no two events can happen simultane-
ously. Hereafter, we will refer to such a network as a multiclass open queueing
network, or simply a multiclass network. If there is only one class, say class
1, that has nonnull exogenous arrivals and the entries of the routing matrix
take the form P; ;1 =1for k=1,..., K — 1 and zero for all others, then the
multiclass network is called a reentrant line; see [32]. An example of such a
network is given at the end of this section.

So far, the sequences of interarrival times and service times are quite gen-
eral. We need to put some assumptions on them. Throughout this paper, we
make the following three assumptions on the network. We first assume that

é1,...,¢x,m,...,nk are iid sequences and they

1.2) are mutually independent.

This independence assumption may be relaxed for some networks; see the
remark following Proposition 2.1. Next, we put some moment assumptions on
interarrival and service times. We assume that

E[7:(1)] <0 fork=1,...,K,
E[£,(1)] <00 for ke &.

Finally, we assume that interarrival times are unbounded and spread out.
That is, for each & € &, there exist some integer j, > 0 and some function
pr(x) >0 on Ry with [5° pi(x) dx > 0, such that

(1.3)

1.4) P{(r(1) >x} >0 forany x>0

and
Jk b

(1.5) P{agzgk(i) sb} zf pu(x)dx forany 0 <a <b.
i=1 a

Let C; = {k : s(k) = i}. The set C; is called the constituency for station i.
Let C be a d x K incidence matrix,
1, ifs(k) =4,
(1.6) Cn = {0, otherwise.
Let a, = 1/E[££(1)] and mp = E[1x(1)] be the arrival rate and mean service

time for class % customers, respectively. In light of assumption (1.1), (I —P’)~!
+ exists and ’

(I-P)Yl=+P+P2+...).
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Put A = (I — P’)~la. One interprets A, as the effective arrival rate to class k.
Foreachi=1,...,d let

1.7 pi = Z Apmp.

keC,
We call p; the nominal workload for server i per unit of time. In vector form,
we have p = CM A, where

(1.8) M = diag(my,...,mg).

The main objective of this paper is to establish a sufficient condition for the
stability of a multiclass open queueing network under a variety of queueing
disciplines. A queueing discipline at station i dictates which customer will
be served next when server i completes a service. We say that a queueing
discipline for a multiclass network is stable if the underlying Markov process
describing the network dynamics is positive Harris recurrent, whose precise
definition is given in Section 3. When there is no ambiguity in the underlying
queueing discipline, we say that a queueing network is stable if the queueing
discipline under discussion is stable. Our main theorem (Theorem 4.2) states
that a queueing network is stable if the corresponding fluid limit model is
stable. The latter phrase means that the fluid limit model eventually reaches
zero and stays there regardless of the initial system configuration. To make
the theorem practical, we give a systematic treatment of fluid limit models. As
an application of the theorem, we prove that single class networks, multiclass
feedforward networks and first-buffer-first-served (FBFS) preemptive resume
discipline in a reentrant line are positive Harris recurrent under the usual
traffic condition

1.9) pi <1, i=1,...,d,

or in vector form p < e, where p = (p1,...,pq) and e is the d-dimensional
vector of ones. (Vector inequalities are interpreted componentwise.)

Our theorem is a generalization of recent work by Rybko and Stolyar [47],
who mainly considered the stability of multiclass Markovian networks with
discrete state space. Their brilliant analysis, via fluid models, leads to the sta-
bility of a two station multiclass network under the first-in—first-out (FIFO)
queueing discipline. They also showed that under a certain “bad” priority dis-
cipline, the two-station network was not stable under (1.9). However, in their
paper, convergence to a fluid model was never addressed. In other words, they
did not consider the kind of fluid limit that we do here. Rather, they worked
with the formal fluid analog of the queueing network. Therefore, they needed a
parallel analysis for the original network even if they proved a certain property
for the fluid model. As far as the stability of a queueing network is concerned,
our theorem is attractive in that readers can focus on the fluid limit itself
without explicitly going back to-the original queueing network. This work was
initially motivated by recent work of Dupuis and Williams [17], where positive
recurrence for d-dimensional reflecting Brownian motion in an orthant was
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investigated. By constructing a Lyapunov function, they showed that a semi-
martingale reflecting Brownian motion in an orthant is positive recurrent if
all solutions of the corresponding deterministic Skorohod problem for a driv-
ing noiseless drift path are stable. In a similar philosophical vein, Malyshev
has obtained conditions for positive recurrence of reflected random walks in
the orthant by studying related deterministic dynamical systems; see [36] and
the references therein.

Our description of a multiclass network is now quite standard. (The class
of queueing networks described here is in fact an important special case of the
setup in [24].) In his pioneering paper on queueing networks, Jackson [26] as-
sumed that customers visiting or occupying any given station are essentially
indistinguishable from one another, and that a customer completing service
at station ¢ will move next to station j with some fixed probability P;;, in-
dependent of all previous history. Thus in Jackson’s networks, each station
serves a single customer class; hence, these networks have been called single-
class networks. Jackson’s model was extended by Baskett, Chandy, Muntz and
Palacios [2] and Kelly [30] to the multiclass setting. In both cases, they as-
sumed either special types of service disciplines or exponential distributions
for interarrival and service times.

For a long time, research on stability for open queueing networks under gen-
eral distributional assumptions has mostly been restricted to single class net-
works or generalized Jackson networks; see [4, 50, 38, 1, 7]. However, recently
stability conditions for multiclass networks have received a lot of attention. In
the deterministic setting, Kumar and his coauthors did the pioneering work
on the stability of general multiclass networks under a variety of queueing
disciplines, see [44, 34, 35, 32]. In particular, they proved that FBFS and last-
buffer—first-served (LBFS) are stable under (1.9) in a deterministic reentrant
line. They also found that p; < 1 for all i is not sufficient for stability under cer-
tain priority disciplines. Rybko and Stolyar [47] found that this phenomenon
still exists for stochastic networks. Even more surprising, Bramson [6] found
a two station multiclass stochastic network, where FIFO discipline is not sta-
ble even if (1.9) holds. Seidman [48], independently, found a deterministic
example showing a similar phenomenon. These examples demonstrate that to
obtain a general criterion in terms of basic system parameters like (1.9) for
stability of a multiclass network is very difficult. On the positive side, Ku-
mar and Meyn [33] recently gave some sufficient conditions for the stability
of multiclass networks with Poisson arrivals and exponential service times.
Their sufficient condition, in terms of the solution to a linear program, im-
plies, among other things, that moments of some processes associated with
the network converge as time ¢t — oo. More recently, while this paper was
under review, Dai and Weiss [13] and Down and Meyn [16] showed that piece-
wise Lyapunov functions, initiated by Botvitch and Zamyatin [5], are powerful
tools in characterizing stability regions for certain priority disciplines.

