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COMPUTABLE EXPONENTIAL CONVERGENCE RATES

FOR STOCHASTICALLY ORDERED

MARKOV PROCESSES1

BY ROBERT B. LUND, SEAN P. MEYN AND RICHARD L. TWEEDIE

University of Georgia, University of Illinois and Colorado State

University

� 4 w .Let F , t G 0 be a Markov process on the state space 0, ` that ist

stochastically ordered in its initial state. Examples of such processes

include server workloads in queues, birth-and-death processes, storage

and insurance risk processes and reflected diffusions. We consider the

existence of a limiting probability measure p and an exponential ‘‘conver-

gence rate’’ a ) 0 such that

a t w xlim e sup P F g A y p A s 0Ž .x t
tª` A

for every initial state F ' x.0

The goal of this paper is to identify the largest exponential convergence

rate a , or at least to find computationally reasonable bounds for such a

‘‘best’’ a . Coupling techniques are used to derive such results in terms of
Ž . � 4i the moment-generating function of the first passage time into state 0

Ž .and ii solutions to drift inequalities involving the generator of the

process. The results give explicit bounds for total variation convergence of
w Ž .x Ž . Ž .the process; convergence rates for E f F to H f y p dy for an un-x t

bounded function f are also found. We prove that frequently the bounds

obtained are the best possible. Applications are given to dam models and

queues where first passage time distributions are tractable, and to one-di-

mensional reflected diffusions where the generator is the more appropri-

ate tool. An extension of the results to a multivariate setting and an

analysis of a tandem queue are also included.

� 41. Introduction. Suppose that F , t G 0 is a time-homogeneous strongt

Ž .Markov process on the probability space V, FF, P that takes values in the
w .state space X s 0, ` . For regularity, we assume that the sample paths of

� 4F are right continuous, have left-hand limits and are nonexplosive. Fre-t

Ž .quently, as discussed in Down, Meyn and Tweedie 1995 and Meyn and
Ž .Tweedie 1993b , it is known that an invariant distribution p exists and that

F converges to p exponentially fast in the sense of total variation; that is,t
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CONVERGENCE RATES FOR MARKOV PROCESSES 219

there is an a ) 0 such that

a t w x1.1 lim e sup P F g A y p A s 0Ž . Ž .x t
tª` Ž .AgBB X

Ž .for every x g X, where BB X is the s-algebra of Borel sets on X and the
Ž .notation P indicates the initial condition F ' x. If a ) 0 satisfies 1.1 , wex 0

call it an exponential ‘‘rate of convergence.’’
Ž .Our objective in this paper is to find values of a that satisfy 1.1 and, if
Žpossible, to identify the largest such a , for stochastically ordered also called

.stochastically monotone Markov processes. We will show that, for many
Ž .Markov processes, the largest possible a in 1.1 is the radius of convergence

of the moment-generating function of the first passage time of the chain into
� 4state 0 , and that this radius of convergence can frequently be bounded using

‘‘drift inequalities’’ based on the generator of the process if it is not com-

putable explicitly. Hence, this paper extends to continuous time the chain
Ž .results in Lund and Tweedie 1995 .

We say that the random variable X is stochastically larger than the1

w x w xrandom variable X if P X F x F P X F x for all real x. Our primary2 1 2

assumption is that F is stochastically ordered in its initial state; that is, ift

� 4 � X 4F and F are two copies of the process with the possibly random initialt t

values F and F
X

respectively, then F is stochastically larger than F
X

for all0 0 t t

t ) 0 whenever F is stochastically larger than F
X
.0 0

Many Markov processes are stochastically ordered in their initial state.

wFor one example, we cite the server workload in an MrGr1 queue Stoyan
Ž .x1983 where a higher initial workload produces a higher workload at all

other times. Other examples of stochastically ordered Markov processes
w Ž .xinclude birth-and-death processes Van Doorn 1981 , storage processes

w Ž .x wBrockwell, Resnick and Tweedie 1982 , insurance risk processes Asmussen
Ž . Ž . Ž .x1987 , Meyn and Tweedie 1993b and Prabhu 1980 and reflected diffu-

sions. Stochastic monotonicity has been seen to be crucial in the analysis of

queueing networks, and single-class queueing networks and Petri nets
w Ž . Ž .are often monotone Baccelli and Foss 1994 , Meyn and Down 1994 and

Ž .xShanthikumar and Yao 1989 .

Many of the above examples are pathwise ordered Markov processes; that

is, a sample path of the process with a higher initial state is never below a

sample path of the process with a lower initial state. For a general stochasti-

cally ordered Markov process, one can change the underlying probability

space and construct a new process that is pathwise ordered and distribution-
wally equivalent to the original process see Kamae, Krengel and O’Brien

Ž . x1977 for the arguments . Without loss of generality, therefore, we hence-
� Ž .4forth assume that the process is pathwise ordered. Thus, if F v andt

� X Ž .4 Ž . X Ž .F v are two sample paths of the process for v g V with F v G F v ,t 0 0

Ž . X Ž .then F v G F v for all t ) 0 as well.t t

tŽ . w x2. Results. For notation, let P x, A s P F g A for t ) 0 and A gx t

Ž . Ž . � 4 �BB X . The first passage hitting time into state 0 is defined as t s inf t G 0:0
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4F s 0 . When F s 0, note that t s 0. When F ' x, we denote the mo-t 0 0 0

ment-generating function of t by0

w at 0 xG a s E e ;Ž .x x

Ž . w x Ž .for a general initial distribution m A s P F g A , the notation G a and0 m

w xE ? is employed.m

The ‘‘taboo’’ probability of being in the set A at time t without passing
� 4through 0 first is

t w xP x , A s P F g A l t G tŽ .0 x t 0

tŽ w ..for x ) 0. We assume that P 0, d , ` ) 0 for some t ) 0 and d ) 0. Thus,
� 40 can be left and we further assume that, for each y ) x ) 0, the process

w .can travel with positive probability from x to y, ` without passing through
� 40 ; that is, there is a t ) 0 such that

t w2.1 P x , y , ` ) 0.Ž . .Ž .0

Ž . � 4If 2.1 does not hold, then from the pathwise ordering of F , one can showt

that the state space of the process can be reduced to a compact subset of
w . Ž0, ` . In this case, most of our results can be easily modified cf. Example

.3.3 .

Our first key convergence rate result is stated below and proven in Sec-

tion 3.

