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1 1 d� 4 � �Let X : i � 1 be i.i.d. with uniform distribution � , , d � 2, andi 2 2

� 4let T be a minimal spanning tree on X , . . . , X . For each strictlyn 1 n
Ž� 4 .positive integer � , let N X , . . . , X ; � be the number of vertices of1 n

Ž Ž� 4 . .degree � in T . Then, for each � such that P N X , . . . , X ; � � 1n 1 ��1
Ž� 4 .� 0, we prove a central limit theorem for N X , . . . , X ; � .1 n

� 4 d1. Introduction. Let X , . . . , X be a finite subset of R , d � 2. A1 n
Ž . � 4 Ž�minimal spanning tree MST on X , . . . , X is a spanning tree T X , . . . ,1 n 1

4. � 4X on X , . . . , X such thatn 1 n

� � � � � 4e � min e : T a spanning tree on X , . . . , X ,Ý Ý 1 n½ 5
Ž� 4. e�Te�T X , . . . , X1 n

� � � � Ž .where e � X � X is the Euclidean length of the edge e � X , X .i j i j
For applications of minimal spanning trees in computer science, see Whit-
Ž . Ž . Ž .ney 1972 , Jung 1974 , Chang, Chang, Kang and Lee 1977 , Bentley and

Ž . Ž . Ž .Friedman 1978 , Chin and Houck 1978 and Katajainen 1983 . For applica-
tions of minimal spanning trees in physics, chemistry and biology, see

Ž . Ž . Ž . Ž .Mallion 1975 , Romane 1977 , Wu 1977 , Penny 1980 , and Dussert et al.
Ž .1987 . For applications of minimal spanning trees in statistics, see Rohlf
Ž . Ž .1975 and Friedman and Rafsky 1979, 1983 .

Here are two problems considered in connection with a minimal spanning
tree. The first problem is on the length of a minimal spanning tree. The
second is on the number of vertices of a given degree � in a minimal

� 4spanning tree. Denote the length of a minimal spanning tree on X , . . . , X1 n
by

� �� 4L X , . . . , X � e ,Ž . Ý1 n
Ž� 4.e�T X , . . . , X1 n

and denote the number of vertices of a given degree � in a minimal spanning
� 4tree on X , . . . , X by1 n

� 4 � 4N X , . . . , X ; � � X : the degree of X in T X , . . . , X is � .� 4Ž . Ž .1 n i i 1 n
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1 1 d� 4 � �If X : i � L are i.i.d. with uniform distribution on � , , d � 2, theni 2 2
Ž .Steele 1988 showed that, as n � �,

� 4L X , . . . , XŽ .1 n
1.1 � � d a.s.,Ž . Ž .Žd�1.� dn

Ž .and Eddy, Shepp and Steele 1987 showed that, as n � �,

� 4N X , . . . , X ; �Ž .1 n
1.2 � � � , d a.s.,Ž . Ž .

n

Ž .where � d is a strictly positive but finite constant which depends only on the
Ž .dimension d and where � � , d is a finite constant which depends only on

the given degree � and the dimension d. For related results, see Rhee and
Ž . Ž . Ž .Talagrand 1989 , Aldous and Steele 1992 , Redmond and Yukich 1994 and

Ž .Penrose 1996 .
Ž .A central limit theorem associated with 1.1 has been proved indepen-

Ž . Ž .dently by Alexander 1996 and by Kesten and Lee 1996 . In this paper, we
Ž .prove a central limit theorem associated with 1.2 which was conjectured by

Ž .Eddy, Shepp and Steele 1987 . Our basic idea is the same as that of Kesten
1 1 dŽ . Ž . � �and Lee 1996 . Let PP n be a Poisson point process of density n � , .1 2 2

Ž Ž . . Ž Ž . .We represent N PP n ; � � EN PP n ; � as a sum of martingale differ-1 1
ences and we apply Levy’s martingale central limit theorem to the sum of´
martingale differences. In this way, the proof of the central limit theorem for
Ž Ž . .N PP n ; � is reduced to a kind of weak law of large numbers estimate for1

certain conditional variances. Even though a weak law of large numbers is
much easier to obtain, in general, than a central limit theorem, it still
requires some independence. The required independence is obtained by ap-
proximating the conditional variances by quantities which depend only lo-

Ž .cally on the PP n . This approximation is done by the stabilization property1
Ž .Proposition 1 of minimal spanning trees. Loosely speaking, the stabilization
property says that the minimal spanning tree structure is locally determined.
Our first result is as follows:

1 1 dŽ . � �THEOREM 1. Let PP n be a Poisson point process of density n on � , ,1 2 2
Ž Ž Ž . . .d � 2. Then, for each strictly positive integer � such that P N PP 1 ; � � 11

� 0, as n � �,

N PP n ; � � EN PP n ; �Ž . Ž .Ž . Ž .1 1 2� N 0, � � , dŽ .˜Ž .1�2n

2Ž .in distribution for some 0 � � � , d � �.˜

We de-Poissonize Theorem 1. That is, we replace a Poisson point process
1 1 dŽ . � � � 4PP n of density n on � , with the n i.i.d. uniform points X , . . . , X on1 1 n2 2

1 1 d� �� , in Theorem 1. Our second result is as follows.2 2
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1 1 d� 4 � �THEOREM 2. Let X : i � 1 be i.i.d. with uniform distribution on � , ,i 2 2
Ž Ž Ž . . .d � 2. Then, for each strictly positive integer � such that P N PP 1 ; � � 11

� 0, as n � �,

� 4 � 4N X , . . . , X ; � � EN X , . . . , X ; �Ž . Ž .1 n 1 n 2� N 0, � � , dŽ .Ž .1�2n
2Ž .in distribution for some 0 � � � , d � �.

In Section 2, we review minimal spanning trees and continuum percola-
tion. By studying minimal spanning trees with the help of continuum percola-
tion, we establish the stabilization property of minimal spanning trees. In
Section 3, we prove Theorem 1. In Section 4, we de-Poissonize Theorem 1 and
prove Theorem 2.

We would like to close the Introduction with a remark on the stabilization
property of minimal spanning trees which we establish in this paper. This
stabilization property is much stronger than the monotonicity property of
minimal spanning trees which is essential to the argument of Kesten and Lee
Ž . Ž .1996 : Kesten and Lee 1996 prove the central limit theorem for the length

� �� 4L X , . . . , X � � eŽ .Ž . Ý� 1 n
Ž� 4.e�T X , . . . , X1 n

� 4of a minimal spanning tree on X , . . . , X , where, for a given function � , the1 n
Ž � �.weight on the edge e is given by � e . Their central limit theorem holds with

�no continuity assumption on � . Please, ignore the continuity assumption on
Ž . �� just before Lemma 12 of Kesten and Lee 1996 . It is a typo. They prove

Ž . Ž . Ž . �Lemma 10 of Kesten and Lee 1996 only for � y � � y � y . However,�

the lemma holds for the general � as stated in the lemma. The full proof of
the lemma is now available. The proof is based on the stabilization property,
not the monotonicity property. Actually, one can adapt our argument to prove

Ž .the central limit theorem of Kesten and Lee 1996 . In fact, in the coming
paper we establish the ‘‘strong’’ stabilization property of minimal spanning

Ž .trees and we generalize the central limit theorems of Kesten and Lee 1996
and of this paper to the nonuniform sample points.

In this paper, there are many strictly positive but finite constants whose
specific values are not of interest to us. We denote them by C , C or D .i Žq . d

2. Stabilization of minimal spanning trees. In this section, we recall
three algorithms for the construction of an MST: Kruskal’s algorithm, the add
and delete algorithm, and the revised add and delete algorithm. We also
review continuum percolation. By studying the structure of minimal span-
ning trees with the help of the revised add and delete algorithm and contin-

Ž .uum percolation, we establish the stabilization property Proposition 1 of
minimal spanning trees.