For readers who are not familiar with the recent literature on multiclass
networks, let us consider an example of a two station multiclass network
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FIG. 1. A variant of Bramson’s two station multiclass network.

pictured in Figure 1. It is a reentrant line. There is one type of customer
arriving at station 1 from the outside according to a Poisson process with
rate 1. An arriving customer visits stations 1, 2, 2, 2, 2, 1 and exits. We call
customers in the kth stage of visit class & customers. The variants of this
two station model were studied by Kumar [32], Whitt [51] and Bramson [6].
Obviously,

p1=my+ me, p2 = mg+ mg+ my+ ms.

Assume that all service times are exponential and mg = 0.899, mg = 0.897
and m; = m3g = mg = ms = 0.001. Therefore the nominal loads are p; = 0.90
and py = 0.90. One would hope that such a network is stable under FIFO
discipline and that the long run average queue lengths are finite. Let T, be
the throughput time (total time in the network) of the nth customer. Let

_ 12

We simulated this network starting from empty for one replication, which cor-
responds to some particular choice of seeds for random number generators. In
this replication, we let n vary from 1000 to 1,000,000. The average throughput
times (rounded to integers) are tabulated in the “exponential” row of Table 1.
It seems that as n increases, 7', increases almost linearly. We conjecture that

T, — oo almost surely

as n — oo. If we replace all exponential random variables by constants (their
respective means), a similar phenomenon occurs, as evidenced in the “deter-
ministic” row of Table 1. Figure 2 plots the queue lengths at both stations in
100 and 1000 units of simulation time. Clearly, the queue lengths oscillate
with increasing magnitude. Most of the time, only one of the two servers is
working. This mutual blocking apparently causes the instability. Readers are
referred to [6] for more insight.
The following notation will be used in the rest of th1s paper. For a finite set
A, |A| denotes the cardinality of A. Let R, = [0,00). The set of nonnegative
integers is Z,.. Dg[0,00) is the space of right continuous functions on R,
having left limits on (0, c0), endowed with the Skorohod topology; see Ethier
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FIG. 2. Queue lengths in 100 and 1000 units of time for the deterministic network.
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TABLE 1
Simulation estimates of average throughput time T,

n 1000 5000 10,000 50,000 100,000 1,000,000

Exponential 252 1352 2848 15,270 27,284 267,353
Deterministic 258 1346 2881 14,711 29,138 244,480

and Kurtz [18]. Let Cr[0, c0) be the subset of continuous paths in Dg[0, c0).
The following fact is useful in this paper. Assume that f, € Dg[0, o) for each
n and f € Cgr[0,00). Then f, — f in the Skorohod topology if and only if for
each t > 0,

(1.10) sup |fa(s) = f(s)]—> 0 asn— oc.

O<s<t

When (1.10) holds for all ¢ > 0, we say that f, — f uniformly on compact
sets, or simply f, — f u.o.c. The symbol = denotes weak convergence or
convergence in distribution.

2. Preliminaries.

2.1. State descriptions. We now define a Markov process X = { X (¢),¢ > 0}
that describes the dynamics of the queueing network. If all the interarrival
time and service time distributions are exponential, then queue lengths, in
addition to the order of customer arrivals in FIFO discipline, are sufficient
for a state description. In general, we need to augment the previous state de-
scription with the remaining exogenous interarrival times and the remaining
service times. Therefore, in general, the state X(¢) at time ¢ is

X(2) =(Q@),U®), V(¢)),

where Q(¢) captures how customers are lined up at each station, U(¢) =
(Ur(t): k € &) € ]R'f' and V(¢) = (Vi(¢t),...,Vg(t)) € ]Rf. For k € &,
Ur(t) is the remaining time before the next class k& customer will arrive from
outside. For k2 = 1,..., K, V,(#) is the remaining service time for the class %
customer that is in service, which is set to be zero if @;(¢) = 0. Both U(¢)
and V(t) are taken to be right continuous. Let X be the set of all possible
states that X can take. We use |Q(#)| to denote the total queue length in the
network at time ¢ For a u € RX, the norm of u is |u| = Z£{=1 |ur|. We define
the norm | X (¢)| of X(¢) to be the total queue length plus the total remaining
interarrival time and total remaining service time at ¢. That is,

X = 1)+ U@+ V@)l

The precise state description depends on a queueing discipline. Here we give
some examples.
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FIFO discipline. Under the FIFO discipline, customers at each station are
served on the first-in—first-out basis. For station i define

(2.1) Qi(t) = (ki1 kigy- - RinNit))s

where k; ; is the class number for the jth customer at station i and N;(¢)
is the queue length (including possibly the one being served) at station i. [If
N;(t) =0, Q;(¢) is defined to be an empty list.] Then we can take

Q@) = (Qu(2), ..., Qq(2)).

At each station i with N;(¢) > 0, there is only one customer that can receive
partial service. Thus,

X(t) = (Q(t)’ U(t), (sz,l(t)(t),i = 1’ cee ’d))

is the state at time ¢. Let Zx = {1,2,..., K} and Z% be the set of finitely
terminated sequences taking values in Zg. (Zero length sequence corresponds
to the situation where there are no customers at the station.) It is evident
that

Q;(t) € Z%.
Hence
X c (Z2)* x RIE™,

We assume that X is endowed with the natural induced topology from (Z3)? x
Rf |+d .

