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PATTERNS OF BUFFER OVERFLOW IN A CLASS OF QUEUES
WITH LONG MEMORY IN THE INPUT STREAM

By David Heath,1 Sidney Resnick1�2 and
Gennady Samorodnitsky1�2�3

Cornell University

We study the time it takes until a fluid queue with a finite, but large,
holding capacity reaches the overflow point. The queue is fed by an on/off
process with a heavy tailed on distribution which is known to have long
memory. It turns out that the expected time until overflow, as a function
of capacity L, increases only polynomially fast; so overflows happen much
more often than in the “classical” light tailed case, where the expected over-
flow time increases as an exponential function ofL. Moreover, we show that
in the heavy tailed case overflows are basically caused by single huge jobs.
An implication is that the usualGI/G/1 queue with finite but large holding
capacity and heavy tailed service times will overflow about equally often
no matter how much we increase the service rate. We also study the time
until overflow for queues fed by a superposition of k iid on/off processes
with a heavy tailed on distribution, and we show the benefit of pooling the
system resources as far as time until overflow is concerned.

1. Introduction. Traffic on data networks (e.g., Ethernet LAN’s), has
characteristics substantially different from those of traditional voice traffic. An
important feature of data traffic lies in its dependence structure; traditional
models are based on assumptions of short-range dependence (like Poisson ar-
rivals and exponential call lengths), while recent measurement and analysis
of data traffic has produced strong indications of long-range dependence and
self-similarity. Several empirical studies present statistical evidence for exis-
tence of these nonstandard dependence structures. See, for example, Leland,
Taqqu, Willinger and Wilson (1993, 1994), Willinger, Taqqu, Leland and Wil-
son (1995), Crovella and Bestavros (1995), and Cunha, Bestavros and Crovella
(1995).

Seeking an explanation for the observed long-range dependence and self-
similarity, Willinger, Taqqu, Sherman and Wilson (1995) have modeled traffic
between a single source and destination as an on/off or packet train process.
In their model, an idealized source alternates between an on state, in which
it produces data at a constant rate, and an off state, in which it produces
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no data. The durations of the on and off periods are independent; on times
are identically distributed, and so are off times. The data they present indi-
cate that both on and off times are reasonably well modeled by heavy tailed
distributions with shape parameter governing heaviness represented by the
parameter α. In one example, α = 1�7 and 1�2� respectively, for the on and
off periods. A similar conclusion was drawn by Crovella and Bestavros (1995),
who in their study of World Wide Web use found evidence of heavy tails in
such things as file lengths, transfer times and operator idle periods. Other
papers dealing with on/off and related models for communication systems are
Brichet, Roberts, Simonian and Veitch (1996), Kella and Whitt (1992) and
Choudhury and Whitt (1995).

Various paradigms for on/off models can be kept in mind. One is the storage
or fluid queue model where the store is filling at rate 1 during an on period
and the contents are subject to constant release at rate r when the content
level is positive. Another paradigm allows one to imagine work entering the
system at rate 1 during on periods and a server working at rate r. We use
either paradigm as is convenient.

In a previous paper we studied the stationary distributions of the simple
on/off models. In the present paper we study the behavior of the first time
the contents process exceeds level L for large levels L. Since this represents
the time until “buffer overflow” in an on/off system with limited capacity, it is
important in understanding the behavior of traffic networks.

The simplest model, consisting of a single on/off source feeding a single
server queue, is defined as follows. Let �Xi� i = 1�2� � � �� be a sequence of
iid nonnegative random variables representing on periods, and similarly
let �Yi� i = 1�2� � � �� be iid nonnegative random variables representing off
periods. The on and off sequences are independent. Let Fon be the common
distribution of Xi’s, and let Foff be the common distribution of Yi’s. The work
load arrives in the system at rate 1 during on periods (no work load arrives
in the system during off periods). The service rate is r; that is, whenever the
system is nonempty, work is leaving the system at rate r. The state of the
system at time t (its content at time t, the work load in the system at time t)
is denoted by X�t� and can be formally defined as follows. For a t ≥ 0 let

Z�t� =




1� if
n−1∑
i=1

�Xi +Yi� ≤ t <
n−1∑
i=1

�Xi +Yi� +Xn�

for some n ≥ 1�

0� otherwise.

(1.1)

So Z�t� is the indicator of the the source “being on” at time t. Defining the
service rate at state x by

r�x� =
{
r� if x > 0�

0� if x = 0�
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the state process �X�t�� t ≥ 0� is defined by

dX�t� = Z�t�dt− r�X�t��dt�(1.2)

The analogous GI/G/1 queue can be thought of as model (1.2) with on
periods shrunk to zero and work load arriving in the system in lumps of size
�Bi� i ≥ 1�. In this context, �Yi� i ≥ 1� can be thought of as interarrival times.
One can take, for example, Bi = �1 − r�Xi, as this is the net increase in the
state of the system (1.2) after the ith on period. However, the discussion below
does not depend on this particular form of the offered work. The service rate
is still r, so that the actual service time of the ith customer is Bi/r� i ≥ 1.

It turns out that the system overflow patterns in the on/off model, when
the on times are heavy tailed, are very similar to those of the GI/G/1 queue
when the amount of work Bi is heavy tailed. The computations describing the
structure of system overflows in both cases are similar, and they are easier for
the GI/G/1 queue. We will present the detailed arguments only for the more
involved case of the fluid model (1.2).

To emphasize the dramatic effect of heavy tailed distributions on system
behavior, we contrast the heavy tailed case with the simplest, classical case
in Section 3. Consider the fluid queue with Fon being exponential with mean
µon, Foff being exponential with mean µoff , such that

µon

µon + µoff
< r�(1.3)

Clearly, (1.3) is the necessary and sufficient condition for system (1.2) to be
stable. If

τ�L� = inf�t ≥ 0:X�t� ≥ L�(1.4)

is the time until the system overflows, then based on martingale and Markov
methods we find in Section 3 that the expected overflow time in this exponen-
tial case is

Eτ�L� = a
(

exp
(
L

(
1

�1− r�µon
− 1
rµoff

))
− 1

)
− bL� L ≥ 0�(1.5)

where

a = �µon + µoff ��rµoff �2
�rµoff − �1− r�µon�2

and

b = µon + µoff

rµoff − �1− r�µon
�

Several conclusions are immediate from (1.5). First of all, in the exponen-
tially distributed on and off periods case, the expected time till the system
overflows increases exponentially fast with the system holding capacity. Sec-
ond, the average off time µoff critically affects the average time until the sys-
tem overflows since it affects the multiplicative constant as well as the growth
rate. Quite different conclusions are reached in the heavy tailed case.
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In Section 2 we show that, in the case of on times having a heavy tailed
distribution, the expected time to exceed L is asymptotically the same as the
expected time until a single on period would cause the contents to exceed
L, assuming the contents were empty at the start of the on time. This is
very different from the exponential result (1.5). In this heavy tailed case, the
expected time until a single on period causes the system to exceed the capacity
L is asymptotic to �µ = µon + µoff �

µ

�1− r�α
(

1
1−Fon�L�

)
�

which is of smaller order of magnitude than (1.5). In the case of heavy tailed
on periods the expected time until the system exceeds a level grows much
slower than the exponential rate of increase seen in (1.5). Furthermore, the
fact that in the heavy tailed case the system overflow is caused by a single long
on period implies that the mean off time µoff affects the expected time until
overflow only by its effect on a multiplicative factor but does not otherwise
influence the growth rate.

A similar conclusion is valid for the GI/G/1 queue with heavy tailed
amounts of work �Bi� i ≥ 1�. In this case the offered work load exceeds the
system capacity L when a single customer brings amount of work reaching L.
In particular, the mean interarrival time affects the time until the overflow
only as a multiplicative factor, and it does not depend on the service rate r (!).
This provides intuition about the “failure modes” of such a system.

Precise arguments showing unusual behavior in the heavy tailed case are
presented in the next section, where we study the maximum of the fluid queue
(1.2) over a single “wet period” and use the findings to obtain functional limit
theorems for the maximum process of the queue (1.2) and for the hitting time
process of the same queue. Section 3 contrasts in detail the behavior in cases
where on and off distributions have exponentially bounded tails with that in
the heavy tailed case. Tangentially relevent papers on extremes of queues
(which typically emphasize Markovian methods and exponential tails) are
Iglehart (1972), Asmussen and Perry (1992), Berger and Whitt (1995) and
Abate, Choudhury and Whitt (1994).

In Section 4 we study the behavior of models with several on/off sources and
a single server. We show again that in the case r < 1 the asymptotic behavior
of the time at which the contents process exceeds L is the same as that of
the first time that any of the input processes has an on period long enough
to achieve level L from an empty initial content level. We then compare the
behavior of a system of completely separate on/off processes with one in which
the inputs are pooled and in which the capacity of the system is the sum of
the capacities of the separate systems. Our conclusions quantify the benefits
of pooling the system resources.