Ž .Let us review minimal spanning trees first. Let G � V, E, w be a con-
nected weighted graph with vertex set V, edge set E and weight function w:

� . � � � �E � 0, � . Assume that the cardinalities V , E of V, E, respectively, are
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Žfinite. A minimal spanning tree on G is a tree T with vertex set V so T is a
. � Žspanning tree on V and edge set E 	 E which we express by T 	 E for

.brevity such that

2.1 w e � min w e : T � a spanning tree on V , T � 	 E .Ž . Ž . Ž .Ý Ý½ 5
�e�T e�T

Denote

w T � w e .Ž . Ž .Ý
e�T

A minimal spanning tree T on G can be constructed by the following greedy
Ž .algorithm due to Kruskal 1956 .

KRUSKAL’S ALGORITHM.
� � 4 4Step 1. Let T � � and let E � e � E: e is not a circuit .0 0

Step 2. Once T and E have been determined, choose an edge e � Ei i i�1 i
Ž . Ž .such that w e � min w e and construct T by adding the edgei�1 e� E i�1i

e to T . That is, definei�1 i

� 4T � T 
 e .i�1 i i�1

Then, define

� 4 � 4E � e � E � e : T 
 e does not contain a circuit .� 4i�1 i i�1 i�1

If there exists no such edge e , that is, if E � �, then define T � T andi�1 i i
stop.

Step 3. Replace i by i � 1. Return to Step 2.

Ž . � � � �Let G � V, E, w be a connected weighted graph with V � �, E � �,
� Ž � � � . �and let G � V , E , w be another connected weighted graph with V � V,

� � � � � � � �Ž . Ž .V � �, E � E, E � �. We assume that w e � w e for all e � E so that
w� is an extension of w. We therefore drop the prime from w� in the sequel
and we denote the weight function on G� also by w.

Now, let T be an MST on G. We would like to construct an MST T � on G�.
We may, of course, construct an MST T � by directly applying Kruskal’s
algorithm to the graph G�. However, this algorithm is not efficient in this
case, because this does not use the fact that T is already an MST on G. We
propose here the add and delete algorithm and the revised add and delete
algorithm for the construction of an MST T � on G�: The original add and

Ž .delete algorithm was proposed by Kesten and Lee 1996 and the add and
�delete algorithm below is slightly generalized from the original one this

Ž .�algorithm was already studied by Chin and Houck 1978 . However, proof
needs no change. The revised add and delete algorithm is revised from the
add and delete algorithm to handle the situation if we have the additional
information that some edges e � E� � E do not belong to any MST T � on G�.
The proof is given in Lemma 2 below.
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ADD AND DELETE ALGORITHM.
� � 4Step 1. Let T � T and let E � E � e , . . . , e .0 1 l

Step 2. Once T has been determined, add e to T . That is, formi i�1 i
� 4 � 4T 
 e . If T 
 e does not contain a circuit, definei i�1 i i�1

� 4T � T 
 e .i�1 i i�1

� 4Otherwise, T 
 e contains a unique circuit C . Choose f � Ci i�1 i�1 i�1 i�1
Ž . Ž .such that w f � max w e , and definei�1 e� Ci� 1

� 4 � 4T � T 
 e � f .i�1 i i�1 i�1

If there is no such edge e , that is, if i � l, then define T � � T and stop.i�1 l
Step 3. Replace i by i � 1. Return to Step 2.

REVISED ADD AND DELETE ALGORITHM. Apply the add and delete algorithm
Ž � . � � �Ž � .to E � E � E instead of E � E if no edge e of E 	 E � E belongs to any

MST T � on G�.

The next three lemmas are simple facts on the add and delete algorithm
and the revised add and delete algorithm.

Ž . � � � � �LEMMA 1. Let T be an MST on G � V, E, w , V � �, E � �, and let T
� Ž � � . � � � � � � � �be an MST on G � V , E , w , V � V, V � �, E � E, E � �, constructed

� � 4by applying the add and delete algorithm with E � E � e , . . . , e to an MST1 l
T on G. Then

� � 42.2 T 	 T 
 e , . . . , eŽ . Ž .1 l

and
2.3 T � 
 E 	 T .Ž . Ž .

� � � Ž . � 4 4Moreover, for V 	 V with V 
 x: x, y � e , . . . , e for some y � �,1 l

2.4 x , y � T � : x � V � 	 x , y � T : x � V � .� 4 � 4Ž . Ž . Ž .

PROOF. The lemma follows immediately from the add and delete algo-
rithm. We leave this as a simple exercise for the reader. �

Ž . � �LEMMA 2. Let G � V, E, w be a connected weighted graph with V � �,
� � � Ž � � .E � �, and let G � V , E , w be another connected weighted graph with

� � � � � � � � �Ž � .V � V, V � �, E � E, E � �. Assume that any edge e � E 	 E � E
does not belong to any MST T � on G�. Let T be an MST on G and let T� be a
spanning tree on V � constructed by applying the add and delete algorithm

Ž � . � � �with E � E � E to an MST T on G. Then T is still an MST on G .

� � Ž � � � .PROOF. Define a connected weighted graph G by G � V , E � E , w .
Since an MST T � on G� does not contain any edge e � E�, T � is a subgraph of
G� and hence G� is indeed connected. Since T � is a spanning tree on V � in G�,

� � Ž � . Ž �. �for an MST T on G we have w T � w T . So, for any spanning tree T
� � Ž � . Ž �. Ž � . � �on V in G we have w T � w T � w T , because T is an MST on G .
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Hence an MST T� on G� is an MST on G�. In particular, a spanning tree T�

� Ž � . �on V constructed by applying the add and delete algorithm with E � E � E
to an MST T on G is an MST on G� and hence an MST on G�. �

Ž . � �LEMMA 3. Let G � V, E, w be a connected weighted graph with V � �,
� � � Ž � � .E � �, and let G � V , E , w be another connected weighted graph with

� � � � � � � � � � 4V � V, V � �, E � E, E � �. Denote E � E � e , . . . , e . Let T be an1 l
MST on G and, for each 0 � i � l, let T be the ith subset of E� constructed byi

� 4 Žapplying the add and delete algorithm with e , . . . , e to an MST T on G see1 i
.Step 2 of the add and delete algorithm . Let C be a connected component of T .i

Ž . Ž Ž . Ž .Then the restriction T 
 C of T to C is an MST on G C � V C , E C ,i i i i i
. Ž . � Ž . Ž . 4 Ž .w , where V C � x: x, y � E C for some y and where E C is thei i i

� 4connected component of E 
 e , . . . , e containing C.1 i

Ž .PROOF. If E C contains a given MST T on G, then T 
 C is the treei i
� 4 Ž .constructed by applying the add and delete algorithm with e , . . . , e 
 E C1 i i

Ž . Ž .to an MST T on G. So, T 
 C is an MST on G C . If E C does not containi i i
Ž . Ž .T, then there exists the first edge e � u, v , 1 � j � i, such that e � E C .j j i

Then T 
 C is the tree constructed by applying the add and delete algorithmi
� 4 Ž . � 4 Ž� 4 � 4 .with e , . . . , e 
 E C to an MST e on u, v , e , w . So, T 
 C is again1 i i j j i

Ž .an MST on G C . �i

Now we collect two basic facts on an MST.

Ž . � �LEMMA 4. Let G � V, E, w be a connected weighted graph with V � �,
� � Ž .E � �. If there exists a path � � e , . . . , e in G from v � V to v � V such1 n 1 2

Ž .that w e � �, 1 � i � n, then for any MST T on G there exists a pathi
� Ž � � . Ž � .� � e , . . . , e in T from v to v such that w e � �, 1 � j � m.1 m 1 2 j

�Ž . �PROOF. See Kesten and Lee 1996 , Lemma 2 . �

Ž . � �LEMMA 5. Let G � V, E, w be a connected weighted graph with V � �,
� �E � �. Assume that, for e � e � E,1 2

2.5 w e � w e .Ž . Ž . Ž .1 2

Then there exists a unique MST T on G.

