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DIFFUSION APPROXIMATION FOR OPEN
STATE-DEPENDENT QUEUEING
NETWORKS IN THE HEAVY
TRAFFIC SITUATION

By KE1Go YAMADA

Kanagawa University

We consider open queueing networks in which arrival and service
rates are dependent on the state (i.e., queue length) of the network. They
are modeled as multidimensional birth and death processes. If a heavy
traffic condition is satisfied on the behavior of arrival and service rates
when the queue length becomes very large, it is shown that a properly
normalized sequence of queue length converges in law to a reflecting
diffusion process.

1. Introduction. We consider in this paper open queueing networks in
which arrival and service rates depend on the state (i.e., queue length) of the
network. They are modeled as multidimensional birth and death processes. It
is shown that a properly normalized sequence of queue lengths converges to a
reflecting diffusion process under a heavy traffic condition. For a K-station
queueing network, this diffusion takes values in the K-dimensional nonnega-
tive orthant with a fixed direction of reflection for each boundary hyperplane
and has nonsingular drift and diffusion coefficients. The fact that the limit
process is a diffusion and, hence, that drift and diffusion coefficients generally
depend on the state of the process, is a reflection of the dependence of arrival
and service rates on the state (i.e., queue length) of the queueing systems.
This contrasts with the result obtained by Reiman [13]. In the networks
considered there, arrival streams are renewal processes and service times
have general probability distributions, but they do not depend on the state of
the network; that is, arrival and service rates are constant. As a result, the
limit process is a reflecting Brownian motion with a drift. We will see that to
specify how arrival and service rates behave when the queue length becomes
very large plays an important role in obtaining the diffusion limit, and this
specification is called the heavy traffic condition if, roughly speaking, the
traffic intensity defined appropriately using arrival and service rates is
nearly unity when the queue length is very large. The limit diffusions
obtained from our result are not of a special type like reflecting Brownian
motions or Ornstein—-Uhlenbeck processes but are rather general, and vari-
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ous different types of reflecting diffusions are obtained by specifying the state
dependence differently in different ways. The limit diffusions are also charac-
terized by the fact that their drift and diffusion coefficients are not singular.
Hence, for example, Bessel diffusions, which have singular drift generally,
cannot be obtained from our results. (See Example 3 in Section 6.) To see how
our result is applied, some examples are given. In Example 1 in Section 6, it
is shown that, roughly speaking, a very large class of reflecting diffusions
with nonsingular drifts and diffusion coefficients can be in the class of limit
processes for queueing models. In Example 2, a multidimensional reflecting
Ornstein—Uhlenbeck process appears as a limit process.

As mentioned before, the queue length at each station is modeled by
multidimensional birth and death processes. They represent the network
which consists of K single server stations. At least one station has an arrival
stream from outside the network. Customers are served in order of arrival
and they are randomly routed, after service, to either another station or out
of the network entirely. Interarrival and service times have exponential
distributions whose parameters (i.e., arrival and service rates) are dependent
on the state (i.e., queue length) of the network. In setting our models, we have
tried to accommodate models with arrival and service rates which are as
general as possible. For that purpose, we have introduced the concept “c.c.
convergence” for functions (see Definition 1 in Section 4), and this takes care
of many discontinuous arrival and service rates which appear in application.

In view of the Markov property of our model, to show our result we use a
stochastic calculus approach such as developed in [8]. The K-dimensional
vector queue length process is represented as the solution of a Skorohod
equation defined on the K-dimensional nonnegative orthant. Properties of
such an equation were studied by Harrison and Reiman [5], and we make use
of their result to establish our theorem. The limit process, which is a
reflecting diffusion, is the solution of a stochastic differential equation with
reflecting boundary, which is also represented as the Skorohod equation of
the same type as above. We were unable to show the uniqueness of the
solution of this equation under our general setting where no continuity of
coefficients of the equation is assumed. See, however, Remark 5 and Proposi-
tion 1, where the uniqueness is shown for the equation with measurable
drifts (but with Lipschitz continuous diffusion coefficients).

If the Markov property does not hold for the queueing systems, the
modeling itself, which takes into account the state dependence of arrival and
service rates, seems to be difficult in general. We point out, however, that for
some specific models the analysis is possible using our approach. Such an
example is considered in Section 7. .

We denote by D([0, ), R%) the space of functions f: [0,%) — R% which are
right continuous and admit left limits, and we endow this space with Skoro-
" hod topology (8], Chapter VI, Section 1). All the processes appearing in the
séquel are assumed to be realized in D([0,«), R9), for some d. We also denote
by —p and —, convergence in probability and in law, respectively, and [/
stands for [, ,. Sometimes, we simply refer to the space D(0,»), E) as D
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when the range space E is obvious but cumbersome to write down. When we
refer to vectors, it should be understood that we mean row vectors.

2. The queueing network model. The queueing network model in this
paper consists of K service stations. At each station, customers arrive from
outside the network or from other stations. Let @;(¢) be the number of
customers at station i at time ¢. Then we have the following identity:

(2.1)  Qi(?) = Qi(0) +A(2) + §1\C‘i(t) —Ni(t), 1<i<K,
j=1

where A,(¢) is the number of customers who arrive at station i from outside
the network by time ¢, N,(¢) is the number of customers who move from
station j to station i after completion of service by time ¢ and N;(¢) is the
number of customers who complete service at station i by time ¢. If we let
Njo(t) be the number of customers who leave the network from station j, we
have the relation

K
Ni(t) = X Ny(t).
j=0

Our basic assumption is as follows: The processes A,(t), N;,(¢) and N(¢),
1<i<K, 0<j<K, are counting processes defined on a stochastic basis
(Q, &, P;%,) satisfying the usual conditions (see [8], page 2), and they
have intensities which depend on the state of the network in the follow-
ing way: There exist nonnegative functions A;(-), u;(-), 1 <i <K, defined
on{0,1,2,-,-, "} such that

A1) = 40 ~ ['M(Qi(s)) ds,
Ni(2) = Ni(t) = [ m(Qu(s)) ds,
Ni(t) = Ni(t) = ['pums(Qi(s)) ds, 154, j<K,

are locally square integrable martingales, where p;;, 1<i <K, 0<j < K,
are real numbers such that p;; > 0 and X ;p,; ='1. Moreover, A,(¢) and
N;(t),1 <i <K, 0 <j<K, have no common jumps.
. In the above queueing network model, p;; represents the probability that a
customer goes to station j or leaves the network (j = 0) after completion of
service at station i; P = (p; J-), 1 <1i,j <K, is called a routing matrix. Note
that we can construct the network with the above properties by using the
method given in [2] (Chapter V, Section 2). We also note that the predictable
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quadratic variational processes are given by
(A1) = [0(Qu(=)) ds,

(2.2) | (N)(t) = j:;u,-(Qi(s))ds,
N(8) = [Py @i(s)) ds,

respectively.

