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STABILITY ANALYSIS OF SECOND-ORDER FLUID FLOW
MODELS IN A STATIONARY ERGODIC ENVIRONMENT

BY LANDY RABEHASAINA AND BRUNO SERICOLA

IRISA–INRIA

In this paper, we study the stability of a fluid queue with an infinite-
capacity buffer. The input and service rates are governed by a stochastic
process, called the environment process, and are allowed to depend on the
fluid level in the buffer. The variability of the traffic is modeled by a Brownian
motion and a local variance function, which also depends on the fluid level in
the buffer. The behavior of this second-order fluid flow model is described
by a reflected stochastic differential equation, and, under stationarity and
ergodicity assumptions on the environment process, we obtain stability
conditions for this general fluid queue.

1. Introduction. Fluid flow models are widely used in the performance
evaluation of high-speed communication networks. Typically, the fluid represents
information stored in a buffer and waiting for transmission in a network. The
arrival and service processes are modulated by a random external environment,
and the quantity of interest is the behavior of the buffer level. A lot of papers,
see, among others, Anick, Mitra and Sondhi (1982), Mitra (1988), Stern and
Elwalid (1991), Kulkarni (1997), Prabhu (1997), Sericola and Tuffin (1999) and
the references therein, considered the case where the random external environment
is a continuous-time Markov chain (CTMC) with a finite or infinite state space. In
these papers, the input and output rates of the buffer are both piecewise constant,
depending on the state of the Markov process. Extensions of this model can be
found in Lam and Lee (1997), where the authors deal with the case where the input
and output rates of the buffer may also depend on the buffer level. In Asmussen
(1995) and Karandikar and Kulkarni (1995), new models, called second-order
models, were introduced by adding a “white noise” factor, which represents, in
practice, the variability of the traffic during the transmission periods. The fluid
level was thus described by a reflected Brownian motion modulated by a CTMC X.
When the CTMC X is in state i, the fluid level is modeled by a reflected Brownian
motion with drift bi and variance parameter σ 2

i . In the state of the art [Kulkarni
(1997)], the author mentioned as further work the importance of the study of such
models with arrivals and services depending on the fluid level.

In this paper, we consider a fluid flow model driven by a stationary ergodic
process (not necessarily a Markov process), where the arrival and service rates are
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allowed to depend on the fluid level in the buffer. The variability of the traffic is
modeled by a Brownian motion and a local variance mapping, which also depends
on the fluid level in the buffer. This generalization leads, in particular, to the use of
Itô’s stochastic integral, and the well-known differential equations used in Prabhu
(1997) become stochastic differential equations with reflection at 0. The fluid level
process with these level-dependent drift and variance coefficients is, essentially,
a reflected Brownian motion that has been altered, at each instant, by changing its
drift and its variance.

The main result of this paper is obtaining, under stationarity and ergodicity
assumptions, stability conditions for such models, that is, conditions for the
existence of the limiting behavior for the fluid level in the buffer. The stability
of such queues was already studied, for example, in Sigman and Ryan (2000) and
Atar, Budhiraja and Dupuis (2001) when the buffer level did not depend on an
external environment. The idea for proving stability is, in this case, to exploit the
Markovian nature of the buffer level at time t and to prove its positive recurrence
under the assumptions, roughly speaking, that the drift is negative for high values
of the buffer level and that the local variance is uniformly nondegenerated. Such
criteria of positive recurrence cannot be used in the present paper, because our
governing process is not necessarily a Markov process.

To the best of our knowledge, there are no stability results concerning fluid
queues in a general, non-Markovian, random environment. According to Kulkarni
[(1997), page 333] there is no general theory for such a case. This kind of general
environment is very important for stability results because traffic arriving at a
queue has generally already traversed parts of the network and has thus lost its
Markov property. Moreover, our results allow us to study the stability of queues
fed by general sources.

The remainder of the paper is organized as follows. The model and notation
are introduced in the next section. In Section 3, we solve Lindley’s equation
corresponding to that model. The main results, concerning the stability of the fluid
queue, are proved in Sections 4 and 6. Section 5 contains some properties of the
solution to Lindley’s equation used in Section 6.

2. Model and notation. Consider an infinite-capacity buffer where fluid
enters and exits according to the behavior of a general stochastic process denoted
by X = {X(t), t ≥ 0}. Let Q(t) denote the amount of fluid in the buffer at
time t . The input and service rates in the buffer are denoted, respectively, by
λ(X(t),Q(t)) and µ(X(t),Q(t)). They are both nonnegative and depend on the
environment and the fluid level at time t . Their difference is called the local drift
and is denoted by

b
(
X(t),Q(t)

) = λ
(
X(t),Q(t)

) − µ
(
X(t),Q(t)

)
.

The variability of the traffic at time t is represented by a Brownian motion {Bt}
and a local variance mapping σ(X(t),Q(t)). The behavior of the process {Q(t)} is
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thus described by the following reflected stochastic differential equation (RSDE):

dQ(t) = b
(
X(t),Q(t)

)
dt + σ

(
X(t),Q(t)

)
dBt + dL(t),(1)

so-called because 0 is a reflecting barrier, where the stochastic process L = {L(t),
t ≥ 0} is an increasing process introduced to prevent {Q(t)} from being negative.
Equation (1) is very compact and covers a broad range of situations.

Suppose, for instance, that we do not take into account the random part of (1)
by taking σ(X(t),Q(t)) = 0. In that case, we obtain the following classical
differential equation [see Prabhu (1997)]:

d

dt
Q(t) =

{
b
(
X(t),Q(t)

)
, if Q(t) > 0,

b
(
X(t),Q(t)

)+
, if Q(t) = 0,

by setting dL(t) = b(X(t),Q(t))−1{Q(t)=0} dt , where x+ = max(x,0) and
x− = (−x)+.

Let us now establish more rigorously the setting in which we will work from
now on.

2.1. Mathematical framework. Let (�,F ,P ) be a probabilistic space. We
denote by {X(t), t ∈ R} a stationary stochastic process with values in X ⊂ R

d ,
cadlag, and by {Bt, t ∈ R} a standard Brownian motion with real values. The
processes {X(t)} and {Bt} are supposed to be independent.

Let {θt : (�,F ,P ) → (�,F ,P ), t ∈ R} be the shift operator operating on
{X(t), t ∈ R} and on the increments of {Bt , t ∈ R}, that is, such that, ∀ s, s′, t ∈ R

with s ≥ s′ and ω ∈ �, X(s, θtω) = X(s + t,ω) and Bs(θtω) − Bs′(θtω) =
Bs+t (ω) − Bs′+t (ω). In practice, F is the σ -algebra generated by the random
variables X(t) and the increments Bt ′ − Bt for t ′ ≥ t and t and t ′ in R, so we may
as well assume that the probability P is θt -invariant, that is, P (θ−1

t A) = P (A) for
all t ∈ R and A ∈ F . We also suppose that (�,F ,P , {θt}) is ergodic.

For the sake of completeness, we recall how the probability space (�,F ,P ,

{X(t)}, {Bt }, {θt}) is constructed. Let {x(t), t ∈ R} be a stationary ergodic process
defined on a probabilistic space (�1,F 1,µ), where F 1 = σ(x(t), t ∈ R), and let
{βt , t ∈ R} be a standard Brownian motion (i.e., β0 = 0) defined on (�2,F 2, ν),
where F 2 = σ(βs′ − βs; s′ ≥ s, s′, s ∈ R). We denote by θ1

t the shift operator de-
fined on �1 such that x(s)◦ θ1

t (ω1) = x(s + t)(ω1) for all (s, t,ω1) ∈ R×R×�1,
and by θ2

t the operator defined on �2 such that (βs′ − βs) ◦ θ2
t (ω2) = (βs′+t −

βs+t )(ω
2) for all (s′, s, t,ω2) ∈ R×R×R×�2 (i.e., θ2

t operates on the increments
of {βt}). Note that ν is θ2

t -invariant for all t because {βt} has stationary incre-
ments and that (�2,F 2, ν, {θ2

t }) is ergodic because {βt} has independent
increments. We already know that µ is θ1

t -invariant and that (�1,F 1,µ, {θ1
t })

is ergodic.
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We then set � = �1 ×�2, F = F 1 ⊗F 2, P = µ⊗ ν, θt = (θ1
t , θ2

t ), X(t,ω) =
x(t,ω1) and Bt(ω) = βt (ω

2) for all t ∈ R and ω = (ω1,ω2) ∈ �. The probability
space (�,F ,P , {θt}) so defined is then ergodic and P is θt -invariant.