�Ž . �PROOF. See Rosen 1995 , Exercise 8.6.19 . The answer is provided
there. �

Let a finite subset AA of Rd, d � 2, be given. Construct a connected
Ž .weighted graph G � V, E, w from AA in the following way: V � AA, E �

�Ž . 4 ŽŽ .. � � � �x, y : x � y � V and w x, y � x � y , where x � y is the Euclidean
Ž .distance between x and y. So, it is reasonable to think of the edge x, y as

Ž .the line segment between x and y. If G satisfies 2.5 , then by Lemma 5
Ž . � Ž .there exists a unique MST T AA on G we sometimes call T AA an MST on AA

� Ž . Ž .instead . All the G or rather AA of interest satisfy 2.5 with probability 1.
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Ž .From now on, we assume all the finite sets AA of interest satisfy 2.5 so that
Ž .an MST T AA on AA is unique. We also assume all the infinite sets WW of

interest are locally finite. These assumptions hold with probability 1.
Ž . Ž0.Ž .Denote T AA a minimal spanning tree on AA and T AA a minimal

1 1 d� �spanning tree on AA� � , . If AA is a Poisson point process PP of density 1n2 2
1� d 1� d d ˜� �on �n �2, n �2 , then denote by T a minimal spanning tree on PPn n

1 1Ž0. d˜ � �and by T a minimal spanning tree on PP � � , . If AA is n i.i.d. uniformn n 2 2
� Žn. Žn.4 � 1� d 1� d � dpoints X , . . . , X on �n �2, n �2 , then denote by T a minimal1 n n

� Žn. Žn.4 Ž0.spanning tree on X , . . . , X and by T a minimal spanning tree on1 n n
1 1 1 1Žn. Žn. d Ž0. d˜ ˜� 4 � � Ž . Ž � � .X , . . . , X � � , . So, T � T PP , T � T PP � � , , T �1 n n n n n n2 2 2 2

1 1Žn. Žn. Ž0. Žn. Žn. dŽ� 4. Ž� 4 � � .T X , . . . , X and T � T X , . . . , X � � , .1 n n 1 n 2 2
� 4 Ž .If we apply the add and delete algorithm with e , . . . , e to T AA1 l

Ž0. ˜ ˜Ž0. Ž0.� Ž . �T AA , T , T , T , T , respectively , we denote the ith graph constructedn n n n
Ž0. ˜ ˜Ž0. Ž0.Ž . � Ž . � Žby T AA T AA , T , T , T , T , respectively see Step 2 of the add andi i n, i n, i n, i n, i

.delete algorithm .
Define, for a finite subset AA of Rd and for a strictly positive integer � ,

2.6 N AA; � � x : the degree of x in an MST T AA on AA is � .� 4Ž . Ž . Ž .

Define further, for a finite subset AA of Rd and a subset BB of Rd, and for a
strictly positive integer � ,

2.7 e AA, BB � e : e � T AA , e � T AA� BB ,� 4 � 4Ž . Ž . Ž . Ž .
2.8 f AA, BB � f : f � T AA , f � T AA� BB� 4 � 4Ž . Ž . Ž . Ž .

and

2.9 D AA, BB; � � N AA; � � N AA� BB; � .Ž . Ž . Ž . Ž .

Ž . ŽLet G � V, E, w be the graph induced by a set AA; v , e , v , e , . . . , e ,1 1 2 2 n
. Ž .v is a path from v to v in G or rather in AA if v � V, 1 � i � n � 1,n�1 1 n�1 i

Ž . Žand e � v , v � E, 1 � j � n. We sometimes denote the path v , e , v ,j j j�1 1 1 2
. Ž . Ž . Ž .e , . . . , e , v by v , v , . . . , v or e , e , . . . , e . A path v , v , . . . , v2 n n�1 1 2 n�1 1 2 n 1 2 n�1

is self-avoiding if v � v for i � j.i j
Let Q be the d-dimensional cube of volume n of the formn

d1� d 1� dQ � �n �2, n �2 .n

Ž . Ž . dFor x � x , . . . , x , y � y , . . . , y � R and for l, L � 0, define1 d 1 d

d

� � � �B x , y � x , y ,Ł i i
i�1

d
1 1Q x � x ,� , x � ,Ž . Ł i i2 2

i�1

d d

� � � �A B x , y ; l , L � x � l � L, y � l � L x � l , y � l .Ž .Ž . Ł Łi i i i
i�1 i�1
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� � Ž . Ž � � .We call B x, y , Q x and A B x, y ; l, L a rectangle, a cube and an
annulus, respectively.

DEFINITION 1. Let	 � 0. A blocking set of width 	 for the rectangle
� � Ž � � .B x, y is a finite set SS in the annulus A B x, y ; 1, 	 with the following

� � �property: each line segment from 
 Ł x � 1, y � 1 to 
 Ł x � 1 � 	 , y �i i i i
1� �1 � 	 passes within distance of some point of SS see Kesten and Lee3

Ž . �1996 , Figure 2 .

� 1� d 1� d � dMost of the time, the vertices of interest lie in Q � �n �2, n �2 .n
Thus, the edges of interest also lie in Q . In these cases, it is useful to relaxn
the above definition.

DEFINITION 2. Let 	 � 0. An n-blocking set of width 	 for the rectangle
� � Ž � � .B x, y is a finite set SS in A B x, y ; 1, 	 
 Q with the following property:n

Ž � �. Ž �each line segment from 
 Ł x � 1, y � 1 
 Q to 
 Ł x � 1 � 	 , y �i i n i i
1�.1 � 	 
 Q passes within distance of some point of SS .n 3

Ž � �.The reader should note that, if 
 Ł x � 1 � 	 , y � 1 � 	 
 Q � �,i i n
then � is an n-blocking set.

The term ‘‘blocking set’’ is justified by the next lemma. However, here we
would like to point out that, even if there exists a blocking set, the existence
of a blocking set does not imply the kind of independence one may wish to
have: the next lemma just says that, if there is a blocking set, some long
edges are not in an MST. It does not say that, if there is a blocking set, some
short edges are in an MST.

� �LEMMA 6. Let SS be a blocking set of width 	 for the rectangle B x, y .
Ž . Ž .Then, in any MST T AA on the graph G � V, E, w induced by AA, AA � SS ,

� � d Žthere are no edges between vertices in B x, y and vertices in R �Ł x � 2 �i
. � Ž � .	 , y � 2 � 	 . This still holds for any MST on the graph G � V, E , w ,i

� � �Ž . 4 �E 	 E, G connected, if x, y : x � SS , y � AA, x � y 	 E . The same result
holds for an n-blocking set if AA 	 Q .n

PROOF. The proof is the same as that of Lemma 3 of Kesten and Lee
Ž .1996 . �

Denote the set of the Poisson points of density 1 in Rd by PP. If we are only
interested in the Poisson points in Q , denote the set of the Poisson points inn
Q by PP . Thus PP � PP 
 Q .n n n n

We also choose m i.i.d. uniform points on Q Denote these random pointsn
Žn. Žn. Ž .by X , . . . , X and the set of these random points by UU m . In the case1 m n

Ž .m � n, we simplify the notation UU m to UU .n n
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The next two lemmas are about the existence of a blocking set.

� �LEMMA 7. There exist constants 0 � C , C � � such that, for B x, y ,1 2

P there is no blocking set SS of width 	 of PP-pointsŽ
� � � �for the rectangle B x , y in the annulus A B x , y ; 1, 	Ž . .2.10Ž .

� C � 2Žd�1. exp �C 	 ,Ž .1 2

� Ž .2 �1�2 �where � � Ý y � x � 2 � 2	 is the diameter of the rectangle Ł x �i i i
� Ž .1 � 	 , y � 1 � 	 . Moreover, 2.10 holds with the term ‘‘blocking set ’’ re-i

placed by ‘‘n-blocking set.’’