REMARK 1. The manner of dependence of arrival and service rates on the
state of queues, which is considered here, is rather restricted in the sense
that the rates A, and u; are dependent only on Q,, but not on @ =
(@, ..., Qx). This is due to the technical reason that we use an argument for
a local time for semimartingales defined only for one-dimensional processes
(see Lemma 3). This restriction can be removed for some queueing models,
but we will not discuss it here.

3. An example. To see how the dependence of arrival and service rates
on the state of the queue affects the limit processes of the queueing network,
we consider the following simple example of a single station. (As long as we
are interested in the influence of the state dependence, it suffices to consider
a single station model.) This example will motivate some of the assumptions
for our main result and also show the outline of our approach.

We consider a sequence of queues of a single station. Let @,(¢) be the
number of customers at the station at time ¢ for the nth queue. Then we have

Q.(2) = @,(0) + A,(¢) —N,(¢), n=12,...,

where A,(t) and N,(¢) are arrival and departure processes. They are as-
sumed to have intensities A,(Q,(¢#)) and u,(@Q,(¢)), respectively, given by

nAl, x=>a,,
A(x) =1
na;, x<a,,
1
(x)_ nw,, x=a,,
Hon nul, 0<x<a,.

Let {¢,} be a sequence of real numbers defined by ¢, = Vn , and assume the
, following: :

@ a,/¢, = b;

Q) V(L - pd) > ay, VR (A2 - u2) > ay;
(i) lim AL =lim pl = A; >0, 1lim A2 =lim u2 = A, > 0.
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Let us define processes {X,(¢)} by X,(¢) = Q,(¢)/¢, and consider the limit
process of {X,(¢)}. Now @,(¢) can be written as

Qu(£) = Qu(0) + [[[An(Qu(5)) = a(Qu(s))] ds + my(8),
m(t) = Ay(8) = N, (8),

where

A,(1) = 4,(1) = [(A,(@u(5)) ds,

No(£) = No(2) = [ n(Qu()) ds

are orthogonal square integrable martingales with predictable quadratic
variation processes given by

(A,)(¢) = pn(Qn(s))ds,

N)(0) = [ 1n(@u(5)) ds,

respectively. [Note that the orthogonality of A (¢) and N,(t) comes from the
fact that A, (t) and N,(¢) have no common jumps.] Defining i, (x) by
A,(x) = p,(x) (x > 0) and 1,(0) = nu2, Q,(¢) can be written as

Qu(t) = Qu(0) + [ TA(@u(5)) = Fn(Qu())] ds + m,(2)

+ E(0) [1(@,(5) = 0) ds.

Thus «x,(¢) can be written as
(3.1) X,(t) =X,(0) + A,(2) + M,(2) + &.(2),
where

¢ 1
A1) = [&(X() ds, () = A 0nx) — En( )],

n

1 ¢
£(8) = —in(0) [1(X,(5) = 0) ds;

1
Mn(t) = ;mn(t)'

n

We note that £,(¢) increases only when X, (¢) = 0; that is,

(32) £(8) = [[1(X,(s) = 0) d&,(s).

Thus (3.1) with (3.2) represents a Skorohod equation for X,(¢). The pre-
dictable quadratic variation process for M,(¢) can be calculated, using the
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orthogonality of A (¢) and N,(2), as
(M,)(2) = (1/¢2)(m,)(2)
= [ (/@) Mo Xn() ds + [[(1/0F) a0 Xo(5)) ds.

Since G,(x), (1/¢2)\,(¢,x) and (1/¢2)u,(¢,x) are bounded [see assump-
tions (A1) and (A3) in the next section], {A,(¢), M, (¢)} is tight in D([0, ), R 2),
Then by the continuity property of solutions of the Skorohod equation (3.1)
and (3.2) (see Lemma 1 in the next section), we conclude that (X, (¢), £,(¢)) is
also tight. Now let (X(2), £(¢), A(¢), M(¢)) be any weak limit of
(X,(8), £,(8), A,(t), M, (¢)). Then we have

X(t) =X(0) +A(¢) + M(¢t) + £(¢)

and
£(t) = [[1(X(s) = 0) d(s).

To identify the processes A(¢) and M(¢), we note that the following facts
hold:

(a) Let a,(x) = 1/¢, X1, (¢, %) — (@, %). Then a,(x,) = a(x)if x, > x
#b and x > 0, where a(x) is defined by a(x) =a,, for x > b, and by
a(x) = a,, for 0 < x < b. [In the terminology defined in the next section, this
is equivalent to a,(-) =, a(-) a.e.on D = {x > 0}.]

(b) Let AM(x) = A, if x > b, and Mx) = A,,'if 0 < x < b. Then

(1/e2) A (@,%,) = A(x) if x, > x +#b,

and
(1/02)ur(@px,) = M) if x, > x +#band x> 0.

[See (A4) in the next section.]

(c) For any Borel set A in R, satisfying #(A) =0 (£ denotes the
Lebesgue measure), [{1(X(s) € A)ds = 0, for all ¢ > 0. (See Lemma 2 in the
next section.)

Combining these facts, we can identify A(¢) and M(¢) as

A(t) = fO‘a(X(s)) ds,
() = [VAX(s)) dBy(s) + [[VA(X(s)) dBa(s),

where By(#) and B,(t) are independent Brownian motions. We note that
independence of B,(t) and B,(¢) comes from the fact that A,(¢) and N,(¢) are
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orthogonal. We can now write X(¢) as a solution of the following Skorohod
equation:

X(t) = X(0) +j0‘a(x(s))ds + fot\/,\(X(s)) dB,(s)
(3.3) + [VACK(s) dBy(s) + £(2),

X(£) 20, &) = [1(X(s) = 0) dé(s),

where £(2) is an increasing process with £(0) = 0. Thus, if the above equation
(3.3) has a unique solution, we conclude that X,(¢) », X(¢) in D([0, =), R%).