Priority disciplines. Under priority disciplines, customers at each station
are ranked according to their class designations. Classes to be served at station
i are ranked as |C;|, ..., 1. The class with rank |C;| has the highest priority
and the class with rank 1 has the lowest priority. When the server finishes
service of a customer, the server picks a customer from a nonempty class with
the highest rank. If there is no customer at the station, the server stays idle.
To be concrete, within each class, customers are served in FIFO order. In the
case that ties among classes are allowed, all customers with the same rank
are served in FIFO order. There are two different modes for a priority disci-
pline. In nonpreemptive mode, the server has to finish service of the current
customer being served before choosing another customer to work on. In pre-
emptive resume mode, when an arriving customer has rank higher than the
one currently being served, the customer in service is preempted immediately
until all customers with higher ranks are served. At that point, the server
recommences service of the preempted customer until service is completed or
a higher priority customer arrives. For preemptive resume priority discipline,
we can take Q(¢) as ’

2.2) Q(t) = Q(t) = (Q1(?),..., Qk(?))
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and
X(t) =(Q(),U(), V(¢)),

where Q(t) is the queue length for class £ customers at time ¢. In this case
we have

X c ZX x RIFHE,

For nonpreemptive priority discipline, at each station there is at most one
customer that can receive partial service. Thus,

X(t) = (Q(t)’ U(t)’ kl(t)’ Vk,(t)(t),i = 1’ cee ’d)’

where k;(t) is the class number of the customer being served at station i at
time ¢. If there are no customers at station i at time ¢, %;(¢) is set to be zero
and Vy, ;) (¢t) = 0. In the nonpreemptive case,

XCfo]R'fdeZ‘Ii{.

Head-of-line processor sharing discipline. With this discipline, the lead
customer in all customer classes visiting a station simultaneously receives
service. Hence, we can take

X (t) = (Qt),U(2), V(2)),
where Q(¢) = Q(¢) as in (2.2). The state space
X c zX x RIFHK,
Processor sharing discipline. With a processor-sharing discipline, all cus-
tomers visiting a station simultaneously receive service. Let V; ;(¢) be the re-
maining service time for the jth customer at station ¢ at time ¢. [If N;(¢) =0,

v, ;(t) is taken to be zero. We can envision that customers at each station are
lined up according to the FIFO discipline.] The state is

X(t) = (Qt),U(2), V(2)),
where Q(¢) is defined in (2.1), V(¢) = (V1(2),..., V4(t)) and
Vi) = (Vin(t),..., Vinw(®).
The state space
X c (Z)* xR x (RP)4,

where R is the space of all finitely terminated sequences in R.. The norm of
X (¢) is still the total queue length plus the total remaining interarrival time
- and the total remaining service time.
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REMARK. It turns out that the processor sharing discipline or any disci-
plines in which the number of customers receiving simultaneous service is
unbounded will slightly alter the fluid limit model discussed in Section 4.
Specifically, the statement and the proof of Theorem 4.1 need some modifica-
tions. However, all results in Section 3 are still valid without any modification.
In order to keep a clean treatment in the paper, we shall not include these
queueing disciplines in the discussion. However, extensions of Theorem 4.2 to
cover these disciplines should be evident.

2.2. Strong Markov property. To establish that X = {X(¢), ¢ > 0} is a
strong Markov process, we follow Sections 2.3 and 2.4 of Kaspi and Mandel-
baum [28]. Because of the independence assumption (1.2), we can check that
X is Markov for each of the disciplines discussed in Section 2.1. As time ¢
goes on, Ux(t) and V(t) decrease while the remainder of the state remains
constant. As one of these residual processes reaches zero, a jump occurs for
X. Hence X = {X(¢t), t > 0} is a piecewise-deterministic Markov (PDM) pro-
cess that conforms to Assumption 3.1 of Davis [15]. The following proposition
follows from Davis ([15], page 362).

PROPOSITION 2.1. X = {X(¢), t > 0} is a strong Markov process with state
space X

REMARK. Condition (1.2) is mainly used to establish the Markov property
for X. In certain networks, this condition can be relaxed—for example, for
the reentrant line presented at the end of Section 1, we can weaken the as-
sumption on the service times. For that network, it is enough to assume that
{(ni(n),...,mx(n)), n > 1} is iid. For fixed n, ni(n), ..., ng(n) may have
arbitrary dependency. This feature is useful for certain applications, notably
in computer communications and manufacturing systems. There the length
of a computer message or the size of a manufacturing lot may be random.
However, the service times in general are proportional to the message length
or lot size, and therefore are positively correlated.

Let B x be the Borel o-field of X. Having verified that X is a PDM, as in
Section 2.4 of Kaspi and Mandelbaum [28], we may assume at our disposal the
usual elements that constitute a Markovian environment for X. Formally, it
will be assumed hereafter that (), F, F;, X, 6, P,) is a Borel right process on
the measurable state space (X, B x). In particular, X = { X (¢), ¢ > 0} has right-
continuous sample paths, it is defined on (Q,F) and is adapted to {F;,¢ > 0},
{Py, x € X} are probability measures on ({),F) such that for all x € X,

PAX(0) =x} =1,
‘ and

Ex {f(X °6,) | F,} = EX(T)f(X) on {7 < oo},Px-a.s.,
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where 7 is any F;-stopping time

(X ©°6:)(w) ={X(7(w) +¢t,w),¢ >0}
and f is any real-valued bounded measurable function (the domain of f is
the space of X-valued right-continuous functions on [0, c0), equipped with the

Kolmogorov o-field generated by cylinders). Let P¥(x,A), A € By, be the
transition probability of X. That is,

Pi(x,A) =P(X(¢t) € A).

A nonzero measure 7 on (X, B x) is invariant for X if 7 is o-finite, and
m(A) = fs Pi(x,A) m(dx) forall A eByx.

An invariant measure 7 is said to be unique if the only invariant measures
for X are positive scalar multiples of . We denote X° = {x € X : |x| > 0}.

3. Harris positive recurrent chains. Let 74 = inf{¢t > 0: X; € A}.
The process X is Harris recurrent if there exists some o-finite measure u on
(X, B x), such that whenever u(A) >0 and A € By,

P{ra <00} =1

It is well known that if X is Harris recurrent, then an essentially unique
invariant measure 7 exists; see, for example, [21]. If the invariant measure is
finite, then it may be normalized to a probability measure. In this case X is
called positive Harris recurrent.