Other papers on multisource models, usually emphasizing Markovian en-
vironments, are Anick, Mitra and Sondhi (1982), Prabhu and Pacheco (1995)
and Pacheco and Prabhu (1996).
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2. Level crossing times in single input models. In this section we
consider the extreme values of the contents process specified in (1.2) and the
time for the content to cross a level. The fluid or storage model is generated
by an alternating renewal process which feeds a reservoir. We represent the
renewal sequence as �Sn�n ≥ 0� with Sn =

∑n
i=1�Xi + Yi�, n ≥ 1, and for

convenience we suppose S0 = 0. Both Fon and Foff have finite means µon
and µoff and we set µ = µon + µoff . During an on period, liquid enters at net
rate 1 − r, and during an off period liquid is released at uniform rate r. We
assure that neither the input rate nor the output rate overwhelms the other
by assuming

1 > r >
µon

µ
�(2.1)

Define S�X�n =∑n
i=1Xi and S�Y�n =∑n

i=1Yi and the stopping time

N̄ = inf�n > 0� �1− r�S�X�n − rS�Y�n ≤ 0�(2.2)

so that

�N̄ = n
 = {�1− r�S�X�j − rS�Y�j > 0� j = 1� � � � � n− 1�

�1− r�S�X�n − rS�Y�n ≤ 0
}

∈ ��Xi�Yi� i = 1� � � � � n��
Consider �X�Sn�� n ≥ 0�. Comparing X�Sn� with X�Sn+1� we get

X�Sn+1� = �X�Sn� + �1− r�Xn+1 − rYn+1�+
= �X�Sn� + ξn+1�+�

(2.3)

where �ξn+1 = �1 − r�Xn+1 − rYn+1� is iid. This equation expresses that the
change of contents over a renewal interval is the input during the on period
and the loss during the off period. Of course (2.3) is Lindley’s equation [Resnick
(1992), page 270; Asmussen (1988); Feller (1971)] and, since (2.1) implies

Eξ1 = �1− r�µon − rµoff = µon − rµ < 0�

we know from standard theory that the process

�Wn� �= �X�Sn��
will be stable andEN̄ <∞. As is customary, we call �Wn� the queuing process.

We suppose that

1−Fon�x� = x−αL�x�� α > 1� x→∞�(2.4)

where L is a slowly varying function. Note that the process �X�t�� t ≥ 0� is
regenerative [cf. Resnick (1992); Feller (1971); Asmussen (1988)]. One set of
regeneration times is

�Cn� �= �Sn� X�Sn−� = 0��
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which are the times when a dry period ends and input commences to fill the
store. In order to understand the behavior of the extremes of �X�t��, it is
natural to study the extremes over a cycle. For this purpose, it is necessary to
understand the tail behavior of the distribution of maximum of the queuing
process over one cycle. A result about this is stated next.

Proposition 2.1. For the stable queuing process �Wn� satisfying (2.1) and
(2.4), the maximum over a cycle has a distribution tail asymptotic to the tail
of the on distribution; that is, as x→∞�

P

[ N̄∨
n=0

Wn > x

]
∼ P�ξ1 > x
E�N̄�

∼ P��1− r�X1 > x
E�N̄�
∼ �1− r�αF̄on�x�E�N̄��

(2.5)

Note the result depends on Fon and r but that Foff only affects the answer
through the multiplicative factor E�N̄�.

Independent and different proofs of this critical result have been given by
the authors and by Asmussen (1998), who proves the result in the somewhat
more general context of a random walk whose step distribution is subexponen-
tial. See Asmussen (1998) for details. Our original proof can be found at http:
//www.orie.cornell.edu/∼gennady/techreports/patterns.ps. A nice review
of the asymptotics of the tail of the all time maximum distribution of the
random walk (as opposed to the cycle maximum) is given in Embrechts and
Veraverbeke (1982).

We now look at the extremes of �X�t�� over a cycle and examine the dis-
tribution tail of

∨
0≤s≤C1

X�s�� where

C1 = SN̄�
Note that N̄ is the first downgoing ladder epoch of the random walk{ n∑

i=1

ξi� n ≥ 0
}
= ��1− r�S�X�n − rS�Y�n � n ≥ 0�

associated with the queuing process �Wn� and that it is not the downgoing
ladder epoch of �Sn� which determines the time scale.

Corollary 2.2. Assume the contents process �X�t�� satisfies (2.1) and
(2.4). The distribution tail of the maximum of the contents process over one
cycle is asymptotic to the tail of the on distribution; that is, as x→∞�

P

[ C1∨
s=0

X�s� > x
]
∼ �1− r�αF̄on�x�E�N̄��(2.6)

Note again that Foff only affects the answer through the multiplicative
factor E�N̄�.
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Proof of Corollary 2.2. Set M1 =
∨C1
s=0X�s�. Because of the sawtooth

character of the paths of X�·� we have that

M1 =
N̄∨
j=1

(�1− r�S�X�j − rS�Y�j−1

)
and therefore

M1 ≥
N̄∨
j=0

(�1− r�S�X�j − rS�Y�j

) =d N̄∨
n=0

Wn�

Thus

lim inf
x→∞

P�M1 > x

F̄on�x�

≥ lim inf
x→∞

P�∨N̄
j=0Wn > x

F̄on�x�

= �1− r�αE�N̄��
where the last step uses Proposition 2.1.

To get a reverse inequality, choose K such that

E��1− r�X1 − r�Y1 ∧K�� < 0�

which can always be done since

E�Y1 ∧K� ↑ EY1

as K ↑ ∞. Then

S
�Y�K�
j �=

j∑
i=1

�Yi ∧K� ≤ S�Y�j �

which obviously gives

N̄∨
j=0

(�1− r�S�X�j − rS�Y�j−1

) ≤ N̄∨
j=1

(�1− r�S�X�j − rS�Y�K�j−1

)
�

Also

N̄ ≤ N̄�K� �= inf�n > 0� �1− r�S�X�n − rS�Y�K�n ≤ 0�
and thus we have

M1 ≤
N̄�K�∨
j=0

(�1− r�S�X�j − rS�Y�K�j−1

)

≤
N̄�K�∨
j=0

(�1− r�S�X�j − rS�Y�K�j + r�Yj ∧K�
)

≤
N̄�K�∨
j=0

(�1− r�S�X�j − rS�Y�K�j + rK)
�
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We therefore have

lim sup
x→∞

P�M1 > x

F̄on�x�

≤ lim sup
x→∞

P
[∨N̄�K�

j=0

(�1− r�S�X�j − rS�Y�K�j

)
> x− rK]

F̄on�x�
and applying Proposition 2.1 to the random walk ��1−r�S�X�j −rS�Y�K�j � j ≥ 0�
we get this equal to

�1− r�αE�N̄�K�� → �1− r�αE�N̄�
as K→∞. This provides the reverse inequality and completes the proof. ✷

We are now in a position to discuss the behavior of the extremes of the
contents process and also the behavior of the first passage time over a level.
For a nondecreasing function U: �0�∞� �→ �0�∞� define the (left continuous)
inverse

U←�x� = inf�s > 0� U�s� ≥ x�� x > 0�

Define the nondecreasing process

M�t� =
t∨
s=0

X�s�

and the first passage time (L > 0)

τ�L� = inf�s > 0� X�s� ≥ L�
= inf�s > 0�M�s� ≥ L�
=M←�L��

Standard inversion techniques from extreme value theory [Resnick (1986,
1987), Section 4.4] allow for the simultaneous treatment of the weak conver-
gence properties of �M�·��M←�·�� as random elements ofDr�0�∞�×Dl�0�∞�,
where Dr�0�∞� is the space of right continuous functions with finite left lim-
its and Dl�0�∞� is the space of left continuous functions on �0�∞� with finite
right limits. Each space is equipped with the M1-topology [Avram and Taqqu
(1986, 1989, 1992)].

Theorem 2.3. Assume the contents process �X�t�� satisfies (2.1) and (2.4).
Define the quantile function

b�s� =
(

1
1−Fon

)←
�s��

Let �Yα�t�� t > 0� be the extremal process [Resnick (1987), Section 4.3) gener-
ated by the extreme value distribution

(α�x� = exp�−x−α�� x > 0

so that

P�Yα�t� ≤ x
 = (tα�x��
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Define

Sα�t� =
1− r
µ1/α

Yα�t��

Then, in Dr�0�∞�×Dl�0�∞� as u→∞�(
M�u·�
b�u� �

(
M�u·�
b�u�

)←)
⇒ �Sα�S←α ��

In particular we get for the first passage process, as u→∞�

�1−Fon�u��τ�u·� ⇒ Y←
α

(
µ1/α

1− r ·
)

and

lim
L→∞

P

[�1− r�α
µ

�1−Fon�L��τ�L� ≤ x
]
= P�E�1� ≤ x
 = 1− e−x� x > 0�

where E�1� is a unit exponential random variable. Furthermore, as L→∞�
�1−Fon�L��E�τ�L�� →

µ

�1− r�α �

Proof. We let �N̄k� k ≥ 1� be the iterates of N̄ so that N̄k is the kth
downgoing ladder epoch of the random walk ��1 − r�S�X�n − rS�Y�n � n ≥ 0�.
Then by the strong law of large numbers N̄k/k→ E�N̄� as k→∞. We write