Suppose that a, = 0, for all n. Then arrival and service rates do not
depend on the state (i.e., queue length) of the queue. In this case, a(x) = a,
and Mx) = A;. Thus the limit process X(¢) is a reflecting Brownian motion
with a drift. Assumption (ii) in this section is called a heavy traffic condition,
and note that this condition is equivalent to fact (a) [see assumption (A2) in
the next section].

4. Basic result. From now on we consider a sequence of queueing
networks of the type described in Section 2, indexed by n > 1. Let
(Q,,%,, P,; ") be the stochastic basis on which the nth such network is
defined. All the notation is carried forward, except that we append an » in a
convenient place to denote a quantity which depends on n. We assume that K
and the routing matrix P are independent of r.

Choosing an appropriate sequence {¢,}, we give conditions under which
X, (¢) converges weakly to a process, where

X,(t) = (Xa(2),--, X5(1),  Xi(t) = (1/0,)QL(t).
To this end, as in Section 3, we write Q,(t) = (QX(2),..., QX(?)) as follows:

Qi) = @10 + [ ‘ai(Q,(s))ds + mi(t), 1s<i<K,

where
. ~ K o~ -~
m;,(t) = A5(¢) — X NJ(t) — Ni(¢),
j=1

K
a,(x) = A(x) + X Pji ma(x;) — m(x;), x = (%y,...,Xg) € RE.
j=1 «

Choosing [}, 1 <i < K, appropriately, we define i}(x) by jii(x) = pi(x), if

x > 0, and by gi(x) = %, if x = 0, and define G,(x) = (@(x),...,a%(x)) by
K

@ (x) = A (x;) + X pi (%)) — Bi(%), 1<i<K.

j=1
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Then X, (¢) can be written as

K
X.(2) = X;(0) + A%(2) + Mi(2) + &(¢) — X pi&l(t),
(4.1) j=1

l1<i<K,
where

ai(x) = (1/¢,)@(¢,%), xR [=(R)],
A3(0) = [[a1(X,(5)) ds,

£1(1) = (1/en) i [ ‘1(Xi(s) = 0) ds,

Mi(t) = (1/@,) mi(2).
Note that &,(¢) = (£1(2),..., £X(2)) satisfies

gi(t) = [1(Xi(s) = 0)dgi(s), 1sisK.
0
In vector form, X, (¢) can be written as

(4.2) X,(t) = X,(0) + A, () + M,(2) + &(8)(I = P),

where a,(x) = (@X(x),..., @X(x)) and M,(¢t) = (M (?),..., ME@)).
We will make the following assumptions:

(A1) For any R > 0, there exists a constant C such that

sup |a,(x)| <C.
|x|<R
xeRX

(A2) There exists a measurable function a(x), x € R¥, such that for
a,(x2) =1/¢,)a,(p,x), x € RE*(=R_ XR,X - XR,),
a,(*) =.. a() ae.onD,
where D ={x € R¥, x,> 0,1 <i <K).

The definition of the above convergence in (A2) is as follows:

DEFINITION 1. For measurable functions f,(x), n > 1, and f(x) defined on
R¥ and a subset D in RX, we write £,(-) >, f(:) a.e.on D if, for a Borel set
A in D with #(A) = 0 (Z denotes Lebesgue measure), f,(x,) — f(x) when-
ever x, — x, x, € D and x € A° (c.c. implies continuous convergence.)

(A3) For any R > 0, there exists a constant C such that
sup (1/¢;)A(@ux) <C,
0<x<R

sup (1/@2)pi(@x) <C, 1<is<K.
O<x<R
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(A4) There exist measurable functions A,() and u,(-) defined on R + such
that, for 1 <i < K,
(1/(p3))‘§1( Pn ) _>c.c. )‘L() a.e.on R+’
(L/02) (@0 ) ce. mi() ae.on{x; x> 0}.

(A5) (i) The routing matrix P has spectral radius strictly less than unity.
(i1) Let
A= ;Bg(l/qanz))‘fl(gonx), 1<i<K.
n>1
Then all the elements of the vector AI — P)™! are strictly positive, where
A=y, Ap).
(iii) We have
inf pu(x) >0, 1<i<K.
x>0

[Note that w,(x) appears in (A4).]
We now state our result:

THEOREM 1. Assume (A1)-(A5) and X,(0) >, X(0) in RX, where X(0) is
a random vector. Then X, (t) —»4 X(t) in D([0,®), RX). Here X(¢) is assumed
to be the unique solution in law of the following Skorohod equation:

X(#) = X,(0) + [[a,(X(s)) ds + My(t)

K
+ &(t) - ijigj(t),

Jj=1
(4.3) . 3 K )
Mi(8) = [VA(Xi(e) dWi(s) + L [V (X(5)) dBi(s)

K
t S .
- Z[o pij i (Xi(8)) dB;;(s), 1<i<K,
=0
where £(t), 1 <i <K, are increasing with £,(0) = 0 and satisfy

&(1) = ['1(Xi(s) = 0) dé(s).

Moreover, Wi(t) and éi (1), 1<i<K,0<j<K, are independent standard
Brownian motions.

REMARK 2. In view of the discussion in Section 3, aésumption (A2) may be
called a heavy traffic condition.

REMARK 3. Let 7; be the ith row vector of I — P. Then 7, represents the
direction of reflection when the process X(t) hits the boundary oD, =
{x € RX, x, = 0}.
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REMARK 4. Assumption (Al) is given for &,(x), which is defined using
constants fii, 1 <i < K, not known a priori. Hence, it is desirable to give a
condition which uses «,(x) instead of &,(x) and implies (A1l). The following
is such an example.

(AY) For any R > 0, there exists a constant C such that
sup |a,(x)| < C.

xeD

|x|<R

Moreover, for each i, 1 < i < K, and n, there exists a positive integer z i such
that A,(0) = Al (z)).

Under (A1), we set fi5(0) = pi(2.). Then it is obvious that (A1) is satisfied
since
sup |&,(x)| = sup |a,(x)].
xeR¥ €D

X
lesR [x[SR

REMARK 5. As for the uniqueness (in law) of the solution of (4.3), it seems
that there exist no general results in our setting under which a(x), A(x) and
uw(x) are generally discontinuous. However, for the following cases the
uniqueness holds.

Case 1. Feedforward networks for which we can label the stations so that
p;; = 0,if i > j. A typical case is tandem queues. In this case, the uniqueness
problem reduces to that of a one-dimensional Skorohod equation, and various
results are available (e.g., [10] and [1]) for general drift and diffusion coeffi-
cients.

