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A BOUND FOR THE DISTRIBUTION OF THE SUM OF
DISCRETE ASSOCIATED OR NEGATIVELY

ASSOCIATED RANDOM VARIABLES1

By Michael V. Boutsikas and Markos V. Koutras

University of Piraeus

LetX1�X2� � � � �Xn be a sequence of integer-valued random variables
that are either associated or negatively associated. We present a simple
upper bound for the distance between the distribution of the sum ofXi and
a sum of n independent random variables with the same marginals as Xi.
An upper bound useful for establishing a compound Poisson approximation
for

∑n
i=1Xi is also provided. The new bounds are of the same order as the

much acclaimed Stein–Chen bound.

1. Introduction. Let X1�X2� � � � �Xn be a sequence of integer-valued
random variables (r.v.’s). The need to approximate the distribution of the sum∑n
i=1Xi arises in various disciplines, such as probability theory, statistics,

reliability and biology.
The Poisson approximation of the distribution of

∑n
i=1Xi, known in the sta-

tistical literature as Poisson law of small numbers when theXi’s are indepen-
dently distributed binary r.v.’s, has been the subject of continuing theoretical
interest for more than one and a half centuries. Throughout statistical history
several interesting generalizations and extensions of the classical Poisson law
have been brought to light. Recently, the remarkable work by Chen (1975)
led to the development of a group of flexible, powerful techniques that can
be effectively used to estimate the error in the Poisson, the binomial and the
compound Poisson approximations of the sum of dependent indicator r.v.’s. The
definitive reference for this method, known as the Stein–Chen method, is the
monograph by Barbour, Holst and Janson (1992). For more recent develop-
ments on compound Poisson and binomial approximations, the reader may
refer to Barbour, Chen and Loh (1992), Roos (1994), Barbour and Utev (1998)
and Soon (1996).
The purpose of this paper is to develop simple tools that are useful for

approximating the distribution of the sum of integer-valued (not necessarily
binary) dependent r.v.’s by the distribution of the sum of independent variables
with the same marginals as the original ones. This is accomplished at the
expense of restricting the nature of the dependence to that of associated or
negatively associated (NA) r.v.’s. As a matter of fact, the main results of this
paper are proved under a weaker assumption on the form of the existing
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dependence between Xi’s, but we chose to state the results for associated and
NA r.v.’s because these classes are widely known, possess a good number of
useful properties and have many interesting applications in diverse areas.
The organization of this paper is as follows: Section 2 reviews preliminaries

on a number of useful distance metrics (total variation distance, Kolmogorov
distance, Wasserstein distance), association, negative association and several
other types of positive or negative dependence. In the same section, we present
our general result for the approximation of the distribution of the sum of
integer-valued associated or NA r.v.’s and specialize to the case of binary r.v.’s
thereof, obtaining a simple inequality for the mean of

∏n
i=1Xi and an upper

bound for generalized binomial approximations. A compound Poisson approx-
imation for

∑n
i=1Xi is examined and an application of the general result in a

simple sampling scheme is presented. It is worth mentioning that our bounds
require the computation of the first and second moments ofXi [namely Ɛ�Xi�
and Ɛ�XiXj�� i �= j], but not the higher ones. Finally, in Section 3, we give
the proof of the main theorem along with several auxiliary results that are of
independent interest.

2. Notation and statement of results. The total variation and the
Wasserstein distance between the distributions of two integer-valued r.v.’sX,Y
(with finite expectations) are given by

dTV�� �X��� �Y�� = sup
A⊆Z

���X ∈ A� − ��Y ∈ A��

= 1
2

∑
j∈Z

���X = j� − ��Y = j��

and

dW�� �X��� �Y�� = ∑
j∈Z

���X ≤ j� − ��Y ≤ j�� = inf Ɛ�U−V��(1)

respectively [the infimum ranges over all couplings �U�V� of � �X� and
� �Y�]. A sequence of random variables 
Xn� converges in distribution to
Y if dTV�� �Xn��� �Y�� or dW�� �Xn��� �Y�� converges to 0. The reverse
is always true for dTV, whereas for dW the additional condition of Xn being
uniformly integrable is necessary.
Another metric useful for establishing convergence in distribution is the

