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PREDATOR–PREY AND HOST–PARASITE
SPATIAL STOCHASTIC MODELS1

BY RINALDO B. SCHINAZI

University of Colorado

We consider two interacting particle systems on Zd to model predator]

prey and host]parasite interactions. In both models we have two types of
Ž . dparticles 1 and 2 and each site in Z can be in one of four states: empty,

occupied by a type 1 particle, occupied by a type 2 particle or occupied by
Ž .two particles one of each type . Each type gives birth to particles of the

same type on nearest neighbor sites. The interaction between the two
types of particles occurs only when a site is occupied by one particle of
each type. For both models we show that coexistence and noncoexistence
are possible in any dimension.

1. The models. We start with a predator]prey model. Each site in Zd

can be in one of four states: empty, occupied by a 1, occupied by a 2, or
Ž .occupied by a 1 and a 2. This last state will be denoted by 1, 2 . We think of 1

as being the prey and 2 as being the predator. Prey and predators give birth
Ž .at different rates on nearest neighbor sites. Predators on a site with no prey
die at a certain fixed rate. When a site is occupied by a predator and prey
w Ž .xstate 1, 2 then the predator eats the prey at a fixed rate and only the
predator remains on the site. This is the only interaction between the two
species.

We now give a mathematical description of the model. Consider a continu-
� Ž .4Z d

ous time Markov process h on 0, 1, 2, 1, 2 . If the process is in state h, wet
say that site x is empty, occupied by a prey, occupied by a predator or

Ž .occupied by a prey and a predator according to whether h x equals 0, 1, 2 or
Ž .1, 2 , respectively. The evolution of the process depends on four parameters

5 5l ) 0, l ) 0, f ) 0 and d ) 0. Denote by ? the Euclidean norm and for1 2 2
d � Ž .4Z d

x g Z , h g 0, 1, 2, 1, 2 let

d 5 5n x , h s card y g Z : y y x s 1 and h y s 1 or h y s 1, 2� 4Ž . Ž . Ž . Ž .Ž .1

d 5 5n x , h s card y g Z : y y x s 1 and h y s 2 or h y s 1, 2 .� 4Ž . Ž . Ž . Ž .Ž .2
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A site x changes its state in the configuration h according to the following
transition rates:

0 ª 1 at rate l n x , hŽ .1 1

2 ª 1, 2 at rate l n x , hŽ . Ž .1 1

0 ª 2 at rate l n x , hŽ .2 2

1 ª 1, 2 at rate l n x , hŽ . Ž .2 2

1, 2 ª 2 at rate fŽ .
2 ª 0 at rate d .2

In words, we allow creation of prey at rate l n on empty sites or sites1 1
occupied by predators. We allow creation of predators at rate l n on empty2 2
sites or sites occupied by prey. A predator on a site that is not occupied by a
prey dies at rate d . Finally, a prey is eaten by a predator at rate f if they2
are at the same site. Observe that there is at most one prey and one predator
per site.

In order to formulate our results, we need to introduce the contact process
� 4Z d

j on 0, 1 . The evolution of the contact process is governed by the followingt
rules. The transition rates for a site x in a configuration j are

0 ª 1 at rate ln x , j ,Ž .1

1 ª 0 at rate d ,

Žwhere l and d are positive parameters. Note that d the measure that0
.concentrates on the all 0’s configuration is a stationary distribution for the

contact process. There is also a stationary distribution n called the upper
invariant distribution of the contact process. For every initial distribution j 0

� 4Z d
in 0, 1 , there is a c G 0 such that

j converges in distribution to cd q 1 y c n .Ž .t 0

Ž . Ž .There is a critical value l d such that if l F l d then n s d and jc c 0 t
Ž .converges to d . If l ) l d then n / d and n concentrates on configura-0 c 0

Ž .tions with infinitely many 1’s. See Bezuidenhout and Grimmett 1990 for
Ž . Ž .these results; see also Liggett 1985 and Durrett 1988 for general results

about the contact process.
We now go back to our predator]prey model.