Case 2. The drift coefficients of (4.3) are measurable, but the diffusion
coefficients are Lipschitz continuous. In this case, we can reduce the unique-
ness problem to the case where (4.3) has no drift. Then the uniqueness is
guaranteed by the Lipschitz continuity of the reflection mapping (see Lemma
1), and this is shown in the following proposition.

PROPOSITION 1. In (4.3), we assume the following:

@ alx), Mx) [= (A (x)), 2(x3), ..., Ag(xx)] and p(x) [=
(), polxy), ..., pg(xg))] satisfy a linear growth condition; that is,

la(x) > +|A(%)* +| w(x) > < C(1 +1x1?), xeRE.
(1) A(x) and p(x), 1 <i <k, are twice continuously differentiable and

satisfy .
inf min(X;(x), m;(x)) > 0.

0<xeR!

(iii) For any x € RX, MxXI — P)™! > 0 and u(x) > 0; that is, each ele-
ment of the vectors is strictly positive.

Then (4.3) has a unique solution in law.
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If a(x) is Lipschitz continuous, we can weaken the above conditions and
the following result holds:

PROPOSITION 2. Assume condition (i) in Proposition 1 and that a(x),
x € R¥, /A (x) and \/p;(x), x €R', 1 <i <K, are locally Lipschitz con-
tinuous. Then (4.3) has a unique solution.

5. The proof. For the proof of our theorem, we need several lemmas. To
this end, we define the reflection map

(¥,®): D([0,T],R%) - D([0,T], R%?)

associated with the routing matrix P as a function which maps w <
D([0,T1, R?) into a unique solution (x, £) = (¥(w), ®(w)) € D0, T], R2%) of
the following Skorohod equation:

x2(t) =w(t) + £()(I—-P) =0,
(SE) £,(t) is nondecreasing with £,(0) = 0,

&(t) = [A(xi(s) = 0)d&(s), 1s<isd.
0
For any a € R4, let |lall = £ ,la;| and, for any x € D, let

lxll = sup [lx(2)l,
0<t<T

for an arbitrarily fixed T'.

LEMMA 1. The reflection map (¥, ®) is Lipschitz continuous. That is, there
exists a constant C such that, for any x,, x, € D,

max(||¥(x;) = ¥(x,) [, [®(x1) = D(5)[)) < Cllx; — .

COROLLARY 1. For a given sequence of processes {W,},.; in D, let X, =
W(W,) and ¢, = ®(W,), n =1,2,... . Suppose {W,} is tight in D(0,x), R%).
Then {X,,W,, £,} is tight in D([0, %), E) with E = R? X R% X R%. Moreover,
if {X,W, £} is any weak limit of {X,,W,, £,}, {X, £} is the unique solution of
the Skorohod equation (SE) with w(t) being replaced by W(t), that is,
X =V(W) and &= ®(W).

REMARK 6. The definition of the reflection map (¥, ®) and its Lipschitz
continuity is due to Harrison and Reiman ([5], Theorem 1).

REMARK 7. The (Lipschitz) continuity of the map (¥, ®) assures the result
of Corollary 1. The Lipschitz continuity is used for establishing the unique-
ness of the solution of a stochastic differential equation with reflection and
with Lipschitz continuous diffusion coefficients (see Propositions 1 and 2).
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LEMMA 2. Assume (Al) and (A3) with R = » and that {X,(0)} is tight in
RE. Then {X,(¢), A, (t), M, (), £,(t)} [see (4.2)] is tight in D(0,=), F) with
F = RX X R¥ x R¥ x RX,

PrROOF. Let W,(¢) = A,(¢) + M,(¢). Then (X, (¢), W,(2), £,(¢)) satisfies (4.1).
Thus, in view of Lemma 1, it suffices to show that {A,(¢), M,(¢)} is tight in
D([0,=), RX X RX). For this purpose, it suffices to show that {M (¢)} is tight
in D([0,«), R') and {An(t)} is C-tight in D([0,x), R') ([8], Chapter VI,
Corollary 3.3). However, since {A,(¢)} is obviously C-tight by (A1), we will
show that {M, ()} is tight. Since {A%(¢), Nj¥(t), 1 <i < K, 0 <j < K} have no
common jumps by our assumption (see Section 2), any pair of { A:(¢), N(¢),
1<i<K,0<j< K} is orthogonal (see [8], Chapter I, Section 4). Thus we
have

K
(Miy(t) = (1/@2)CAL(2) + (1/97) X (N (¢)
=1

(5.1) 1#i
+(1/¢x) Z (Nm)(2).
We note that
(1/02)<A) () = [[(1/€2)X(uXi(5)) ds,
(5.2)

(1/ @2 NI)(¢) = /0 (1/¢2) i i @n Xi(5)) ds

[see (2.2) in Section 2]. Hence, by (A3), (M;)(#), 1 <i <K, is C-tight in
D([0,x), R"), and so is T, ; . g (M} )(¢), which means the tightness of {M,(¢)}
in D([0, ), R¥) ([8], Chapter VI, Theorem 4.13). O

LEMMA 3. Assume (Al) and (A3) with R = » and that {X,(0)} is tight in
R'. We also assume (A5). Then any weak limit X(¢t) of X,(t) satisfies
At, X,(t) € A} =0, 1 <i < K, with probability 1 for any Borel set A in R,
with #(A) = 0. Here, as before, & denotes the Lebesgue measure in R*.

PrOOF. Step 1. By assumption (A5Xii), there exists an i, 1 <i < K, such
that A > 0. We will show that for such i the assertion is true. Let
{X(2), A(t) M(2), £(¢)} be any weak limit of {X,(¢), A,(¢), M,(¢), £,(¢)} in
D([0, ), F) (see Lemma 2). Then X;(¢) can be written as

Xi(t) =X;(0) + Ay(2) + My(2) + &(2)
- Z Pjifj(t)~

1<j<K

We can easily show that M,(¢) is a continuous martingale since it is a weak
limit of the martingale M (¢), and A,(¢) is a continuous process of bounded
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variation. Hence, by Lemma 1, X,(¢) is continuous. Moreover, since
B.(2) = (1/9,) Ai(2),
() =(1/e) X Ni() - (1/,) Ni(t)

1<j<K
are orthogonal martingales, M,(¢) can be written as
M;(t) = B(¢) + v(2),
where { 8(2), y(¢)} is a weak limit of { 8,(¢), v,(¢)} in D([0,«), R?) and B(¢)
and y(¢) are orthogonal martingales. Since X;(¢) is a continuous semimartin-

gale, it has a local time and the density formula for local times ([7], page 188)
implies

fotlA(Xi(s))d<Mi>(s) = 0.
Thus we have
0= ftlA(Xi(s))d<B>(s).