M�SN̄k
� =

SN̄k∨
s=0

X�s� =
k∨
i=1

( SN̄i∨
s=SN̄i−1

X�s�
)
�=

k∨
i=1

Mi

so that �Mi� i ≥ 1� is iid. From Corollary 2.2, as x→∞�
P�M1 > x
 ∼ �1− r�αF̄on�x�E�N̄�

so that, as u→∞�
uP�M1 > b�u�x
 ∼ �1− r�αE�N̄�uF̄on�b�u�x�

∼ �1− r�αE�N̄�x−α�
Therefore,

�ut
∨
i=1

Mi

b�u� =
M�SN̄�ut
 �
b�u� ⇒ �1− r��EN̄�1/αYα�t��(2.7)

Observe that as, u→∞�
SN̄�ut


u
→ µE�N̄�t(2.8)

in C�0�∞�. For the renewal sequence �SN̄k
� k ≥ 0�, let

+�t� = inf�k� SN̄k
≥ t�
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be the associated counting function so that, as u→∞�
+�ut�
u

→ t

ESN̄
= t

µE�N̄�(2.9)

in C�0�∞�. Note the inequalities

M�SN̄+�ut�−1
�

b�u� ≤ M�ut�
b�u� ≤

M�SN̄+�ut� �
b�u� �

Now from Billingsley [(1968), Theorem 4.4] and composition

M�SN̄+�ut� �
b�u� =

M�SN̄�u·+�ut�/u
 �
b�u� ⇒ �1− r��EN̄�1/αYα

(
t

µEN̄

)

=d �1− r�µ−1/αYα�t� =� Sα�t�
in the J1-topology, and we hope the same result is true in the M1-topology for
the family of processes M�u·�/b�u� as u→∞. In order to verify this, we need
to show

M�SN̄+�ut� � −M�SN̄+�ut�−1
�

b�u� ⇒ 0(2.10)

in the M1-topology. For a fixed t we get for any ε and large u that

P

[∣∣∣∣M�SN̄+�ut� � −M�SN̄+�ut�−1
�

b�u�

∣∣∣∣ > η
]
≤ P

[∣∣∣∣M�SN̄+�ut� � −M�SN̄+�u�t−ε�� �
b�u�

∣∣∣∣ > η
]

→ P��Sα�t� −Sα�t− ε�� > η
�
which goes to 0 as ε → 0 by the stochastic continuity of Sα [Resnick (1987),
Proposition 4.7). The multivariate analogue needed to prove M1-convergence
is similar.

The weak convergence result for τ�·� is obtained by taking inverses in the
process convergence. Inversion is a continuous operation in the M1-topology.
We note that inverses of extremal processes have exponential marginals
[Resnick (1986, 1987)] so, as u→∞�

M←�b�u�x�
u

⇒ S←α �x��
and changing variables s �→ b�u� yields

M←�sx�
1/�1−Fon�s��

⇒ S←α �x��

Observe, for y > 0�

P�S←α �1� ≤ y
 = P�1 ≤ Sα�y�


= P
[
µ1/α

1− r ≤ Yα�y�
]

= 1− exp�−y�1− r�αµ−1��
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Finally we consider the result for the expected values. On the one hand, by
Fatou’s lemma, we get

1 ≤ lim inf
L→∞

E

( �1− r�α
µ

�1−Fon�L��τ�L�
)
�

For a reverse inequality, note that

τ�L� ≤ Sν�
where

ν �= inf�n� Xn > L/�1− r��
so that

Eτ�L� ≤ E�X1 +Y1�Eν = µEν�
However,

Eν =
∞∑
n=0

P�ν > n
 =
∞∑
n=0

P

[ n∨
i=1

Xi ≤
L

1− r
]

= 1
1−Fon�L/�1− r��

∼ �1− r�−α
F̄on�L�

and this completes the proof. ✷

To illustrate these results we present two modest simulations. For each
simulation we supposed Fon was Pareto with α = 1�5 and r = 0�53. For the
first simulation (Figure 1), Foff was the same Pareto; for the second simula-
tion (Figure 2), Foff corresponded to constant off times with value 3. We used
500 replications to compute expected hitting times of various levels by sim-
ulation and compared these with the approximate mean hitting time given
by Theorem 2.3. The levels used for both experiments were 2, 5, 10, 22, 46,
100, 215, 464. The plots use a log scale for both axes. Note that the dotted
line appears closer to the solid one when the off time is deterministic, which
may indicate a faster rate of convergence of the the approximation compared
to the situation where the approximation has to cope with randomness in the
off time. However, no systematic investigation has been completed of the rate
of convergence.

We also sought experimental evidence to confirm the intuition that in the
heavy tailed case the process exceeds a level L because of a very long on
period. As an additional experiment, we simulated 1000 runs of the process
with α = 1�5, the off distribution concentrated at 3 and r = 0�53� We waited
until the process crossed L = 64 and then measured the length of the last on
period Xon, multiplying by �1− r�. We compiled 1000 realizations of( �1− r�Xon

L

)∧
3�
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Fig. 1. Pareto on/off periods, α = 1�5, r = 0�53.

Fig. 2. Pareto on period, deterministic off period, α = 1�5, r = 0�53.



PATTERNS OF BUFFER OVERFLOW 1033

Fig. 3. ��1− r�Xon/L� ∧ 3 for Pareto on period, deterministic off period, α = 1�5, r = 0�53.

the truncation by 3 being for the purpose of keeping the data in a comfortable
range. The range of the 1000 realizations was [0.896, 3] and 848 observations
were at least as large as 1, meaning that in about 85% of the simulation runs
the process crossed L due to a single large on period pushing the process
across. Figure 3 is a histogram of the data, showing the preponderance of
observations to the right of 1.

3. Contrast with exponential tails. If Fon has an exponentially
bounded tail, known results of Iglehart (1972) can be applied to obtain the
analogue of Theorem 2.3. We continue to assume that �Xi� and �Yi� are iid,
independent of each other, with distributions Fon and Foff , respectively. Set
ξi = �1− r�Xi − rYi and for stability continue to suppose Eξ1 < 0� Recall N̄
is the first downgoing ladder epoch of the random walk with steps �ξi�. We
need to suppose the following:

A1. for some γ > 0, Eγξ1 = 1�

for this value of γ we have the following:

A2. Eξ1 exp�γξ1� �= µγ ∈ �0�∞�;
A3. ξ1 has a nonlattice distribution.
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An analogue of Corollary 2.2 is provided by Iglehart (1972) which suffices to
give the tail behavior of the maximum contents level in a cycle. We write
S
�ξ�
n = �1− r�S�X�n − rS�Y�n , n ≥ 0.

Proposition 3.1 [Iglehart (1972), Lemma 4]. Suppose assumptions A1, A2
and A3 hold. Then, for x > 0�

P�M1 > x
 = P
[ C1∨
s=0

X�s� > x
]
∼ a�0�e−γx�(3.1)

where

a�0� =
(
1−E�exp�γS�ξ�

N̄
��)2

γµγE�N̄�
E
(
exp�γ�1− r�X1�

)
�

We may now follow the line of reasoning of Section 2. The exponential tails
given in (3.1) imply

γ
�ut
∨
i=1

Mi − log a�0�u⇒ Y0�t�(3.2)

in Dr�0�∞�� where Y0�·� is the extremal process generated by the Gumbel
distribution

2�x� = exp�−e−x�� x ∈ ��

We then get, as u→∞�(
γM�ut� − log a�0�u�M←��x+ log a�0�u�/γ�/u)

⇒ �Y0�t/�µE�N̄��� µE�N̄�Y←
0 �x���

which leads to

a�0�τ�x+ u�
eγu

⇒ µE�N̄�Y←
0 �γx��

If x = 0� we get, as u→∞�

a�0�τ�u�
eγu

⇒ µE�N̄�Y←
0 �0��

Note that Y←
0 �0� is exponentially distributed with mean 1, and we get the

final result(
a�0�
µE�N̄�

τ�u�
exp�γu�

)
=
(
E
(
exp�γ�1− r�X1�

)�1−E exp�−γS�ξ�
N̄
��2

µ�EN̄�2γµγ

)

× τ�u�
exp�γu� ⇒ E�1�

(3.3)

as u→∞, where E�1� is a unit exponential random variable.
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We may also check that Eτ�u�/eγu converges as follows. Observe that

0 ≤ τ�s� ≤ SN̄V�s��(3.4)

where

V�s� = inf
{
n�

n∨
i=1

Mi ≥ s
}

since the hitting time of X�·� must occur before the end of the cycle that has a
cycle maximum bigger than the level. Since V�s� is geometrically distributed

a�0�V�s�
eγs

⇒ E�1��

where, as usual, E�1� is a unit exponential random variable. Furthermore, as
s→∞�

ESN̄V�s� = µE�N̄V�s�� = µE�N̄�E�V�s��

= µE�N̄�
(

1
P�M1 > s


)

∼ µE�N̄�
a�0� eγs�

So, as s→∞�
E�SN̄V�s� �
eγs

→ µE�N̄�
a�0�

and
SN̄V�s�

eγs
∼ µE�N̄�V�s�

eγs
⇒ µE�N̄�

a�0� E�1��

These two statements coupled with (3.3) and (3.4) and a variant of Fatou’s
lemma sometimes called Pratt’s lemma [Pratt (1960)] yield the desired result

Eτ�s� ∼ µE�N̄�
a�0� eγs� s→∞�(3.5)

Note how critically Foff enters into formulas (3.3) and (3.5) since Foff is
important in determining the growth rate γ of the hitting time. In the heavy
tail case, Foff did not play a role in determining the growth rate of τ�s� since
levels were hit basically due just to big upward jumps which were controlled
by Fon. Recall that in the heavy tailed case, as s→∞,

Eτ�s� ∼ µ�1− r�−α/F̄on�s� ∼ ESν = µEν�
where

ν = inf�n� �1− r�Xn > s��
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Example. Consider the standard example where both Fon and Foff are ex-
ponential distributions with means µon and µoff � respectively. The negative
drift condition is

�1− r�µon − rµoff < 0�

and γ must satisfy

1 = E exp�γ��1− r�X1 − rY1�� =
(�1− γ�1− r�µon��1+ γrµoff �

)−1
�

Solving for γ we get the solutions γ = 0 and

γ = rµoff − �1− r�µon

�1− r�rµonµoff
= −Eξ1

�1− r�rµonµoff
�

The numerator is positive by the drift condition.