REMARK 1. Harris recurrence implies an apparently stronger condition
that

lefooo 14(X(s))ds = oo} —1,

whenever u'(A) > 0 for some o-finite measure u'. See [29] or [40], Theo-
rem 1.1.

REMARK 2. Assume that X = {X(¢), ¢ > 0} is positive Harris recurrent
with the unique stationary probability distribution 7. For any measurable
function f on (X,B x), let

a(f) = fx f(x) m(dx)

whenever the integral makes sense. It was proved in [12] that positive recur-
rence implies the following ergodic property: for every measurable f on X with

m(1f1) < oo,

t—>00

t ‘
lim % f £(X(s))ds = m(f), Py-a.s. for each x € X.
0
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See also Theorem 17.0.1(i) of [39] and Section 2.5C of [28]. Take f(x) to be the
number of class k& customers when the state is in x. Because f is nonnegative,
positive Harris recurrence for X implies that each customer class £,

t
tlim %f Qr(s)ds — w(f) Py-a.s. for each x € X,
—00 0

where Qp(t) = f(X(¢)) is the class k& queue length at time ¢. Note that in
general 7(f) may be infinite.

Suppose that a is a general probability distribution on R, and define the
Markov transition function K, as

o0
Ka(x,A)E/ P'(x, A) a(d).
0
A nonempty set A € B x is called w,-petite if p, is a nontrivial measure on
(X,B x) and a is a probability distribution on (0, co) satisfying
Kq(x,-) > pa(-)

for all x € A. The distribution a is called the sampling distribution for the
petite set A; see Section 4.1 of Meyn and Tweedie [41]. The following result
is from [42], Theorem 4.1.

LEMMA 3.1. Let B be a closed petite set, suppose that P,(7p < o0) =1 and
that for some 6 > 0,

(3.1) sup Ex[75(8)] < oo,
xeB

where tg(8) = inf{t > 6 : X(¢) € B}. Then X is positive Harris recurrent.

LEMMA 3.2. Under assumptions (1.4) and (1.5) on interarrival distribu-
tions, B = {|x| < k} is a closed petite set for any k > 0.

ProOF. This lemma can be proved in a way similar to the proof of
Lemma 3.7 of [38]. O

REMARK. This is the only place where conditions (1.4) and (1.5) are used.
THEOREM 3.1.  If there exists 6 > O such that
1
(3.2) lim 7|E|X"(|x|5)| =0,

Jx|—o0 |

then (3.1) holds for B = {x € X : |x| < k} with some k > 0. In particular, X is
positive Harris recurrent.

REMARK. Here we use X* to denote X starting from x. Note that E| X*(¢)|
can be alternatively written as E,| X (¢)|.
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PROOF. Let 0 < & < 1, for example, 1/2. From (3.2) there exists « > 1 such
that

(3.3) I?1|E|Xx(|x|6)1 <1-¢

for all x such thét |x| > k. Let B={x € X: |x| < «}. It follows from (1.3) that,
for some constant b > 0,

(3.4) EIX*(|x|6)| < (1 —&)|x| + blp(x)

for all x. Let

o= |z

Because k > 1, n(x) > 6 for all x € X. It follows from (3.4) that

EIX*(n(x))] < (1 — &)|x| + blp(x) < |x] — gnm +B1p(x)

for some b > 0 and all x € X. Proceeding exactly the same as in the proof of
Theorem 2.1(ii) of [43], we have for each x € X,

F) -
Ex[78(8)] < ;(lxl +b) <0
and
) ~ 1) -
supE,[75(8)] < —(sup | x| +b> =—(k+b) < cc.
xeB € \ xeB &

Thus, P.(73 < oc) = 1 and it follows from Lemmas 3.1 and 3.2 that X is
positive Harris recurrent. O

4. Fluid limit models. In order to make Theorem 3.1 practical, one must
have a systematic method to check limit (3.2). The fluid approximation devel-
oped in this section is a powerful tool to obtain such a limit. In particular, we
will prove in the main theorem (Theorem 4.2) of this paper that a queueing
discipline in the queueing network is stable if the corresponding fluid limit
model is stable. In Sections 5-7, we will give examples to demonstrate how
one can check the stability of fluid limit models.

The following lemma maybe hidden in some textbook. It is needed to prove
Lemma 4.2. For completeness, we present a proof.

LEMMA 4.1. Let {f,} be a sequence of nondecreasing functions on R, and
let f be a continuous function on R,. Assume that f,(t) — f(t) for all rational
t>0. Then f, — f u.o.c '



62 J. G. DAI

PROOF. First, because f, is nondecreasing and f is continuous, one can
easily check that f,(¢) — f(¢) for every ¢ € R,. Next, suppose that [, does
not converge to f uniformly on compact sets. Then there exist € > 0, ¢ > 0
and {¢,,} such that ¢,, <¢ and

(4.1) . \fny(tn)) — f(tn)] = & for all L.

Because {t,,} is bounded, we may assume that ¢,, — to < ¢t. Thus for any
6 > 0, t,, eventually is less than ¢y + 6. Hence for / large enough,

fnz(tnl) - f(tnz) =< fnz(to + 8) - f(tnz)

= fn(to+ 8) — f(to + 8) + f(to + &) — f(t0) + f(t0) — f(¢n,).
Therefore,

limsup(fn,(tr,) — f(tn,)) < f (o + 6) — f(t0).

>0

Because [ is continuous and § is arbitrary, we have

limsup(fnz(tnl) - f(tnl)) = 0.
>0

When ¢y > 0, one can similarly prove that

Hminf(fy, (t,) — f(tn,)) 2 0.

When ¢y =0,
B inf (£, (tn,) = £(tn)) = Hm (£2,(0) = F(t0,)) = 0.