We will show that there exists a measurable process B(¢) such that { B)(¢) =
/¢ B(s)ds with B(¢) > B> 0 for a constant . We note that this at once
shows [{1,(X;(s))ds = 0, a desired assertion in Step 1. By (5.2) and assump-
tion (A3), we have

((1/0) AL (1) = ((1/0,) AL () < C(¢ — 5).
Noting that B(¢) is the weak limit of (1/¢,)AL(¢) and letting n tend to
infinity in the above inequality, we have, by a standard argument, that
(BX(t) = <{B)(s) <C(¢t~s).
Hence, there exists a measurable process B(t) such that ( 8 )(t) = jo B(s) ds.
Moreover, by (5.2) and (A5)ii), we can take f(¢) satisfying B(¢) > )\ (> 0).
This completes Step 1.
Step 2. Take an arbitrary station k. Then by (A5Xi), (i), there exists a

sequence of stations i, =i, i2 =J,---si, =k such that A,>0, p,; >0,

Piyi, > 0,...,p; "4 > 0. Then, in view of ‘the result of Step 1 it holds that
,‘th X, (t) € A) = 0 for any Borel set A in R, with #(A) = 0. Using this
fact, we will show that the assertion of the lemma also holds for station
iy = J, that is, Z(¢; X,(¢) € A) = 0 with probability 1. Then by induction we
reach the conclusion of the lemma. As in Step 1, we have

_/OtlA(Xj(s))d<Mj>(s) =A0_

We can write the process M,(¢) as

Mi(t) =A;(1) + ¥ Ny(t) -Ni(t), Ni()= L Nu(2),
! 1<l<K 0<l<K
where (A (t), N, ), 1<i<K, 0 <Jj < K) is the weak limit of {/(#)} =
{(l/cpn)A’(t) (l/qon)N‘J(t) 1<i<K, 0<j<K}. As in Step 1, using the
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orthogonality of the processes in &,(¢), by a standard argument we have

(M)(2) =CA(t) + X (Np(t) + L AN, ().

1<i<K 0<m<K
1#j m#j
Thus, we have
t -~
(5.3) 0= folA(X,-(S))d<Mj>(S)-
Here we note that
~ 14
(5.4) N(E) = [Py m(Xi(5)) ds.

Indeed, we consider the limit of

(/) NZ)(0) = [[(1/02)pyj i 00 Xi(5)) ds.

In doing this, we may assume by the Skorohod imbedding theorem that
X(t) - X,(¢t) uniformly on any compact t-set with probability 1 [recall that
X(t) is continuous]. Then, in view of assumption (A4) and the result of Step 1,
we have, as n tends to infinity,

((1/0,)N17)(t) - j:pij”‘i(Xi(s))ds‘

Thus, we obtain (5.4) again by a standard argument. Then, from (5.3) and
(5.4) and the result of Step 1, we have

0= fotla(Xf(s))pum(Xi(s))l(Xi(s) > 0) ds

> p;; inf Mi(x)fotlA(Xj(S)) ds.

Then our desired result, #(¢; X(t) € A) = 0, follows from p,; > 0 and as-
sumption (A5)(iii). O

ProOF OF THEOREM 1. In view of the standard cutoff argument ([14],
Section 11.1), we may and do assume that assumptions (A1) and (A3) hold
with R = . Then by Lemma 2, {Z,(t)} = {(X,(2), A (8), M (2), £, ()} is
tight in D([0, ), F) and we let #(t) = (X(¢), A(t), M(t), £(t)) be any weak
limit of {%,(¢)}. We have, by Lemma 1,

X(t) = X(0) + A(t) + M(¢) + £(6)(I - P),
where £,(¢) is increasing with £,(0) = 0, and
&(t) = [1(X,(s) = 0)d&(t) foreachi (1<i<K).
0

We recall that X(¢) is continuous as mentioned in the proof of Lemma 3. It
remains to identify A(¢) as

A(t) = fota(X(s))ds
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and M(t) as M(t) given in (4.3). In doing this, we may assume, as in Lemma
3, that #,(¢) - 2(¢) uniformly on any compact ¢-set with probability 1. By
Lemma 3, it holds that #(¢; X(¢) € dD) = 0, where D is the boundary of D
[D was defined in (A2) in Section 3]. Hence,

A,(8) = [ &,(X,())1p(X(s)) ds.

Note that if X(s) € D, then, for sufficiently large n, X,(s) € D and hence
a,(X,(s)) = a,(X,(s)). Thus letting n go to infinity in the above equation, we
have, by (A2) and Lemma 3,

A(t) = j:a(X(s)) ds.

The identification of M(¢) as M(¢) in (4.3) is almost contained in the proof of
Lemma 3. We note that each pa.lr of the weak limit {4,(¢), N, (), 1<i<K,
0<j<K}of {AL(#),N(#t), 1<i<K,0<j<K)}is orthogonal Moreover,
we can show, using (A4) and Lemma 3, that

CAN(t) = _/:)\i(X,-(s))ds, 1<i<K.

Taking into account these facts and that (5.4) holds for 1 < i, j < K, due to
the representation theorem for martingales ([6], Chapter 2, Theorem 7.1) we
have the desired result for the identification of M(t). O

PROOF OF PROPOSITION 2. This follows directly from the Lipschitz continu-
ity of the reflection map ¥ defined in Lemma 1 by a standard calculation
using Doob’s inequality for martingales (see [4]). O

PROOF OF PROPOSITION 1. We write (4.3) in vector form. For this, we define
a matrix function 3(x), x € RX, as follows: 3(x) is written as 3(x) =
(A(x), B{(x),..., Bg(x)), where A and B;,1 <i < K, are K X K and K X (K
+ 1) matrices and the components of each matrix are as follows:

(V’\l(xl)
Ax)=| . ,
i Var(xg)

By(x) = (B{(x), B}(%),..., BE(x))",

.