We now calculate the coefficient of τ�u�/eγu in (3.3) in order to compare it
to the exact calculation given in (1.5). Since X1 is assumed exponential with
mean µon we have

E exp�γ�1− r�X1� =
rµoff

�1− r�µon
�

To calculate µγ we compute �d/ds�Eesξ1 and substitute s = γ. This calculation
is made easier by use of the formulas

1+ rγµoff =
rµoff

�1− r�µon
�

1− γ�1− r�µon =
�1− r�µon

rµoff
= 1

1+ rγµoff
�

With these formulas we find

µγ = −Eξ1�

Next observe that, because of exponential tails,

S
�ξ�
N̄
=d −rµoffE�1��

where E�1� is a unit exponential random variable and hence

1−E exp�γS�ξ�
N̄
� = 1− 1

1+ γrµoff

= 1− �1− r�µon

rµoff

= −Eξ1

rµoff
�

Knowing the distribution of S�ξ�
N̄

also enables us to compute EN̄ since

ES
�ξ�
N̄
= −rµoff = E�N̄�Eξ1
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and hence

EN̄ = rµoff

−Eξ1
�

Putting the ingredients together, (3.2) becomes

�−Eξ1�2
µ�rµoff �2

τ�u�
eγu

⇒ E�1��

which agrees with the exact calculation for the expected value in (1.5).
The contrast with the heavy tailed case is very evident. Instead of Eτ�s�

being of the same order as ESν, the expected time until an on period of length
at least s/�1− r� occurs, we have in our exponential example

ESν = µEν = µ/F̄on�s/�1− r��
= µ exp�s/�µon�1− r����

However, from (3.5),

Eτ�s� ∼ µ�rµoff �2
�−Eξ1�2

eγs�

Comparing the growth rates γ with 1/�µon�1− r�� we have

0 < γ = 1
�1− r�µon

− 1
rµoff

<
1

�1− r�µon

so that ESν has a faster growth rate, which is to be expected since in the
exponential case the process X�·� jumps over a high level as a result of an
accumulation of small upward movements and not typically as a result of a
single large jump.

To obtain the exact expression for Eτ�s� in this example, proceed as follows.
Defining

X̃�t� = �X�t��Z�t��� t ≥ 0�

we describe the state of the system prior to reaching level s as a Markov
process �X̃�t�� t ≥ 0� with state space E = ��x� i��0 ≤ x ≤ s� i = 0�1�. We
can express τ�s� in terms of the hitting times of the Markov process �X̃�t��
t ≥ 0� as

τ�s� = T�s�1� �= inf�t ≥ 0� X̃�t� = �s�1���
For x ∈ E, let H�x� be the expected hitting time T�s�1� starting at x, and

define, for an 0 ≤ x ≤ s,
h1�x� =H��x�1��� h2�x� =H��x�0���

Then Eτ�s� = h1�0�. Using the natural filtration �t = σ�Z�u��0 ≤ u ≤ t�,
t ≥ 0, we observe that, for any t ≥ 0�

E�T�s�1���t� =H
(
X̃�t ∧T�s�1��

)+ X̃�t ∧T�s�1�� �=M�t��
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Therefore, �M�t�� t ≥ 0� is a martingale, and its martingale property leads to
the following system of ordinary differential equations:

�1− r�h′1�x� = −1+ 1
µon

h1�x� −
1
µon

h2�x��(3.6)

rh′2�x� = 1+ 1
µoff

h1�x� −
1
µoff

h2�x��(3.7)

with the obvious boundary conditions

h2�0� = µoff + h1�0�� h1�s� = 0�(3.8)

The system (3.6)–(3.8) can be solved in the standard way, and we obtain (1.5).

4. A single server fluid queue fed by several on/off processes. Let
�X�j�

i � i = 1�2� � � ��� j = 1� � � � � k� and �Y�j�
i � i = 1�2� � � ��� j = 1� � � � � k� be

iid copies of the on sequence �Xi� i = 1�2� � � �� and the off sequence
�Yi, i = 1, 2� � � �� correspondingly. We construct k iid on/off processes
�Zj�t�� t ≥ 0�� j = 1� � � � � k� as in (1.1). Sometimes we will find it convenient
to work with stationary versions of �Zj�t�� t ≥ 0�� j = 1� � � � � k. Those exist
due to the finiteness of µon and µoff , and can be constructed as follows. Fix
a j = 1� � � � � k, and let C�0�

j , X�0�
j , Y�0�

j and Y�j�
0 be four independent random

variables which are independent of �X�j�
i �Y

�j�
i � i ≥ 1� defined as follows: C�0�

j

is a Bernoulli random variable with values �0�1� and mass function

P�C�0�
j = 1
 = µon

µ
= 1−P�C�0�

j = 0


and (x > 0)

P�X�0�
j > x
 =

∫ ∞
x

F̄on�s�
µon

ds� P�Y�0�
j > x
 =

∫ ∞
x

F̄off �s�
µoff

ds�

Finally, Y�j�
0 has the Foff distribution. Define a delay random variable D�0�

j by

D
�0�
j = C�0�

j �X�0�
j +Y�j�

0 � + �1−C�0�
j �Y�0�

j

and a delayed renewal sequence by

�S�j�n � n ≥ 0� �=
{
D
�0�
j �D

�0�
j +

n∑
i=1

�X�j�
i +Y�j�

i �� n ≥ 1
}
�(4.1)

Then a stationary version of �Zj�t�� t ≥ 0� is defined by

Zj�t� = C�0�
j 1�0�X�0�

j ��t� +
∞∑
n=0

1�S�j�n ≤t<S�j�n +X�j�
n+1
�(4.2)

See Heath, Resnick and Samorodnitsky (1996) for details. In a similar way
we can construct a stationary version �Zj�t��< −∞ < t < ∞� defined for all
real t. We take, further, the k stationary on/off processes to be independent.



PATTERNS OF BUFFER OVERFLOW 1039

In this section we consider a single server fluid queue, with service rate r,
fed by k on/off processes. The combined inflow rate is given by

Z�k��t� = Z1�t� + · · · +Zk�t�� t ≥ 0 or −∞ < t <∞�(4.3)

and, similarly to (1.2), the state �X�k��t�� t ≥ 0� of the system satisfies

dX�k��t� = Z�k��t�dt− r�X�k��t��dt�(4.4)

It is of interest to consider the behavior of a system (4.4) with a general
k, first of all as a step toward understanding queues with more general
long memory input streams and, second, to understand the effect of pooling
resources in the systems of the type we are considering. The natural rate
condition for this system, parallel to (1.3), is

k
µon

µ
< r�(4.5)

saying that the long-term inflow rate to the system (4.4) is less than the
potential outflow rate. Of course, we also assume that r < k, to make sure
that the system is nondegenerate. Although we do not enter into details
here, we can verify that under condition (4.5) there is indeed a stationary
stochastic process �X�k��t�� t ≥ 0� satisfying (4.4). We assume, as always, that
the distribution Fon ∗Foff is not arithmetic.

When the on periods have a heavy tailed distribution, we know from the
discussion in Section 2 that, for k = 1, the state of a system driven by (4.4)
crosses a high level L by increasing to that level almost from 0 within a single
on period. We expect high level crossing patterns of the system contents to
be similar for a general k. Intuitively, the time to reach a high level L should
critically depend on

k0 = the smallest integer > r�(4.6)

By the nontriviality assumption, k0 ≤ k. If k0 = 1, by analogy to the case
k = 1 one expects the state of the system to reach a high level L when one
of the k on/off processes has an on period of length L/�1 − r�. If k0 > 1, the
same intuition says that the system will reach a high level L only when k0
very long on periods occur at about the same time, and so it will take much
longer until this high level is reached. In this section we prove the above
statement for the case k0 = 1, thus generalizing the conclusion reached in
Section 2 for k = 1. The proof of Theorem 4.1 is significantly more involved
than the argument required for k = 1 due, once again, to the lack of renewal
structure in the process �Z�k��t�� t ≥ 0�.