THEOREM 1. Consider the predator]prey model on Zd for d G 1. For any
Ž .l ) 0, l ) 0 and d G 0 there is f l , l such that if f - f then predators1 2 2 1 2

and prey may coexist. More precisely, there is a stationary distribution that
Ž .concentrates on configurations with infinitely many sites occupied by 1, 2 .

Ž .Observe that if we start the process without prey 1’s then the predators
Ž .2’s evolve exactly like a contact process. If l and d are such that2 2

Ž .l ) l d , then the 2’s will survive even in the absence of 1’s but Theorem 12 c 2
tells us that if f is small enough the 2’s do not take over the whole space and
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coexistence is possible. On the other hand, if we make the biologically
meaningful hypothesis that predators die out in the absence of prey, that is, if
we pick l and d such that2 2

l - l d ,Ž .2 c 2

then Theorem 1 tells us that for f small the 2’s survive in the presence of 1’s
Ž .the 2’s would die out in the absence of 1’s .

Theorem 1 is proved using a renormalization technique invented by Bram-
Ž . w Ž .xson and Durrett 1988 see also Durrett 1995 . The idea of the proof is quite

Ž .simple: if f s 0 then the 1’s evolve independently of the 2’s and a site 1, 2
never changes its state, so 1’s and 2’s survive. By a continuity argument this
is still true for small f ) 0. However, some care must be exercised in the
application of the technique here since this process is not monotone in any
useful way.

If d s `, it means that a 2 at a site with no 1 dies immediately. So each2
Ž .site may be in either one of three states: 0, 1 or 1, 2 . This is exactly the

Ž .model considered by Schinazi 1996 for an epidemic except that here the
Ž .state 1, 2 plays the role of the state 2 there. Theorem 1 holds in this case as
Ž .well f does not depend on d and it proves coexistence for a different range2

Ž .of the parameters than what was previously known: Schinazi 1996 proved
Ž .that if l ) l f and if l is large enough then there is coexistence of 1’s2 c 1

Ž .and 2’s when d s ` see Theorem 1 there .2
Ž .If l - l d , it is intuitively clear that the predators should not deplete2 c 2

the prey since predators would die out if there were no prey. This is
confirmed by the following theorem.

Ž .THEOREM 2. For all l and d such that l - l d and all l there is2 2 2 c 2 1
Ž .F l , d ) 0 such that if f ) F, then for any initial configuration the2 2

d Ž .predators die out. That is, for any finite subset of Z d G 1 there is almost
surely a finite time after which no site in the subset will ever be occupied
by a 2.

Theorem 2 is proved using a renormalization argument as in Durrett and
Ž . w Ž .xSchinazi 1993 see also Schinazi 1996 . This time we first consider the

system with f s `. This means that each time a 1 and a 2 are in the same
site, the 1 disappears immediately. It is easy to see that in this situation the
1’s have no role in the evolution of the 2’s. The 2’s are a subcritical contact
process that dies out exponentially fast. By a continuity argument we prove
that the 2’s also die out for f large enough.

In view of Theorems 1 and 2, it is natural to ask if f s F. In other words,
for fixed l , l and d , is there f such that if f - f , there is coexistence,1 2 2 c c
while if f ) f , the 2’s die out? We conjecture that there is such a f but wec c
have no proof of this. The difficulty comes form the fact that we do not know
whether the process is monotone in f.

We now turn to the other system we are interested in: The host]parasite
model. We think of 1 as being a host and 2 as being a parasite. Here too we
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d Ž . Ž .have four possible states for each site of Z : 0 empty , 1, 2 and 1, 2 . The
evolution is identical to the predator]prey model except for one transition:

1, 2 ª 0 at rate f .Ž .
That is, we assume that if the parasite kills the host it will also die. We also
assume that the 2’s do not survive in the absence of 1’s:

l - l d .Ž .2 c 2

Ž .This model was inspired by the nonspatial model considered by Isham
Ž .1995 for which the interaction between the host and the parasite is only
through the additional mortality that the parasite induces.