DIFFUSION APPROXIMATION FOR QUEUEING NETWORK 973

where B{(x), 0 <j < K, are K-dimensional column vectors,
t
BY(x) = (0,...,0, —y/u,(%,) ,0,...,0)

[the ith element is —/u;(x;) ],
Bj(x) = (O,...,O, =ypijmi(%;),0,...,0,y/p;; (%) ,0, ... ’O)t

(the ith elementis —vV  and the jth elementis V' ),
Bi(x) = (0,...,0)".

Then (4.3) can be written as
X(¢) = X(0) + f‘a(X(s)) ds + [‘E(X(s)) dB(s),

where B(t) = (W,(¢), B, ), 1<i,j<K). We note that (M, M;)t) =
J¢a; (X(8)) ds, where a; (x) is the (i, j) element of 3(x)3(x)". [Recall that
M(tj = (M), M2(t) MK(t)) was defined in Theorem 1.] We will show
that 3(x)2(x)! is pos1t1ve definite for each x € R%. For that purpose, it
suffices to show that, for each x € R¢,

u(x)=0 - wu=0, uecRX

Let x € R? be arbitrarily fixed. By assumption (iii) of Proposition 1, there
exists a station i with A;(x) > 0. On the other hand, since uA(x) = 0 [note
u3(x) = 0], u; ‘/A (x;) = 0 Hence, u; = 0. Next, suppose that p,; >0 for
J # i. For such j, we have

0 =uB/(x) = Vpij”'i(xi u; — \/pijl“i(xi) u;, = \/Pijﬂi(xi) Uuj.

Then, since p;; > 0 and p,(x;) > 0, we have u; = 0. We now take an arbi-
trary station k. Then, as in the proof of Lemma (iii), in view of assumption
(iii), there exists a sequence of stations i,i,,...,i,_;, % such that p; >0,
Piji, > 0,..., p; ;> 0. Then repeating the above dlscuss1on it follows that
u, =0. Hence u = 0 and we have shown that 3(x)2(x)’ is positive definite.
Now, since o J(x) is twice continuously differentiable, there exists a nonsin-
gular K X K matrix function o(x) such that 3(x)2(x)’ = o(x)o(x)’ and
o(x) is locally Lipschitz continuous (see [6] Chapter 6, Proposition 6.2). It
follows, by a representation theorem for martingales (see [6], Chapter 2,
Theorem 7.1), that there exists a K-dimensional standard Brownian motion
B(%) such that

M(t)= Y fJL(X(s))dB(s) 1<i<K.

ISJSK

Thus (4.3) becomes
4.3*) X(t) = X(©0) + [0 ‘a(X(s))ds + [0 "o (X(s)dB(s) + £(tXI — P),
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and, to show Proposition 1, it suffices to show the uniqueness result for (4.3*%).
To this end, first we note that any solution of (4.3*) [hence of (4.3)] is not
explosive. (We can show this easily by using the Lipschitz continuity of the
reflection map ¥ in Lemma 1.) For any solution X(¢), let 7, = inf{¢; | X(¢)| >
R} and let X(¢) = X(¢ A 75) and £(¢) = £(t A 7). Then X(t) satisfies the
following Skorohod equation:

X(¢) = X(0) + /:a(X(s))l(|X(s)| <R)ds
(5.5)
+f0’1(|)2(s)| <R)o(X(s))dB(s) + £(t)(I - P),

where £,(t) is nondecreasing and satisfies
~ t ~ ~
£(6) = [1(Xi(s) = 0) dé(s).

Thus, since X(¢) is not explosive as noted above, it suffices to show the
uniqueness result for the solution of (5.5). For this, obviously it is sufficient to
show the uniqueness of the solution of the following Skorohod equation:

Y(t) = X(0) + [O‘a(Y(s))1(|Y(s)| <R)ds

+[[o(¥(s)) dB(s) + p(£)(I = P),
where ¢,(¢) is nondecreasing with ¢;(0) = 0 and
e(t) = [UYi(s) = 0)de(s), 1sisK.
0

Since 1(|Y(s)| < R)a(Y(s))o~1(Y(s)) is bounded (see assumptions 1 and 2), it
is well known that by a Girsanov measure transformation technique, the
uniqueness problem of the above equation reduces to that of the following
driftless Skorohod equation:

Y(2) = X(0) + ['o(¥(s)) dB(s) + #(£)(I - P),

where ¢(t) satisfies the same relation as above. (See Section 4 of Chapter 4 in
[6].) Now the uniqueness of the solution of the above equation is assured by
Proposition 1, since o (x) is locally Lipschitz continuous. O

6. Examples for queueing networks.

ExamPLE 1. In this example, we treat a case which is an extension of the
model considered in Section 3 to network models. Let Al(x) and w!(x) be
given as follows:

Ai(x) =nAi(x/Vn), xR,
pi(x) =npi(x/Vn), O0<xeR',1<i<K.
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We take ¢, = Vn and assume the following:

(E1) There exists a measurable function a(x) such that

a;(x)?ﬁ(ii,(xw T by () — ()| e ai()

1<j<K
ae.onD(x€R¥),1<i<K.

(E2) There exist measurable functions A,(x) and p(x)on R1,1 <i < K,
such that

(1/<p,f))t‘;1( %) = X;(x) —.. M(x) ae.on{x €R'; x>0},

(1/¢7)uha(@nx) = i (x) = mi(x) ae.on{x€R'; x>0}
If we assume (Al), (A3) and (A5), then X, (¢) -, X(¢), where X(¢) is the
unique solution of (4.3). As a special case, let

A(x) = A(x)/Vn + A (x), xE€RY,

Bi(x) = Bi(%)/Vn + py(x), x € RY,
where A(x), A(x), f,(x) and w,(x) are arbitrary nonnegative measurable
functions. Then (E1) implies
(6.1) ai(%) = q(x) + X pib(x;) — (%),
1<j<K
(6.2) N(x)+ X pjii(x;) — pm;(x;) =0 forall x € RE,
1<j<K
Thus the following fact follows: Given an arbitrary equation (4.3) with a(x)
being given by (6.1) and assuming the uniqueness of the solution of (4.3) for
which (6.2) holds, then we can construct a sequence of queueing networks
{@,(¢)}, » 1 such that the normalized processes {X,(¢)}, . converge in law to
the process X(¢) which is the unique solution of the arbitrarily given equa-
tion (4.3). That is, quite roughly speaking, a very large class of reflecting
diffusions with nonsingular drift and diffusion coefficients can be approxi-
mated by an appropriate sequence of queueing networks with suitable nor-
malization.