� 4THEOREM 2.1. Suppose that F is a stochastically ordered Markov pro-t

Ž . Ž .cess satisfying 2.1 . If G a - ` for some a ) 0 and some x ) 0, then therex

exists an invariant distribution p and a finite constant M such thatx

t ya t2.2 sup P x , A y p A F M eŽ . Ž . Ž . x
Ž .AgBB X

Ž . Ž . Ž .for every x G 0 and t G 0. Furthermore, G a - ` and M F G a q G a .p x x p

Theorem 2.1 is a considerable improvement on known results for exponen-
� 4 w Ž .tial convergence of general processes F Thorisson 1983 , Asmussent

Ž . Ž . Ž .1987 , Meyn and Tweedie 1993b , Down, Meyn and Tweedie 1995 and
Ž .xKalashnikov 1994 which typically guarantee exponential convergence at

Ž .some exponential rate s ) 0 when G a - ` for some a ) 0, but do not linkx

the values of s and a .

Theorem 2.1 deals with the first passage time t rather than the process0

itself; frequently, as is illustrated in Sections 4 and 5, the probabilistic
� 4structure of t is readily available whereas the probabilistic structure of F0 t

is not.

Ž .Lemma 3.1 below shows that the radius of convergence of G a is thex

same for all x ) 0; we denote this common radius of convergence by a*.

Ž . Ž .Thus, Theorem 2.1 shows that any a - a* satisfies 1.1 and 2.2 . The proof
Ž . Ž .of Theorem 2.1 will also show that 1.1 holds with a s a* when G a* - `x

Ž .for some x ) 0; however, we note that G a* may not always be finite.x
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Our second key result, Theorem 2.2 below, shows that, essentially, one can

obtain the same convergence rates for a stronger norm by examining the
� 4generator of F . Theorem 2.2 also identifies a bound for the constant M .t x

� 4For this, we need the following concept of the extended generator of F ,t

Ž . Ž .which is a slightly restricted form of that in Davis 1993 . Denote by DD AA

the set of all functions f : X ª R for which there is a measurable function g:

X ª R such that, for every x g X,

t
E f F s f x q E g F du ,Ž . Ž . Ž .Hx t x u

02.3Ž .
t
E g F du - `.Ž .H x u

0

Ž . � 4We write AAf [ g when 2.3 holds and call AA the extended generator of F .t

This defines an extension of the infinitesimal generator for Hunt processes. If
Ž . Ž .the process is nonexplosive and 2.4 holds or G a - ` for some a ) 0, thenx

� 4F is aperiodic, irreducible and positive Harris recurrent and hence has at

Ž . Ž .unique invariant measure p . If V satisfies 2.4 below and V x ª ` as
� 4x ª `, then the process is automatically nonexplosive. If F is explosive,t

Ž .then 2.3 may be meaningless. We refer the reader to Meyn and Tweedie
Ž .1993a, 1993b for general conditions for nonexplosivity based on the ex-

tended generator and for general discussions on the above issues.

Ž .Theorem 5.2 in Down, Meyn and Tweedie 1995 shows that if there exists
w .a ‘‘drift function’’ V: X ª 1, ` and constants c ) 0 and b - ` such that

2.4 AAV x F ycV x q bI x ,Ž . Ž . Ž . Ž .�04

Ž .then there exists some a ) 0 such that 2.2 holds. Theorem 2.2 below derives
Ž . Ž .a much stronger result that links values of c in 2.4 to values of a in 2.2 .

� 4To examine the moment convergence of F , we define the f-norm of at

w .function f : X ª 0, ` as

t5 52.5 P x , ? y p s sup E g F y p g ,Ž . Ž . Ž . Ž .f x t
< <gF f

where, by stationarity,

2.6 p g s g x p dx s E g FŽ . Ž . Ž . Ž . Ž .H p t
w .0, `

for all t G 0.

� 4THEOREM 2.2. Suppose that F is a stochastically ordered Markov pro-t

Ž .cess satisfying 2.1 .

Ž . Ž . Ž . Ž . Ž .i If 2.4 holds, then G c - ` for all x ) 0; hence, 2.2 and 1.1 alsox

hold for a F c.

Ž . Ž . Ž .ii If V x satisfies 2.4 and is nondecreasing in x, then

t yct5 5P x , ? y p F 2 e V x 1 y I x q brc .Ž . Ž . Ž .V �04
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Ž .Part i of Theorem 2.2 identifies total variation exponential convergence at
Ž . Ž .rate c from 2.4 ; part ii establishes convergence of all sub V-moments up to

the exponential rate c. In Section 7, we show how a multivariate version of

Theorem 2.2 can be used to analyze a tandem queue.

We next address the sharpness of Theorems 2.1 and 2.2. As in the chain
w Ž .xcase Lund and Tweedie 1995 , it is not true that a* will be the best

exponential convergence rate for all stochastically ordered processes; that is,
Ž .it is not generally true that 2.2 fails for some x G 0 when a ) a*. This is

because our convergence rates are derived from couplings at the ‘‘minimal’’
� 4state 0 . It is possible for the process to ‘‘couple more quickly’’ in a state other
� 4than 0 ; we illustrate this possibility in Example 3.3. Furthermore, there

Žexist extreme cases such as storage models that never empty t s ` when0

. Ž . w Ž .xx ) 0 , but where a ) 0 satisfying 2.2 exist see Lund 1995 . Hence, in

general, our rates are only bounds.

However, many stochastically ordered Markov processes are ordered in an

additional manner where a* can indeed be shown to be the best possible
Ž� 4. � Ž .4exponential convergence rate. Suppose that p s p 0 ) 0. Now let F v0 t

� X Ž .4 Ž . X Ž .and F v denote sample paths of the process with F v s x and F v st 0 0

x9 and suppose that 0 F x - x9. Our stronger ordering supposes the existence

of k ) 0 and D ) 0 such that

2.7 F v - F
X

v ,Ž . Ž . Ž .t t

� Ž . 4whenever t F inf u ) 0: F v s 0 q D and x9 ) x q k ; that is, the order-u

ing is strict until D units of time after the lower starting sample path first
� 4returns to 0 whenever the sample paths begin at least k units apart. The
Ž .ordering in 2.7 is a variant of that used for chains in Lund and Tweedie

Ž .1995 .

Ž .One example of a process satisfying 2.7 is the server workload in an

MrGr1 queue; we elaborate on this in Section 4. Another class of stochasti-
Ž .cally ordered Markov processes satisfying 2.7 is the class of storage models

Ž .considered in Brockwell, Resnick and Tweedie 1982 . For a stochastically
Ž . Ž .ordered Markov process satisfying 2.1 and 2.7 , we prove the following

result in Section 3.