A natural way of calculating the time until the system contents reach the
level L is by starting from the moment the system is empty, and all k on/off
processes begin an on period. One must realize, however, that for k > 1 such
a moment in time is far from “typical” and, even if we initialize the system in
such a way, chances are that such moments will not recur. Therefore, we state
our theorem in a more general way, by allowing more general initial conditions.
To this end, letH be an arbitrary probability law on R

k
+ whose marginals have
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finite first moments. Let �D�0�
1 � � � � �D

�0�
k � be an H-distributed random vector,

independent of �X�j�
i �Y

�j�
i � i ≥ 1�1 ≤ j ≤ k�. We again define a delayed re-

newal sequence by (4.1), and, similarly to (4.2), we define �Zj�t�� t ≥ 0� by

Zj�t� =
∞∑
n=0

1�S�j�n ≤t<S�j�n +X�j�
n+1
�(4.7)

Clearly, this time �Zj�t�� t ≥ 0� does not have to be stationary. If �X�k��t��
t ≥ 0� is given now by X�k��0� = x0 ∈ �0�∞� and (4.4), we will denote all
probabilities and expectations related to it as PH�x0

and EH�x0
, accordingly.

That is, we are allowing the system to start in an arbitrary state x0, when all
the on/off processes are in off periods, with H describing the joint distribution
of the remainders of the initial off periods. Let

τ�L� = inf�t ≥ 0:X�k��t� ≥ L��(4.8)

Our proof of the following theorem, which is the main result of this section,
requires an assumption that the off times are not “very long.” Specifically,
we assume there exist a proper distribution function H∗ on �0�∞� and a
1 < p < α with

∫ ∞
0
xpH∗�dx� <∞� F̄off �x+ y�

F̄off �y�
≤ 1−H∗�x�(4.9)

for every x ≥ 0 and y ≥ 0 such that F̄off �y� > 0. The class of off distributions
satisfying (4.9) contains, for example, all Gamma distributions, distributions
with compact support and many others.

Theorem 4.1. Let

F̄on�x� = x−αL�x�� α > 1� x→∞�
and assume that the off distribution satisfies assumption (4.9). If the service
rate r satisfies (4.5) and r < 1� then for any H and x0 we have

lim
L→∞

F̄on

(
L

1− r+ �k− 1�µon/µ

)
EH�x0

τ�L� = 1
k
µ�(4.10)

Remarks. (i) Assumption (4.9) is not used in the proof of the lower bound
in (4.10).

(ii) Without assumption (4.9) one still has an upper bound with the same
order of magnitude:

lim
L→∞

F̄on

(
L

1− r
)
EH�x0

τ�L� ≤ 1
k
µ�

and it is likely that Theorem 4.1 is valid even without assumption (4.9).
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An argument identical to that of Theorem 4.1 immediately proves the
corresponding result for the corresponding GI/G/1 queue. Let �Y�j�

i , i ≥ 1��
j = 1� � � � � k� be iid copies of the sequence of interarrival times �Yi� i ≥ 1�, and
let �B�j�

i � i ≥ 1�� j = 1� � � � � k� be iid copies of the sequence of offered work �Bi�
i ≥ 1�, so that at time S�j�n = Y�j�

1 +· · ·+Y�j�
n an amount of work B�j�

n is brought
into the system on the jth channel �n ≥ 1�1 ≤ j ≤ k�. Let r be the service
rate. Note that the following theorem does not require the assumption r < 1.

Theorem 4.2. Let the distribution Fon of Bi satisfy

F̄on�x� = x−αL�x�� α > 1� x→∞�
and assume that for some p > 1 we have EY

p
1 <∞. If

k
µon

µoff
< r�(4.11)

then

lim
L→∞

F̄on�L�Eτ�L� =
1
k
µoff �(4.12)

where τ�L� is the first time the amount of work in the system reaches the levelL.

In particular, the expected time to reach a high level L in (2.12) does not
depend on the service rate r. Note that the result of Theorem 4.2 remains true
if one initializes in an arbitrary way the state of the system.

Our results show the benefits of pooling system resources. Think of k iid
GI/G/1 queues, with holding capacity L each, and service rates r each. The
queue number j is driven by the sequences �Y�j�

i � i ≥ 1� and �B�j�
i � i ≥ 1�

as above, j = 1� � � � � k. Pooling system resources means that we put together
the service resources to create a “superserver” with service rate kr, and we
feed this superserver by a combined stream of the k input processes, as in
Theorem 4.2. The holding capacity of the new system is taken to be kL,
again, as the result of pooling the resources. Consider a generic stream of
“customers” or work (i.e., one of the k original streams of work). Imagine that
when the holding capacity of the system serving these “customers” is reached,
the system is blocked for a time to any future arrivals. Under the “k separate
servers” scenario, the expected time until the serving system is blocked is
Eτ�L�, while when the system resources are pooled, this expected time is
EτkL. By Theorem 4.2, the asymptotic ratio R of the two expected times is

R = lim
L→∞

kF̄on�kL�
F̄on�L�

= 1
kα−1

< 1�

which is the expected benefit of pooling the resources. However, this benefit
becomes less pronounced if α is close to 1.

We are ready now for the proofs.
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Proof of Theorem 2.1. Choose a β > 0 small enough so that

1− r ≥ β�k− 1�µon

µ
�(4.13)

Call an on period long if its length exceeds

L∗ �= L�1+ β�/�1− r+ �k− 1�µon/µ��
Define

τ∗�L� = inf�t ≥ 0� one of the k on/off processes begins at
time t a “long” on period and during this
time the other �k−1� sources bring in at
least L∗�1− β2�/�1+ β� units of work�.

(4.14)

Observe that at time

τ∗�L� +L∗

the state of the system is at least L, implying that

EH�x0
τ�L� ≤ EH�x0

τ∗�L� +L∗�

Therefore,

lim sup
L→∞

F̄on

(
L

1− r+ �k− 1�µon/µ

)
EH�x0

τ�L�

≤ lim sup
L→∞

F̄on

(
L

1− r+ �k− 1�µon/µ

)
EH�x0

τ∗�L��
(4.15)

For j = 1� � � � � k and m ≥ 1, let Z�m�
j be lengths of successive “long” on

periods in the jth input and τ∗�jm �L� is the time the mth “long” period of the
jth process commences. Define

τ∗m�L� �=
k∧
j=1

τ∗�jm �L�(4.16)

to be the earliest time any line commences its mth “long” period.
Observe that

τ∗�L� ≤ inf
{
τ∗m�L�� during the transmission beginning at

τ∗m�L� the other �k−1� sources bring at
least L∗��1−β2�/�1+β���k− 1��µon/µ�
units of work

}
.

(4.17)

Therefore,

EH�x0
τ∗�L� ≤

∞∑
m=1

EH�x0

[
τ∗m�L�1�Am�

]
�(4.18)
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with

Am =
m−1⋂
i=1

{
during the transmission beginning at τ∗i �L��
the other �k − 1� sources bring less than
L∗��1 − β2�/�1 + β���k − 1��µon/µ� units of
work, while during the transmission beginning
at τ∗m�L�, the other �k− 1� sources bring at least
L∗��1−β2�/�1+β���k−1��µon/µ� units of work

}
.

We remark that the asymptotics of EH�x0
τ∗m�L� as L → ∞ do not change

if we shorten the initial off periods by the same random amount with a
finite mean. Therefore, we may assume, for now, that, under PH�x0

, we have∧
j=1� ���� k D

�0�
j = 0 with probability 1. Such a change will also come in handy

for the proof of the lower bound in (4.10).
Observe that by assumption (4.9) we have, for all m ≥ 1, that, with H∗ as

given by (4.9),

P�Am� ≤
[
kP�during L∗ units of time the total amount of

work brought by �k − 1� sources, each one
starting with a special off period distributed
according to H∗ is less than L∗��1−β2�/�1+
β���k− 1�µon/µ�

]m−1 �= �kpL�m−1.