�Ž . �PROOF. See Kesten and Lee 1996 , Lemma 5 . �

LEMMA 8. There exist constants 0 � C , C , C , C � � such that, for1 2 3 4
� �3n�4 � m � 5n�4 and for B x, y ,

P there is no n-blocking set SS of width 	 of UU m -pointsŽ .Ž n

� � � �for the rectangle B x , y in the annulus A B x , y ; 1, 	Ž . .2.11Ž .
� C � 2Žd�1. exp �C 	 � C exp �C n ,Ž . Ž .1 2 3 4

� Ž .2 �1�2where, as in Lemma 7, � � Ý y � x � 2 � 2	 is the diameter of thei i
� �rectangle Ł x � 1 � 	 , y � 1 � 	 .i i

�Ž . �PROOF. See Kesten and Lee 1996 , Lemma 6 . �

Now, we review continuum percolation. For a set WW of points in Rd and for
r � 0, define

d � �C r ; W � y � R : x � y � r .� 4Ž . �
x�WW

Ž . Ž .In the case WW � PP, we simplify the notation C r; PP to C r .
Ž .Denote the event that C r ; WW has an unbounded connected component

� 4 � 4dwhich contains x by x � � in WW . Then, � x � � in WW is the eventr x � RR r
Ž .that C r; WW has an unbounded connected component. The fundamental

theorem of continuum percolation says that there exists a constant 0 � r �c
Ž .r d � � such thatc

� 0, if r � r ,cP 0 � � in PPŽ .r ½ � 0, if r � r .c

� 4 Ž .dSince � x � � in PP is in the tail �-field, P 0 � � in PP � 0 impliesx � RR r r
Ž � 4. Ž .dP � x � � in PP � 1. So, for r � r , C r has an unbounded con-x � RR r c

Ž .nected component with probability 1 and, for r � r , C r has no unboundedc
Ž .connected component with probability 1. If C r has an unbounded connected
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Ž .component, then actually C r has exactly one unbounded connected compo-
nent. More strongly, the uniqueness of an unbounded connected component of
Ž .C r holds simultaneously, that is,

P for each r � 0, C r has at mostŽ .Ž
2.12Ž .

one unbounded connected component � 1..
Ž .See Alexander 1995 for details.

Ž .If C r ; WW has exactly one unbounded connected component, then denote
Ž . Ž .the unique unbounded connected component of C r; WW by C r; W . In the�

Ž . Ž .case WW � PP, we again simplify C r ; PP by C r .� �

Ž .The next lemma is a simple corollary to 2.12 .

d Ž .LEMMA 9. Let D be a fixed measurable subset of R , d � 2, with m D � �,
where m is the Lebesgue measure on Rd. Then

P for each r � 0, C r ; PP� D has at mostŽ .Ž
2.13Ž .

one unbounded connected component � 1..

Ž . Ž . Ž .PROOF. Since m D � �, P PP 
 D � � � 0. So, by 2.12 ,

P for each r � 0, C r has at mostŽ .Ž
one unbounded connected component � PP 
 D � � � 1..

Ž .Therefore, since PP� D and PP 
 D are independent, 2.13 follows. �

We still need more notation. For a finite set WW of points in Rd, define

� �2.14 e x ; WW � e x � L, x � L 
 WW , Q x ,� 4Ž . Ž . Ž .� 4˜ Ž .ŁL i i

˜ � �2.15 f x ; WW � f x � L, x � L 
 WW , Q x ,Ž . Ž . Ž .� 4� 4 Ž .ŁL i i

˜ � �2.16 D x ; WW , � � D x � L, x � L 
 WW , Q x ; �Ž . Ž . Ž .Ž .ŁL i i

and

� �� 4 � 4 � 42.17 D x ; WW 
 x , � � D x � L, x � L 
 WW 
 x , x ; � .Ž . Ž . Ž .Ž .ŁL i i

˜Ž Ž . . Ž � 4 � 4 . Ž .We shall approximate D WW , Q x ;� and D WW 
 x , x ; � by D x; WW , �L
Ž � 4 .and D x; WW 
 x , � , respectively.L

The next proposition is the stabilization property of minimal spanning
trees, which is the main result of this section.

Ž .PROPOSITION 1. There exists a random variable 0 � L � L PP � � such1 1
� � � � dthat with probability 1, for B � B x, y � �L , L ,1 1

2.18 e PP 
 B , Q 0 � e 0; PP ,� 4Ž . Ž . Ž .Ž . � 4L̃1

˜2.19 f PP 
 B , Q 0 � f 0; PP ,� 4Ž . Ž . Ž .Ž . ½ 5L1

˜2.20 D PP 
 B , Q 0 ; � � D 0; PP .Ž . Ž . Ž .Ž . L1
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Ž � 4.Also, there exists another random variable 0 � L � L PP 
 0 � � such2 2
� � � � dthat with probability 1, for B � B x, y � �L , L ,2 2

� 4 � 4 � 42.21 D PP 
 B 
 0 , 0 ; � � D 0; PP 
 0 , � .Ž . Ž .Ž . Ž .L2

Ž . Ž . Ž .PROOF. We prove here 2.18 � 2.20 . The same argument works for 2.21 .
By Lemma 7, we can choose a finite random N such that there is a blocking1

Ž . Ž Ž . .set SS of width N of PP-points for the cube Q 0 in the annulus A Q 0 ; 1, N .1 1
For n with

d5 5Q � � � N , � N ,Ž .n 1 12 2

˜we can construct an MST T on PP by applying the revised add andn�1 n�1
˜ ˜ ˜delete algorithm with the edges e in T �T to an MST T on PP . Since, byn�1 n n n

˜Lemma 6, there are no edges in T between points x � Q �Q andn�1 n�1 n
Ž .points y � Q 0 , it follows from the revised add and delete algorithm that the
˜ ˜�Ž . Ž .4set x, y � T : x � Q 0 of edges incident to points x � PP in T is eventu-n 1 n

ally decreasing in n. That is, for large n,

˜ ˜2.22 x , y � T : x � Q 0 	 x , y � T : x � Q 0 .Ž . Ž . Ž . Ž . Ž .� 4 � 4n�1 n

Therefore, we can choose a finite random N such that, for n � N ,2 2

˜ ˜2.23 x , y � T : x � Q 0 � x , y � T : x � Q 0 .Ž . Ž . Ž . Ž . Ž .� 4 ½ 5n N2

Ž .This proves 2.18 for all B of the form Q .n
Ž .Now, we will prove 2.19 for all B of the form Q . This somewhat longn

argument is based on the simultaneous uniqueness of infinite clusters, that
is, Lemma 9. Let

˜2.24 e � x , y : 1 � i � l � x , y � T : x � Q 0� 4Ž . Ž . Ž . Ž .½ 5i i i N2

˜be the set of edges incident to points x � PP in T . From now on, let n � N .1 N 22

˜Ž0. ˜ ˜Ž0. Ž .We compare T and T . After constructing an MST T on PP �Q 0 , wen n n n
˜Ž0.� 4apply the revised add and delete algorithm with e : 1 � i � l to T . Byi n

˜Ž . Ž .2.23 and 2.24 , this yields an MST T on PP . We need to describe thisn n

˜Ž0. ˜Ž0. ˜Ž0.second stage more explicitly. Let T � T . Once T has been determined,n, 0 n n, i
˜Ž0. ˜Ž0. ˜Ž0.� 4 � 4form T 
 e . If T 
 e does not contain a circuit, define T �n, i i�1 n, i i�1 n, i�1

˜Ž0. ˜Ž0.� 4 � 4T 
 e . Otherwise, T 
 e contains a unique circuit C . Choosen, i i�1 n, i i�1 n, i�1

Ž . � � � �f � u , v � C such that f � max e . Definen, i�1 n, i�1 n, i�1 n, i�1 n, i�1 e� Cn , i�1

˜Ž0. ˜Ž0. � 4 � 4T � T 
 e � f . Then, as we saw above,n, i�1 n, i i�1 n, i�1

˜ ˜Ž0.T � T .n n , l

We claim that with probability 1, for each 1 � i � l, f changes onlyn, i
finitely many times; that is,

� 42.25 f � �.Ž . � n , i
n�N2
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To derive a contradiction, let us assume that, for some i,

� 4f � �.� n , i
n�N2

˜Ž0. � 4Then, T 
 e contains a unique circuit C , and f � C satisfiesn, i�1 i n, i n, i n, i

� � � �2.26 f � max e .Ž . n , i
e�Cn , i

Note that, for large n,
f � e ,n , i i

˜Ž0.because otherwise e would be deleted and not be an edge in T , nor ini n, i
˜Ž0. ˜ ˜Ž0.Ž . Ž . � 4T � T , and this contradicts 2.23 and 2.24 ; T 
 e also containsn, l n n�1, i�1 i

� � � �a unique circuit C , and f � C satisfies f � max e .n�1, i n�1, i n�1, i n�1, i e� Cn� 1, i

Ž .However, there is a path � � g , . . . , g from one end x of e to the other1 m i i1˜Ž0. Ž � 4.end y of e in T more specifically in C � e such that, for 1 � k � m ,i i n, i�1 n, i i 1