� 4THEOREM 2.3. Suppose that F is a stochastically ordered Markov pro-t

Ž . Ž .cess satisfying 2.1 . Suppose that p ) 0 and that 2.7 holds. Let a* be the0

Ž . Ž .common for all x radius of convergence of G a . Then, if a ) a*,x

a t tlim sup e sup P 0, A y p A s `.Ž . Ž .
tª` Ž .AgBB X

Ž .Theorem 2.3 shows that, when x s 0, p ) 0 and 2.7 holds, the process0

cannot converge at an exponential rate that is larger than a*. Thus, when
Ž .2.7 holds, a* is the best possible exponential convergence rate for a stochas-

tically ordered Markov process. While Theorem 2.1 establishes exponential
Ž .convergence at rate a* when G a* - `, we have as yet been unable tox

Ž .prove ‘‘divergence’’ at rate a* when G a* s `.x
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One can also obtain convergence rates for ‘‘unordered’’ Markov processes

that are pathwise dominated by stochastically ordered processes. Suppose
˜� 4 � 4 Ž . � 4that F and F are Markov processes on V, FF, P with F pathwiset t t

˜ ˜� 4 Ž . Ž .dominated by the stochastically ordered process F : F v F F v for allt t t

˜Ž . Ž .t G 0 and v g V whenever F v F F v . For notation, we use p for the˜0 0

˜ ˜ ˜� 4 � 4 Ž .limiting distribution of F if it exists, t s inf t G 0: F s 0 and G a s˜t 0 t x
at̃ 0w xE e . The following result, whose proof is identical to that in Lund andx

Ž .Tweedie 1995 for discrete-time chains, now follows.

� 4THEOREM 2.4. Suppose that F is a possibly nonstochastically orderedt

Markov process that is pathwise bounded by a stochastically ordered Markov
˜� 4 Ž . � 4process F that satisfies 2.1 . Further suppose that F has the limitingt t

˜ Ž .distribution p and that G a - ` for some x ) 0. Thenx

ya t˜w xsup P F g A y p A F M eŽ .x t x
Ž .AgBB X

˜ ˜ ˜Ž . Ž .for all x G 0 and t ) 0 where M F G a q G a - `.x x p̃

3. Proofs. Our first lemma establishes three properties of stochastically
� 4ordered Markov processes. We say that F is stochastically increasing in t ift

F is stochastically larger than F for t, t9 G 0.tqt 9 t

� 4LEMMA 3.1. Suppose that F is a stochastically ordered Markov processt

Ž .satisfying 2.1 . Then:

Ž .i F is stochastically increasing in t when x s 0.t

Ž . Ž . Ž .ii G a - ` for some x ) 0 if and only if G a - ` for every x ) 0.x x

Ž . Ž . Ž .iii G a - ` if and only if G a - ` for some x ) 0.p x

Ž . w Ž .xPROOF. Part i is well known cf. Theorem 4.9.3 of Lindvall 1992 . For
Ž . � 4 Ž .ii , the pathwise ordering of F shows that G a is nondecreasing in x fort x

Ž . Ž . Ž .fixed a , so if G a - ` for some x ) 0, then G a F G a - ` for allx y x
tŽ w ..y - x. Let y ) x and choose t ) 0 such that P x, y, ` ) 0. The inequality0

Ž . tŽ w .. a t Ž . Ž .G a G P x, y, ` e G a now gives G a - ` as well.x 0 y y

Ž . � 4 Ž . Ž . Žw ..For iii , use the pathwise ordering of F to get G a G G a p x, `t p x

Ž . Ž .for all x ) 0; hence, if G a - `, then G a - ` for some x ) 0. For thep x

Ž .other direction, we apply Theorem 5.1 of Down, Meyn and Tweedie 1995 to
Ž . Ž . Ž .the function V x s G a for x ) 0 with V 0 s 1 to establish the existencex

of a l - 1, d - ` and h ) 0 such that

3.1 V y P h x , dy F lV x q d.Ž . Ž . Ž . Ž .H
w .0, `

� 4Since p is also invariant for the skeleton chain F , n G 0 for every fixed h,nh

Ž . Ž . Žwe apply Theorem 14.3.7 of Meyn and Tweedie 1993c with f x s 1 y
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. Ž . Ž .l V x and s x ' d to obtain

y1w xG a s V x p dx F d 1 y l - `,Ž . Ž . Ž .Hp
w .0, `

as required. I

Ž .PROOF OF THEOREM 2.1. We follow Lund and Tweedie 1995 and couple a

stationary trajectory of the process with a trajectory of the process that starts
� 14 � 24from the initial level x. Let F and F be two copies of the process witht t

the initial conditions F1 ' x and F2 s X, where X is a random variable on0 0

Ž . 1 2V, FF, P with the invariant distribution p . For a fixed t ) 0, F and F mayt t

� 24be statistically dependent; however, because p is invariant, F is station-t

w 2 x Ž . Ž . �ary: P F g A s p A for all A g BB X and t ) 0. Define T s inf t G 0:p t
1 24 w Ž .xF s F and use the coupling inequality Lindvall 1992 to gett t

t w x3.2 sup P x , A y p A F P T ) t .Ž . Ž . Ž . x , p
Ž .AgBB X

We remark that the strong Markov property and the right-continuous sample
� 4 Ž . Ž .paths of F are needed for 3.2 . The subscripts on P in 3.2 indicate thet

dependence of T on the initial distributions.

� 4The crucial observation is that, because of the pathwise ordering of F ,t

� 4once the process with the larger initial starting value has reached state 0 ,
� 4the process with the smaller initial starting value must also be in state 0 .

w x w x Ž . w Ž . xThus, P T ) t F P t ) t where n A s P max X, x g A for A gx, p n 0

Ž . Ž .BB X . Hence, from 3.2 we get

t w x3.3 sup P x , A y p A F P t ) t .Ž . Ž . Ž . n 0
Ž .AgBB X

Now use the Markov inequality to get

w x w x w x w xP t ) t s P X F x P t ) t q P t ) t p duŽ .Hn 0 x 0 u 0
Ž .x , `

w x w xF P t ) t q P t ) tx 0 p 0

3.4Ž .

ya tF e G a q G a .Ž . Ž .x p

Ž . Ž . Ž . Ž .Combining 3.3 and 3.4 establishes 1.1 and 2.2 for any a - a*. We note
Ž . Ž . Ž .that M s G a q G a - ` follows from the assumption G a - ` andx x p x

Ž . Ž . Ž . Ž .part iii of Lemma 3.1. From 3.3 , 3.4 and part iii of Lemma 3.1, we see
Ž . Ž .that 2.2 is also valid for a s a* when G a* - `.x

Ž . Ž . Ž . a*tTo establish 1.1 for a s a* when G a* - `, multiply 3.3 by e andx

Ž .use the first inequality in 3.4 to get

a*t t a *t a *tw x w x3.5 e sup P x , A y p A F e P t ) t q e P t ) t .Ž . Ž . Ž . x 0 p 0
Ž .AgBB X

Ž . Ž .The finiteness of G a* and G a* yieldx p

a*t w x a*t w xlim e P t ) t s lim e P t ) t s 0,x 0 p 0
tª` tª`

Ž . Ž .which establishes 1.1 for a s a* when used in 3.5 . I
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We now move to the proof of Theorem 2.2, which uses a similar but slightly

more subtle coupling argument. The following lemma, which links the hitting
� 4 Ž .times of 0 to solutions of the generator drift inequality 2.4 , is a special case

Ž .of Theorem 6.1 of Down, Meyn and Tweedie 1995 .