Kolmogorov distance

dK�� �X��� �Y�� = sup
w

���X ≤ w� − ��Y ≤ w���

Manifestly, dK�� �X��� �Y�� ≤ dTV�� �X��� �Y�� ≤ dW�� �X��� �Y��.
A collection of random variables X1�X2� � � � �Xn is said to be associated if

for every pair of coordinatewise nondecreasing functions f and g,

Cov�f�X�� g�X�� ≥ 0�(2)

where X = �X1�X2� � � � �Xn�. Throughout we assume, without further explicit
mention, that functions f and g are such that Cov�f�X�� g�X�� exists.
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The notion of associated r.v.’s was introduced by Esary, Proschan and
Walkup (1967), who also developed the fundamental properties of association
and indicated several interesting applications of it in order statistics, analysis
of variance and so forth. In the special case n = 2, the same authors discussed
a weaker concept of association offered by assuming that

Cov�f�X1�� g�X2�� ≥ 0(3)

for all nondecreasing functions f and g. Evidently, if X1 and X2 are asso-
ciated, then they are weakly associated, the converse not being always true.
Condition (3) is equivalent to

��X1 ≥ x1�X2 ≥ x2� ≥ ��X1 ≥ x1���X2 ≥ x2�(4)

for all x1� x2, which is, in fact, Lehmann’s (1966) definition for positive quad-
rant dependence (PQD). If (4) holds true for all x1� x2 with the inequality sign
reversed, the r.v.’s X1�X2 are called negatively quadrant dependent (NQD).
A collection of r.v.’s X1�X2� � � � �Xn is said to be NA if for every pair of

disjoint subsets A1�A2 of 
1�2� � � � � n�,
Cov�f�Xi� i ∈ A1�� g�Xi� i ∈ A2�� ≤ 0�

where f and g are coordinatewise nondecreasing functions of 
xi� i ∈ A1� and

xi� i ∈ A2�, respectively.
For a pair of r.v.’s, NQD is equivalent to NA. The definition of NA r.v.’s was

introduced by Joag-Dev and Proschan (1983), who also developed their basic
properties and discussed several interesting statistical applications.
We are now ready to state our main results. From now on we assume that

all variables involved are integer valued.

Theorem 1. Let X1�X2� � � � �Xn be associated or NA random variables
with Ɛ�Xi�� Ɛ�XiXj� < ∞� i� j = 1�2� � � � � n� i �= j. If X′

i, i = 1�2� � � � � n, are
independent random variables such that X′

i is distributed according to the
marginal distribution of Xi �� �Xi� = � �X′

i��, then

dK

(
�

( n∑
i=1
Xi

)
��

( n∑
i=1
X′
i

))
≤
∣∣∣∣ ∑
i<j

Cov�Xi�Xj�
∣∣∣∣�(5)

dW

(
�

( n∑
i=1
Xi

)
��

( n∑
i=1
X′
i

))
≤ 2

∣∣∣∣ ∑
i<j

Cov�Xi�Xj�
∣∣∣∣�(6)

Moreover, if X1�X2� � � � �Xn are associated or NA nonnegative r.v.’s, then

0≤��Xi = 0� i = 1�2� � � � � n�

−
n∏
i=1

��Xi = 0� ≤
∑
i<j

Cov�Xi�Xj�
(7)
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and

0≤
n∏
i=1

��Xi = 0� − ��Xi = 0� i = 1�2� � � � � n�

≤−∑
i<j

Cov�Xi�Xj��
(8)

respectively.

The proof is given in Section 3.
In view of the inequality dTV ≤ dW, any upper bound established for dW

can also be used for the total variation distance as well.
It is worth mentioning that for associated r.v.’s, the difference between

the characteristic functions of
∑n
i=1Xi and

∑n
i=1X

′
i is bounded (above) by

the upper bound in (5) multiplied by t2 (t is the argument of characteris-
tic functions). This is an immediate consequence of Newman and Wright’s
(1981) result concerning joint and marginal characteristic functions of associ-
ated r.v.’s.
Although Theorem 1 was stated for the class of associated or negatively

associated r.v.’s, we could relax this condition and assume that for every i =
2�3� � � � � n, the r.v.’s Xi and Si−1 = ∑i−1

j=1Xj are PQD and NQD respectively
(as a matter of fact, Theorem 1 is proved in Section 3 under this assumption).
In the sequel, we refer to these classes of variables by the terms positively
and negatively cumulative dependent (PCD and NCD) r.v.’s.
The fact that the class PCD is wider than the class of associated r.v.’s

is easily verified by considering the coordinatewise nondecreasing functions
fi�w�x� = I�w�∞��

∑i−1
j=1 xj� and gi�y�x� = I�y�∞��xi� for fixed w�y and i. If

X1�X2� � � � �Xn are associated, then Cov�fi�w�X�� gi�y�X�� ≥ 0 and whereas

Cov�fi�w�X�� gi�y�X�� = �

( i−1∑
j=1
Xj ≥ w�Xi ≥ y

)

−�

( i−1∑
j=1
Xj ≥ w

)
��Xi ≥ y��

we conclude that Xi�Si−1 =
∑i−1
j=1Xj are PQD; therefore X1�X2� � � � �Xn are

PCD. By the same reasoning (note that fi�w and gi�y are defined over dis-
joint subsets of 
x1� x2� � � � � xn�), we may easily verify that any set of NA r.v.’s
is NCD.
Let us now restrict ourselves to associated binary random variables.

A straightforward application of (7) for 1 − X1, 1 − X2� � � � �1 − Xn (which
are also associated) reveals the following result.

Theorem 2. If X1�X2� � � � �Xn are binary associated r.v.’s, then

0 ≤ Ɛ

( n∏
i=1
Xi

)
−

n∏
i=1

Ɛ�Xi� ≤
∑
i<j

Cov�Xi�Xj��(9)
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The left inequality gives a well known result established by Esary, Proschan
and Walkup (1967) that has been effectively used for the development of reli-
ability bounds of coherent structures [see, e.g., Barlow and Proschan (1981)].
It is of interest to notice that in the case of binary NA random variables

X1�X2� � � � � Xn, the inequality of Theorem 2 reads

0 ≤
n∏
i=1

Ɛ�Xi� − Ɛ

( n∏
i=1
Xi

)
≤ −∑

i<j

Cov�Xi�Xj��

The aforementioned formulas are also valid under the weaker assumption of
PCD and NCD, respectively.
It is also noteworthy that Theorem 1 immediately concludes that if X1,

X2� � � � �Xn are binary associated or NA r.v.’s, then

dK

(
�

( n∑
i=1
Xi

)
�GB

)

≤
∣∣∣∣∣
∑
i<j

���Xi = 1�Xj = 1� − ��Xi = 1���Xj = 1��
∣∣∣∣∣�

(10)

where GB = � �∑n
i=1X

′
i� denotes the generalized binomial distribution.

Let us next turn our attention to the problem of approximating the distribu-
tion of the sum of associated or NA r.v.’s by a compound Poisson distribution.

Theorem 3. Let X1�X2� � � � �Xn be nonnegative associated or NA r.v.’s
with Ɛ�Xi�, Ɛ�XiXj� <∞ for i� j = 1�2� � � � � n, i �= j. Then

dK

(
�

( n∑
i=1
Xi

)
�CP�λ1� λ2� � � ��

)
≤
∣∣∣∣∣
∑
i<j

Cov�Xi�Xj�
∣∣∣∣∣+ 1

2

n∑
i=1

Ɛ�Xi�2�

dW

(
�

( n∑
i=1
Xi

)
�CP�λ1� λ2� � � ��

)
≤ 2

∣∣∣∣∣
∑
i<j

Cov�Xi�Xj�
∣∣∣∣∣+

n∑
i=1

Ɛ�Xi�2�

where λj = ∑n
i=1��Xi = j� and CP�λ1� λ2� � � �� denotes a compound Poisson

distribution with probability generating function exp�−λ�1−∑
j≥1�λj/λ�zj��,

λ =∑
j≥1 λj.

Loosely speaking, Theorem 3 (the proof of which is given in Section 3) states
that if the nonnegative associated or NA r.v.’s Xi� i = 1�2� � � � � n, are almost
uncorrelated [i.e.,

∑
i<jCov�Xi�Xj� is negligible] and their distributions are

concentrated around zero [e.g., ��Xi > 0� ≤ Ɛ�Xi� = o�n−1/2�], then their
sum

∑n
i=1Xi can be approximated by an appropriate compound Poisson dis-

tribution. Needless to say, Theorem 3 is also valid for the case of PCD and
NCD r.v.’s. Theorem 3 can be used to handle almost all cases where a Poisson
or compound Poisson Stein–Chen approximation has been applied, provided
that the variables involved are associated or NA (e.g., overlapping success
runs, etc.). To this end, it suffices to define Xi as the size of clump clustered



1142 M. V. BOUTSIKAS AND M. V. KOUTRAS

at the point where the ith occurrence of the event we are interested in took
place. We mention that to attack such problems by the Stein–Chen method,
a typical declumping technique should first be established [e.g., see Arratia,
Goldstein and Gordon (1990)].
We can easily verify that the approximating compound Poisson distribution