� � � �g � f .k n , i
� Ž � � .By Lemma 4 and Lemma 3, there then exists another path � � g , . . . , g1 m2˜Ž0.from x to y in T such that, for 1 � k � m ,i i n�1, i�1 2

� � � � �2.27 g � f .Ž . k n , i
� � 4 Ž .In fact, this path � is in C � e and hence contains f . By 2.27 , wen�1, i i n�1, i

therefore have
� � � �2.28 f � f .Ž . n�1, i n , i

Now, let
f : j � 1� 4nŽ j. , i

� 4 �be an infinite subset of distinct edges from � f . Since f � f ,n� N n, i nŽ j., i nŽ j ., i2� Ž .j � j , by 2.28 we may assume that

� � � �2.29 f � f .Ž . nŽ j�1. , i nŽ j. , i

We next note that, with probability 1,

� � � �2.30 lim u � v � �.Ž . nŽ j. , i nŽ j. , i
j��

This follows from the fact that, for each t � 0, by Lemma 7 there exists with
Ž .probability 1 a finite random N t � N such that3 2

d d� �PP 
 �N t , N t � �t � 1, t � 1Ž . Ž .ž /3 3

� � dcontains a blocking set for �t, t . By Lemma 6 and Lemma 3, there are
˜Ž0. d� � Ž Ž .then no edges in T between �t, t and the complement of �N t �n, i�1 3

Ž . .d1, N t � 1 . Thus, there are only finitely many possibilities for edges f3 nŽ j., i
� � d Ž .with one endpoint in �t, t . Since this holds for each t, 2.30 follows.

Now, let
� �2.31 r � lim f .Ž . i nŽ j. , i

j��
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Ž .By 2.29 , this limit exists and, for each j � 1,

� �2.32 r � f .Ž . i nŽ j. , i

By the choice of f , there exist two disjoint self-avoiding paths, �nŽ j., i nŽ j., i, 1

� 4from one end x of e to one end u of f in C � e , f , andi i nŽ j., i nŽ j., i nŽ j., i i nŽ j., i

� from the other end y of e to the other end v of f innŽ j., i, 2 i i nŽ j., i nŽ j., i
� 4 Ž .C � e , f . By 2.30 , for large j,nŽ j., i i nŽ j., i

ddu , v � R � �t , t .Ž .nŽ j. , i nŽ j. , i

Ž t . Ž Ž t . Ž t . .If this is the case, then we can take initial pieces � � u � x , . . . , u1 1, 1 i 1, m3
Ž t . Ž Ž t . Ž t . .of � , and � � u � y , . . . , u of � such thatnŽ j., i, 1 2 2, 1 i 2, m nŽ j., i, 24

� Ž t . � � Ž t . �2.33 u � t but u � t for 1 � k � m ,Ž . 1, m 1, k 33

and

� Ž t . � � Ž t . �2.34 u � t but u � t for 1 � k � m .Ž . 2, m 2, k 44

Moreover, since � and � are disjoint and self-avoiding, so arenŽ j., i, 1 nŽ j., i, 2
Ž t . Ž t . Ž .their initial pieces � and � . Finally, by virtue of 2.26 , it holds that1 2

�Ž Ž t . Ž t . . � � �u , u � f and hence for 1 � k � m ,1, k 1, k�1 nŽ j., i 3

� Ž t . Ž t . � � �2.35 u � u � f .Ž . 1, k 1, k�1 nŽ j. , i

Similarly, for 1 � k � m ,4

� Ž t . Ž t . � � �2.36 u � u � f .Ž . 2, k 2, k�1 nŽ j. , i

Ž Ž t . Ž t ..As above, there are only finitely many possibilities for the pair � , � . By1 2
Ž Ž t . Ž t ..a standard selection argument, we can therefore find a fixed pair � , �1 2

Ž . Ž . Ž . Ž .which satisfies 2.33 � 2.36 for infinitely many j. By 2.31 , 2.35 and
Ž .2.36 , we then have

� Ž t . Ž t . �u � u � r , 1 � k � m ,1, k 1, k�1 i 3

� Ž t . Ž t . �u � u � r , 1 � k � m .2, k 2, k�1 i 4

Ž .Since t can be chosen arbitrarily large, by 2.12 there exists a unique
Ž . Ž .unbounded connected component C r �2 in C r �2 . In addition,� i i

d1 1C r �2 
 � , � �.Ž .� i 2 2

1 1 dŽ . � �Moreover, by 2.13 with D � � , , there exists a unique unbounded2 2
1 1 1 1d dŽ � � . Ž � � .connected component C r �2; PP� � , in C r �2; PP� � , with� i i2 2 2 2

d d1 1 � �C r �2; PP� � , 
 �M , M � �,ž /� i 2 2

where
1M � � r �2 .i2
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1 1 dŽ � � .The number of bounded connected components C in C r �2; PP� � ,i 2 2
� � d � � � d �with C 
 �M, M � � is bounded by PP 
 �2 M, 2 M . So

� �2.37 R � max x : x � C , C a bounded connected componentŽ . ½1

d1 1in C r �2; PP� � ,ž /i 2 2

d� �with C 
 �M , M � � � �.5
Hence, for t � R , uŽ t . and uŽ t . belong to the unique unbounded connected1 1, m 2, m3 4

1 1 dŽ � � . Žcomponent C r �2; PP� � , , because otherwise by the simultaneous� i 2 2

. Ž t . Ž Ž t . .uniqueness of infinite clusters, i.e., Lemma 9 u or u would belong to1, m 2, m3 4
1 1 dŽ � � .a bounded connected component C in C r �2; PP� � , with C 
i 2 2

� � d � Ž t . � Ž .�M, M � �, u � t, and this contradicts 2.37 . Therefore, by concate-1, m3 1 1Ž t . Ž t . Ž t . d Ž t .Ž � � .nating � , a path from in u to u in C r �2; PP� � , , and � ,1 1, m 2, m � i 22 23 4

Ž . �Ž .there exists, for large n, a path � � h , . . . , h from x to y in x, y :1 m i i
1 1 d� � 4 � 4x � y � PP � � , 
 e , . . . , e such that, for 1 � k � m,n 1 i�12 2

� �h � r .k i

By Lemma 4 and Lemma 3, then f should satisfyn, i

� �f � r .n , i i

Ž . Ž .This contradicts 2.32 . Therefore, 2.25 indeed holds.
From here on, the proof is easy. Since f changes only finitely manyn, i

� 4times, there exists, for each 1 � i � l such that f � � for all n � N ,n, i 2
Ž . Ž .N i � N such that, for n � N i ,2

2.38 f � fŽ . n , i N Ž i. , i

In particular, for n � N ,4

˜Ž0. ˜ ˜Ž0. ˜T �T � T �T ,n n N N4 4

where

� 4N � max N i : f � � for all n � N � N .� 4Ž .4 n , i 2 2

Ž .This proves 2.19 for all B of the form Q .n
Ž . Ž .Now, we use a simple squeezing argument to prove 2.18 and 2.19 for all

� �B of the general form B x, y . There exists a finite random N � N , by the5 4
Ž .argument for 2.23 , such that, for n � N ,5

˜Ž0. ˜Ž0.2.39 x , y � T : x � Q � x , y � T : x � Q ,Ž . Ž . Ž .½ 5 ½ 5n N N N4 5 4

and, by enlarging N if necessary, such that5

there exists a blocking set SS of width N 1� d�2 � 2 �5
1� dN �2 of PP-points for the rectangle Q in the annulus2.40Ž . 4 N41� d 1� dŽ .A Q ; 1, N �2 � 2 � N �2 .N 5 44
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Now, let
2.41 L � L PP � N 1� d�2.Ž . Ž .1 1 5

� � � � dFor general B � B x, y � �L , L � Q , we choose a finite N such that1 1 N 65

Q 	 B 	 Q .N N5 6

Ž . Ž .Then, exactly as in 2.22 , one sees that, by 2.40 ,

˜x , y � T PP 
 B : x � Q 0 	 x , y � T : x � Q 0 .� 4Ž . Ž . Ž . Ž . Ž .½ 5N5

Similarly,

˜x , y � T : x � Q 0 	 x , y � T PP 
 B : x � Q 0 .� 4Ž . Ž . Ž . Ž . Ž .½ 5N6

˜ ˜� Ž .� �Ž . Ž .4 �Ž . Ž .4However, since by 2.23 x, y � T : x � Q 0 � x, y � T : x � Q 0 ,N N5 6

we have

˜2.42 x , y � T PP 
 B : x � Q 0 � x , y � T : x � Q 0 .� 4Ž . Ž . Ž . Ž . Ž . Ž .½ 5N5

Ž . � �This proves 2.18 for all B of the general form B x, y with L given by1
Ž .2.41 .