Ž .LEMMA 3.2. Suppose that V is a drift function that satisfies 2.4 . Then,

for any s F c and x ) 0,

t0
stV x G G s q c y s E e V F dt .Ž . Ž . Ž . Ž .Hx x t

0

Ž .The proof of Theorem 6.1 in Down, Meyn and Tweedie 1995 shows that
Ž . Ž . Ž .Lemma 3.2 still holds if one weakens 2.4 to AAV x F ycV x for x ) 0.

Ž . Ž .PROOF OF THEOREM 2.2. For i , choose s s c in Lemma 3.2 to get G c Fx

Ž .V x - ` as required.

Ž .For ii , we need to refine the coupling argument used in the proof of total
� 14 � 24variation convergence in Theorem 2.1. Let us consider process copies F , Ft t

� 34 � 44starting from x and 0 and copies F , F starting from X and 0 where Xt t

� 4 �has distribution p . Define the state 0 coupling times by T s inf t G 0:1
1 2 4 � 3 4 4F s F s 0 and T s inf t G 0: F s F s 0 for the respective processt t 2 t t

Ž .pairs. Using 2.6 , the triangle inequality and the same coupling arguments
Ž . Ž .that produced 3.2 ] 3.4 , one obtains

1 2E g F y p g F E g F I q E g F IŽ . Ž . Ž . Ž .x t x , 0 t wT ) t x x , 0 t wT ) t x1 1

3 4q E g F I q E g F IŽ . Ž .p , 0 t wT ) t x p , 0 t wT ) t x2 2

1 23.6 F E V F I q E V F IŽ . Ž . Ž .x , 0 t wT t x x , 0 t wT ) t x) 1

3 4q E V F I q E V F IŽ . Ž .p , 0 t wT ) t x p , 0 t wT ) t x2 2

F 2 E V F I q 2 E V F IŽ . Ž .x t wt ) t x p t wt ) t x0 0

< < Ž .for any function g such that g F V. The last inequality in 3.6 follows from

the monotonicity of V and the inequalities F2 F F1 and F4 F F3 for allt t t t

t G 0.

Ž .Noting that the right-hand side of 3.6 is free of g, we take a supremum
< < Ž .over g F V and use 2.5 to get

t5 53.7 P x , ? y p F 2 E V F I q 2 E V F I .Ž . Ž . Ž . Ž .V x t wt ) t x p t wt ) t x0 0

w Ž . x Ž .To bound E V F I , we note from Meyn and Tweedie 1993b thatx t wt ) t x0
ct Ž . w xM s e V F I is a supermartingale. To establish finiteness of E Mt t wt ) t x x t0

- ` for all t ) 0 and x G 0, note that, from the nondecreasing V, it is
Ž . w Ž .x Ž .sufficient to show that p V s E V F - `. Part ii of Theorem 4.3 inp t

Ž . Ž . Ž . Ž .Meyn and Tweedie 1993b with f x s V x gives p V F brc as required.
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� 4Now let S be a sequence of stopping times with S ª ` as n ª `.n n

Optional stopping gives

c minŽ t , S .n w xE e V F I F E M s V x 1 y I xŽ . Ž .Ž .x minŽ t , S . wt ) minŽ t , S .x x 0 �04n 0 n

for each t ) 0 and x G 0. Letting n ª ` and applying Fatou’s lemma gives

yc t3.8 E V F I F e V x 1 y I x .Ž . Ž . Ž . Ž .x t wt ) t x �040

Ž . Ž . Ž .Combining 3.7 with 3.8 and p V F brc gives

t yct5 53.9 P x , ? y p F 2 e V x 1 y I x q brcŽ . Ž . Ž . Ž .V �04

Ž .and finishes the proof of ii . I

PROOF OF THEOREM 2.3. This proof requires consideration of three copies
� 14 � 24 � 34 1of the process: F , F and F . For initial conditions, we take F ' 0,t t t 0

F2 s X, where X is random with distribution p , and F3 ' D. Arguing with0 0

� 1 24the coupling time T s inf t G 0: F s F , we havet t

tsup P 0, A y p AŽ . Ž .
Ž .AgBB X

t � 4 � 4G P 0, 0 y p 0Ž . Ž .3.10Ž .

1 2s P F s 0 l T ) t y P F s 0 l T ) t ;0, p , D t 0, p , D t

Ž .the three subscripts on P in 3.10 denote the three initial distributions.

� 4 2 1From the pathwise ordering of F , if F s 0, then F s 0 and T F t; thus,t t t

w 2 x Ž .P F s 0 l T ) t s 0 and 3.10 gives0, p , D t

a t t a t 13.11 e sup P 0, A y p A G e P F s 0 l T ) t .Ž . Ž . Ž . 0, p , D t
Ž .AgBB X

� 34 � 4 Ž xNow suppose that F first hits state 0 sometime during t y D, t andt

� 4 1 3 1returns to state 0 at time t. Since F F F for all t G 0, F s 0; further-t t t

Ž .more, if X ) k q D, then T ) t by the ordering assumption in 2.7 . Thus,

1P F s 0 l T ) t0, p , D t

3 3xG P t g t y D , t l F s 0 l X ) k q D ,Ž0, p , D 0 t

3.12Ž .

3 � 3 4 Ž .where t s inf t ) 0: F s 0 . Investigating the right-hand side of 3.12 , we0 t

� 34first notice that the evolution of F in t is independent of X; hence,t

3 3xP t g t y D , t l F s 0 l X ) k q DŽ0, p , D 0 t

3 3xs P t g t y D, t l F s 0 p k q D , ` .Ž Ž .Ž .D 0 t

3.13Ž .

Ž . ŽŽ .. ŽŽ .. Ž .Since 2.1 holds, p x, ` ) 0 for all x G 0; hence, p k q D, ` ) 0. Part i
w xof Lemma 3.1 shows that P F s 0 decreases in t to p ; using this with the0 t 0

strong Markov property proves

3 3 3x x3.14 P t g t y D, t l F s 0 G p P t g t y D, t .Ž . Ž ŽD 0 t 0 D 0
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Ž . Ž .Combining 3.11 ] 3.14 gives

a t t a t 3 xe sup P 0, A y p A G e p p k q D , ` P t g t y D, t ;Ž . Ž . Ž . ŽŽ .0 D 0
Ž .AgBB X

hence, the theorem is proven if we show that

a t 3 x3.15 lim sup e P t g t y D, t s `Ž . ŽD 0
tª`

when a ) a*.