CP�λ1� λ2� � � �� coincides with the distribution of the sum
∑N
i=1Yi, where N

is a Poisson r.v. with parameter λ = ∑n
i=1��Xi > 0� and Yi are independent

r.v.’s with distribution function ��Yi ≤ y� = �1/λ�∑n
i=1 ��0 < Xi ≤ y� [the

latter can also be viewed as a mixture of the conditional distributions of Xi

given that Xi > 0 with weights ��Xi > 0�� i = 1�2� � � � � n].
Recently, the powerful Stein–Chen method has become very popular for

studying the Poisson approximation of sums of dependent binary variables
[see, e.g., Barbour, Holst and Janson (1992)]. Attempting a comparison
between the Stein–Chen method and the results reported in this section, we
may state that both approaches involve first and second moments and offer
error estimates on the same order. The Stein–Chen method applies to binary
variables only, whereas Theorem 1 is valid for any set of integer-valued vari-
ables; on the other hand, Theorem 1 applies only to associated or NA r.v.’s,
whereas the Stein–Chen formula is valid for any set of indicator variables.
Finally, the Stein–Chen method offers an estimate of the error incurred when
the distribution of a sum of dependent r.v.’s is approximated by a Poisson,
compound Poisson or binomial distribution [cf. Arratia, Goldstein and Gordon
(1990), Barbour, Holst and Janson (1992), Roos (1994), Barbour and Utev
(1998) and Soon (1996)], whereas Theorem 1 provides an estimate of the error
incurred when approximating the distribution of a sum of dependent r.v.’s by
the convolution of (independent) variables following the marginal distributions
of the original set.
In closing we illustrate very briefly how the outcome of Theorem 1 can

be used in a simple sampling problem. Suppose a finite population consists
ofN integer values, y1� y2� � � � � yN. Let Y

′
1�Y

′
2� � � � �Y

′
n and Y1�Y2� � � � �Yn, be

two random samples obtained from this population with and without replace-
ment, respectively. The random variables Y1, Y2, � � �, Yn are, as Joag-Dev and
Proschan (1983) indicated, NA. The population total y = y1+y2+· · ·+yN can
then be estimated either by Y′ = �N/n�∑n

i=1Y
′
i or by Y = �N/n�∑n

i=1Yi
[e.g., see Cochran (1977)]. Clearly, the first estimator has larger variance
than the second, but because it is expressed in terms of independent r.v.’s,
it has more tractable distribution than Y. Were we interested in estimating
the discrepancy between the distributions of Y′ and Y, we could make use of
Theorem 1 to get

dK�� �Y��� �Y′�� ≤ −∑
i<j

Cov�Yi�Yj�

= 1
2

(
Var

( n∑
i=1
Y′
i

)
− Var

( n∑
i=1
Yi

))
�
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Denoting now by σ2 = ∑N
j=1�yi − y/N�2/N the variance of Yi in the finite

population and recalling the well known formulas Var�∑n
i=1Yi/n� = σ2�N −

n�/�n�N− 1�� and Var�∑n
i=1Y

′
i/n� = σ2/n, we get

dK�� �Y��� �Y′�� ≤ n�n− 1�
2�N− 1�σ

2�

Clearly, the RHS of the last inequality is also a bound for dK�� �∑n
i=1Yi�,

� �∑n
i=1Y

′
i�� and for the distance between the distributions of the mean

estimators �1/n�∑n
i=1Yi and �1/n�∑n

i=1Y
′
i.

If the population consisted of m 1’s and N −m 0’s, the r.v.’s
∑n
i=1Y

′
i and∑n

i=1Yi would follow the binomial distribution with parameters n�p = m/N
and a hypergeometrical distribution with parameters n�m and N, respec-
tively. In this case, we have σ2 =m/N�1−m/N� and, therefore, the distance
between the aforementioned distributions is bounded by �n�n − 1��/�2�N −
1��m/N�1−m/N� [or �n�n− 1��/�8�N − 1�� when m is unknown]. Needless
to say, an upper bound for the total variation or Wasserstein distance is twice
the aforementioned value. For comparable results through the Stein–Chen
method, see Barbour, Holst and Janson (1992) and Soon (1996).
Additional applications that pertain to reliability bounds and approxima-

tions of runs, scans and urn model distributions will be reported in subsequent
works.