(4.19)

We have

pL ≤ �k− 1�P(during L∗ units of time the total amount
of work brought by a single source starting
with a special off period distributed accord-
ing to H∗ is less than L∗��1 − β2�/�1 +
β��µon/µ

)
= ε�L� → 0

(4.20)

as L→∞� by the law of large numbers.
Now let U be a generic random variable with the law of τ∗�11 �L�+X̂, where

the law of τ∗�11 �L� is taken in the case when the source starts with an ordinary
off period, and X̂ has the conditional law of a generic on period X given
X > L∗. Think of U as the time the first “long” period ends in process 1. Let
1 < p < α be the number from condition (4.9). Observe that there is a finite
constant c1 such that for all L ≥ 1 we have EX̂p ≤ c1L

p. Furthermore, we
claim that there is another positive constant c2 such that for all L ≥ 1 we have

Eτ
∗�1
1 �L�p ≤ c2�F̄on�L��−p�(4.21)

We will check (4.21) later [see (4.33)]. Clearly, the assumption that
∧
j=1� ���� k

D
�0�
j = 0 implies that

τ∗m�L�≤st

m∑
i=1

Ui�
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where U1, U2� � � � are iid copies of U above. Therefore, we conclude that

EH�x0

(
τ∗m�L�

)p ≤ c3m
p�F̄on�L��−p(4.22)

for all L ≥ 1, where c3 is a finite positive constant. Letting q be the conjugate
of p (1/p+ 1/q = 1), we conclude by (4.20), (4.21) and (4.22) that

∞∑
m=2

EH�x0

[
τ∗m�L�1�Am�

] ≤ ∞∑
m=2

[
EH�x0

�τ∗m�L��p
]1/p�P�Am��1/q

≤ c4�F̄on�L��−1
∞∑
m=2

m�k�k− 1�ε�L���m−1�/q

= o(�F̄on�L��−1
)

as L→∞, with c4 being once again a finite positive constant. It follows from
(4.21) then that

lim sup
L→∞

F̄on

(
L

1− r+ �k− 1�µon/µ

)
EH�x0

τ∗�L�

≤ lim sup
L→∞

F̄on

(
L

1− r+ �k− 1�µon/µ

)
EH�x0

τ∗1�L��
(4.23)

and we proceed now to evaluate the latter limit.
Observe that τ∗�11 �L�� � � � � τ∗� k1 �L� are, conditionally on �D�0�

1 � � � � �D
�0�
k �,

independent, and that

τ
∗�j
1 �L� =d D�0�

j +
G
�j�
L∑
i=1

�X�∗�j�
i +Y�j�

i ��

where G
�j�
L is a geometric random variable with parameter F̄on�L∗�, in-

dependent of two independent iid sequences, �X�∗� j�
i � i = 1�2� � � �� and

�Y�j�
i � i = 1�2� � � ��, where the latter sequence has, as usual, the Foff distri-

bution, and the former has the distribution

P�X�∗� j�
i ∈ A� = P�X�j�

1 ∈ A�X�j�
1 ≤ L∗�

= 1
Fon�L∗�

∫ L∗
0

1�x ∈ A�Fon�dx��

Everything is also independent of the delay random variable D�j�
0 . In partic-

ular, �X�j�
1 �X�j�

1 ≤ L�≤stX
�j�
1 , and hence

τ
∗�j
1 �L�≤stS

�j�
G
�j�
L

�(4.24)

where all the random variables appearing in the right-hand side of (4.24) are
independent. We conclude that

τ∗1�L�≤st
∨

1≤j≤k
D
�j�
0 +

∧1≤j≤kG
�j�
L∑

i=1

�X�1�
i +Y�1�

i ��
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and so

EH�x0
τ∗1�L� ≤ EH�x0

∨
1≤j≤k

D
�j�
0 + µE

( ∧
1≤j≤k

G
�j�
L

)
�

Since ∧1≤j≤kG
�j�
L is, once again, a geometric random variable with parameter

1−Fkon�L∗�, we obtain immediately that

EH�x0
τ∗1�L� ≤ EH�x0

∨
1≤j≤k

D
�j�
0 + µ

(
1

1−Fkon�L∗� − 1
)
�

which implies that

lim sup
L→∞

F̄on

(
L

1− r+ �k− 1�µon/µ

)
EH�x0

τ�L�

≤ �1+ β�α lim sup
L→∞

F̄on�L∗�EH�x0
τ∗�L� ≤ �1+ β�α 1

k
µ�

Since we can take β as close to zero as we wish, we obtain

lim sup
L→∞

F̄on

(
L

1− r+ �k− 1�µon/µ

)
EH�x0

τ�L� ≤ 1
k
µ�(4.25)

For a lower bound, we start with observing that we may, once again, assume
that ∧1≤j≤kD

�0�
j = 0, PH�x0

-almost surely. Indeed, shortening all the initial off
periods by the same amount can only make the level crossing time smaller. To
simplify the notation we will drop the subscript 1 in the definition of τ∗�L�,
let β = 0 and let τ∗�L� be the first time an on period of length at least

L1 �=
L

1− r+ �k− 1�µon/µ
(4.26)

begins in any line. So when H = δ�0�����0� and x0 = 0

τ∗�L� =
k∧
i=1

inf�S�i�n � X�i�
n+1 > L1��(4.27)

[The random variable defined by (4.14) will not be used again in the proof.]
Now, take an 0 < ε < 1, and observe that

τ�L� ≥ τ∗�L�1− ε��1�τ�L�≥τ∗�L�1−ε��
�
and so

EH�x0
τ�L� ≥ EH�x0

τ∗�L�1− ε�� −EH�x0

(
τ∗�L�1− ε��1�τ�L�<τ∗�L�1−ε��


)
�(4.28)

The main part of the proof of a lower bound on the expected crossing time is
a proof of the fact that

lim
L→∞

F̄on�L�EH�x0
�τ∗�L�1− ε��1�τ�L�<τ∗�L�1−ε��
� = 0�(4.29)



1046 D. HEATH, S. RESNICK AND G. SAMORODNITSKY

Suppose that (4.29) has been proved. If we can establish that

lim inf
L→∞

F̄on�L1�EH�x0
τ∗�L� ≥ 1

k
µ�(4.30)

then the regular variation of F̄on�L� will provide the required counterpart
to (4.25), and so prove the theorem. To prove (4.30) we may, of course, as-
sume that H = δ�0�����0� and x0 = 0. We therefore use P and E without any
subscripts. We remark at this point this assumption is made only for the
purpose of proving (4.28) and will be removed once the latter has been proved.
However, at certain later stages of the proof of the theorem we will find it
useful (and possible) to reimpose this assumption.

Define the geometrically distributed random variable

ν
�i�
L1
�= inf�n� X�i�

n+1 > L1�(4.31)

so that, as L→∞,

ν
�i�
L1

E�ν�i�L1
�
⇒ E�i��

a unit exponential random variable, and

E�ν�i�L1
� = Fon�L1�

1−Fon�L1�
∼ 1

1−Fon�L1�
�

So

inf�S�i�n � X�i�
n+1 > L1� = S�i�ν�i�L1

�

We have

S
�i�
ν
�i�
L1

∼ µν�i�L1

and so

�1−Fon�L1��S�i�ν�i�L1

⇒ µE�i��

and therefore by Fatou’s lemma,

lim inf
L→∞

E��1−Fon�L1��τ∗�L�� ≥ E
(

lim inf
L→∞

�1−Fon�L1��τ∗�L�
)

= E
(

lim inf
L→∞

k∧
i=1

�1−Fon�L1��S�i�ν�i�L1

)

= E
(
µ

k∧
i=1

E�i�
)
= µ/k�

So it remains to prove (4.29).
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Let p > 1 be the number from (4.21). We notice that, by assumption (4.9),
EY

p
1 <∞. By Hölder’s inequality,

EH�x0

(
τ∗�L�1− ε��1�τ�L� < τ∗�L�1− ε���)

≤ (
EH�x0

�τ∗�L�1− ε���p)1/p(
PH�x0

�τ�L� < τ∗�L�1− ε��)1/q
�

(4.32)

where p−1 + q−1 = 1. Let j0 be the index where min�D�0�
1 � � � � �D

�0�
k � is

achieved (with ties broken in, say, lexicographical manner), and recall that
D
�0�
j0
= 0, PH�x0

-almost surely. We have by the triangle inequality

(
EH�x0

�τ∗�L�1− ε���p)1/p ≤ (
EH�x0

�τ∗�L��p)1/p ≤
(
EH�x0

(
S
�j0�
ν
�j0�
L1

)p)1/p

=
(
E

( ∞∑
i=1

�X�1�
i +Y�1�

i �1�i≤ν�1�L1



)p)1/p

≤
∞∑
i=1

(
E
((
X

�1�
i +Y�1�

i

)
1�i≤ν�1�L1



)p)1/p

=
(
E
(
X

�1�
1 +Y�1�

1

)p)1/p ∞∑
i=1

P�ν�1�L1
≥ i�1/p

≤ CF̄on�L�−1�

(4.33)

where C is a finite positive constant. It follows from (4.32) and (4.33) that we
will prove (4.29) by showing that

lim
L→∞

PH�x0
�τ�L� < τ∗�L�1− ε��� = 0�(4.34)

Let us prove first that for every

N > 2k
α

α− 1
(4.35)

we have

lim
L→∞

PH�x0
�τ�L� < τ∗�L/N�� = 0�(4.36)

To this end, let us “unpool” the system. That is, imagine k separate stable
fluid queues defined by

dXj�t� = Zj�t�dt−
1
k
r�Xj�t��dt� t ≥ 0�(4.37)

where �Zj�t�� t ≥ 0� is given by (4.7), and Xj�0� = �1/k�x0, j = 1� � � � � k.
The k processes �Xj�t�� t ≥ 0�, j = 1� � � � � k, are, conditionally on the initial

delay �D�0�
1 � � � � �D

�0�
k �, independent. Let Y�k��t� = X1�t� + · · · +Xk�t�, t ≥ 0.