Let (Ft )t∈R be a right-continuous filtration such that {Bt} and {X(t)} are
(Ft )-adapted. For some subset A of R

k , we denote by B(A) the σ -algebra
generated by the open sets of A.

Let us suppose that:

• the mapping b : (X × [0,+∞),B(X × [0,+∞))) → (R,B(R)) is measurable
and verifies supx≥0[b(X(0), x)]+ ∈ L1(�) and [b(X(0),0)]+ ∈ L2(�);

• the mapping σ : (X × [0,+∞),B(X × [0,+∞))) → (R+,B(R+)) is measur-
able and verifies supx≥0[σ(X(0), x)]2 ∈ L1(�);

• the mappings b and σ are both Lipschitz with respect to the second variable, that
is, ∃C > 0, ∀y ∈ X, ∀x, x′ ≥ 0, |b(y, x) − b(y, x′)| + |σ(y, x) − σ(y, x′)| ≤
C|x − x′|.

Under the Lipschitz assumptions, for a fixed u ∈ R and for y ≥ 0, the following
RSDE

dQ(t) = b
(
X(t),Q(t)

)
dt + σ

(
X(t),Q(t)

)
dBt + dL(t) for t ≥ u,

Q(u) = y,

Q(t) ≥ 0 for t ≥ u,

L(t) =
∫ t

u
1{Q(s)=0} dL(s) for t ≥ u

(2)

admits a unique solution couple (Q(t),L(t))t≥u , (Ft )-adapted, where {Q(t)} and
{L(t)} are both continuous and nonnegative and {L(t)} is increasing. The proof
of this result can be found in Skorokhod (1961) or El Karoui and Chaleyat-
Maurel (1978). We see that the process {L(t)} is linked to the process {Q(t)},
interfering only when Q(t) = 0 and “prodding it upward” whenever Q(t) has
a tendency to go downward while approaching 0, that is, whenever, intuitively,
“b(X(t),0) dt + σ(X(t),0) dBt ≤ 0.”

It is well known [see, e.g., El Karoui and Chaleyat-Maurel (1978), page 118]
that, for a fixed u ∈ R, L(t) can be written as

L(t) = sup
s∈[u,t]

(
−y −

∫ s

u

[
b
(
X(v),Q(v)

)
dv + σ

(
X(v),Q(v)

)
dBv

])+
.(3)

Roughly speaking, since L(t) is increasing only when Q(t) = 0, we formally have
the (nonrigorous) expression “dL(t) = [b(X(t),Q(t)) dt +σ(X(t),Q(t)) dBt ]−×
1{Q(t)=0}.”

Moreover, in the case where b(X(0),0) ∈ L2(�) and σ(X(0),0) ∈ L2(�), it is
standard that Q(t) and L(t) admit finite moments of order 2 for all t ≥ 0. More
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precisely, using Gronwall’s inequality argument as well as the Burkholder–Davis–
Gundy inequalities, we obtain that, for all t ≥ 0,

E

(
sup

s∈[0,t]
|Q(s)|2

)
< +∞ and E

(
L(t)2)

< ∞.

We recall the definition of the stability [see Loynes (1962)] of the fluid queue.

DEFINITION 2.1. The queue is said to be stable if there exists an almost surely
finite random variable W such that Q(t) converges in distribution to W when
t tends to ∞.

3. Lindley’s stationarity equation. As usual, a key to state a stability
criterion is to solve an equation of the Lindley type [see Loynes (1962)]. The
unique solution to the RSDE (2) is, in fact, a function of the real number u and
the nonnegative real number y, the driving Brownian motion and the environment
process being kept the same as u and y vary. To make visible the dependence on
u and y, we denote by (Q

y
u(t),L

y
u(t))t≥u the solution to the RSDE. However, when

we consider the solution with y = 0, we denote it simply by (Qu(t),Lu(t))t≥u.
Thus, Qu(t) is the amount of fluid in the buffer at time t when the buffer is empty
at time u. We set by convention Qu(t) = 0 and Lu(t) = 0 for t ≤ u. We then have
the following results.

PROPOSITION 3.1. Let (Y 1
t , k1

t )t≥u and (Y 2
t , k2

t )t≥u be two solutions to the
following RSDEs:

dYt = bi
(
X(t), Yt

)
dt + σ

(
X(t), Yt

)
dBt + dkt for t ≥ u,

Yt ≥ 0 for t ≥ u,

kt =
∫ t

u
1{Ys=0} dks for t ≥ u,

(4)

i = 1,2, with b1 ≥ b2 and bi , i = 1,2, Lipschitz with respect to the second
variable. If Y 1

u ≥ Y 2
u , then we have, for all t ≥ u:

1. Y 1
t ≥ Y 2

t ;
2. ∀h ≥ 0, 0 ≤ k1

t+h − k1
t ≤ k2

t+h − k2
t .

PROOF. The first point is a comparison theorem for RSDEs and is quite
standard [see, e.g., El Karoui and Chaleyat-Maurel (1978)].

However, although the second point is rather straightforward, it has, to our
knowledge, never been mentioned. Roughly speaking, it states that, if Y 1 is
above Y 2, then Y 1 hits 0 less often than Y 2.

More precisely, let τ = inf{v ≥ u | Y 1
v = 0}, with the convention inf ∅ = +∞.

Then, by strong uniqueness to the RSDE, we have Y 1
t = Y 2

t and k1
t − k1

τ = k2
t − k2

τ



1454 L. RABEHASAINA AND B. SERICOLA

for all t ≥ τ . Besides, k1
t ′ − k1

t = 0 for u ≤ t ≤ t ′ ≤ τ , as Y 1 > 0 on [u, τ ).
It is then easy to check that, whether t lies in [u, τ ) or in [τ,+∞), we have
k1
(t+h)∧τ − k1

t ≤ k2
(t+h)∧τ − k2

t , with the notation a ∧ b = min(a, b). Hence, for
h ≥ 0,

0 ≤ k1
t+h − k1

t = k1
t+h − k1

(t+h)∧τ + k1
(t+h)∧τ − k1

t

≤ k2
t+h − k2

(t+h)∧τ + k2
(t+h)∧τ − k2

t

= k2
t+h − k2

t .

This completes the proof. �

This proposition is used to prove the following lemma.

LEMMA 3.2. Let u, t and t ′ be arbitrary numbers with u ≤ t ≤ t ′. For every
h > 0, we have:

1. 0 ≤ Qu(t) ≤ Qu−h(t);
2. 0 ≤ Lu−h(t

′) − Lu−h(t) ≤ Lu(t
′) − Lu(t).

PROOF. Consider the RSDE (4) with Yu = 0 and b1 = b2 = b. From (2), the
unique solution to this equation is given by Y 2

t = Qu(t) and k2
t = Lu(t).