Thus we have
lliglo(fnl(tnl) —f(t)) =0,

which contradicts (4.1). Hence the lemma is proved. O

Let x = (Q(0),U(0), V(0)) be the initial state of the network under a speci-
fied queueing discipline. In this section, we attach a superscript x to a symbol
to explicitly denote the dependence on the initial state x. In particular, @7(¢)
is the queue length for class % customers at time t. For{ e # and k=1,..., K,
define

Ef(t) = max{r: Uy(0) + £,(1)+---+éu(r—1)<t}, t=0,
Si(t) =max{r: V4x(0)+me(1)+---+m(r—1) <t}, t=0,

where V;(0) = V(0) if there is a class % customer that has nonzero remain-
ing service time at time 0 and is set to be a fresh class % service time 71;(0)
" otherwise, where 71;(0) is independent of {nz(n), n > 1} and has the distribu-
tion as that of nz(1). (We make the convention that the maximum of an empty
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set is zero.) It is clear that E}(¢) is the total number of exogenous arrivals to
class k by time ¢. For k= 1,..., K and each n, define

OH(n) = 3" (0.
i=1

Note that ®*(n) does not depend on x. Now we present a functional strong
law of large numbers for the processes defined.

LEMMA 4.2. Let {x,} C X with |x,| — 00 as n — oo. Assume that

lim ! UW©)=U and li_)m 1

n—>00 [xp| o |Xp

| V(0)=V.
Then as n — oo, almost surely

1
O ([|x,1t]) — P,t, u.o.c,

(4.2)
|25
1 . —
4.3) mEk"(|xn|t) — ap(t—Ug)", uoc,
1 . —
(4.4) Sy (1xnlt) > pr(t — Vi)t, wo.c,

[25]
where [t] is the integer part of t and up = 1/my,.

REMARK. The discussion in Section 2.3 of Chen and Mandelbaum [9] also
outlined a proof for the lemma.

PROOF. First (4.2) follows from the classical functional strong law of large
numbers. To prove (4.3) it suffices to prove that

(4.5) E}(1xn]8) - axt, wo.c.

[%n]
almost surely because
1 1
E:"(lxnl t) =
|25

To see (4.5), first by the strong law of large numbers for renewal process [see,
e.g., [46], Theorem 3.3.2(1)], one has that almost surely

EY(|1%,|(t = Ur(0)/|xn1)").

£

lim Eg(t)/t — ag.
t—> o0

It then follows that almost surely
‘ }erolo E%(Ixnl t)/|xn| = nli_)r{)lotE’gﬂxnl t)/(|x,|t) = apt = f(t) for each ¢ > 0.
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Because f(¢) is continuous and Eg(lxnl t)/|x,| is nondecreasing for each n, it
follows from Lemma 4.1 that (4.5) holds. Similarly, one can prove that (4.4)
holds. O

For x = (Q(0),U(0), V(0)), let

Ex(t)+1

Ui(t)= Y. £r(i)+Ux(0) —¢.
i=1

It is the residual life process associated with the delayed renewal process
{E%(¢), t > 0}.
LEMMA 4.3. Let {x,} C X with |x,| — o0 as n — oco. Assume that

1 _
lim —U,(0)=U; and r}glolo %Vk(O) =

n—oo |Xp,|

(a) As n — oo almost surely,

U""(lxnlt) (Up—t)" woc and
[ |2

(b) For each fixed t > 0,

P(xalt) > (V=) -uoc

k (lxnl 8), | 20| = 1}

{ U™ (1201 0), |xn|>1} and { 1
N N

are uniformly integrable.

PRrROOF. For each fixed ¢t > 0, by the strong law of large numbers, we have

Ezn(lxnlt)"r]- _
(4.6) — Y &) > @E-Up*
[%n i1
almost surely. Hence, (4.6) holds almost surely for all rational ¢ > 0. Because
t — (¢t — U)* is continuous, by Lemma 4.1, almost surely (4.6) holds u.o.c.
Thus (a) is proved. To prove (b), note that

E (Jxa| 0)+1
£ | o UR (a1 | = E [xi )3 §k<i>]+Ui—(°)—t.

|25 -1 |%n
By Wald’s identity, the right term in the preceding equation is equal to

1 1 Ur(0
e LB (nl0) + 11+ A

By the elementary renewal theorem ([46], Theorem 3.3.3), the preceding ex-

" pression converges to (¢ — Up)t + Uy — t. The proof of (b) then follows from

Chung ([11], Theorem 4.5.4). O

—t.
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Now we describe a set of equations that capture most of the network dynam-
ics. These equations were first derived by Harrison [23] to obtain Brownian
models with scheduling capability. They were later refined by Harrison and
Nguyen [24] for FIFO discipline. They are now quite standard in Brownian
models of queueing networks. For notational convenience we assume that at
most one customeér within a customer class can have nonzero partial service
time. Thus Sj(¢) is the total number of service completions from class [ if
class / is given ¢ units of service time. Let T7(¢) be the cumulative amount of
service time that server s(/) has spent on class [ customers by time ¢. Then
SF(T7(¢t)) is the total number of service completions from class / by time ¢.
A fraction of these customers, equal to <I>2(S;‘(T;‘(t))) of them, become class
k customers. Thus, we have the following representation for the queue length
processes:

K
@D Q1) = QF0)+E()+)_ ®LSH(TH (1) -SYTi()), k=1,...,K.
=1

Fori=1...,d,let
IF(t)y=t- ) Ti).

keC,

Then I%(t) is the cumulative amount of time that server i has been idle by
time ¢. We assume that all queueing disciplines considered in this paper are
work-conserving. That is, server i is idle only when there is no customer at
station i. Hence, we have

4.8) /Ooo( )3 Q;(t)) dIZ(t) =0, i=1,...,d.

keC,
Put T*(t) = (T{(t),..., T% (), I*(t) = (I{(?),...,I%(¢)) and
SHT*(t)) = (S{(Ti(2)),...,ST(Ti()).

For a fixed work-conserving queueing discipline, in vector form, we have

K
(4.9) Q(t) = Q%(0) + E*(¢) + Y_ ®H(S7(T5(1))) — S*(T*(¢)),
=1

(4.10) Q*(¢) = 0,
(4.11) T*(t) is nondecreasing and T%(0) =0,

(4.12) I*(t) = et — CT*(t) is nondecreasing,

(4.13) /OOO(CQ"(t))de(t) -0,
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some additional conditions on (Q*(-), T*(-)) that are

(4.14) specific to the discipline,

where e is the d-dimensional vector of ones, C is the constituency matrix
defined in (1.6) and for a vector function f(¢) = (f1(¢),..., fa(2)),

f £(£)dI*(t) = ( f Fi(t) dIE(), ..., f fd(t)dz':;m) .