Ž . 3To establish 3.15 , we examine t rounded up to the nearest multiple of0

D. Set t 3 s D t rD , where u denotes the smallest integer larger than oru v u v˜0 0
at̃ 3

0w xequal to u. First notice that a* is also the radius of convergence of E ex

Ž . Ž .for any x ) 0. Equation 6.2 in Lund and Tweedie 1995 shows that

a n 3lim sup e P t s nD s `˜D 0
nª`

a n wŽ . 3 x Ž .when a ) a*; thus, lim sup e P n y 1 D - t F nD s ` and 3.15nª` D 0

follows. I

The following example shows that a* is not always the best exponential

convergence rate for a stochastically ordered Markov process.

� 4THEOREM 3.3. Consider a finite capacity store F where inputs replenish-t

ing the store’s content arrive according to a Poisson process with arrival rate

l. The store’s capacity is K units and each arrival completely fills the store;

input exceeding the store’s capacity is discarded. The store releases content at

a unit rate when nonempty.

� 4It is clear that F is a pathwise ordered strong Markov process with ant

Ž . Ž xinvariant measure p . Notice that 2.1 holds for all x, y g 0, K with y ) x;
� 14 � 24hence, Lemma 3.1 and Theorem 2.1 remain valid. Let F and F be initialt t

�level x and stationary copies of this process, respectively. Define T* s inf t G
1 2 40: F s F s K as the first time when both stores are filled and note that T*t t

has an exponential distribution with parameter l regardless of the value of
1 2 � 14 � 24 Ž .x. Since F s F for t G T*, T* is a coupling time of F and F and 2.2t t t t

holds for any a - l.

� 4To compare this rate to the one obtained by coupling in 0 , we first note
Ž .that G a - ` for some a ) 0 by geometric trials. Now choose x s K andx

condition on the first arrival time to get

`K
a u ylu a K yluG a s e G a le du q e le du,Ž . Ž .H HK K

0 K

Ž .which can be solved for G a :K

l y a eŽayl.KŽ .
3.16 G a s .Ž . Ž .K Žayl.Kle y a
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Ž .Thus, we can find the radius of convergence of G a , which may well be lessK

than l. For a specific comparison, take K s 1 and l s 2. The numerator in
Ž . Ž .3.16 is positive whenever a - 2; however, the denominator of 3.16 is 0

whenever a is a solution to 2 ey2 s a eya , the smallest of which is 0.41 to two
Ž .decimal places. Thus, a* is approximately 0.41 and G a s ` when a ) 0.41.K

This rate is much smaller than the rate of 2y obtained with the coupling at
� 4 Ž .K . Finally, we note that 2.7 is clearly violated.

4. Application: dam processes. This section applies the results of
Ž .Section 2 to the dam processes of Prabhu 1980 . The results extend the

Ž .MrGr1 server workload convergence rates of Cohen 1982 to dam processes.

� 4Consider a dam process F driven by a time-homogeneous Levy input´t

� 4process A . Water is released from the dam at a unit rate when present;t

Ž . Ž .that is, the release rule is r u s I u . As noted in Brockwell, Resnick andŽ0, `.

Ž . Ž . � 4Tweedie 1982 and Prabhu 1980 , F is a pathwise ordered strong Markovt

Ž . � 4process satisfying 2.1 . When F s x, the sample paths of F satisfy the0 t

storage equation

t t
4.1 F s x q A y r F du s x q A y t q I F du.Ž . Ž . Ž .H Ht t u t �04 u

0 0

� 4 � X 4Now consider two sample paths of the process, say F and F , driven byt t

� 4the same sample path of A , but starting from the initial levels x and x9,t

respectively. We take x - x9 and note that if F ) 0 for all u F t, thenu
X Ž . X

F ) 0 for all u F t, and, by 4.1 , F y F s x9 y x for all u F t. It nowu u u

Ž .follows that 2.7 holds with k s D s 1.

� 4The input process A has stationary and independent increments. Whent

w s A t x tf Ž s.finite, the moment-generating function of A has the form E e s e ,t

where

`
su4.2 f s s e y 1 n du .Ž . Ž . Ž . Ž .H

0

Ž . Ž .In 4.2 , n is a s-finite measure supported on 0, ` that satisfies
` Ž . Ž . w xH min u, 1 n du - `. Define the ‘‘traffic intensity’’ by r s E A ; it is well0 1

w Ž .xknown Prabhu 1980 that a proper limiting measure p exists if and only if
Ž .r - 1, in which case p s 1 y r ) 0. It is also known that 2.2 holds for some0

w Ž . Ž .x w s A1 xa ) 0 Tuominen and Tweedie 1979 and Lund 1995 when E e is finite

for some s ) 0. It follows from Theorems 2.1 and 2.3 that the best possible
Ž .exponential rate of convergence is a*, the radius of convergence of G a sx

w at 0 xE e for any x ) 0.x

w s A1 xThus, we assume that r - 1 and that E e is finite for some s ) 0.

Ž .Arguing as in Prabhu 1980 , or taking a martingale approach as in
Ž . Ž . Ž . xh Ž s.Rosenkrantz 1983 or Kella and Whitt 1992 , one obtains G a s e ,x

Ž . Ž . Ž Ž ..where h s is a solution to the functional equation h s s s q f h s . Hence,
Ž .a* is the largest s where h s - `.

Ž . Ž . Ž .To identify this largest s, define f s s s y f s and note that h s solves
Ž Ž .. < Ž . < w s A1 xs s f h s . Observe that f s - ` whenever E e - `. Other properties
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Ž . Ž . Ž . Ž .of f include: f 0 s 0, f 9 0 s 1 y r ) 0, f 0 s F 0 for all s ) 0 and f s ª

y` as s ª `. Hence, f is a continuous concave function and the supremum
� Ž . 4 Ž .b * s sup f s : s G 0 is finite. For each s g 0, b * , there are at most two

Ž . Ž Ž .. Ž .positive values of h s such that f h s s s, but one value of h s , from the
Ž .concavity of f, decreases as s increases. Hence, for s - b *, h s is the unique

‘‘nondecreasing inverse’’ of f and is finite. Now let s ) b * and suppose that
Ž . Ž . Ž .h s - `. Then f x F b * - s for every x G 0. Choosing x s h s and apply-

Ž . Ž Ž .. Ž Ž ..ing h s s s q f h s produces the contradiction s s f h s - s; hence,
Ž .h s s ` and a* s b *.

Hence, we have proven the following result.