Let h ≥ 0 and consider again the RSDE (4) with Yu = Qu−h(u). From (2), the
unique solution to this equation is given by Y 1

t = Qu−h(t) and k1
t = Lu−h(t) −

Lu−h(u).
We have Y 2

u = 0 ≤ Qu−h(u) = Y 1
u , so we can apply Proposition 3.1, which leads

to

Qu−h(t) = Y 1
t ≥ Y 2

t = Qu(t),

and, since t ′ ≥ t , we get Lu−h(t ′)−Lu−h(t) = k1
t ′ −k1

t ≤ k2
t ′ −k2

t = Lu(t
′)−Lu(t).

�

The stationary equation of the Lindley type is given in the following proposition.

PROPOSITION 3.3. Suppose that E(supx≥0 |b(X(0), x)|) < +∞. Then there
exist a nonnegative random variable W a.s. finite or infinite and a process
{L(t, v)}t≥v such that, whenever W is finite and for t ≥ v,

W ◦ θt = W ◦ θv +
∫ t

v
b(X(s),W ◦ θs) ds

+
∫ t

v
σ (X(s),W ◦ θs) dBs + L(t, v), P -a.s.,

L(t, v) =
∫ s=t

s=v
1{W◦θs=0} dL(s, v).

(5)
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Besides, the process {L(t, v)}t≥v is increasing in t , decreasing in v and compatible
with the flow, that is, for all t ≥ v and r ∈ R, L(t, v) ◦ θr = L(t + r, v + r).

PROOF. Since (Qu(s),Lu(s))s≥u is the solution to (2) with y = 0, then, for
every t ∈ R, (Qu(s) ◦ θt ,Lu(s) ◦ θt )s≥u is the solution to

dQ(s) = b
(
X(s) ◦ θt ,Q(s)

)
ds + σ

(
X(s) ◦ θt ,Q(s)

)
ds(Bs ◦ θt )

+ dL(s), s ≥ u,

Q(u) = 0,

Q(s) ≥ 0, s ≥ u,

L(s) =
∫ s

u
1{Q(x)=0} dL(x), s ≥ u.

(6)

The processes {X(t)} and the increments of {Bt} being compatible with the
flow {θt}, it follows that system (6) is the same as

dQ(s) = b
(
X(s + t),Q(s)

)
ds + σ

(
X(s + t),Q(s)

)
dsBs+t

+ dL(s), s ≥ u,

Q(u) = 0,

Q(s) ≥ 0, s ≥ u,

L(s) =
∫ s

u
1{Q(x)=0} dL(x), s ≥ u.

Thus, by strong uniqueness, we have

∀ t, s ∈ R,
(
Qu(s) ◦ θt ,Lu(s) ◦ θt

)
(7)

= (
Qu+t (s + t),Lu+t (s + t)

)
, P -a.s.

Let u, t and t ′ be real numbers such that u ≤ t ≤ t ′. From Lemma 3.2, Qu(0)

increases when u decreases and the difference Lu(t
′) − Lu(t) decreases when u

decreases. We thus define the following limits:

W = lim
u↘−∞Qu(0) and L(t ′, t) = lim

u↘−∞
(
Lu(t

′) − Lu(t)
)
.

Intuitively, W is the fluid level in the buffer at time 0 when the buffer is empty at
time −∞.

The rest of the proof is divided in two steps.

Step 1. We show that the event {W = +∞} is θt -invariant for every t ∈ R. We
detail the proof only for nonnegative values of t , the other case being similar.

Let u, v and t be real numbers such that u + t ≤ v ≤ t with u ≤ −t and t ≥ 0.
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We have

Qu(0) ◦ θt = Qu+t (t)

= Qu+t (v) +
∫ t

v
b
(
X(s),Qu+t (s)

)
ds +

∫ t

v
σ

(
X(s),Qu+t (s)

)
dBs

+ Lu+t (t) − Lu+t (v)
(8)

= Qu+t−v(0) ◦ θv +
∫ t

v
b
(
X(s),Qu+t−s (0) ◦ θs

)
ds

+
∫ t

v
σ

(
X(s),Qu+t−s (0) ◦ θs

)
dBs

+ Lu+t (t) − Lu+t (v),

where the first and third equalities are due to (7), and the second one is obtained
by using (2). If v = 0, we obtain u + t ≤ 0 ≤ t and

Qu(0) ◦ θt = Qu+t (0) +
∫ t

0
b
(
X(s),Qu+t−s (0) ◦ θs

)
ds

(9)

+
∫ t

0
σ

(
X(s),Qu+t−s (0) ◦ θs

)
dBs + Lu+t (t) − Lu+t (0).

Consider separately the three terms on the right-hand side of (9).
The term

∫ t
0 b(X(s),Qu+t−s (0) ◦ θs) ds is uniformly lower bounded

with respect to u because E(supx≥0 |b(X(0), x)|) < +∞, which implies that
supx≥0 |b(X(0), x)| < +∞ a.s.

From Lemma 3.2, we have, for u+ t < 0, Lu+t (t)−Lu+t (0) ≤ L0(t)−L0(0) =
L0(t). Thus, Lu+t (t) − Lu+t (0) is uniformly bounded with respect to u a.s. for
u + t < 0. Besides, for any u ≤ 0,

E

((∫ t

0
σ

(
X(s),Qu(s)

)
dBs

)2)

= E

(∫ t

0

[
σ

(
X(s),Qu(s)

)]2
ds

)

≤ E

(∫ t

0
sup
x≥0

[
σ

(
X(s), x

)]2
ds

)

= tE

(
sup
x≥0

[
σ

(
X(0), x

)]2
)
.

Thus, (
∫ t

0 σ(X(s),Qu(s)) dBs)u≤0 is bounded in L2(�). So there exists a
subsequence (uk)k∈N, which depends on ω, tending to −∞ as k → ∞ such that
(
∫ t

0 σ(X(s),Quk
(s)) dBs)k∈N is bounded a.s.

Suppose that, for a fixed ω, we have W(ω) = +∞. We thus have, by the
definition of W , limk→∞ Quk+t (0,ω) = W(ω) = +∞. By writing (9) with uk
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instead of u and by taking the limit when k → ∞, we get limk→∞ Quk
(0, θtω) =

+∞. By the definition of W , we obtain that W(θtω) = +∞. This means that
the event {W = +∞} is θt -invariant and thus, by ergodicity, we have either
P (W = +∞) = 0 or P (W = +∞) = 1.

Step 2. Suppose that W is finite a.s. and consider the relation (8). As the
function b is continuous with respect to the second variable, and since Qu+t−s (0)◦
θs converges increasingly to W ◦ θs when u tends to −∞, we get∫ t

v
b
(
X(s),Qu+t−s (0) ◦ θs

)
ds −→

u↘−∞

∫ t

v
b
(
X(s),W ◦ θs

)
ds.

As σ is continuous with respect to the second variable and supx≥0[σ(X(0), x)]2 ∈
L1(�),∫ t

v
σ

(
X(s),Qu+t−s (0) ◦ θs

)
dBs −→

u↘−∞

∫ t

v
σ

(
X(s),W ◦ θs

)
dBs in L2(�).

We may consider, by taking a subsequence, that this convergence holds almost
surely.

By definition, we have Lu+t (t) − Lu+t (v) → L(t, v) a.s. when u → −∞ and
so, by taking the limit when u → −∞ in (8), we obtain the desired relation

W ◦ θt = W ◦ θv +
∫ t

v
b
(
X(s),W ◦ θs

)
ds +

∫ t

v
σ

(
X(s),W ◦ θs

)
dBs + L(t, v).

Now, noticing that, for u ≤ w ≤ v, 1{Qu(s)=0} d(Lu(s) − Lu(v)) = 1{Qu(s)=0} ×
d(Lw(s) − Lw(v)) [indeed, Lw(s) increases when Qw(s) hits 0 and, a fortiori,
when Qu(s) hits 0], we may write, for u ≤ w ≤ v,

Lu(t) − Lu(v) =
∫ s=t

s=v
1{Qu(s)=0} d

(
Lu(s) − Lu(v)

)

=
∫ s=t

s=v
1{Qu(s)=0} d

(
Lw(s) − Lw(v)

)
.