Ž . Ž . � Ž .�By the argument for 2.42 and by 2.39 instead of 2.23 , we have

Ž0. ˜Ž0.x , y � T P 
 B : x � Q � x , y � T : x � Q .Ž . Ž . Ž .� 4 ½ 5N N N4 5 4

Ž . � 4Then, exactly as in 2.28 , one see that, for each 1 � i � l such that f � �n, i
for all n � N ,2

� � � � � �f � f B � f ,Ž .N , i i N , i6 5

where
f B � T Ž0. PP 
 B �T Ž0. PP 
 B .Ž . Ž . Ž .i i�1 i

Ž .From 2.38 , we again find

2.43 f B � f .Ž . Ž .i N , i5

Ž . � �This proves 2.19 for all B of the general form B x, y with L given by1
Ž .2.41 .

Ž . Ž . Ž . Ž .Now, 2.20 follows from 2.42 , 2.43 and 2.39 . �

3. Poissonization. In this section, by the stabilization property of mini-
mal spanning trees, we prove Theorem 1. It is more natural for the proof to
rescale the point process so that the density of the point set remains constant.
So, actually we prove in this section that, for each strictly positive integer �

Ž Ž Ž . . .such that P N PP 1 ; � � 1 � 0, as n � �,1

N PP ; � � EN PP ; �Ž . Ž .n n 23.1 � N 0, � � , dŽ . Ž .˜Ž .1�2n
2Ž .in distribution for some 0 � � � , d � �.˜

Ž .The argument here is almost the same as that of Kesten and Lee 1996 .
So, we show the argument without proof since one can find it in Kesten and

Ž .Lee 1996 .
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1 1d 1� d 1� d d� �We order the points of Z 
 �n �2 � , n �2 � in some way, say2 2
Ž . Ž .lexicographically, as v 1 , . . . , v l , and we define FF byk

FF � � PP 
 Q v iŽ .Ž .�k nž /
i�k

Ž . Ž . Ž .FF is the trivial �-field . Then N PP ; � � EN PP ; � can be written as a0 n n
sum of martingale differences. That is,

l

3.2 N PP ; � � EN PP ; � � � ,Ž . Ž . Ž . Ýn n k
k�1

˜� Ž . Ž . Ž . Ž .�where recall that we define D AA, BB; � in 2.9 and D x; WW , � in 2.16L

� � E N PP ; � 	 FF � E N PP ; � 	 FFŽ . Ž .Ž . Ž .k n k n k�1

� P da , . . . , da N AA 
 a ; �Ž . � �H k l i iž /
i�k i�k

�N AA 
 a ; �� �i iž /
i�k i�k3.3Ž .

� P da , . . . , da D AA 
 a , AA ; �Ž . � �H k l i i kž /
i�k i�k

�D AA 
 a , a ; � ,� �i i kž /
i�k i�k

Ž Ž .. Ž .and where AA � PP 
 Q v i , 1 � i � l, and P da , . . . , da is short fori n k l
Ž .P AA � da , . . . , AA � da .k k l l

Ž . Ž� �Now we write � for the expression in 3.3 when D � AA 
k , L i� k i
˜� � . Ž� � � � . Ž Ž .� a , AA ; � and D � AA 
 � a , a ; � are replaced by D v k ;i� k i k i� k i i� k i k L

˜� � � � . Ž Ž . � � � � .� AA 
 � a , � and D v k ; � AA 
 � a , � , respec-i� k i i� k i L i� k i i� k i
tively. That is,

˜� � P da , . . . , da D v k ; AA 
 a , �Ž . Ž . � �Hk , L k l L i iž /
i�k i�k

˜�D v k ; AA 
 a , � .Ž . � �L i iž /
i�k i�k

3.4Ž .

�Ž Ž ..Note that � depends on PP whereas � depends only on Ł v k �k n k , L i
Ž Ž .. �L, v k � L 
 PP .i n

Ž . Ž . Ž .By virtue of representation 3.2 of N PP ; � � EN PP ; � as a sum ofn n
Ž . Ž .martingale differences and by Theorem 67.2 of Levy 1937 , Theorem 2.3 of´

Ž . Ž . Ž .McLeish 1974 or Theorem 3.2 of Hall and Heyde 1980 , to prove 3.1 it
Ž . Ž .suffices to verify the following three relations 3.5 � 3.7 : there exists a
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constant, 0 � 
 2 � � such that

1
2 23.5 � � 
 in probability as n � �,Ž . Ý kn k

1
� �3.6 max � � 0 in probability as n � �,Ž . k1�2n k

1
23.7 E max � is bounded in n.Ž . kž /n k

Ž . Ž .Relations 3.6 and 3.7 can be easily verified by Chebyshev’s inequality and
by the moment estimates in Lemma 11.

LEMMA 10. There exists a finite constant D , which depends only on thed
Ž . d Ž .dimension d, such that, for any MST T AA on any finite subset AA of R , T AA

has maximum vertex degree bounded by D .d

�Ž . �PROOF. See Kesten and Lee 1996 , Lemma 4 . �

LEMMA 11. For each q � 0, there exists a constant C such thatŽq .

q
˜3.8 E D x ; PP, � � C uniformly in L, x , � ,Ž . Ž .L Žq .

q� 43.9 E D x ; PP 
 x , � � C uniformly in L, x , � ,Ž . Ž .L Žq .

q
Žn.˜3.10 E D X ; UU m , � � CŽ . Ž .Ž .L m n Žq .

3n 5n
uniformly in L, n , � m � , � ,

4 4
qŽn.3.11 E D X ; UU m , � � CŽ . Ž .Ž .L m n Žq .

3n 5n
uniformly in L, n , � m � , � .

4 4

Ž .PROOF. To have the moment estimate in 3.8 , first we construct an MST
Ž . Ž � � Ž .. Ž .T 1 on Ł x � L, x � L �Q x 
 PP. Second we construct an MST T 2 oni i
� �Ł x � L, x � L 
 PP by applying the revised add and delete algorithm withi i
Ž . Ž . Ž . Ž .T 2 �T 1 to T 1 . Since by Lemma 10 each v � Q x 
 PP has degree bounded

Ž .by D in T 2 ,d

T 2 �T 1 � D Q x 
 PP .Ž . Ž . Ž .d

So, it follows from the revised add and delete algorithm that

� �u � x � L, x � L 
 PP �Q x : the degree of u in T 1 is notŽ . Ž .� Ž .Ł i i

equal to the degree of u in T 2Ž . 4
� D Q x 
 PP ,Ž .d
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and hence that

˜3.12 D x ; PP, � � Q x 
 PP � D Q x 
 PP .Ž . Ž . Ž . Ž .L d

Ž .Therefore, the moment estimate in 3.8 holds. The arguments for other
moment estimates are the same. �

Ž . Ž .So, the heart of the matter is the proof of 3.5 . To prove 3.5 , it suffices to
Ž . Ž . �verify the following three relations 3.13 � 3.15 one can easily see why this
Ž .�is so on page 524 of Kesten and Lee 1996 : for fixed L,

1
2 23.13 � � 
 in probability as n � �,Ž . Ý k , L Ln k

where
d2 � �
 � E E D �L, L 
 PP, Q 0 ; � 	 FFŽ .Ž .ž /L

2d �� ��E D �L, L 
 PP, Q 0 ; � 	 FFŽ .Ž .ž /
2�˜ ˜� E E D 0; PP, � 	 FF � E D 0; PP, � 	 FF ,Ž . Ž .Ž . Ž .L L

and where
dd � �FF � � Q x 
 PP : x � Z , Q x 
 �L, L � �, x strictlyŽ . Ž .Ž

precedes 0 in the lexicographical order or x � 0 ,.
d� d � �FF � � Q x 
 PP : x � Z , Q x 
 �L, L � �, x strictlyŽ . Ž .Ž

precedes 0 in the lexicographical order ;.
3.14 lim 
 2 exists and 0 � 
 2 � lim 
 2 � �;Ž . L L