� 4THEOREM 4.1. Suppose that F is a dam process with the Levy input´t

� 4 Ž . Ž . w xprocess A and the unit release rule r u s I u . If E A - 1 andt Ž0, `. 1

w s A1 x Ž . Ž . �E e - ` for some s ) 0, then 1.1 and 2.2 hold for a - a* s sup s y
Ž . 4 Ž . Ž .f s : s ) 0 and 1.1 and 2.2 fail when x s 0 and a ) a*.

To attain exponential convergence at rate a*, one need only check that
w s A1 x w Ž .xE e - ` for s s arg sup f s . We have been unable to establish whether

this finiteness holds in generality.

Convergence rates for some nonunit release storage models can be ob-
� U4tained from a comparison and Theorem 2.4. Let F be a storage processt

� 4 Ž . wwith Levy input A and release rate r* u when the storage level is u see´ t

Ž .x w xBrockwell, Resnick and Tweedie 1982 . Suppose that E A - 1 and that1

Ž . Ž .r* u ) 1 for all u ) 0. In this case, Brockwell, Resnick and Tweedie 1982
� U4show that an invariant measure p * exists for F and that the orderingt

FU
F F for all t G 0 holds when the two processes are defined from the samet t

� 4 Ž . � U4sample path of A . Hence, by Theorem 2.4, 2.2 also holds for F whent t

� Ž . 4a - sup s y f s : s ) 0 .

Theorem 4.1 reproduces the explicit convergence rate for the server work-
Ž . � 4load in the MrMr1 queue obtained by Morse 1958 . Here, A is a com-t

pound Poisson process
Nt

A s Y ,Ýt i

is1

� 4 � 4where N is a Poisson process with arrival rate l and Y is an i.i.d.t i

sequence of random variables with density function meym x for x ) 0. We
w sY1 xassume that r s lrm - 1 and notice that E e - ` whenever s - m. Com-

y1Ž . w x Ž'putations show that f s s s y ls m y s for s - u and that a* s m
2' .y l . In this case, exponential convergence at rate a* is indeed achieved:

s A1w Ž .x w x'arg sup f s s m y ml and E e - ` for all s - m. This rate has also
w Ž .appeared in a birth-and-death process setting Van Doorn 1985 and Zeifman

Ž .x1991 .

5. Application: periodic queues. In this section, we derive the best
� 4exponential convergence rate of the server workload process F in thet

Ž .periodic single-server queueing model of Afanas’eva 1985 . Here, customers
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arrive at the queue according to a Poisson process with bounded intensity
Ž . Ž . Ž .function l ? . We take the period of the system to be 1: l n q g s l g for

w .each natural number n and g g 0, 1 . If the ith customer arrives at the

queue at time n q g , then the workload induced to the server has the
Ž .distribution function H ? which only depends on g . The server works at ag

unit rate when work is available for processing.

w xLet A denote the total workload submitted to the server during 0, t .t

When finite, the moment-generating function of A takes on a periodic formt

Ž .of 4.2 :

`t
s A sutw x5.1 E e s exp e y 1 H du l g dg ,Ž . Ž . Ž . Ž .H H g

0 0

Ž . Ž . w .where H ? and l g are extended periodically to all g g 0, ` . The meang

workload added to the queue over one seasonal cycle is

`1
w xr s E A s xH dx l g dg ;Ž . Ž .H H1 g

0 0

Ž . � 4Lund 1994 shows that F converges to a proper periodic limiting distribu-t

Ž .tion, denoted by p ? , 0 F g - 1, uniformly in the season in the sense thatg

lim sup sup P F g B y p B s 0Ž .x nqg g
nª` w . Bgg 0, 1

for all x G 0 if and only if r - 1.

� 4To get a convergence rate for this model, we first note that F is at

Ž . Ž .pathwise ordered process. When the distribution of F is p ? , Lund 19940 0

� 4shows that F is rendered periodically stationary in the sense that F hast nqg

Ž .distribution p ? . Hence, coupling arguments with a periodically stationaryg

version of the process can be used:

w x w x5.2 sup P F g B y p B F P T ) n q g F P T ) n ,Ž . Ž .x nqg g x , p x , p0 0
B

� 4where T is the state 0 coupling time between an initial level x and a
Ž .periodically stationary copy of the process. Taking a supremum in 5.2 over g

and multiplying by ea Žnqg . gives

a Žnqg . a Žnq1. w x5.3 e sup sup P F g B y p B F e P T ) n .Ž . Ž .x nqg g x , p 0
w . Bgg 0, 1

Ž . Ž .From the Markov inequality and the arguments that led to 3.3 and 3.4 , we
Ž . w at 0 xsee that the right-hand side of 5.3 tends to 0 as n ª ` if E e is finite;p 0

hence, total variation convergence at the exponential rate a is achieved
w at 0 xuniformly in the season g whenever E e - `.p 0

w at 0 xTo identify values of a where E e - `, we make a comparison to ap 0
U Ž .Lindley random walk. Set F s X where X has distribution p ? and0 0 0 0

U U5.4 F s max F q A n y A n y 1 y 1, 0Ž . Ž . Ž .n ny1
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� 4 Ufor n G 1. Sample path comparisons show that t s inf t G 0: F s 0 F t s0 t 0

� U 4 w at 0 x w at U
0 xinf n G 0: F s 0 for each x G 0. Hence, E e - ` whenever E en p p0 0

Ž . w at U
0 x- `. Now use Example 7.3 of Lund and Tweedie 1995 to get E e - `p 0

Ž . � ya w a A1 x 4whenever a - yln c * , where c * s inf e E e : a ) 0 . When r - 1 and
w s A1 xE e - ` for some s ) 0, we note that c * - 1.

Ž .To see that yln c * is the best possible exponential convergence rate, note
Ž .that, as in Section 4, 2.7 holds with k s D s 1. Following the proof of

Theorem 2.3 and specializing to g s 0 gives

a n a nw x x5.5 e sup P F g B y p B G Me P t g n y 1, n ,Ž . Ž . Žn g 1 0
B

ŽŽ .. Ž� 4.where M s p 2, ` inf p 0 . Here, we have used a seasonal strong0 g gw0, 1. g

w x Ž� 4.Markov property along with the fact that P F s 0 xp 0 for every0 nqg g

w . w Ž .x Ž .g g 0, 1 see Lund 1994 . From the boundedness of l ? , one can show that
ŽŽ .. Ž� 4. Ž .p 2, ` ) 0 and inf p 0 ) 0; hence, M ) 0 and 5.5 shows that0 g gw0, 1. g

a n w Žexponential convergence does not happen if lim sup e P t g n y 1,nª` 1 0

xxn ) 0.

w Ž xx w U x � U4Now observe that P t g n y 1, n G P t s n where F is governed1 0 1 0 n

Ž . U a n w U xby 5.4 except for F ' 1. Hence, lim sup e P t s n s ` whenever a0 nª` 1 0

w st U
0 xexceeds the radius of convergence of E e . But the convergence radii of1

w st U
0 x w st 0

UU

x UU � U 4 ŽE e and E e are identical where t s inf n ) 0: F s 0 note that1 0 0 n
U U . Ž .t and t * differ only when x s 0 and the latter is known to be yln c *0 0

w Ž .x Ž .see Heathcote 1967 . Hence, yln c * is indeed the best exponential conver-

gence rate possible. For other results on the convergence rates of Lindley
Ž .random walks, see Veraverbeke and Teugels 1975, 1976 .