Letting u → −∞, we get L(t, v) = ∫ s=t
s=v 1{W◦θs=0} d(Lw(s) − Lw(v)). Finally,

letting w → −∞, we get

L(t, v) =
∫ s=t

s=v
1{W◦θs=0} dL(s, v).

Let us finish by showing that the process {L(t, v)}t≥v is compatible with
{θt , t ∈ R}. For t ≥ v, r ∈ R and u ≤ v, we have Lu(t)◦θr −Lu(v)◦θr = Lu+r (t +
r) − Lu+r (v + r), which, when u → −∞, yields L(t, v) ◦ θr = L(t + r, v + r) as
desired. �
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PROPOSITION 3.4. The amount of fluid {Q0(t)}t≥0 converges in distribution
to W , that is,

Q0(t)
D−→

t→+∞ W.

PROOF. Since, for all u ≤ 0, Qu(0) = Q0(−u) ◦ θu, we have that Qu(0)
D=

Q0(−u). Then, by letting u → −∞, we get Q0(t)
D→t→+∞ W . �

Note that, in the case where W = +∞ a.s., we have

∀x ≥ 0, P
(
Q0(t) > x

) = P
(
Q−t (0) > x

) −→
t→∞ 1.

4. Stability of the initially empty queue. To establish the results of this
paper, we need the two following technical lemmas.

LEMMA 4.1. Let V be a nonnegative, a.s. finite random variable such that,
for every t ∈ R, V ◦ θt − V ∈ L1(�). Then E(V ◦ θt − V ) = 0 for every t ∈ R.

PROOF. See, for instance, Baccelli and Brémaud [(1994), page 77]. �

We omit the proof of the following lemma, which is easy to check.

LEMMA 4.2. If b is lower bounded, for all t, u ∈ R such that u ≤ t , both
supx≥0 |b(X(0), x)| and

∫ t
u supx≥0 |b(X(v), x)|dv are integrable.

The following theorem establishes that the buffer does not fill indefinitely as
long as, on average, the drift is negative when the fluid level in the buffer is high.
The second assertion means that, since the drift is, on average, positive, the fluid
builds up in the buffer.

THEOREM 4.3. Suppose that the queue is initially empty.

1. If E(lim supx→∞ b(X(0), x)) < 0, then the queue is stable.
2. If E(infx≥0 b(X(0), x)) > 0, then, ∀x ≥ 0, limt→∞ P (Q(t) > x) = 1.

PROOF. Note that the assumption supx≥0[b(X(0), x)]+ ∈ L1(�) implies that
lim supx→∞ b(X(0), x) is semi-integrable, that is, E(lim supx→∞ b(X(0), x))

exists, but could be equal to −∞ (which could happen if the service rate is not
integrable). We are going to prove Theorem 4.3 first when b is lower bounded,
then in the general case.
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Step 1. Suppose that b is lower bounded. For the first assertion, we prove that
if W = +∞ then E(lim supx→∞ b(X(0), x)) ≥ 0.

Note that we will often take expectations of Qu(t) and Lu(t) in this part of the
proof. This is entirely justified by the fact that b lower bounded, along with the
assumption [b(X(0),0)]+ ∈ L2(�), ensures that b(X(0),0) is in L2(�), and so
Qu(t) and Lu(t) admit finite moments of order 2 as shown at the end of Section 2.

So, suppose that W = +∞ a.s. and let u < 0 and t ≥ 0. Since P is θt -invariant,
we have E(Qu(0) ◦ θt ) = E(Qu(0)). From Lemma 3.2, Qu(0) is decreasing in u,
and thus we have E(Qu(0) − Qu+t (0)) ≥ 0. Combining these two relations, we
obtain

E
(
Qu(0) ◦ θt − Qu+t (0)

) = E
(
Qu(0) − Qu+t (0)

) ≥ 0.

Replacing the value of Qu(0) ◦ θt −Qu+t (0) by its expression in (9), we get, since
the martingale part has a null expectation,

0 ≤ E

(∫ t

0
b
(
X(s),Qu+t−s (0) ◦ θs

)
ds

)
+ E

(
Lu+t (t) − Lu+t (0)

)
.(10)

Observing that Qv+t−s(0) ◦ θs increases from Qu+t−s (0) ◦ θs to +∞ when
v decreases from u to −∞, we obtain

b
(
X(s),Qu+t−s (0) ◦ θs

) ≤ sup
v≤u

b
(
X(s),Qv+t−s (0) ◦ θs

)
= sup

x≥Qu+t−s (0)◦θs

b
(
X(s), x

)
≤ sup

x≥0
b
(
X(s), x

)
,

and
∫ t

0 supx≥0 b(X(s), x) ds ∈ L1(�) from Lemma 4.2. By the definition of W ,
limu→−∞ Qu(0) = W = +∞. Thus, using the dominated convergence theorem,
we get

E

(∫ t

0
sup

x≥Qu+t−s (0)◦θs

b
(
X(s), x

)
ds

)
−→

u↘−∞E

(∫ t

0
lim sup
x→+∞

b
(
X(s), x

)
ds

)
.

We have seen in the previous section that the difference Lu+t (t) − Lu+t (0)

converges decreasingly to a limit L(t,0) when u ↘ −∞. Since W = +∞, we
obtain

L(t,0) =
∫ s=t

s=0
1{W◦θs=0} dL(s,0) = 0.

Note that Lu+t (t) − Lu+t (0) is integrable, and thus E(Lu+t (t) −
Lu+t (0))→u→−∞ E(L(t,0)) = 0. Using these results, (10), at t = 1, leads to

0 ≤ E

(∫ 1

0
lim sup
x→+∞

b
(
X(s), x

)
ds

)
= E

(
lim sup
x→+∞

b
(
X(0), x

))
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by Fubini’s theorem and the stationarity of the process {X(t)}. This completes the
proof of the first assertion.

To prove the second assertion, let us suppose that W < +∞ a.s. and let t ≥ 0.
In that case, since supx≥0[σ(X(0), x)]2 ∈ L1(�),

∫ t
0 σ(X(s),W ◦ θs) dBs is

integrable. Concerning b, we have, from Lemma 4.2,

E

(∣∣∣∣
∫ t

0
b
(
X(s),W ◦ θs

)
ds

∣∣∣∣
)

≤ E

(∫ t

0

∣∣b(
X(s),W ◦ θs

)∣∣ds

)

≤ E

(∫ t

0
sup
x≥0

∣∣b(
X(s), x

)∣∣ds

)
< +∞.

Moreover, L(t,0) is also integrable since

0 ≤ L(t,0) = lim
u↘−∞,u≤0

[Lu(t) − Lu(0)] ≤ L0(t) − L0(0) = L0(t),

with L0(t) ∈ L1(�). It thus follows from (5), for v = 0, that W ◦ θt − W is
integrable and, from Lemma 4.1, we obtain E(W ◦ θt − W) = 0. This leads, again
using Fubini’s theorem and the stationarity of the process {X(t)}, to

0 = E(W ◦ θt − W) = E

(∫ t

0
b
(
X(s),W ◦ θs

)
ds

)
+ E(L(t,0))

=
∫ t

0
E

(
b(X(s),W ◦ θs)

)
ds + E(L(t,0))(11)

= tE
(
b(X(0),W)

) + E(L(t,0)).

Now, since L(t,0) ≥ 0, we obtain at t = 1 the contradiction

0 ≥ E
(
b(X(0),W)

) ≥ E

(
inf
x≥0

b
(
X(0), x

))
,

which completes the proof, when b is lower bounded.