L�� L��

Ž . � Ž �.for all � � 0, there exists an L � L � and, for each L � L, an n � n L1 1
such that for L� � L, n � n ,1

1
2 2� ��3.15 E � � � � � .Ž . Ý k k , Ln k

Ž .Relation 3.13 follows from a weak law of large numbers: we merely note
that �2 and �2

� are independent as long ask , L k , L

� �v k � L, v k � L 
 v k � L, v k � L � �Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž .Ł Łi i i i

2 Ž .and that they are identically distributed with mean 
 as long as v k andL
Ž �. 2 Ž .v k are away from the boundary of Q . The contribution of the � ’s, v kn k , L

Ž . Ž .close to 
 Q , to the sum in 3.13 is negligible by 3.12 .n
Ž .Relation 3.14 follows from Proposition 1: by Proposition 1, as L � �,

˜ ˜3.16 D 0; PP, � � D 0; PP, � a.s.Ž . Ž . Ž .L L1
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By Chebyshev’s inequality we have

˜ ˜P E D 0; PP, � 	 FF � E D 0; PP, � 	 FF � �Ž . Ž .Ž . ž /L Lž /1

˜ ˜� P E D 0; PP, � � D 0; PP, � 	 FF � �Ž . Ž .ž /L Lž /1

1 ˜ ˜� E D 0; PP, � � D 0; PP, � .Ž . Ž .L L1�

˜ ˜� Ž . Ž . 4Since, by Lemma 11, D 0; PP, � , D 0; PP, � : L � 0 are uniformly inte-L L1

˜ ˜Ž . � Ž . Ž . �grable, by 3.16 as L � � we have E D 0; PP, � � D 0; PP, � � 0 andL L1

˜ ˜Ž Ž . . Ž Ž . .E D 0; PP, � 	 FF � E D 0; PP, � 	 FF in probability. Similarly, as L � �L L1

˜ � ˜ �Ž Ž . . Ž Ž . .we have E D 0; PP, � 	 FF � E D 0; PP, � 	 FF in probability, and henceL L1

2�˜ ˜E D 0; PP, � 	 FF � E D 0; PP, � 	 FFŽ . Ž .Ž . Ž .L L
3.17Ž .

2�˜ ˜� E D 0; PP, � 	 FF � E D 0; PP, � 	 FFŽ . Ž .ž / ž /L L1 1

in probability. Since, again by Lemma 11,
2�˜ ˜E D 0; PP, � 	 FF � E D 0; PP, � 	 FF ,Ž . Ž .Ž . Ž .L L½
2�˜ ˜E D 0; PP, � 	 FF � E D 0; PP, � 	 FF : L � 0Ž . Ž .ž / ž /L L 51 1

Ž .are uniformly integrable, by 3.17 as L � �,
2�˜ ˜E E D 0; PP, � 	 FF � E D 0; PP, � 	 FFŽ . Ž .Ž . Ž .L L

3.18Ž .
2�˜ ˜� E E D 0; PP, � 	 FF � E D 0; PP, � 	 FFŽ . Ž .ž / ž /L L1 1

and
2�2 ˜ ˜3.19 
 � E E D 0; PP, � 	 FF � E D 0; PP, � 	 FF � �.Ž . Ž . Ž .ž / ž /L L1 1

Therefore, as L � �, 
 2 converges to 
 2 and 
 2 � �. To prove 
 2 � 0, oneL
�Ž .can use a block argument which is similar to that of Kesten and Lee 1996 ,

�Theorem 2, pages 525�527 . Here, we just describe our block for d � 2 and
� �2� � 1. For d � 2 and � � 1, we consider the block �200, 200 . For each

Ž . Ž � �2 . Ž� � � 4.lattice point n , n on 
 �100, 100 
 �100, 0 
 0 , we require that1 2
Ž .there exists exactly one PP-point very near n , n . Denote the PP-point near1 2

Ž .0, 0 by v . We also require that there exists exactly one PP-point v very0 �'Ž .near 3 �2, 1�2 and that there exists exactly one PP-point v very near�'Ž .3 �2, �1�2 . Finally, we require that except these 902 PP-points there are
� �2no other PP-points on the block �200, 200 . The main feature of this block is

that the minimal spanning tree structure around the origin is locally deter-
mined. If a finite subset AA of PP contains these 902 points, then the edges, in

Ž .the MST T AA on AA, from v , v , v are completely determined by these 9020 � �
Ž .points. Moreover, the degrees of v and v in T AA are completely deter-� �

mined by the relative position of the three points v , v , v . The possible0 � �
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values for the degrees of v and v are 1 and 2, and these two possible� �
values can be actually realized according to the relative position of v , v , v .0 � �

Ž .Relation 3.15 follows again from Proposition 1: by Proposition 1 and
� � 2 2 � Ž�Lemma 11, as L � �, � � � � 0 in probability uniformly in n and kk k , L

Ž . � 1� d � 1� d � � d .with v k � �n �2 � L , n �2 � L . Moreover, by Lemma 11 they are
� Ž � .� Ž . �uniformly in L , n, k integrable. Therefore, 3.15 holds the contribution of

� 2 2 � Ž . Ž .�the E � � � ’s, v k close to 
 Q , to the sum in 3.15 is negligible byk k , L n
Ž .�3.12 .

4. De-Poissonization. In this section, we de-Poissonize Theorem 1 and
prove Theorem 2. Again, it is more natural for the proof to rescale the point
process so that the density of the point set remains constant. So, actually we
prove in this section that, for each strictly positive integer � such that
Ž Ž Ž . . .P N PP 1 ; � � 1 � 0, as n � �,1

N UU ; � � EN UU ; �Ž . Ž .n n 24.1 � N 0, � � , dŽ . Ž .Ž .1�2n
2Ž . Ž .in distribution for some 0 � � � , d � �, where UU m is the set of m i.i.d.n

Ž .uniform points on Q and where UU � UU n .n n n

LEMMA 12. Define, for each � ,

� 4� � � E D 0; PP 
 0 , � .Ž . Ž .Ž .L L

Then,
4.2 lim � � exists and � � � lim � � is finite.Ž . Ž . Ž . Ž .L L

L�� L��

Ž .Moreover, for A � 0, � � 0, there exists an n � n A, � such that, for2 2
n � n , � , n � An1�2 � s � n � An1�2,2

1�24.3 P N UU s ; � � N UU ; � � s � n � � � � n � � .Ž . Ž . Ž . Ž . Ž .Ž .Ž .n n

Ž � 4 .PROOF. By Proposition 1, as L � �, D 0; PP 
 0 , � converges withL
Ž .probability 1. Moreover, by Lemma 11 they are uniformly integrable. So 4.2

holds.
For n � An1�2 � s � n � An1�2,

N UU s ; � � N UU ; � � s � n � �Ž . Ž . Ž . Ž .Ž .n n

Ž .s�n
Žn.� D UU p , X ; � � � �Ž . Ž .� 4Ý ž /n p

Ž .p� s�n �1

1�2 Ž .s�nn�An
Žn. Žn.� � X ; � � Z X ; �Ž . Ž .Ý ÝL p L p

1�2 Ž .p� s�n �1p�n�An

4.4Ž .

n�An1�2

Žn.� E D X ; UU p , � � � �Ž . Ž .Ž .Ý ž /L p n L
1�2p�n�An

1�2� 1 � 2 An � � � � � ,Ž . Ž . Ž .L



S. LEE1016

where

4.5 � X Žn. ; � � D UU p , X Žn. ;� � D X Žn. ; UU p , �Ž . Ž . Ž .� 4Ž . Ž .ž /L p n p L p n

and

4.6 Z X Žn. ; � � D X Žn. ; UU p , � � ED X Žn. ; UU p , � .Ž . Ž . Ž .Ž . Ž . Ž .L p L p n L p n

Ž .Choose an L, by 4.2 , such that
�

4.7 � � � � � � .Ž . Ž . Ž .L 8 A � 1Ž .
Ž .So, the last term in 4.4 satisfies

11�2 1�24.8 1 � 2 An � � � � � � � n .Ž . Ž . Ž . Ž .L 4

ŽSince, as n � �, the distribution of the translation with the restriction to
� � d . Ž Ž . Žn.. � � d Ž . Žn.�L, L UU p � 1 � X 
 �L, L of UU p � 1 -points by X con-n p n p

� � dverges to that of a Poisson field with mean 1 on �L, L and since, by
Ž Ž Žn. Ž . .. Ž . Ž ŽLemma 11, as n � �, E D X ; UU p , � converges to � � � E D 0;L p n L L

� 4 .. 1�2 1�2PP 
 0 , � uniformly in n � An � p � n � An , we can choose an n1
such that, for n � n , n � An1�2 � p � n � An1�2,1

�
Žn.4.9 E D X ; UU p , � � � � � .Ž . Ž . Ž .Ž .ž /L p n L 8 A � 1Ž .