We summarize our work in the following theorem.

� 4THEOREM 5.1. Suppose that F is the server workload process in at

� 4 Ž . Ž .periodic queue with input A as described in 5.1 . If r - 1, l g is boundedt

w . w s A1 xover g g 0, 1 and E e - ` for some s ) 0, then

a n5.6 lim e sup sup P F g B y p B s 0Ž . Ž .x nqg g
nª` w . Bgg 0, 1

Ž . � ya w a A1 x 4for all x G 0 and a - yln c * where c * s inf e E e : a ) 0 . Further-
Ž . Ž .more, 5.6 fails for x s 0 when a ) yln c * .

[ )6. Application: diffusion models on 0, ` . This section considers re-
� 4flected diffusions where Theorem 2.2 is applicable. The process F is gov-t

Ž .erned on 0, ` by the stochastic differential equation

6.1 dF s a F dt q s F dB ,Ž . Ž . Ž .t t t t

` < Ž . < � 4where s is a C function with s x F g for all x and B is standardt

� 4Brownian motion. We will not describe the behavior at 0 in further detail as



R. B. LUND, S. P. MEYN AND R. L. TWEEDIE232

it is irrelevant to our future arguments, but we assume that the reflection at
� 4 � 40 is done in such a manner that F has continuous sample paths. It is wellt

w Ž . x � 4known see Chapter 6 of Lindvall 1992 for results and references that Ft

Ž .is a pathwise ordered Markov process that satisfies 2.1 .

Working directly with the generator of the reflected process presents

unnecessary complications. Instead, let us consider an unreflected process
� U4 Ž .F that takes values on the whole of y`, ` governed byt

dFU
s a FU dt q s FU dB .Ž . Ž .t t t t

Ž .Here, the domain of a and s are extended to y`, ` in a smooth manner.

� U4We denote all quantities related to F with the superscript *. As Equationt

Ž . Ž . � 4 � U45.5 in Chapter 6 of Lindvall 1992 shows, when F and F are drivent t

with the same Brownian motion and F s FU
) 0, F s FU up to the first0 0 t t

� 4 U � 4hitting time of 0 . Hence, t s t and convergence rates for F can be0 0 t

� U4obtained by studying F .t

Ž .Ichihara and Kunita 1974 show that, for any V with continuous first and

second derivatives, the unreflected generator AA* satisfies

216.2 AA*V x s a x V 9 x q s x V 0 x .Ž . Ž . Ž . Ž . Ž . Ž .2

Ž .We analyze two separate versions of this model with different a ? .

Ž .6.1. Affine drift. Assume that a ? satisfies

6.3 a x F ya 1 q xŽ . Ž . Ž .

Ž .for all x G 0 for some a ) 0. If we choose V x s 1 q x, we have that, for

x ) 0,

6.4 AA*V x s a x F yaV x .Ž . Ž . Ž . Ž .

U Ž .From the remark following Lemma 3.2, choose s s c s a to get G a F 1 q xx

Ž .for all x ) 0. Hence, G a - 1 q x also and, by Theorem 2.1 or 2.2, a is anx

� 4exponential rate of convergence for F .t

The same approach can be used to investigate the exponential convergence

of higher-order moments of the process. Let n G 1 and consider polynomial
Ž . Ž .solutions, V x , to the drift equation 6.4 which can be rewritten asn

X Y26.5 1 q x V x G V x s g r2a V xŽ . Ž . Ž . Ž . Ž .n n n

Ž . < Ž . < Ž .when 6.3 and s x F g are used. Solutions to 6.5 may be constructed as
Ž . Ž . 2 Ž 2 .V x s 1 q x, V x s x q g ra q 1 x q 1 and, for general n, by1 2

j ny12 2ny2 g n! g
n nyjV x s x q x q n! q 1 x q 1.Ž . Ýn ž / ž /2 a n y j ! 2 aŽ .js1
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` Ž .We note that such solutions are nondecreasing C functions and that V xn

G 1 for all n G 1 and x G 0. Thus, for s - a, we have from the remark

following Lemma 3.2 that

Ut0 UstV x G a y s E e V F dtŽ . Ž . Ž .Hn x n t
0

� 4for x ) 0. But the same inequality holds for F since the starred andt

Ž .unstarred processes are identical up to time t . Equation 3.9 now gives0

t yatP x , ? y p F 2 e V x q bra - `.Ž . Ž .V nn

Ž . nSince V x G a q b x for some a , b ) 0, we obtainn n n n n

ya t2 e b
n n6.6 E F y p x F V x q ;Ž . Ž . Ž .x t n

b an

� 4hence, exponential convergence of the polynomial moments of F also occurst

Ž .up to the exponential rate a. Bounds for b in 6.6 will clearly depend on the
� 4behavior of the reflection of F at 0.t

2 Ž . Ž 2 .Lastly, note that, when a G 2g , V x s exp axrg is also a solution to
Ž .6.4 . Arguing as before, we obtain

2 2 yat 26.7 E exp aF rg y p exp axrg F 2 e exp axrg q bra .Ž . Ž . Ž .Ž .Ž .x t

We summarize our work in the following theorem.

� 4 Ž .THEOREM 6.1. Suppose that F is the reflected diffusion governed by 6.1t

Ž . Ž . Ž . < Ž . <on 0, ` with a x F ya 1 q x for all x G 0 and s x F g for all x G 0.

Then:

Ž . Ž .i There exists an invariant measure p with G a - `.p

Ž . Ž .ii Convergence to p occurs exponentially at rate a in the sense of 1.1
Ž .and 2.2 .

Ž . � 4 Ž .iii The polynomial moments of F converge in the sense of 6.6 , andt
2 � 4 Ž .if a G 2g the exponential moments of F converge in the sense of 6.7 ;t

� 4in both, the behavior of the reflection at 0 is relevant only through the con-

stant b.

We have given this result only as an example of the methodology, although

it appears new and of considerable interest in its own right. Clearly, we could

be much more delicate with our assumptions, and the result should remain
Ž .the same: if the drift is more strongly negative than ya 1 q x , then a is an

exponential rate of convergence for the process.