Step 2. This is the general case, where b is not necessarily lower bounded.
Let us show the first point. Suppose that E(lim supx→∞ b(X(0), x)) < 0. For all
N ∈ N, we denote by (QN

u (t),LN
u (t))t≥u the solution to the following RSDE:

dQ(t) = [
b
(
X(t),Q(t)

) ∨ (−N)
]
dt + σ

(
X(t),Q(t)

)
dBt + dL(t), t ≥ u,

Q(u) = 0,

Q(t) ≥ 0, t ≥ u,

L(t) =
∫ t

u
1{Q(s)=0} dL(s), t ≥ u.

As b(·, ·) ∨ (−N) is greater than or equal to b, Proposition 3.1 implies that
Qu(t) ≤ QN

u (t), t ≥ u. Besides, by hypothesis,∣∣∣∣ lim sup
x→+∞

[
b
(
X(0), x

)]+∣∣∣∣ ≤ sup
x≥0

[
b
(
X(0), x

)]+ ∈ L1(�)
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and

lim sup
x→+∞

[
b
(
X(0), x

) ∨ (−N)
] −→
N→+∞ lim sup

x→+∞
b
(
X(0), x

)
.

Thus, by the monotone convergence theorem,

E

(
lim sup
x→+∞

[
b
(
X(0), x

) ∨ (−N)
]) −→

N→+∞E

(
lim sup
x→+∞

b
(
X(0), x

))
< 0.

This means, in particular, that, for N sufficiently large,

E

(
lim sup
x→+∞

[
b
(
X(0), x

) ∨ (−N)
])

< 0.

For such an N , the mapping b(·, ·) ∨ (−N) is lower bounded and since
supx≥0[b(X(0), x) ∨ (−N)] ∈ L1(�), we may apply the results of Step 1. Thus,

QN
u (0) converges to some almost surely finite random variable, say WN , when

u → −∞. So

W = lim
u→−∞Qu(0) ≤ lim

u→−∞QN
u (0) = WN < +∞ a.s.

and the queue is stable.
Consider now the second point. By hypothesis, E(infx≥0 b(X(0), x)) is positive

and finite, so we have infx≥0 b(X(0), x) ∈ L1(�) and thus

sup
x≥0

[
b
(
X(0), x

)]− = − inf
x≥0

[
b
(
X(0), x

) ∧ 0
]

= −
(

inf
x≥0

b
(
X(0), x

) ∧ 0
)

=
(

inf
x≥0

b
(
X(0), x

))−
,

which implies that supx≥0[b(X(0), x)]− ∈ L1(�). This, along with the hypothesis
that supx≥0[b(X(0), x)]+ is in L1(�), yields supx≥0 |b(X(0), x)| ∈ L1(�).

We then use Proposition 3.3, which states that the buffer content converges to
either a finite or an infinite r.v. W . We conclude in the same way as we did in
Step 1. Let us suppose that W < +∞ a.s. Then, since W ◦ θt − W is integrable,
we likewise find the contradiction

0 ≥ E
(
b
(
X(0),W

)) ≥ E

(
inf
x≥0

b
(
X(0), x

))
. �

5. Properties of the Lindley equation. In this section, we give a few
properties of the stationary process {W ◦ θt , t ∈ R} and its associate process
{L(t, v), t ≥ v}, which will be used in the next section.

Let us first define the following limits, which belong to [0,+∞]:
LW = lim

t→−∞ ↑ L(0, t) and KW = lim
t→∞ ↑ L(t,0).
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LEMMA 5.1. LW = 0 a.s. or LW = +∞ a.s.

PROOF. We are first going to show that the event {LW = +∞} is invariant
under the flow. Suppose that, for some ω ∈ �, LW(ω) = limt→−∞ L(0, t)(ω) =
+∞ and let s ∈ R. Then, for all t ≤ 0, L(0, t)(θsω) = L(s, t + s)(ω) = L(0, t +
s)(ω) − L(0, s)(ω). By letting t → −∞, L(0, t + s)(ω) tends to LW(ω) = +∞.
Hence,

lim
t→−∞ L(0, t)(θsω) = LW(θsω) = +∞.

The event {LW = +∞} is then invariant, so it is of probability 0 or 1.
Let us suppose now that LW < +∞ a.s. Then, as, for all s ≤ t ,

L(0, t) = L(0, s) − L(t, s) = L(0, s) − L(0, s − t) ◦ θt ,

we get, by letting s → −∞, L(0, t) = LW − LW ◦ θt . We saw that L(0, t)

is integrable [indeed, 0 ≤ L(0, t) ≤ Lt(0) with Lt(0) ∈ L1(�)]. Applying
Lemma 4.1, we get that E(L(0, t)) = 0. Since L(0, t) is nonnegative, this yields
that L(0, t) = 0 a.s. By letting t → −∞, we thus get LW = 0 a.s. �

One gets similarly the following lemma.

LEMMA 5.2. KW = 0 a.s. or KW = +∞ a.s.

Moreover, one can easily check that P (KW = 0) = P (LW = 0).

The next corollaries point out the connection between LW and KW and the
hitting of the level zero for the stationary process {W ◦ θt , t ∈ R}.

COROLLARY 5.3. Suppose that LW = +∞ on a set F− of probability 1.
Then, for all ω ∈ F−, there exists an s− = s−(ω) such that W ◦ θs−(ω) = 0.

Besides this, s−(ω) can be chosen less than or equal to S for any S ∈ R.

PROOF. Let ω ∈ F−. As LW(ω) = limt→−∞ L(0, t)(ω) = +∞, then
L(0, t)(ω) > 0 for t ≤ T for some T = T (ω). Hence, there exists some s− =
s−(ω) ∈ [T,0] such that W ◦ θs− = 0. One can point out that, since LW(θSω) =
limt→−∞ L(0, t)(θSω) = limt→−∞ L(t + S,S)(ω) = +∞, one gets by the same
method that there is an s− = s−(ω) ≤ S such that W ◦ θs− = 0. �

COROLLARY 5.4. Suppose that LW = +∞ on F− of probability 1. For
each ω in F−, there exists a sequence (s−

n )n∈N = (s−
n (ω))n∈N of decreasing real

numbers tending to −∞ as n → +∞ such that W ◦ θs−
n

= 0 for all n.
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PROOF. Let ω ∈ F− and let s−
0 (ω) = s−(ω) as in Corollary 5.3. We

proceed by induction on n. If s−
0 , . . . , s−

n exist, then, using Corollary 5.3 with
S = s−

n (ω) − 1, we get an s−
n+1(ω) that satisfies W ◦ θs−

n+1
= 0. One can show

by induction that s−
n ≤ −n, which, in particular, implies that s−

n → −∞ when
n → ∞. �

Note that this corollary means intuitively that, under the condition LW = +∞,
the buffer empties infinitely often between time t = −∞ and time t = 0.

The following result is proved similarly using KW .

COROLLARY 5.5. Suppose that KW = +∞ on a set F+ of probability 1. For
each ω in F+, there exists a sequence (s+

n )n∈N = (s+
n (ω))n∈N of increasing real

numbers tending to +∞ as n → +∞ such that W ◦ θs+
n

= 0 for all n.

Finally, the combination of Corollary 5.4 and Corollary 5.5 yields the following
theorem.

THEOREM 5.6. Suppose that LW = +∞ a.s. (or, equivalently, that KW =
+∞ a.s.). Then there exists a set F of probability 1 such that, for each ω ∈ F , there
exists a sequence (sn)n∈Z = (sn(ω))n∈Z of increasing numbers tending to +∞ as
n → +∞ and tending to −∞ as n → −∞ such that W ◦ θsn = 0 for all n ∈ Z.

The proof of this result is straightforward by setting F as the intersection of
F+ and F− of Corollaries 5.4 and 5.5, and the sequence (sn)n∈Z is obtained by
merging (s+

n )n∈N and (s−
n )n∈N. Theorem 5.6 says that the condition LW = +∞

(or KW = +∞) implies that W ◦ θt is 0 infinitely often between t = −∞ and
t = +∞.