Ž . � �Since UU p is PP in distribution if PP � p, by Proposition 1 we can actuallyn n n
Ž .choose an n and an L by enlarging n and L if necessary such that, for1 1

n � n , n � An1�2 � p � n � An1�2,1

� 2
Žn.4.10 P � X ; � � 0 � .Ž . Ž .ž /L p 32 D � 1 A � 1Ž . Ž .d

Ž 1�2 .Construct UU n � An from PP in the following way. First, we choose then
Ž .smallest N n, A such that

� � 1�2PP � n � An .N Žn , A.

Ž .Second, we choose a random scaling factor S n, A so that

Ž .the distribution of S n, A PP is the same as that ofN Žn, A.
1�2Ž .UU n � An .n

Žn. Žn. Žn. Ž1�2Finally, we give the names X , X , . . . , X to the points S n,1 2 n�An
. � � Ž Ž .�1 Žn. � � d .A PP randomly. If, for B � B x, y � S n, A X � �L�2, L�2 ,N Žn, A. p

�1 �1Žn. Žn.D PP 
 B 
 S n , A X , S n , A X ; �Ž . Ž . Ž .½ 5 ½ 5p pž /
�1 Žn.� D S n , A X ; PP, � ,Ž .ž /L �2 p

1S n , A � 1 � ,Ž . 2

d dŽn. 1� d 1� d 1� d 1� dX � �n �2, n �2 � �n �2 � L, n �2 � L ,ž /p
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Ž 1�2 . Ž Žn. .then by the construction of UU n � An we have � X ; � � 0. Son L p

P � X Žn. ; � � 0Ž .ž /L p

1� P L � L�2 � P S n , A � 1 �Ž . Ž .Ž .2 2

dŽn. 1� d 1� d� P X � �n �2, n �2 �žpž4.11Ž .

d1� d 1� d�n �2 � L, n �2 � L ./ /
Ž .By Proposition 1 we can choose L by enlarging L if necessary such that

� 2

4.12 P L � L�2 � .Ž . Ž .2 96 D � 1 A � 1Ž . Ž .d

Ž 1�2 . ŽAlso, by the construction of UU n � An we can choose an n by enlargingn 1
. 1�2 1�2n if necessary such that, for n � n , n � An � p � n � An ,1 1

� 2

4.13 P S n , A � 1 � 1�2 � ,Ž . Ž .Ž .
96 D � 1 A � 1Ž . Ž .d

and

d dŽn. 1� d 1� d 1� d 1� dP X � �n �2, n �2 � �n �2 � L, n �2 � Lž /pž /
24.14Ž . �

� .
96 D � 1 A � 1Ž . Ž .d

Ž . Ž . Ž .Therefore, 4.10 indeed follows from 4.11 � 4.14 .
Ž . Ž .By 4.9 , the third term in 4.4 satisfies, for n � n ,1

n�An1�2

1Žn. 1�24.15 E D X ; UU p , � � � � � � n .Ž . Ž . Ž .Ž .Ý ž /L p n L 4
1�2n�An

Ž . Ž .By 4.10 , the first term in 4.4 satisfies

n�An1�2

1Žn. 1�2P � X ; � � � nŽ .Ý L p 4ž /1�2n�An

n�An1�2

1Žn. 1�2� E � X ; � � nŽ .Ž .Ý L p 4ž /1�2n�An4.16Ž .

n�An1�2

1Žn. 1�2� 2 D � 1 P � X ; � � 0 � nŽ . Ž .Ž .Ý ž /d L p 4ž /1�2n�An

� ��2.

Ž .The first inequality follows from the argument for 3.12 and the second holds
Ž .by 4.10 .
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Ž . Ž .Now, we handle the second term in 4.4 . By the argument for 3.12 ,

Žn.4.17 Z X ; � � 2 D � 1 ,Ž . Ž .Ž .L p d

Ž .and, by 4.6 ,

4.18 E Z X Žn. ; � � 0.Ž . Ž .ž /L p

Ž Žn. .The Z X ; � ’s are not independent, but as n � � the joint distribution ofL p
Ž Ž . Žn.. � � d Ž Ž . Žn.. � � dUU p � 1 � X 
 �L, L and UU p � 1 � X 
 �L, L con-n 1 p n 2 p1 2

� � dverges to the distribution of two independent Poisson fields on �L, L for
1�2 1�2 Ž . Ž .n � An � p � p � n � An . So, by 4.17 and 4.18 ,1 2

EZ X Žn. ; � Z X Žn. ; � � 0Ž . Ž .L p L p1 2

uniformly in n � An1�2 � p � p � n � An1�2. Hence,1 2

2p21
Žn.E Z X ; � � 0,Ž .Ý L pž /n p1

uniformly in n � An1�2 � p � p � n � An1�2. Therefore, we can choose an1 2
n � n such that, for n � n , n � An1�2 � s � n � An1�2,2 1 2

Ž .s�n 1 �
Žn. 1�24.19 P Z X ; � � � n � .Ž . Ž .Ý L pž /4 2Ž .p� s�n �1

Ž . Ž . Ž . Ž . Ž .Now, 4.3 follows from 4.16 , 4.19 , 4.15 and 4.8 . �

Ž .Couple PP and UU m in the following way. Choose an infinite sequencen n
� Žn. 4X : i � 1 of i.i.d. uniform random variables on Q and a Poisson variablei n

� Žn.4 � Žn. Žn.4N with mean n, independently of X . Then, X , . . . , X forms an i 1 Nn
� Žn. Žn.4 Ž .realization of PP and X , . . . , X forms a realization of UU m . In particu-n 1 m n

lar, by Lemma 12, as n � �,

N PP ; � � N UU ; � � N � n � �Ž . Ž . Ž . Ž .n n n
4.20 � 0 in probability.Ž . 1�2n

By Theorem 1, as n � �,

N PP ; � � EN PP ; �Ž . Ž .n n 24.21 � N 0, � � , d in distribution.Ž . Ž .˜Ž .1�2n

Ž . Ž .Thus, by 4.20 and 4.21 , as n � �,

N UU ; � � EN PP ; � � N � n � �Ž . Ž . Ž . Ž .n n n
1�2n4.22Ž .

� N 0, � 2 � , d in distribution.Ž .˜Ž .
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Ž . 1�2 Ž .Since N is independent of UU and since, as n � �, N � n �n � N 0, 1n n n
Ž .in distribution, by 4.22 , as n � �,

N UU ; � � EN PP ; �Ž . Ž .n n
1�2n4.23Ž .

22� N 0, � � , d � � � in distribution.Ž . Ž .˜Ž .
Ž . Ž . Ž .To replace EN PP ; � by EN UU ; � in 4.23 , we observe that the randomn n

Ž .variables on the left-hand side of 4.20 are uniformly integrable, because, by
Ž .the argument for 3.12 ,

� �N PP ; � � N UU ; � � D � 1 N � n .Ž . Ž . Ž .n n d n

So, as n � �,

EN PP ; � � EN UUn; �Ž . Ž .n � 0.1�2n
2Ž . 2Ž . Ž .2Therefore, Theorem 2 holds with � � , d � � � , d � � � . The argu-˜

2Ž . 2Ž .ment for � � , d � 0 is the same as that for � � , d � 0 in Section 3.˜
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