The two processes �X�k��t�� t ≥ 0� and �Y�k��t�� t ≥ 0� describe the states
of two queuing systems. Obviously, X�k��0� = Y�k��0�, the two systems have
identical inflow streams of work, while the outflow of work from X�k��·� when
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the system is not empty is always at rate r, and the outflow rate from Y�k��·�
does not exceed r. Therefore, for every ω,

X�k��t� ≤ Y�k��t�� t ≥ 0�(4.38)

Note that (4.38) is just an expression of the benefit of pooling system resources.
Define

τ�Y��L� = inf�t ≥ 0� Y�k��t� ≥ L��(4.39)

Then (4.38) implies that τ�Y��L� ≤ τ�L�, so that{
ω� τ�L� < τ∗�L/N�} ⊆ {

ω� τ�Y��L� < τ∗�L/N�}�
and, therefore,

PH�x0
�τ�L� < τ∗�L/N�� ≤ PH�x0

�τ�Y��L� < τ∗�L/N���(4.40)

Now, define

τ�j��L� = inf�t ≥ 0� Xj�t� ≥ L�� 1 ≤ j ≤ k�
Then

PH�x0

(
τ�Y��L� < τ∗�L/N�)

≤ PH�x0

(
τ�j��L/k� < τ∗�L/N� for some j = 1� � � � � k

)
≤

k∑
j=1

PH�x0
�τ�j��L/k� < τ∗�L/N��

≤
k∑
j=1

PH�x0
�τ�j��L/k� < τ∗�j�L/N���

(4.41)

where we recall τ∗�j is the time when the first long on period of length at least
L1/N begins in line j. Therefore, (4.36) will follow from (4.40) and (4.41) once
we prove that for every

M> 2
α

α− 1
(4.42)

we have

lim
L→∞

PH�x0
�τ�j��L� < τ∗� j�L/M�� = 0�(4.43)

for j = 1� � � � � k.
We will prove (4.43) for j = 1. Let T0 = inf�t > D�0�

1 � X1�t� = 0�. Write

PH�x0
�τ�1��L� < τ∗�1�L/M�� = PH�x0

�T0 ≤ τ�1��L� < τ∗�1�L/M��
+PH�x0

�τ�1��L� < τ∗�1�L/M� ∧T0��
Since, for all L > 2x0,

PH�x0
�τ�1��L� < τ∗�1�L/M� ∧T0� ≤ PH�x0

�τ�1��L� < T0� → 0
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as L → ∞ because of the rate condition (4.5) (or recall Corollary 2.2), (4.43)
will follow if we prove that

lim
L→∞

PH�x0
�T0 ≤ τ�1��L� < τ∗�1�L/M�� = 0�(4.44)

Clearly, at time T0 the system is in an off period. Denote by H̃ the law (under
PH�x0

) of the remainder of this off period after time T0. Since we have

PH�x0
�T0 ≤ τ�1��L� < τ∗�1�L/M�� ≤ PH̃�0�τ�1��L� < τ∗�1�L/M���

(4.44) will follow once we prove (4.43) with x0 = 0, and so (4.43) in its gener-
ality will follow if we prove it only for x0 = 0. Assume, therefore, that x0 = 0.

For K1 ≥ 0 and K2 > 0 let �X�K1�K2�
1 �t�� t ≥ 0� denote the process given

by (4.37) (with j = 1) when D�0�
1 is replaced by D�0�

1 ∧K1, and each Y�1�
i is

replaced by Y�1�
i ∧K2. Let τ�1��L�K1�K2� and τ∗�1�L�K1�K2� be the random

times analogous to τ�1��L� and τ∗�1�L� correspondingly, defined with respect
to the process �X�K1�K2�

1 �t�� t ≥ 0�. Observe that the event

AK1�K2
= �ω� τ�1��L�K1�K2� < τ∗�1L/M�K1�K2��

increases when K1 and K2 decrease. It is enough, therefore, to prove (4.43)
in the case when K1 = 0, and K2 is any finite positive number such that

µon

µon +E�Y�1�
1 ∧K2�

<
r

k
�

In other words, we will prove (4.43) in the case when D�0�
1 = 0, the off times

are bounded (by K2), and x0 = 0. We will, therefore, use once again P and E
without any subscripts.

We define three events Ai�L�, i = 1�2�3, corresponding to the following
three possibilities:

1. τ∗�1�L/M� < τ�1��L� ∧ T0; that is, the process �X1�t�� t ≥ 0� begins an on
interval of length at least L1/M before reaching either level L or returning
to 0;

2. τ�1��L� < τ∗�1�L/M� ∧ T0; in other words, the process �X1�t�� t ≥ 0�
reaches level L before starting an on interval of length at least L1/M and
before returning to 0;

3. T0 < τ�1��L� ∧ τ∗�1�L/M�; in other words, the process �X1�t�� t ≥ 0�
returns to 0 before reaching level L, and without initiating an on interval
of length at least L1/M.

Clearly,

P�τ�1��L� < τ∗�1�L/M�� = P(�τ�1��L� < τ∗�1�L/M�� ∩A2�L�
)

+P(�τ�1��L� < τ∗�1�L/M�� ∩A3�L�
)
�

However, by regeneration,

P
(�τ�1��L� < τ∗�1�L/M�� ∩A3�L�

) = P�A3�L��P�τ�1��L� < τ∗�1�L/M���
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Therefore,

P�τ�1��L� < τ∗�1�L/M�� = P
(�τ�1��L� < τ∗�1�L/M�� ∩A2�L�

)
1−P�A3�L��

�(4.45)

Let ξi = �1 − r/k�X�1�
i − �r/k�Y�1�

i , i = 1�2� � � � � Taking into account that the
off times are bounded, we can conclude that

P
(�τ�1��L� < τ∗�1�L/M�� ∩A2�L�

) ≤ (
P

( ∞∨
n=0

S
�ξ�
n > L1/M

))�M/2

�

and P�∨∞
n=0S

�ξ�
n > L� is regularly varying in L with index −�α−1�. Moreover,

1−P�A3�L�� ≥ P�A1�L�� ≥ P�X�1�
1 > L1/M� = F̄on�L1/M��

We conclude by (4.45) and (4.42) that

lim sup
L→∞

P�τ�1��L� < τ∗�1�L/M�� ≤ lim sup
L→∞

(
P�∨∞

n=0S
�ξ�
n > L1/M�)�M/2


F̄on�L1/M� = 0�

This proves (4.43) and so (4.36) is proven as well. We observe at this point
that the above argument that allowed us to assume the initial delays being
equal to 0 shows that we have also proved that for every N satisfying (4.35),

lim
L→∞

sup
H

PH�0�τ�L� < τ∗�L/N�� = 0�(4.46)

The next step in the proof of (4.34) is to show that two “long” on periods
are “unlikely to happen simultaneously.” Formally, let

QL = inf�t ≥ 0� at time t there are two on periods running,
each of length at least L�.(4.47)

We claim that there is a function γL → 0 as L→∞ such that

lim
L→∞

PH�x0

(
QL ≤ γ−1

L �F̄on�L��−1) = 0�(4.48)

Of course,QL will only decrease if we assume that all delay times and off times
are equal to 0, and QL is unaffected by x0. We will, therefore, once again drop
the subscripts from P and E and assume that all off times are equal to 0.

For j1, j2 = 1� � � � � k� j1 != j2� let

Q
�j1�j2�
L = inf�t ≥ 0� at time t, the processes Xj1

�·� and
Xj2

�·� both have on periods running,
each of length at least L�.

Then

QL =
∧
j1 !=j2

Q
�j1� j2�
L �

and so, for any q > 0,

P�QL ≤ q� ≤
k�k− 1�

2
P�Q�1�2�

L ≤ q��(4.49)
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Let

Q
�1�
L = inf�t ≥ 0� at time t, X1�·� begins an on period of

length at least L during which X2�·� also
begins an on period of length at least L�

(4.50)

with Q�2�
L defined similarly. Then

Q
�1�2�
L ≥ Q�1�

L ∧Q�2�
L �

which means that, for any q > 0,

P
(
Q
�1�2�
L ≤ q) ≤ 2P

(
Q
�1�
L ≤ q)�(4.51)

Let Zk, k = 1�2� � � � � be an iid sequence, such that

Z1 =d
GL∑
i=1

X̂i�

where GL is a geometric random variable with parameter F̄on�L�, indepen-
dent of an iid sequence X̂i, i = 1�2� � � � � with common law

P�X̂1 ∈ A� = P�X1 ∈ A�X1 ≤ L� =
1

Fon�L�
∫ L

0
1�x ∈ A�Fon�dx��

Then Z1 represents the first time X1�·� starts an on period of length at least
L. Let HL be yet another geometric random variable, independent of the
sequence Zk, k = 1�2� � � �, this time with parameter pL defined as follows.
Let W be a random variable with distribution

P�W ∈ A� = P�X1 ∈ A�X1 > L� =
1

F̄on�L�
∫ ∞
L

1�x ∈ A�Fon�dx�

and independent of X2�·�. Recall that at time 0 the process X2�·� starts an
on interval. Then define

pL = P
(
inf�S�2�n � n ≥ 1� X�2�

n+1 ≥ L� ≤W
) = P(S�2�

ν
�2�
L

≤W
)
�(4.52)