The next corollary is a key result for the rest of the paper.

COROLLARY 5.7. Suppose that LW = +∞ a.s. Then, for all u, Qu(t) = 0
infinitely often. Besides, coupling between (Qu(t))t≥u and {W ◦ θt , t ∈ R} occurs;
that is, for t ≥ T = T (ω) great enough, we have Qu(t) = W ◦ θt .

PROOF. Let us recall that, for all u and t ≥ u, Qu(t) ≤ W ◦ θt . By
Theorem 5.6, there exists an r.v. T = sn ≥ u such that W ◦ θT = 0 [where (sn)n∈Z

is the sequence introduced in Theorem 5.6]. Thus, for all v ≤ u, we have that 0 ≤
Qu(T ) ≤ Qv(T ) ≤ W ◦ θT = 0, and then, ∀v ≤ u, Qv(T ) = Qu(T ) = 0. By the
strong uniqueness of system (2), we then have that, for all t ≥ T , Qv(t) = Qu(t).
By letting v → −∞, we get that, ∀ t ≥ T,Qu(t) = W ◦ θt . Thus, coupling occurs
at time T . Since {W ◦ θt , t ≥ T } hits 0 infinitely often, so does (Qu(t))t≥u. �

Theorem 5.6 and Corollary 5.7 give us information as to whether the buffer
empties infinitely often in the stationary regime owing to LW . We provide here
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two criteria ensuring that LW = +∞. We then know that, if one of these criteria is
met, then {W ◦ θt , t ∈ R} hits 0 infinitely often.

Let us consider the following conditions:

(C1) E(supx≥0 b(X(0), x)) < 0;
(C2) b is upper bounded, E(lim supx→∞ b(X(0), x)) < 0 and c = infz∈X,x≥0 σ(z,

x)2 > 0.

PROPOSITION 5.8. If either (C1) or (C2) is fulfilled, then LW = +∞ a.s. (or,
equivalently, KW = +∞ a.s.).

PROOF. As in Theorem 4.3, the proof is divided into two steps. In Step 1, we
prove the result when b is lower bounded, and the general case is studied in Step 2.

Step 1. Suppose that b is lower bounded. Suppose that (C1) is satisfied. Note in
passing that E(lim supx→∞ b(X(0), x)) is less than or equal to E(supx≥0 b(X(0),

x)) so (C1) implies that the initially empty queue is stable (i.e., W < +∞).
The function b being lower bounded, (11) is applicable and yields at t = 1
the equality E(L(1,0)) = −E(b(X(0),W)). Now, since −E(b(X(0),W)) ≥
−E(supx≥0 b(X(0), x)) > 0, then necessarily L(1,0) > 0 on some nonnegligible
set. This implies that necessarily LW = +∞ a.s.

Suppose that (C2) is satisfied. Then W is a.s. finite because

E

(
lim sup
x→∞

b
(
X(0), x

))
< 0.

Intuitively, the condition E(lim supx→∞ b(X(0), x)) < 0 means that W ◦ θt is
“forced downward” when reaching high values, while supz∈X,x≥0 b(z, x) < +∞
and the nondegeneracy condition (c > 0) ensure that {W ◦ θt , t ∈ R} behaves like
a Brownian motion and (at least when not far from 0) eventually hits 0.

Let us take an A ≥ 0 great enough such that E(supx≥A b(X(0), x)) < 0 [indeed,
since we have E(lim supx→∞ b(X(0), x)) < 0 and b is upper bounded, we are
allowed to do so]. Let us define the concave mapping h : R+ → R+ by

h :x �→
{ 1 − exp(−αx), if x ∈ [0,A],

α exp(−αA)(x − A) + 1 − exp(−αA), if x > A,
(12)

where α > 0 will be chosen later on. Let us suppose that LW = 0. This implies that
L(s,0) = 0 for all s ≥ 0.

As h is only C1, Itô’s formula [see, e.g., Karatzas and Shreve (1997)]
cannot be used straightforwardly. However, a standard approximation technique
of approaching h by a sequence of C2 mappings can be used to get the following
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equality:

h(W ◦ θ1) − h(W) =
∫ 1

0

[
h′(W ◦ θs)b

(
X(s),W ◦ θs

)
+ 1

2h′′(W ◦ θs)σ
(
X(s),W ◦ θs

)2]
ds(13)

+
∫ 1

0
h′(W ◦ θs)σ

(
X(s),W ◦ θs

)
dBs,

where h′′ is defined by h′′(x) = −α2 exp(−αx)1{x≤A} (note that h′′ is equal to the
left derivative of h′). The term involving L(s,0) is equal to 0 by hypothesis. Here,
h′ and h′′ are bounded, so h(W ◦ θ1) − h(W) is integrable; since it is also finite,
Lemma 4.1 again states that E(h(W ◦ θ1) − h(W)) = 0. Let us now consider the
right-hand side of (13). We have

∫ 1

0

[
h′(W ◦ θs)b

(
X(s),W ◦ θs

) + 1
2h′′(W ◦ θs)σ

(
X(s),W ◦ θs

)2]
ds

=
∫ 1

0

[
h′(W ◦ θs)b

(
X(s),W ◦ θs

)
+ 1

2h′′(W ◦ θs)σ
(
X(s),W ◦ θs

)2]
1{W◦θs≤A} ds

+
∫ 1

0

[
h′(W ◦ θs)b

(
X(s),W ◦ θs

)
(14)

+ 1
2h′′(W ◦ θs)σ

(
X(s),W ◦ θs

)2]
1{W◦θs>A} ds

=
∫ 1

0
exp

(−α(W ◦ θs)
)[

αb
(
X(s),W ◦ θs

)
− 1

2α2σ
(
X(s),W ◦ θs

)2]
1{W◦θs≤A} ds

+
∫ 1

0
α exp(−αA)1{W◦θs>A}b

(
X(s),W ◦ θs

)
ds.

Let us set

η(α) = α sup
z∈X,x≥0

b(z, x) − 1
2α2 inf

z∈X,x≥0
σ(z, x)2.

For the moment, let us take α large enough such that η(α) < 0. Then

∫ 1

0
exp

(−α(W ◦ θs)
)[

αb
(
X(s),W ◦ θs

) − 1
2α2σ

(
X(s),W ◦ θs

)2]
1{W◦θs≤A} ds

≤
∫ 1

0
exp(−αA)η(α)1{W◦θs≤A} ds
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and ∫ 1

0
α exp(−αA)1{W◦θs>A}b

(
X(s),W ◦ θs

)
ds

≤
∫ 1

0
α exp(−αA)1{W◦θs>A} sup

x≥A

b
(
X(s), x

)
ds.

Hence,∫ 1

0
exp

(−α(W ◦ θs)
)[

αb
(
X(s),W ◦ θs

) − 1

2
α2σ

(
X(s),W ◦ θs

)2
]
1{W◦θs≤A} ds

+
∫ 1

0
α exp(−αA)1{W◦θs>A}b

(
X(s),W ◦ θs

)
ds

≤
∫ 1

0

[
exp(−αA)η(α)1{W◦θs≤A}

+ α exp(−αA)1{W◦θs>A} sup
x≥A

b
(
X(s), x

)]
ds

≤
∫ 1

0
α exp(−αA)

[
η(α)

α
∨ sup

x≥A

b
(
X(s), x

)]
ds,

where we have used the notation a ∨b = max(a, b). Looking back at (14), we then
have ∫ 1

0

[
h′(W ◦ θs)b

(
X(s),W ◦ θs

) + 1

2
h′′(W ◦ θs)σ

(
X(s),W ◦ θs

)2
]
ds

≤
∫ 1

0
α exp(−αA)

[
η(α)

α
∨ sup

x≥A

b
(
X(s), x

)]
ds.