Theorem 1 holds for the host]parasite model as well and the proof is the
same as for the predator]prey model. This is so because the two models are
identical when f s 0.

Theorem 2 also holds for the host]parasite model with F s d . For if2
Ž .f ) d , then a 2 dies at rate d while a 1, 2 dies at rate f ) d . So the 2’s2 2 2

are dominated by a contact process with death rate d and birth rate l .2 2
Ž .Since l - l d the 2’s die out.2 c 2

Theorems 1 and 2 agree with the observation that a parasite may persist
in a population if and only the additional mortality that a parasite induces is
not too large.

When f ) d as explained above, the 2’s in the host]parasite model are2
dominated by a subcritical contact process. So the 2’s die out exponentially
fast and this implies that the 1’s take over the whole space. For a proof of a

Ž .very similar result, see Theorem 3 in Schinazi 1996 . For the predator]prey
Ž .model such a result should be true for l - l d and for f large enough, but2 c 2

Ž .we have no proof except for f s `. In this case there are no sites 1, 2 and
the 2’s evolve exactly like a contact process with birth rate l and death rate2
d . So the 2’s die out exponentially fast and the 1’s take over.2

Coexistence results are usually not easy to prove; see for instance Durrett
Ž . Ž .1993, 1995 , Durrett and Neuhauser 1991 and Kang, Krone and Neuhauser
Ž .1995 . The type of model we consider here is usually more difficult to analyze
because it is not monotone in any apparent way. However, allowing sites to
be occupied by the two types of particles at the same time greatly simplifies
the problem and we are able to give short proofs for both coexistence and
noncoexistence. We feel that allowing both types at the same site does not
diminish the biological relevance of our models. There are many models in
the mathematical biology literature for which proofs of coexistence are not

w Ž .known see, for instance, Sato, Matsuda and Sasaki 1994 and Andjel and
Ž .xSchinazi 1996 . We feel that modifications of the models in the spirit of this

paper may lead to more tractable problems.

2. Proof of Theorem 1. The predator]prey and the host]parasite mod-
w Ž .xels may be constructed with Harris’ graphical representation Harris 1972

that uses independent sequences of Poisson processes. For a construction of
Ž .the same type of model, see Schinazi 1996 .



PREDATOR]PREY SPATIAL MODEL 5

We will show coexistence for the predator]prey model on Z and then
explain why our proof implies coexistence on Zd for d G 2. We will compare
the predator]prey model to a simple oriented percolation model. In order to
do so we first need some notation. Let

LL s m , n g Z2 : m q n is even ,� 4Ž .
w xB s y4L, 4L = 0, T , B s 2mL, nT q B ,Ž . Ž .m , n

w xI s yL, L , I s 2mL q I ,m

where L and T are parameters to be chosen later. We also consider the
boundaries of the boxes:

w x w x w x� 4 � 4 � 4C s y4L, 4L = 0 j y4L = 0, T j 4L = 0, T ,Ž . Ž . Ž .
C s C q 2mL, nT .Ž .m , n

Ž .We declare m, n g LL wet if the process, starting with every site in Im
Ž .occupied by 1, 2 at time nT, is such that every site of I and every site ofmy 1
Ž . Ž .I has a 1, 2 at time n q 1 T. Moreover we want the above event tomq 1

happen regardless of the states of the sites on the boundary C of B .m , n m , n
This last condition is important in order to relate what happens in the finite
box B with what happens for the infinite system since we do not have anym , n

�Ž . 4monotonicity in this process. Observe that the events m, n is wet and
�Ž . 4 Ž . Ž .j, k is wet are independent if j, k and m, n are not nearest neighbors in
LL . In this sense we say that this is a 1-dependent oriented percolation model.