Conditions (4.9)—(4.13) are satisfied for any work-conserving discipline. Ex-
amples will be given for condition (4.14) for priority disciplines in Section 7.

THEOREM 4.1. Consider a work-conserving queueing discipline. For almost
all sample paths w and any sequence of initial states {x,} C X with |x,| — oo,
there is a subsequence {x,,} with |x,;| — oo such that

1

%5, |

(4.15)

(Q™(0),U™(0), V™ (0)) — (Q(0),U, V),

1

| %5,

(4.16)

(@ (1,1 £), T™ (|21, £)) — (Q(1), T(2)) wo.c.

Furthermore, (Q,T) satisfies the following:

(4.17) Q(t) = Q0) + (at —U)* — (I - PYM YT(t) - V)",
(4.18) Q(t) > 0,

(4.19) T(t) is nondecreasing and starts from zero,

(4.20) I(t) = et — CT(¢) is nondecreasing,

(4.21) Af?céu»diu)=o,

(4.22) some additional conditions on (Q(-),T(-)) that are

specific to the discipline.

REMARK. This theorem, in a slightly different form, was proved by Chen
and Mandelbaum [10].

PROOF. Notice first that

1 1 1
Q™ (0)] <1, [U*(0)] <1,

| %5 [xn] [ ]

V= (0) <1
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for all n. Therefore, there exists a subsequence {x,;} such that (4.15) holds.

For notational convenience, we assume that as n — oo,
1

£

(Q*(0),U*(0), V**(0)) — (Q(0),U, V).

Let  be a fixed sample path such that (4.2)—(4.4) hold. For x € X° and % =
1,...,K, it is easy to see that

1 1
mTz(|x| t) — mTz(|x|s) <t—s fort>s>0.

Therefore there exists a subsequence {x,,} such that

1

[2n; |

Tz"j(|xnj| t) > Ti(t) uw.o.c. as j— oo

for some process T(t) = (T1(t),...,Tkg(¢t)). Furthermore, conditions (4.18)—
(4.20) follow easily from (4.10)—(4.12). By Lemma 4.2 and (4.9), we have

Q™ (1xn,18) — Q(2),

|%n;]

where Q(t) satisfies (4.17). To prove (4.21), note first that (4.13) is equivalent

to
¢ 1 Xn. |
/O(Z Qkf<|xn,.|s))A1d( I f<|xn,|s>)=o

keC; |25, | {25, '

foreacht>0andi=1,...,d,

where a A b is the minimum of a and b. Letting j — oo and using Lemma 4.4,
we have

t — —
f ( > Qk(s)) A1dI;(s)=0 foreacht>0andi=1,...,d,
0 kéC,‘

which is equivalent to (4.21). Additional condition (4.22) is justified for each
discipline from (4.14) by passing through the limiting procedure similar to the
one for obtaining (4.21). O

LEMMA 4.4. Let {(z,,y,)} be a sequence in Dg[0,00) x Cg[0,c0). Assume

that vy, is nondecreasing and (z,,y,) converges to (z,y) € Cg[0,00) x Cr[0, c0)
u.o.c. Then for any bounded continuous function f,

[ Fentsn dyats) — | ‘Fla(s) dy(s) woc.
0 0

PrROOF. See Lemma 2.4 of [14].
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DEFINITION 4.1.  Let a queueing discipline be fixed. Any limit (Q(), T())
in (4.16) is a fluid limit of the discipline. Any solution (Q(-), T'(-)) to (4.17)—
(4.22) is called a fluid solution of the discipline. We say that fluid limit model
(resp. fluid model) of the queueing discipline is stable if there exists a constant
6 > 0 that depends on «, u and P only, such that for any fluid limit (resp.
fluid solution) with |Q(0)| + |U|+|V| =1, Q(-+ 8) =0.

Now we can summarize our main result.

THEOREM 4.2. Let a queueing discipline be fixed. Assume that (1.2)—(1.5)
hold. If the fluid limit model of the queueing discipline is stable, then the
Markov chain X describing the dynamics of the network under the discipline
is positive Harris recurrent.

PROOF. First notice that
K K
(4.23) EIX*(¢)] = Y EQj(t) + Y E[U3(¢) + Vi(D)].
k=1 k=1

Assume that the fluid model is stable and 6 > 1 is a constant as in Defi-
nition 4.1. Let {x,} Cx be any sequence of initial states with |x,| — oo as
n — oo. Because § > 1 and the fact that |U| + |V| < 1, by Theorem 4.1 and
Lemma 4.3 (a), almost surely there is a subsequence {x,,} such that

. 1 n —

lim —— Q" (12,,18) = Q:(8) =0,
J—o00 |xn,|

1 n — —

lim ——U," (|| 8) = (8 - Up)* + T — 8 =0,
j=0 12y,

lim =V (1,1 8) = (8= Vi) + Vi = 9 =0.
J70o0 |Xp

J

It follows from Lemma 4.5 below and Lemma 4.3(b) that
(4.24) lim; oo ZELQ,” (12,1 8)] =0,

lim;, oo I—éﬁE[Uz"’ (1,1 8)] =0 and

(4.25) , .
1m0 l—xlTj-lE[VZ ' (|%n,18)] = 0.

By (4.23)-(4.25), we have

lim ——E| X" (|x,,] 8)| = 0.

Jj—o00 |Xp |

Because {x,} is an arbitrary séquence, we have that condition (8.2) holds and
hence X is positive Harris recurrent. O
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REMARK 1. Even if the fluid model is stable, the fluid solution in (4.17)—
(4.22) may not be unique. This is not surprising because the equations gov-
erning the fluid model did not specify how the fluid is configured initially.

REMARK 2. Under the standard assumptions (1.2)—(1.5) the queueing net-
work is stable if the corresponding fluid limit model is stable. In the sequel,
we always assume that these standard assumptions hold.

LEMMA 4.5.  {(1/|x])Q*(|x| 8): x € X with |x| > 1} is uniformly integrable.