Now, taking the expectation on both sides of (13), we get

0 ≤ E

(∫ 1

0
α exp(−αA)

[
η(α)

α
∨ sup

x≥A

b
(
X(s), x

)]
ds

)
(15)

= α exp(−αA)E

(
η(α)

α
∨ sup

x≥A

b
(
X(0), x

))
.

Note that E(supx≥A b(X(0), x)) < 0 and η(α)/α → −∞ as α → ∞, so for
α great enough we have

E

(
η(α)

α
∨ sup

x≥A

b
(
X(0), x

))
< 0.

For such an α, (15) becomes a contradiction. Thus, LW = +∞.
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Step 2. This is the general case, where b is not necessarily lower bounded. As
in the proof of Theorem 4.3, we use the same notation WN , corresponding to the
Lindley random variable for the drift b(·, ·) ∨ (−N), N ∈ N. We also denote by
{LN(t, v)}t≥v the corresponding associated process.

Suppose that (C1) is fulfilled. Let N be great enough such that

E

(
sup
x≥0

[
b
(
X(0), x

) ∨ (−N)
])

< 0.

Then, applying Step 1, we have E(LN(1,0)) > 0. Since W ◦ θt ≤ WN ◦ θt for all t ,
we then have that LN(1,0) ≤ L(1,0) and so L(1,0) > 0 on some nonnegligible
set, which leads to LW = +∞.

Suppose that (C2) is fulfilled. Let us pick N such that

E

(
lim sup
x→+∞

[
b
(
X(0), x

) ∨ (−N)
])

< 0.

Using Step 1, we again have LN(1,0) > 0. We conclude in the same way. �

6. The queue is not initially empty. We saw, for monotonicity reasons, how
important it is that the queue is initially empty in the previous sections. One
may wonder if Theorem 4.3 is still valid when the queue level is initially any
nonnegative real number y. The answer is unfortunately negative. Consider the
simple case where the buffer level (Q(t))t≥0 verifies the following simple model
without any external environment:

dQ(t) = Q(t)
(
1 − Q(t)

)
dBt ,

Q(0) = 1/2.
(16)

In that case, the comparison theorem for SDEs [see, e.g., Karatzas and Shreve
(1997)] implies that Q(t) ∈ (0,1) for all t ≥ 0. Note that the increasing process
(L(t))t≥0 that forces Q(t) to be nonnegative is not necessary here [in other words,
L(t) = 0 for all t]. We see that the drift b is equal to 0, but this may be made
consistent with Theorem 4.3 by defining b as being equal to 0 on [0,1] and being
equal to say −1 on (2,+∞), so that the condition lim supx→+∞ b(x) < 0 may be
fulfilled. Again, the fact that b is not equal to 0 on [1,+∞) does not matter, as
Q(t) will take its values in (0,1).

It is quite standard that Q(t) does not converge in distribution as t tends
to ∞. This is due to the fact that Q(t) is Markovian (the dependence on a
stationary environment having disappeared) and that the diffusion coefficient
σ(x) = x(1−x) is equal to 0 at points 0 and 1, making Q(t) not positive recurrent.
[For a detailed study of the positive recurrence of Markovian diffusion processes
in dimension 1, see, e.g., Chapter 5, Section 7 of Rogers and Williams (1987).]

The limiting distribution of the buffer content may not, in general, exist,
however, and without any further assumptions, all we have is a result of tightness.
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From here, as the initial conditions play a part, we use the notation Q
y
u(t) to denote

the buffer level at time t when it is equal to y at time u, and L
y
u(t) denotes its

associate process.
Consider the solution (Q

y,y
u (t),L

y,y
u (t))t≥u to the following SDE reflected at y:

dQy,y
u (t) = b

(
X(t),Qy,y

u (t)
)
dt + σ

(
X(t),Qy,y

u (t)
)
dBt + dLy,y

u (t), t ≥ u,

Qy,y
u (u) = y,

Qy,y
u (t) ≥ y, t ≥ u,

Ly,y
u (t) =

∫ t

u
1{Qy,y

u (s)=y} dLy,y
u (s), t ≥ u.

THEOREM 6.1. If E(lim supx→∞ b(X(0), x)) < 0, then the buffer level
starting at y at time 0 (Q

y
0(t))t≥0 is tight, and there exists an a.s. finite random

variable Wy such that, for all t ≥ 0,

0 ≤ Q
y
0(t) ≤ Wy ◦ θt .

The notion of tightness for (Q
y
0(t))t≥0 can be compared here to the notion of

substability for classical queues, introduced in Loynes (1962).

PROOF OF THEOREM 6.1. The proofs of Proposition 3.3 and Theorem 4.3
were made when reflection for Qu(t) occurred at 0 and Qu(u) = 0. When
reflection for Q

y,y
u (t) occurs at y, and since Q

y,y
u (u) = y, we similarly get that

Q
y,y
u (0) [resp. Qy,y

u (t)] converges nondecreasingly to some (not necessarily finite)
r.v. Wy (resp. Wy ◦ θt ) as u tends to −∞, and that E(lim supx→∞ b(X(0), x)) < 0
implies that Wy < +∞ a.s.

Besides, Q
y,y
0 (t) is above Q

y
0(t) (being reflected at y ≥ 0), and we then easily

get that

0 ≤ Q
y
0(t) ≤ Q

y,y
0 (t) = Q

y,y
−t (0) ◦ θt ≤ Wy ◦ θt .

Tightness then follows from the fact that P (Q
y
0(t) > x) ≤ P (Wy ◦ θt > x) =

P (Wy > x) for all x ≥ 0. �

We now give sufficient conditions for the existence of the limiting distribution
independently of the initial condition. These conditions will, of course, rule out
situations as in SDE (16), where bounds cannot be crossed by trajectories. In
particular, unless the drift b is not (on average) negative, then σ will not be allowed
to be 0. Under these conditions, the limiting distribution is that of W (i.e., the one
corresponding to the initially empty queue).

THEOREM 6.2. Suppose that either (C1) or (C2) is fulfilled. Then:

1. (Q
y
0(t))t≥0 reaches 0 a.s;
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2. Q
y
0(t) = W ◦ θt for t ≥ Ty = Ty(ω) great enough (coupling effect);

3. Q
y
0(t)

D→ W when t → ∞ (i.e., the queue is stable).

Note that if {X(t), t ∈ R} is Markovian, then proving that (Q
y
0(t))t≥0 reaches 0

leads easily, by using the Markov property and the result of Section 4, to the
convergence in distribution of Q

y
0(t) to W . However, since the environment is not

Markovian, things are in our case more complicated, and the results of Section 5
will be used.

Note that it is easy to show that the condition E(infx≥0 b(X(0), x)) > 0 still
implies that, ∀x ≥ 0, limt→∞ P (Q

y
0(t) > x) = 1. Indeed, since Q

y
0(0) = y ≥ 0 =

Q0(0), we have that Q
y
0(t) ≥ Q0(t) and, ∀x ≥ 0, limt→∞ P (Q0(t) > x) = 1 from

Theorem 4.3.

PROOF OF THEOREM 6.2. Let us prove the first point under condition (C1).
Since supx≥0 b(X(t), x) ≥ b(X(t), ·), by Proposition 3.1, Q

y
0(t) is less than or

equal to Q(t), where (Q(t),L(t))t≥0 is the solution to the following RSDE:

dQ(t) = sup
x≥0

b
(
X(t), x

)
dt + σ

(
X(t),Q(t)

)
dBt + dL(t),

Q(0) = y,

Q(t) ≥ 0,

L(t) =
∫ t

0
1{Q(s)=0} dL(s).