6.2. Constant drift. Consider the regulated Brownian motion model stud-
Ž . Ž . Ž . Ž .ied by Abate and Whitt 1987 . Here, a x ' ym - 0 and s x ' 1 and 6.2

gives
16.8 AA*V x s ymV 9 x q V 0 xŽ . Ž . Ž . Ž .2
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Ž . m x Ž . Ž . Ž 2 . Ž .for x ) 0. Using V x s e in 6.8 gives AA*V x s m r2 y mm V x .m m m

Ž 2 . Ž .Choosing m s m minimizes m r2 y mm and gives AA*V x sm

Ž 2 . Ž . 2y m r2 V x . Hence, exponential convergence with rate at least m r2 ism

Ž .achieved for this process. Specializing to moments, we have from 3.9 that

2t ym tr2 m x 26.9 P x , ? y p F 2 e e q 2brm .Ž . Ž . Vm

Ž . Ž .n Ž .Applying the crude bound V x G m x rn! for x G 0 in 6.9 gives conver-m

� 4gence of all polynomial moments of F :t

2ym tr22 e n! 2b2n n m x r26.10 E F y p x F e q .Ž . Ž .x t n 2m m

We will not explore the value of b here. This is the same convergence rate for
� 4 Ž .the moments of F obtained in Corollary 1.1.2 of Abate and Whitt 1987 .t

While our V-norm methods give moment convergence of all subexponential
Ž .functions, we note that the constants obtained in 6.10 are considerably

Ž .worse than those computed with rather more effort by Abate and Whitt
Ž .1987 .

7. Multivariate monotonicities: a tandem queue application. Fi-
� 4 d w .dnally, we consider a d-variate Markov process F on R s 0, ` and at q

d w .function f : R ª 0, ` . In queueing network applications, f might typicallyq

be the total customer population or workload in the network. In this section,
Ž .we derive a convergence rate for f F and apply the results to a tandemt

queue.

� 4 ŽSuppose that F is pathwise ordered in each of its components much lesst

. dstringent assumptions are possible and suppose there is a function V: Rq

w .ª 1, ` , nondecreasing in each component, such that

AAV x F ycV x q bI d x ,Ž . Ž . Ž .�0 4

d Ž . � 4where 0 s 0, . . . , 0 9 and c and b are positive real numbers. Let F andt

� X 4F denote initial level x and stationary versions of the process, respectively;t

� X d4since the process is pathwise ordered, T s inf t G 0: F s F s 0 is at t

� 4 � X 4coupling time of F and F . The methods used to prove Theorem 2.2 alsot t

Ž . w at 0 xapply to general spaces; hence, one obtains G a s E e - ` for allx x
d � d4 Ž .x g R where, as before, t s inf t G 0: F s 0 ; as in 3.9 ,q 0 t

t yct7.1 P x , ? y p F 2 e V x q brc - `.Ž . Ž . Ž .V

Ž .With G a - `, the proof of Theorem 2.1 can be easily adapted to thex

� 4current setting. Thus, F converges to stationarity in a d-variate totalt

variation sense:

a t w x7.2 lim e sup P F g A y p A s 0.Ž . Ž .x t
tª` dŽ .AgBB Rq
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In many cases, the quantity of interest will be a scalar function of the

multidimensional process. For example, in the tandem queue below, the total
� 4queue size at time t is formed from the coordinates of F with an f definedt

Ž .by f x , x s x q x ; here, the x represent the queue lengths at each node.1 2 1 2 i

� Ž .4The process f F can be analyzed with the coupling mapping inequalityt

w Ž .x Ž .see page 13 of Lindvall 1992 . This inequality shows that if 7.2 holds and
Ž .f is a measurable function, then f F converges in total variation at thet

Ž .exponential rate a to a random variable distributed as f X , where X has

distribution p .

We now briefly apply these results by considering a pair of MrMr1 queues

in tandem: customers arrive as a Poisson stream with unit rate to the first

queue, where they are serviced with mean service time my1. After service is1

completed at the first queue, each customer immediately departs and joins

the second queue where the mean service time is my1. After service is2

completed at the second queue, the customers leave the system. This is a

Jackson network and it is known that the process is ergodic whenever the

load condition r s my1 - 1 is satisfied at each queue.i i

Ž .Geometric considerations from Meyn and Down 1994 suggest

V x , x s Ax1y1 q B x1qx 2y1 q gAya Ž x1y1 .Byb Ž x1qx 2y1 .Ž .1 2

as a candidate drift function where A, B ) 1 and g , a , b ) 0. Applying the
w Ž .xgenerator to V see Meyn and Down 1994 gives

AAV x , x s A y 1 Ax1y1 q B y 1 B x1qx 2y1Ž . Ž . Ž .1 2

q g Aya Byb y 1 Aya Ž x1y1 .Byb Ž x1qx 2y1 .Ž .
y1 x y11q m I A y 1 AŽ .1 Ž x G1.1

a ya Ž x y1. yb Ž x qx y1.1 1 2qg A y 1 A BŽ .

y1 x qx y11 2q m I B y 1 BŽ .2 Ž x G1.2

b ya Ž x y1. yb Ž x qx y1.1 1 2qg B y 1 A B .Ž .

The parameters in V can be determined from the network parameters

numerically. For instance, when m s 3 and m s 2, using the computer1 2

program Mathematica, it is found that, with a s 3r2, b s 3r10, g s 4r10,
Ž . Ž . Ž .A s 1.06 and B s 1.03, V satisfies AAV x , x F yc x , x V x , x , where,1 2 1 2 1 2

Ž . Ž . Ž . Ž .for x , x / 0, 0 , c x , x is lower bounded by 0.002 approximately .1 2 1 2

Furthermore, for these parameter values, one can check that V is nonde-
Ž . Ž .creasing in each coordinate. For large x , x , c x , x is lower bounded by1 2 1 2

approximately 0.02; we believe that a more sophisticated argument would
Ž . Ž .yield drift of this order of magnitude for all x , x / 0, 0 .1 2

Hence, this network converges exponentially with rate at least 0.002. The
� 4 Ž .total queue population is obtained by adding the components of F : f x , xt 1 2

Ž .s x q x . By the above arguments, f F converges at the exponential rate1 2 t

0.002 as well. Finally, for convergence of moments, notice that V satisfies
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Ž . Ž . Ž . Ž .V x , x G k f x , x , where k s ln B rB ) 0. Hence, by 7.1 ,1 2 1 2

stlim e E f F y p f s 0Ž . Ž .x t
tª`

for each x and s - 0.002 and the total queue population moments converge

up to rate 0.002 as well.
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