We are going to show that when f s 0, for any « ) 0 there are L and T
such that

P m , n is wet G 1 y «r2.Ž .Ž .
Ž .By translation invariance we may consider the site 0, 0 in LL . Assume that

Ž .at time 0 each site of the interval I is occupied by one 1, 2 . Let r be thet
Ž .rightmost site occupied by 1, 2 and whose line of descent goes back to I. One

of the ways r s x moves to x q 1 is when there is a creation of a 1 at x q 1t
followed by a creation of a 2 at x q 1. Since f s 0, r only moves to the rightt
so that

r G Nt t

for all t G 0, where N is a renewal process for which the mean time betweent
two renewals is

1rl q 1rl .1 2

By the renewal theorem we know that almost surely

r l lt 1 2
lim inf G s L .

t l q ltª` 1 2

Taking L large enough and T s 5Lr2L we get that

P r G 3L G 1 y «r4.Ž .T
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Ž .The leftmost site occupied by 1, 2 behaves in a symmetrical way and all the
Ž . Ž .sites between the leftmost 1, 2 and the rightmost 1, 2 are occupied by

Ž .1, 2 ’s. Thus,

P m, n is wet G 1 y «r2 if f s 0.Ž .Ž .
Observe that the above is true regardless of the appearance of 1’s and 2’s
coming from the boundary of the box B. For fixed L and T there is f ) 0
such that, if f - f, then the probability of any occurrence of any of the
Poisson processes with rate f in the finite box B is smaller than «r2. Thus,

P m , n is wet G 1 y « if f - f .Ž .Ž .
At this point we have three different systems: the infinite predator]prey
model, the predator]prey model restricted to the finite boxes B and them , n
oriented percolation model. Observe that the infinite predator]prey system

Ž .will have at least as many sites occupied by 1, 2 ’s as the predator]prey
system restricted to the finite boxes B . This is so thanks to the freem , n
boundary conditions we have on each box. This proves that the predator]prey
system dominates a 1-dependent oriented percolation. For « small enough it
is known that there is percolation and that the density of wet sites is positive
w Ž .xsee Durrett 1984 . To get a stationary distribution for the predator]prey

Ž .model, it is enough to start with all the sites of Z occupied by a 1, 2 , then
extract a convergent subsequence of the Cesaro averages. The limit is station-

wary since this process is Feller see Property 1.8 in Chapter I in Liggett
Ž .x1985 . By comparison with oriented percolation, we see that the density of

Ž .sites 1, 2 is strictly positive for this stationary distribution.
d Ž .For the predator]prey model on Z d G 2 , we may embed the preceding

1-dimensional construction and get a stationary distribution in exactly the
same way. The only difference is that the boundary of each B is larger butm , n
since Poisson processes corresponding to f do not occur in B , this has nom , n
influence on the construction. This completes the proof of Theorem 1.

3. Proof of Theorem 2. We will again make a comparison with oriented
percolation. To avoid introducing oriented percolation in Zdq1 for d G 2, we
will write the proof for d s 1 and indicate how to proceed in higher dimen-
sions.

Take LL as in the proof of Theorem 2 and define the finite boxes

w x w x w x w xA s y2 L, 2 L = 0, 2T , D s yL, L = T , 2T ,

where L and T are integers to be chosen later. Define CC to be the boundary
of the box A:

w x w x w x� 4 � 4 � 4CC s y2 L, 2 L = 0 j y2 L = 0, 2T j 2 L = 0, 2T .Ž . Ž . Ž .
Ž .We say that the site m, n in LL is wet if there are no 2’s in the box

Ž . Ž .mL, nT q D whatever the state of the sites in mL, nT q CC are. This
defines a 1-dependent oriented percolation on LL .