Hence, it suffices to show that Q(t) reaches 0 a.s. So let us suppose that
Q(t) > 0 for all t ≥ 0 on some nonnegligible set F . Let us first note that
((1/t)

∫ t
0 σ(X(s),Q(s)) dBs)t>0 converges in L2(�) toward 0 as t → +∞, which

implies that there exists some sequence (tk)k∈N tending to +∞ as k → +∞ such
that (1/tk)

∫ tk
0 σ(X(s),Q(s)) dBs converges to 0 a.s. Then, on F and for all k, we

have

Q(tk)

tk
= y

tk
+ 1

tk

∫ tk

0
sup
x≥0

b
(
X(s), x

)
ds + 1

tk

∫ tk

0
σ

(
X(s),Q(s)

)
dBs,

since L(t) = 0 for all t on F . By the ergodic theorem, we have the almost sure
convergence

1

tk

∫ tk

0
sup
x≥0

b
(
X(s), x

)
ds −→

k→∞E

(
sup
x≥0

b
(
X(0), x

))
.

Hence, on F ,

Q(tk)

tk
−→
k→∞E

(
sup
x≥0

b
(
X(0), x

))
.



1470 L. RABEHASAINA AND B. SERICOLA

Now, since E(supx≥0 b(X(0), x)) < 0, Q(tk) < 0 for k great enough on F , which
is a contradiction.

Let us now prove that (C2) implies that Q
y
0(t) = 0 for some t . Let us denote by τ

the first hitting time of (Q
y
0(t))t≥0 of 0, that is, τ = inf{t > 0 | Q

y
0(t) = 0}, with

the usual convention inf ∅ = +∞, and let us set likewise, for all n ∈ N, τn = τ ∧n.
Let us define the mapping h as (12), and

η(α) = α sup
z∈X,x≥0

b(z, x) − 1
2α2 inf

z∈X,x≥0
σ(z, x)2.

As in the proof of Proposition 5.8, the choices of A and α are such that η(α) < 0
and E((η(α)/α) ∨ supx≥A b(X(0), x)) < 0. Then, similarly to (13) and with the
same definition for h′′, we have the Itô-like formula

h(Q
y
0(τn)) − h(y)

=
∫ τn

0

[
h′(Qy

0(s))b
(
X(s),Q

y
0 (s)

) + 1
2h′′(Qy

0(s))σ
(
X(s),Q

y
0(s)

)2]
ds

+
∫ τn

0
h′(Qy

0(s))σ
(
X(s),Q

y
0(s)

)
dBs,

which is, for our purpose, more conveniently rewritten as

h(Q
y
0(τn)) − h(y)

=
∫ n

0
1{s≤τn}

[
h′(Qy

0(s))b
(
X(s),Q

y
0(s)

)
(17)

+ 1
2h′′(Qy

0(s))σ
(
X(s),Q

y
0(s)

)2]
ds

+
∫ n

0
1{s≤τn}h′(Qy

0(s))σ
(
X(s),Q

y
0 (s)

)
dBs.

Following the same pattern as in the proof of Proposition 5.8, we get the following
equalities and inequalities:∫ n

0
1{s≤τn}

[
h′(Qy

0(s))b
(
X(s),Q

y
0(s)

) + 1

2
h′′(Qy

0(s))σ
(
X(s),Q

y
0(s)

)2
]
ds

=
∫ n

0
1{s≤τn} exp

(−αQ
y
0(s)

)[
αb

(
X(s),Q

y
0 (s)

)

− 1

2
α2σ

(
X(s),Q

y
0 (s)

)2
]
1{Qy

0(s)≤A} ds

+
∫ n

0
1{s≤τn}α exp(−αA)1{Qy

0(s)>A}b
(
X(s),Q

y
0(s)

)
ds

≤
∫ n

0
1{s≤τn} exp(−αA)η(α)1{Qy

0(s)≤A}
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+ 1{s≤τn}α exp(−αA)1{Qy
0(s)>A} sup

x≥A

b
(
X(s), x

)
ds

≤
∫ n

0
1{s≤τn}α exp(−αA)

[
η(α)

α
∨ sup

x≥A

b
(
X(s), x

)]
ds

=
∫ n

0
α exp(−αA)

[
η(α)

α
∨ sup

x≥A

b
(
X(s), x

)]
ds 1{τ=+∞}

+
∫ n

0
1{s≤τn}α exp(−αA)

[
η(α)

α
∨ sup

x≥A

b
(
X(s), x

)]
ds 1{τ<+∞}.

Thus, (17) yields the inequality

h(Q
y
0(τn)) − h(y)

≤
∫ n

0
α exp(−αA)

[
η(α)

α
∨ sup

x≥A

b
(
X(s), x

)]
ds 1{τ=+∞}

(18)

+
∫ n

0
1{s≤τn}α exp(−αA)

[
η(α)

α
∨ sup

x≥A

b
(
X(s), x

)]
ds 1{τ<+∞}

+
∫ n

0
1{s≤τn}h′(Qy

0(s))σ
(
X(s),Q

y
0(s)

)
dBs.

Now we may suppose (up to a subsequence) that (1/n)
∫ n

0 1{s≤τn}h′(Qy
0(s)) ×

σ(X(s),Q
y
0(s)) dBs converges a.s. to 0 as n → +∞. Besides, (1/n)

∫ n
0 1{s≤τn} ×

[η(α)/α ∨ supx≥A b(X(s), x)]ds 1{τ<+∞} is equivalent to (1/n)
∫ τ

0 [η(α)/α ∨
supx≥A b(X(s), x)]ds 1{τ<+∞} when n → +∞, and so tends to 0. Dividing
by n in (18), and since h(Q

y
0(τn)) is nonnegative, we get

−h(y)

n
≤ 1

n

∫ n

0
α exp(−αA)

[
η(α)

α
∨ sup

x≥A

b
(
X(s), x

)]
ds 1{τ=+∞}

+ 1

n

∫ n

0
1{s≤τn}α exp(−αA)

[
η(α)

α
∨ sup

x≥A

b
(
X(s), x

)]
ds 1{τ<+∞}

+ 1

n

∫ n

0
1{s≤τn}h′(Qy

0(s))σ
(
X(s),Q

y
0 (s)

)
dBs.

Letting n → ∞ and using the ergodic theorem, we get

0 ≤ α exp(−αA)E

(
η(α)

α
∨ sup

x≥A

b
(
X(0), x

))
1{τ=+∞}.

Since

E

((
η(α)

α

)
∨ sup

x≥A

b
(
X(0), x

))
< 0,
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this necessarily implies 1{τ=+∞} = 0; that is, τ is finite, which means that Q
y
0(t)

eventually reaches 0. This completes the proof of the first point.
Let us now prove the second point. If Q

y
0(t) reaches 0 at time τ = τ (ω), then,

as ∀ t ≥ 0, Q0(t) ≤ Q
y
0(t) [the initial condition for Q

y
0(t) being y above 0], we

have Q0(τ ) = Q
y
0(τ ) = 0. By strong uniqueness, we thus have Q0(t) = Q

y
0(t) for

t ≥ τ . Under (C1) or (C2), Proposition 5.8 states that LW (and KW ) are infinite,
so Corollary 5.7 is applicable; that is, for some T , we have Q0(t) = W ◦ θt , t ≥ T .
By setting Ty = T ∨ τ , we get, for all t ≥ Ty , Q

y
0(t) = Q0(t) = W ◦ θt . Once the

second point is established, the third point is rather straightforward. All we have to
prove is that, for all bounded continuous mappings f from R+ to R, E(f (Q

y
0(t)))

converges to E(f (W)). Indeed, for all t ≥ 0 and by invariance,

E
(
f (Q

y
0(t))

) = E
(
f (Q

y
0(t)) − f (W ◦ θt )

) + E(f (W)).

But since, from second point, f (Q
y
0(t)) − f (W ◦ θt ) tends to 0 as t → ∞, by the

dominated convergence theorem, we get that E(f (Q
y
0(t)) − f (W ◦ θt )) tends to 0

as t tends to ∞. �
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