PRrROOF. Because

1 1
—1@*(1x]8)] < Y —E5(Ix|8) +1,
[x| ier |xI

it suffices to prove for each & € &,

(4.26) {E%t)/t,t > 1}

is uniformly integrable. Because

EY(n)/n — a; almost surely

and E[E%(n)]/n — a; by the elementary renewal theorem ([46], Theo-
rem 3.3.3), it follows from [11], Theorem 4.5.4, that {E%(n)/n, n > 1} is
uniformly integrable. Note that for each ¢ > 1, there is a unique integer n
suchthatn — 1<t <n and
EY(t) __n EY(n)
t ~n-1 n

Hence {Eg(t) /t, t > 1} is uniformly integrable and the lemma is proved. O

5. Generalized Jackson network. Consider a special case where |C;| =
1fori=1,...,d. This is called a single class network because there is only
one class of customers served at each station. In other words, all customers at
a station are homogeneous in terms of service requirement and routing. This
network is the same one as considered by Jackson [26] except that we allow
general interarrival and service time distributions. Hence, this single class
network is often called a generalized Jackson network.

THEOREM 5.1. Assume that (1.2)~(1.5) hold in a generalized Jackson net-
work. Then each of the work-conserving disciplines discussed in Section 2.1 is

stable if (1.9) holds.

REMARK. The stability question for this network was resolved by Borovkov
[4], Sigman [50], Foss [20], Meyn and Down [38], Chang, Thomas and Kiang [7]
and Baccelli and Foss [1] under various assumptions on interarrival and ser-
vice time distributions.
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Before proving the theorem, let us first introduce the dynamic complemen-
tarity problem (DCP). Let

R=(I-P)M

DEFINITION 5.1. Let x: [0,00) — R? be a continuous path with x(0) > 0.
The (continuous) dynamic complementarity problem for x(-) and R is
DCP(x(-), R): given x(-), find a pair of continuous paths (z(-), y(-)) such
that

2(t) =x(t)+ Ry(t) fort=>0,
z2(t)>0 fort=>0,

y(+) is nondecreasing, y(0) =0
and

yi(+) increases only at times ¢ such that z;(¢) =0,i=1,...,d.

The pair (z(-), y(-)) is a solution to the DCP(x(-), R).

The term DCP is from Mandelbaum [37]. It is sometimes called the deter-
ministic Skorohod problem. When the solution (z(-), ¥(-)) is unique for each
x(-), the mapping x(-) — (z(-), y(-)) is also called the reflection mapping with
reflection matrix R; see [22]. Harrison and Reiman [25] proved that given an
x(-) with x(0) > 0, there is a unique solution (z(-), y(-)) to the DCP(x(-), R).
Mandelbaum [37], Bernard and El1 Kharroubi [3] and Kozyakin and Mandel-
baum [31] studied the DCP for much more general reflection matrix R. The
reflection mapping has played an important role in the heavy traffic analysis
of queueing networks; see [45], [27] and [9].

A path x(-) is said to be regular at ¢ if it is differentiable at ¢. We use
x(t) to denote the derivative of x(-) at a regular point ¢. The following lemma
resembles a monotonicity result in [19] and [49].

LEMMA 5.1. Let (2(-), y(-)) be the solution to the DCP(x(-), R) and let s > 0
be fixed. Assume that (1.9) holds and

(5.1) 2(s)+x(t+s)—x(s)>6t forallt=>0,
where

(5.2) 0=a+ Pu—p.

Then

(5.3) y(t+s)—y(s)<(e—p)t forallt=>0

and hence y(s) < (e — p) if y(-) is regular at s.
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PrROOF. Take x°(¢t) = 0t for ¢ > 0 and
¥(8) = -Rx(t) = (e — p)t.

Then y°(0) = 0 and y°(-) is nondecreasing by (1.9). Let (2°(-), ¥°(-)) be the
unique solution to the DCP(x%(.), R). Because 2°(¢) > 0 and the elements
of R~! are nonnegative, we have 5°(¢) > y°(¢) for t > 0. If follows from
Propositions 1 and 2 of [45] that 2°(¢) = 0 and 7°(¢) = y°(¢). Note that

2(t+s)==z(s)+x(t +s) — x(s) + R(y(t +s8) — y(s)) = X(¢) + Ry(¢),

where X(t) = z(s) + x(¢t + s) — x(s) and §(¢) = y(¢t + s) — y(s). Assume that
(5.1) holds. Then, %(t) > x°(¢) for ¢t > 0. It follows again from Propositions 1
and 2 of [45] that

F(t) = y(t+5s) — y(s) < y°(¢) = (e~ p)t fort>0. O

LEMMA 5.2. Let f: [0,00) — [0,00) be a nonnegative function that is
absolutely continuous and let k > 0 be a constant. Suppose that for almost
surely [with respect to Lebesgue measure on [0,00)] all regular points &, f(t) <
—k whenever f(t) > 0. Then f is nonincreasing and f(t) =0 for t > f(0)/k.

The elementary proof is omitted.
While this paper was under review, Chen [8] proved the following result.

LEMMA 5.3. Suppose that there is 6 > 0 such that_@(‘ + 8) = 0 for any
fluid solution (Q(-),T(:)) with |Q(0)| =1, U =0 and V = 0. Then the fluid
model is stable.

Proor oF THEOREM 5.1. Without loss of generality, we assume that C; =
{i}. By Theorem 4.2 and Lemma 5.3 it suffices to show that any solution @(-)
to

Q(t) = Q(0) + at — (I — PYM'T(¢)

(5.4) _ _
=Q(0)+at—(I—P)Yut+(I—-PyYMI(2),
(5.5) Q(t) > 0,
(5.6) T(0) = 0, T(¢t) is nondecreasing,
(56.7) I(t) = et — T(¢) is nondecreasing,
(5.8) / Q) dit)=0
0

is identically zero on [, 00) for some 8 > 0 that depends on a, u and P only.
'At this point we could quote Chen and Mandelbaum [9] to finish the rest of
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the proof. Instead we provide a new approach to the proof. This approach was
communicated to me by Meyn and Down. It follows that (Q(-), T'(-)) is the
solution to the DCP for @(0) + 6¢ and R = (I — P')M 1. One can check that

condition (5.1) is satisfied for each s > 0. Therefore by Lemma 5.1, I_ (s) <
(1 — p) at every regular point s of I(-). Let

f(t)=eRQ(t) =eM(I— P)Q(¢).
It follows from (5.4) that
d -
f(@) =)+ ((pi — V)t + I;(2)).
i=1
Assume that ¢ is a regular point for Q(.) and I(.). If f(¢) > 0, then Q:(t)>0
for some i. Hence, by (5.8), I;(¢) = 0. Hence

f(8) < —(1—py).