ExampLE 2. Let
X(x) =nA(x/n) and pi(x) =np,(x/n)l(x>0), xe&R.
[Note that we do not assume {;(0) =0, 1 <i < K, but [i,(0) are defined so

that they satisfy the conditions to be stated soon.] We assume the following
conditions:

(E3) )Ati(x), (%), 1 <i <K, x € R', are differentiable at zero and satisfy

|%:(2) = %,(0)] +] (%) = A:(0)| < Cx,
for any x > 0.
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(E4) (Heavy traffic condition)
A0+ X puiy(0) - 4(0) =0, 1<is<K.
K

1<j<
(E5) p0)>0,1<i<K.
In view of (E3) and (E4), ai(x,) — a;(x), if x, = x # 0, x,, x € R¥, where

a,(x) = ‘/;I’—(Xt(xz/‘/;) + X Pj; ﬁvj(xj/\/;l—) - ﬁi(xi/\/'—l_)),
1<j<K
a(x) = X(O)x + ¥ piy(0)x; - E(0)x;, 1<i<K
1<j<K
[X’i(O), (0), 1 < i < K, denote the derivatives at 0 of Xi(x) and [i;(x)]. Thus
assumption (A2) is satisfied. Clearly, assumption (A4) is also satisfied if we
let A,(x) = A,(0) and p(x) = 2,(0), for 1 <i < K. Thus if assumption (A5)(ii)
is satisfied [ie., if inf,,, A;(x) > 0, for 1 <i <K], all the assumptions
(A1)-(A5) are satisfied. Equation (4.3) becomes

X,(8) =X(0) + [a(X(s) ds + M(8) + &(1) = L pub(0),

1<j<
M;(t) = yA,(0) Wi(t) + X VP ©;(0) éji(t)
1<j<K
0<j<K
Since a(x) is Lipschitz continuous, by Proposition 2, (4.3) (i.e., the equation
just above) has a unique solution. [X(¢) may be called a reflecting
Ornstein—Uhlenbeck process.] Thus, taking ¢, = Vn , we have X, (t) = X(¢)
by Theorem 1.

REMARK 8. The problem of Example 2 was considered for a single station
model without feedback by Liptser and Shiryaev ([11], Chapter 10, Section 4),
where A,(x) and fi,(x) are assumed to be differentiable with bounded and
continuous derivatives. Pats [12] considered the same problem more exten-
sively in the framework of M, convergence. (See [15] for M, convergence.)

ExampLE 3. This example is given to show that there exists a case which
is the outside of the application of our result. We consider a fixed state-depen-
dent single station model Q(¢#) with arrival rate Mx) and service rate w(x).
We let @,(t) = Q(nt), n > 1, and X, (¢) = (1/ Vn)@Q,(t). Then, for a sequence
of queueing processes {Q,(t)}, 1, we have AL(x) = nA(x) and p,(x) = nu(x).

Hence,

a,(x) = (1/Vn)(A,(Vrx) — p,(Vnx))
= Vn (MVnx) - p(Vn x)).
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Hence, a,(x) =, a(x) =c/x ae. on D ={x; x> 0} under the following
heavy traffic condition (E6):

(E6) lim 5(A(x) — u(x)) = c.

. Thus, the drift coefficient a(x) is singular and we cannot have (A1) since
a(x) =c¢/x - +oor —»as x - 0 + except ¢ = 0. [For this example, we can
show that the limit process of {X,(¢)} is a Bessel process (see [16]).] As this
example shows, reflecting diffusion processes with singular drift and/or
diffusion coefficients cannot be obtained from queueing processes considered
in this paper. More comments on the comparison of models considered in
Examples 2 and 3 can be found in [12].

7. A non-Markovian case. In this section, we consider a non-Markovian
case which can be treated by our approach. The model is a mixture of our
model and that considered by Reiman [13].

For each i, 1 <i < K, there is a sequence of positive iid random variables
{v;(1), 1 > 1} and a sequence of iid K-dimensional random vectors {n;({),
I > 1}, which take values ey, ey, ..., ex, where e;, j = 1, is the K-vector whose
Jth component is 1 and other components are 0, and e, is the K-vector all of
whose components are 0. We let p;; = P(n;(!) = ¢;). We also assume that all
these sequences are mutually independent. Let

Si(t)=max{k; ¥ vi(l)st}.

1<l<K

v;(1) represents the service time for /th customer at station i and n,() is a
routine vector; 7;(I) = e; means that the /th customer at station i goes to
station j after the completion of service. Following Reiman [13], Q,(¢) is
assumed to satisfy

K Si(Bit)

Qi(t) = Qi(0) +Ay(t) + Zl 2 ni(1) — Si(Bi(2)),
P
B,(t) = [otl(Q,.(s) >0)ds, 1<i<K

[7/(1) is the ith component of 7,(D)]. N;(¢) in (2.1) is obviously N,(¢) = S;(B,(2))
and N:@®) =L, f@) with L = 8 (B;(¢)). We assume that all the pro-
cesses above are defined on a stochastlc bas1s and A,(¢) has an intensity as in
’Section 2. Moreover, we assume that {A,(¢), N,(2), 1 < i < K} have no com-
mon jumps.

Hereafter, we consider a sequence of the queueing networks of the above
type, and let Xi(¢) = Q«(¢)/¢,, 1 <i < K. The process X,(t) =
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(XX(#),..., X,(t)) can be written as in (4.1) or (4.2), where

ay(x) = (1/¢n)()t2(¢nxi) + Y pim— MZ),
1<j<K
/“’ir, = l/Ev:;(l)’
K SiBI)

A~ln(t) + Z (Thi,j(l) _pji)

j=1 1=1

Mi(t) = (1/¢,)

b

K
+ _leﬁs?z;(B,{(t)) - 8i(Bi())
Si(2) = Si(2) — pit,
gi(t) = (u;/gon)joﬁ(x,i(s) - 0)ds, 1l<i<K.

For each 1 <i < K, we define

5(t)=1/¢) L (m(l)-P),

1<l<[¢2t]
where P, is the ith row of the routing matrix P,
Si(2) = (1/¢.)(Si(t) — wit),
6:() = (1/¢2)SL(t).

We impose the following assumptions, most of which are the same as those in
Section 3:

(B1) For any R > 0, there exists a constant C such that
sup |&,(x)| <C and sup (1/¢,)A(p,x) <C, 1<i<K.
R

|x|<R 0<x<
xeRX

(B2) There exists a measurable function a(x), x € R¥, such that &,(x)
—,. a(x) a.e. on R¥. We also have, for 1 <i <K, (1/92)A (¢, ") =, A,()
a.e.on R for a measurable function A,(-) on R..