Consider first the predator]prey model with f s `. For this model we
Ž .have only the three states, 0, 1, 2: state 1, 2 is instantaneously transformed
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into state 2. So the 2’s have birth rate l and death rate d . They evolve2 2
independently of the evolution of the 1’s. Thus, the 2’s are a subcritical

y � 4Zcontact process. We denote by j a contact process on 0, 2 starting with at
single 2 at y at time 0. If j is a subcritical contact process we know byt

Ž . Ž .Bezuidenhout and Grimmett 1991 that there is a c l , d ) 0 such that2 2

P j y x s 2 for some t F eyc 5 xyy 5 .Ž .Ž .t

Define the survival time of the process j y byt

t y s inf t : j y x s 0 for all x g Z .� 4Ž .t

Ž .Bezuidenhout and Grimmett 1991 have also proved that

P t 0 ) k F eyc k .Ž .

Observe now that a 2 in the box D must have originated somewhere in the
boundary CC of the box A. If the 2 comes from one of the two lateral sides of
A, it means that a 2 has spread out at least L. If the 2 comes from the bottom
of A, it means that a 2 has survived at least until T. So using the exponential
decays, we get

P there is a 2 in D F 2 2Teyc L q 4L q 1 eycT .Ž . Ž . Ž .

Thus, for any « ) 0 we may pick L s T large enough so that for f s `,

P there is a 2 in D F «r2.Ž .

It is easy to see that as f goes to infinity, the predator]prey model converges
in distribution to the model with f s ` in the finite space]time box A. Thus,

Ž .there is F l , d such that if f ) F then2 2

P there is a 2 in D F « .Ž .
So

P m , n is wet G 1 y « for f ) F .Ž .Ž .
Ž .We define W to be the set of m g Z such that m, n can be reached fromn

Ž . Ž . Ž .0, 0 by a path of wet sites that can only jump from j, k to j y 1, k q 1 or
Ž . Ž .to j q 1, k q 1 . Let l s inf W and r s sup W . Results by Durrett 1984n n n n

w Ž .xsee also Durrett and Neuhauser 1991 imply that if « is small enough then
� 4 Ž .the event W / B, ; n has positive probability i.e., percolation occurs andn

when this occurs we have

lim sup l rn F ya - 0, lim inf r rn G a ) 0.n n
nª`nª`

Ž . Ž . Ž .Suppose that W / B, let 0, 0 , i , 1 , . . . , i , n be the leftmost path fromn 1 n
Ž . Ž . Ž . Ž . Ž .0, 0 to l , n and let 0, 0 , j , 1 , . . . , j , n be the rightmost path fromn 1 n
Ž . Ž . Ž .0, 0 to r , n . The definition of wet site implies that the regions i L, kT qn k

Ž .D and j L, kT q D do not contain any 2’s and they overlap to form ak
c Ž Ž ..connected region VV which is vee-shaped. Observe that VV l R = 0, nT
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Ž .consists of two unbounded components the outside and one or more bounded
Ž . ccomponents the inside . In order to get a 2 in the inside of VV , a path of 2’s

would need to go through VV , which is impossible since 2’s do not appear
spontaneously but only by nearest-neighbor interaction. Therefore there can
be no 2’s in the inside of VV c.

So when percolation occurs there is a linearly growing region for the
predator]prey system in which there are no 2’s. Percolation has positive
probability to occur; if it does not occur, we wait until W s B and then tryn
again. Each trial is independent of what happened earlier, so eventually we
will have a linearly growing region in which there are no 2’s. Observe that all
this is independent of the initial configuration. This completes the proof of
Theorem 2 in dimension 1.

Ž .In d ) 1 we must compare the predator]prey system to a d q 1 oriented
percolation to show that if « ) 0 is small, we get with positive probability a

Ž .linearly growing cone that contains on 2’s. Durrett 1992 proved the neces-
sary percolation results. Observe also that the exponential decays for the
contact process were proved in any dimension by Bezuidenhout and Grim-

Ž .mett 1991 and they can be used to prove that a renormalized site is wet
with probability arbitrarily close to 1. These are the two crucial ingredients to
make the proof of Theorem 2 work in d ) 1.
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