It is clear that f is absolutely continuous and it follows from Lemma 4.2 that
f(t) =0 for t > £(0)/k, where

f0)=eM(I—-P)'Q(0)<m'(I-P)le and k=1- max pj.
=J=

Put 6 = m'(I — P')"'e/(1 — max;<<q p;). Then Q(¢t) =0 for ¢ > 8. O
6. Multiclass station and feedforward network.

THEOREM 6.1. Let d = 1. Any work-conserving queueing discipline dis-
cussed in Section 2.1 is stable under (1.9).

PROOF. Assume that (1.9) holds. By Theorem 4.2 and Lemma 5.3, it is
enough to show that the fluid model is stable when U =0 and V = 0. Let

f(t)=eM(I—-P)1Q(t) = £(0)+ (p— 1)t + I(t).

Let ¢ > 0 be a regular point of @(-) and I(-). If £(¢) > 0, then ¥4, Qx(t) > 0.
Therefore, it follows from (4.21) that I(t) = 0 and thus f(¢) = —(1—p) < 0.
Therefore, Q(t) =0 for t > £(0)/(1—p) <m/(I — P')le. O

A network is feedforward if stations can be numbered in such a way that
Py =0forany ke C; and [ € Cj with i > j.

COROLLARY 6.2. In a feedforward network, any work-conserving queueing
discipline is stable under (1.9).
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7. First-buffer-first-served in a reentrant line. Consider a reentrant
line where each customer follows one deterministic route. Customers in the
kth stage of service are called class & customers. The entries of the routing
matrix take the form P,z = 1for 2 =1,..., K — 1 and zero for all others.
The deterministic version of this network was studied by Kumar [32]. Suppose
that for any two customer classes £ and [ visiting the same station, class &
customer priority is higher than class I’s whenever & < [. Then the queueing
discipline is called first-buffer—first-served (FBFS) discipline.

THEOREM 7.1. For a reentrant line, the first-buffer—first-served preemptive
resume discipline is stable under (1.9).

REMARK. FBFS is one of the priority disciplines considered in [13], where
the stability for a class of priority queueing disciplines is studied. We present
this special case here mainly to illustrate the effectiveness of using Theo-
rem 4.2 to establish stability for some multiclass networks with feedback. A
deterministic version of this theorem was proved by Kumar [32].

PROOF. Assume that a; = 1. Let H;, denote the set of indices for all classes
served at station s(%) that have priority greater than or equal to that of class
k. Thatis, H,={l: 1<l <k, s(l) =s(k)}. Let

T3 () = Y Tt

ZEH},

L) =t =Ty (1),

Qi)=Y Q).

Ker

Then TZ’+(t) is the cumulative amount of service in [0, ¢] dedicated to cus-
tomers whose classes are included in Hp, and I Z’"L(t) is the total unused ca-
pacity that is available to serve customers whose class does not belong to H}.
Note that I7(¢) is a station level quantity representing the total unused capac-
ity in [0, ¢] by server i, whereas I Z’Jr(t) is a class level quantity. The priority
service discipline requires that for every k, all the service capacity of station
s(k) is dedicated to classes in Hj, as long as the workload present in these
buffers is positive. Because we assume the preemptive resume queueing dis-
cipline, we have that I Z’+(~) increases only when @7 (¢) = 0. Thus we may
express additional condition (4.14) by the integral equation

7.1) [ errwaryrw=o0, 1s<k=k
A :
Condition (7.1) implies that for each x € XO,
[ I—gllez’+<|x| t)d(izz*(m t)) —0, 1=k<K
0

|x|
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Taking the limit as in Theorem 4.1 and using Lemma 4.4, we have
(7.2) | @twartw =0, 1s<k=K,

where

T (t)= Y. Tet),

LeHy

I;(t) =t - T}(¢),

Qr(t)= ) Qut).
teH,
Therefore, for the priority discipline, the additional condition (4.22) takes the
form (7.2).

Now we show that the fluid model determined by (4.17)~(4.20) and (7.2) is
stable under (1.9). In light of Lemma 5.3, we can assume that U = V = 0.
We use induction to show that for each £ =1,..., K, there exists ¢; such that
Qi(t+ty)=0for£=1,...,k For k =1, because

Q1(t) = Q1(0) + (1 — p1) t + m I (2),

Q1(t) > 0,

I:1(t) is nondecreasing,

/ " Qi) dlt(t) =0,

we have Q1(¢) = 0 for ¢t > @1(0)/(u1 — 1). Because |Q(0)| = 1, we can take
t1 = 1/(u1—1). Assume that at time #;_; all the buffers 1,..., %2 — 1 are empty
and that they shall stay empty for ¢ > ¢;_;. Let the content of buffer £ be
Qr(tr—1). This is bounded above by 1+ ¢;_;. Then, because for ¢ > ¢;_; buffers
1,...,k — 1 remain empty, it follows that if @(¢) > O for ¢ > t;_1, then it is
the first nonempty buffer, and so by Proposition 4.2 of Dai and Weiss [13] the
arrival rate to buffer k is ax(¢) = 1 and the departure rate from buffer % is

1= pcm,\(k) M o1

dp(t) = s

Therefore, @ (¢) = —ur(1— X 4cq, me) < 0, and hence buffer £ will be empty
at time ¢, where £}, — t,_1 = Qr(tr—1)mr/(1 — X 4cg, me) and will stay empty
at all times after ¢;. Therefore, by the induction argument the fluid model will
reach Q(¢) = 0 and remain zero thereafter no later than at

5= f(mk”?;f (1 = X jere mf)).
k=1 17y (1= e, mj)
(See [13] for discussions on fluid models under other priority disciplines.) O
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