(B3) The sequence (81(¢),..., 8X(¢), S,(¢), 6,(t)) -4
(8:(8),..., 8¢(2), S(2), 6(2)) in D, where 8,(2),..., 8x(¢), S(¢) are independent

K-dimensional Brownian motions. Moreover, S;,..., Sy are independent
one-dimensional Brownian motions and 6,(¢) = 6;t with 6, > 0,for1 <i < K.

(B4) For1<i<K,sup,_,:1/¢)uvi(l) —p 0.

(B5) The routing matrix P has spectral radius strictly less than unity.
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(B6) For each ¢ > 0, sup, E(Si(¢))? <, 1<i <K.
We have the following result similar to Theorem 1:

THEOREM 2.  Assume (B1)-(B6) and X,(0) —, X(0) in RX. Then X,(t) -
X(¢) in D(0, ), RX). Here X(t) is assumed to be the unique (in law) solution
of the Skorohod equation given in Theorem 1 with M(t) being replaced by

‘ _ K ) K .
Mi(2) = [VA(Xi() dW; + L /0,8/(8) + L uSi(0),

ﬁ _ pij’ I’f J #* i,
Y 1-py, if j=1i,
where 8(t), 1 <j <K, and S(t) are K-dimensional processes given in (B3),

and W(t),..., Wy (t) are independent standard Brownian motions which are
also independent of 6(t), 1 <j < K, and S(2).

This theorem can be proved in almost the same way as Theorem 1. We will
only roughly indicate the points where the proof differs. The tightness of
{A, (), M, (2)} follows easily from the discussion in Lemma 2 and (B3). Then
by Lemma 1, {X,(¢), A,(¢), M, (¢), £,(¢)} is tight. We note that this implies
{8:(8),--, 85(8), 5a(2), 6,(2), Bu(2)}

=g {8:(2),..., 8 (£),S(¢),6(t),t} in D.
Indeed, by (B3) we have ul, /¢, — . On the other hand, £(2) = (u, /@, Nt —

Bi(t)), 1 <i < K. Hence, the tightness of {£,(¢)} implies the above fact. Now
let, foreach 1 <i <K,

ay(t) = (1/¢.) AL(2),

K
bty =(1/e) X X (n() -P),

J=11<1<SiBi#)

(7.1)

d i
ch(1) = (1) T £,S)(BLO).

Let {a(2), b(¢), c(¢), M(¢)} be any weak limit of {a,(¢), b,(¢), ¢,(¢), M,(¢)}. Then
we have

M(t) =a(t) +b(t) +c(2).
Using (7.1), we can easily show that \

b(t) = (8:(6:2),..., 8k (0kt)),

K K
c(t) = Zﬁjlsj(t)»---, ZﬁjKSj(t) .
j=1 j=1
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We must show that a,(¢) is orthogonal to 5,(¢) and c(¢); that is, (a,, b;)(¢) =
and (a;, c;)(¢) = 0. Let us, for example, show that (al, ¢;)(t) = 0. To see thlS
it suffices to show that {a;, J)(t) = 0. We note that

S0 =(We) T (- i) - (si/e)\t- T o)

1<I<Si@®) 1<I<Si®)
= di(t) - el(t).

By (B4), ei(t) > 0. Thus, if (Si(2), di(2)) >4 (S,(t),d,(t)), then Si(¢) =
d;(t). Hence it sufﬁces to show that (a,, d;)(t) = 0 since d () = S (2). 'How-
ever di(t) is a locally square integrable martmgale [note that SJ(t) is not a
martlngale] and has no common jumps with ai(¢) since A’ (¢) and Si(¢) have
.no common jumps by our-assumption. Hence, we have ( aﬁl, d{;)(t) = 0. By
letting n go to infinity and taking into consideration assumption (B6), we
reach the conclusion (a;, d; >(¢) = 0. Thus, we have shown the orthogonality
of a,(¢) and c;(¢). That a () is also orthogonal to b/(¢) can be shown
31m11ar1y We can then show the result of Lemma 3 by the same (but easier)
discussion as in the proof of Lemma 3. Then the identification of the process
a(t) can be carried out exactly in the same way as the proof of Theorem 1.
Now, we obtain the conclusion of Theorem 2.

As a final remark, we point out that it is also possible to obtain a result
similar to that above for the model where the arrival streams are renewal
processes not dependent on the state of the network, but the service streams
are the same as in the model in Theorem 1.

8. Concluding remarks. This section lists some problems related di-
rectly or indirectly to our result.

1. We have treated queueing networks for which the heavy traffic condition
(A2) holds for each station. That is, if we use the terminology of Chen and
Mandelbaum [3], balanced networks were considered, and hence, it re-
mains to investigate unbalanced networks.

2. Although some non-Markovian models were treated in Section 7, more
general models of this type should be considered. It would be interesting to
see whether our stochastic calculus approach is applicable to such models.

3. This problem is not directly related to our result, but is interesting from
the viewpoint of application. Given queueing network processes {Q,(¢)}, . 1,
we often need to investigate the asymptotic behavior of functionals of
jumps of {@,(#)},,, of the form X, .0 s-)f(Q,(s),Q,(s —)). Such a
problem was considered in [17] for smgle station queues under a heavy
traffic situation. The approach there depends on the basic fact that the
limit process for such queues is reflecting Brownian motion. In the prob-

. lem for our network queues, it is also expected that our result will play a
basic role. However, the direct application of the method in [17] seems
difficult, and it is important to find the methodology to cope with our
problem.
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4. As is mentioned in the Introduction, we have introduced the concept “c.c.
convergence” for functions, which is weaker than uniform convergence, to
take care of some discontinuous arrival and service rates, that is, to deal
with the convergence of stochastic integrals

A Fu(X(s —)) dM,(s5) — A ‘f(X(s)) dM(s),

where (X, M,) — (X, M) in the J,-topology and f, — f in an appropriate
sense. Note that in our case X is a diffusion and M is a Brownian motion
or a deterministic process ¢. (A similar problem is treated by Kurtz [9], but
it seems his result is not applicable to our problem.) With respect to the
above convergence problem, a referee suggested the use of M;-convergence
[15]. Although this seems to be an interesting approach, at present we are
not able to clarify this point.
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