That is, pL is the probability that X�2��·� begins an on period of length at
least L during an on period of X�1��·�, whose length is at least L. If X�2��·�
does not start such an on period, we then have to wait till the next on period
of X�1��·� whose length is at least L. Therefore,

Q
�1�
L ≥st

HL∑
n=1

Zn�(4.53)

We claim that

pL → 0 as L→∞�(4.54)



1052 D. HEATH, S. RESNICK AND G. SAMORODNITSKY

Indeed,

pL = P
[
S
�2�
ν
�2�
L

≤ L
]
+
∫ ∞
L

F̄on�x�
F̄on�L�

P
[
S
�2�
ν
�2�
L

∈ dx
]
= I+ II�(4.55)

Now

I = P[F̄on�L�S�2�ν�2�L ≤ LF̄on�L�
]→ 0(4.56)

since LF̄on�L� → 0 and F̄on�L�S�2�ν�2�L ⇒ µE�2�� Also, by Potter’s bounds for ra-

tios of regularly varying functions [see Bingham, Goldie and Teugels (1987)],
we get for ε so small that 1 < α− ε and all large L that

II =
∫ ∞

1

F̄on�Lx�
F̄on�L�

P

[
S
�2�
ν
�2�
L

L
∈ dx

]
≤ c

∫ ∞
1
x−α+εP

[
S
�2�
ν
�2�
L

L
∈ dx

]

= E
(
S
�2�
ν
�2�
L

L

)−α+ε
1[
S
�2�
ν
�2�
L

≥L
] → 0

(4.57)

as L→∞ since the integrand is bounded by 1 and

S
�2�
ν
�2�
L

L
=
F̄on�L�S�2�ν�2�L
LF̄on�L�

→P ∞�

so II → 0.
Now define γL = p1/2

L . Observe that by (4.49), (4.51) and (4.53) we have

P
(
QL ≤ γ−1

L �F̄on�L��−1) ≤ k�k− 1�P
( HL∑
n=1

Zn ≤ p−1/2
L �F̄on�L��−1

)
�(4.58)

However,

HL∑
n=1

Zn =d
JL∑
i=1

X̂i�

where JL is a geometric random variable with parameter pLF̄on�L�, inde-
pendent of �X̂i� i = 1�2� � � ��. Since, as L→∞,

�pLF̄on�L��JL ⇒ E�1��
where E�1� is a standard exponential random variable, we immediately
obtain (4.48) using (4.58) and the law of large numbers.

Let us go back now to the proof of (4.34). Observe, first of all, that for all
L big enough,

PH�x0

(
τ�L� < τ∗�L�1− ε��) ≤ PH�0(τ�L�1− ε/2�� < τ∗�L�1− ε��)�
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Therefore, it is enough to prove (4.34) for x0 = 0, for the general case will
follow by making ε smaller. We will, therefore, use the notation PH and EH,
when x0 = 0.

Fix any N satisfying (4.35) and big enough to make the right-hand side
of (4.59) below positive, and observe that it is enough to prove (4.34) for
ε = 1/N. Further, fix a ρ satisfying

kρ ≤ ε

2
− ε2�(4.59)

We have

PH
(
τ�L� < τ∗�L�1− ε��)
≤ PH

(
τ�L� < τ∗�L�1− ε��� τ�Lε2� ≥ τ∗�Lε3�� τ�L� < QρL

)
+PH

(
τ�Lε2� < τ∗�Lε3��

+PH�τ�L� ≥ QρL

)
�

(4.60)

Observe that, by (4.36),

lim
L→∞

PH�τ�Lε2� < τ∗�Lε3�� = 0�

Furthermore, by (4.48) and (4.25),

PH�τ�L� ≥ QρL�
≤ PH

(
QρL ≤ �γρL�−1�F̄on�ρL��−1)+PH(τ�L� ≥ �γρL�−1�F̄on�ρL��−1)

≤ PH
(
QρL ≤ �γρL�−1�F̄on�ρL��−1)+ γρLF̄on�ρL�EHτ�L�

→ 0

as L→∞. Therefore, (4.34) will follow once we prove that

lim
L→∞

PH
(
τ�L� < τ∗�L�1− ε��� τ�Lε2� ≥ τ∗�Lε3�� τ�L� < QρL

) = 0�(4.61)

As a matter of fact, we will prove an even stronger statement. We will prove
that

lim
L→∞

sup
H

PH
(
τ�L� < τ∗�L�1− ε��� τ�Lε2� ≥ τ∗�Lε3�� τ�L� < QρL

) = 0�(4.62)

Let

B�L� = {
τ�L� < τ∗�L�1− ε��� τ�Lε2� ≥ τ∗�Lε3�� τ�L� < QρL

}
�
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We split this event into two events, B1�L� and B2�L�, according to the
following two possibilities:

1. After starting the first “wet period” in which the process reaches the level
Lε2, the process X�k��·� reaches level L before returning to 0.

2. The process X�k��·� returns to 0 before reaching level L.

Let us look at the event B1�L� first. Since B1�L� ⊆ B�L�, at time τ�Lε2�
at most one of the k on/off processes has an on period whose length is at
least ρL. Depending on whether the number of such on/off processes is 0 or 1,
we split the event B1�L� into B11�L� and B12�L�. Let us look, for example,
at B12�L�. The treatment of the event B11�L� is similar.

Since B12�L� ⊆ B�L�, the single on period running at time τ�Lε2� of length
at least ρL, has length not exceeding L1�1−ε�. Let us now modify the state of
the system at time τ�Lε2� in the following way. Bring all the work remaining
in the presently running on periods as well as the subsequent work WL

brought by the other k − 1 sources during the single on period of length at
least ρL, and whose length does not exceed L1�1 − ε�, in one “lump” at time
τ�Lε2�, and attach the time it takes to bring this work to the subsequent off
periods. Obviously, this action can only make τ�L� smaller, and so it can only
increase the probability of the event B12�L�. Observe that, after this action,
the state of the system does not exceed

Lε2 +L�1− ε� +WL + �k− 1�ρL�
Observe that WL ≤ L1�1 − ε��1 + ρ�� which implies by (4.59) that the state
of the system does not exceed L�1 − ε/2�. We then increase, if necessary,
the system state to exactly L�1 − ε/2� [only increasing in the process the
probability of the event B12�L�]. We conclude that, for some H0,

PH�B12�L�� ≤ P�WL > L1�1− ε��1+ ρ��

+PH0�L�1−ε/2�

(
sup
t≥0

V�k��t� ≥ L
)
�

(4.63)

where �V�k��t�� t ≥ 0� is given by

dV�k��t� = Z�k��t�dt− rdt�
with �Z�k��t�� t ≥ 0� given by (4.3) and (4.7). However,

P�WL > L1�1− ε��1+ ρ�� → 0

as L→∞ by the law of large numbers. Moreover,

V�k��t� = V1�t� + · · · +Vk�t�� t ≥ 0�

where for j = 1� � � � � k the process �Vj�t�� t ≥ 0� is defined by

dVj�t� = Zj�t�dt−
r

k
dt�
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with Vj�0� = L�1 − ε/2�/k, and with initial delay governed by the jth
marginal law H�j� of H0. We conclude immediately by (4.63) that

PH�B12�L�� ≤ k sup
H�1�

PH�1��L�1−ε/2�/k

(
sup
t≥0

V1�t� ≥
L

k

)

= kP
(

sup
t≥0

V1�t� ≥
Lε

2k

)
�

where P without a subscript indicates, as usual, absence of delay and zero
initial state. Because of the negative drift, we conclude that

lim
L→∞

sup
H

PH�B12�L�� = 0�(4.64)

In exactly the same way one can show that

lim
L→∞

sup
H

PH�B11�L�� = 0�(4.65)

Finally, we consider the event B2�L� above. Consider the two possibilities
that are feasible after the process reaches 0: either after that time the state
of the system reaches the level Lε2 before the beginning of the first on period
of length at least Lε3, or not. Accordingly, by the strong Markov property,

PH�B2�L�� ≤ PH
(
τ∗�Lε3� < τ∗�L�1− ε��)

×
(

sup
G

PG�τ�Lε2� ≤ τ∗�Lε3�� + sup
G

PG�B�L��
)
�

Taking supremum over H, we obtain

sup
H

PH�B�L�� ≤ sup
H

PH�B11�L�� + sup
H

PH�B12�L��

+P(τ∗�Lε3� < τ∗�L�1− ε��)
×
(

sup
H

PH�τ�Lε2� ≤ τ∗�Lε3�� + sup
H

PH�B�L��
)
�

which is the same as

sup
H

PH�B�L�� ≤
[
sup
H

PH�B11�L�� + sup
H

PH�B12�L��

+ sup
H

PH�τ�Lε2� ≤ τ∗�Lε3��
]

× [
P�τ∗�Lε3� = τ∗�L�1− ε���]−1

�

(4.66)

Now (4.62) follows from (4.66), (4.64), (4.65), (4.46) and the fact that

P
(
τ∗�Lε3� = τ∗�L�1− ε��) = F̄on�L�1− ε��

F̄on�Lε3� →
(
ε3

1− ε
)α
> 0

asL→∞ by the regular variation. This completes the proof of the theorem. ✷
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