3. Proof of the main results. Before starting the proof process of our
main results, we note that if X�Y are integer-valued r.v.’s with finite Ɛ�X�,
Ɛ�Y��Ɛ�XY�, then

Cov�X�Y�= ∑
�x�y�∈Z2

Cov�I�X≥x�� I�Y≥y��

= ∑
�x�y�∈Z2

[
��X ≥ x�Y ≥ y� − ��X ≥ x���Y ≥ y�]�(11)

This is the discrete analogue of an identity presented in Lehmann (1966). The
following lemma is an immediate consequence of (4) and (11).

Lemma 4. If X and Y are PQD r.v.’s, then

0 ≤ ∑
�x�y�∈A

���X ≥ x�Y ≥ y� − ��X ≥ x���Y ≥ y�� ≤ Cov�X�Y�

for any subset A of Z2.

We now proceed to another lemma, which will play a crucial role in the
development of our main result.

Lemma 5. If X and Y are PQD r.v.’s, then:

(a)
∣∣∑

w∈A���X+Y ≥ w�−��X′ +Y′ ≥ w��∣∣ ≤ Cov�X�Y� for every A ⊆ Z�
(b) dK�� �X+Y��� �X′ +Y′�� ≤ Cov�X�Y��
(c) dW�� �X+Y��� �X′ +Y′�� ≤ 2Cov�X�Y��
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whereX′ and Y′ are independent random variables such that � �X� = � �X′�
and � �Y� = � �Y′�.

Proof. (a) We first express ��X + Y ≥ w� in terms of probabilities on
lower bounded quadrants as

��X+Y ≥ w� =
∞∑

y=−∞
���X ≥ w− y�Y ≥ y� − ��X ≥ w− y�Y ≥ y+ 1���

Whereas X′ and Y′ are independent and follow the same distribution with X
and Y, respectively, we may write, by the same token,

��X′ +Y′ ≥ w� = ∑
y∈Z

���X ≥ w− y���Y ≥ y�

−��X ≥ w− y���Y ≥ y+ 1���
A combined use of these expressions yields∑

w∈A
���X+Y ≥ w� − ��X′ +Y′ ≥ w��

= ∑
w∈A

∑
y∈Z

���X ≥ w− y�Y ≥ y� − ��X ≥ w− y���Y ≥ y��

− ∑
w∈A

∑
y∈Z

���X ≥ w− y�Y ≥ y+ 1� − ��X ≥ w− y���Y ≥ y+ 1���

The proof of part (a) is now easily completed by observing that in view of
Lemma 4, each of the last two double sums is bounded below by 0 and above
by Cov�X�Y�.
(b) Follows readily from part (a) on choosing A = 
w��w ∈ Z.
(c) Let Iw denote the sign of the difference ��X+Y ≥ w�−��X′ +Y′ ≥ w�.

By the definition of the Wasserstein distance, we have

dW�� �X+Y��� �X′ +Y′��
= ∑
w∈Z �Iw=1

���X+Y ≥ w� − ��X′ +Y′ ≥ w��

− ∑
w∈Z �Iw=−1

���X+Y ≥ w� − ��X′ +Y′ ≥ w��

and applying (a) twice, we gain the desired inequality. ✷

It is also of interest to note that should X and Y be NQD, following an
exact parallel to the procedure used before, we may gain the inequalities of
Lemma 5 with Cov�X�Y� replaced by −Cov�X�Y� ≥ 0.
The following simple lemma also proves useful for the development of our

main result.

Lemma 6. If X and Y are PQD and Z is independent of X and Y, then
X+Z�Y are also PQD.
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Proof. The proof results immediately by observing that for every w�y,
we have

��X+Z ≥ w�Y ≥ y� =∑
z

��X ≥ w− z�Y ≥ y���Z = z�

≥∑
z

��X ≥ w− z���Y ≥ y���Z = z�

= ��X+Z ≥ w���Y ≥ y�� ✷

Similar reasoning assures that Lemma 6 is also valid for NQD r.v.’s.
We are now in possession of the “machinery” needed to prove Theorem 1.

Proof of Theorem 1. The proof will be established under the assumption
that X1�X2� � � � �Xn are PCD. Trivial adjustments in the arguments involved
therein (e.g., replacing Cov by −Cov, etc.) yield an analogous proof for the
case of NCD r.v.’s. Whereas the class of associated and NA r.v.’s is a subclass
of PCD and NCD respectively, the proof covers these classes as well.
Let X1�X2� � � � �Xn be PCD r.v.’s and define Si =

∑i
j=1Xj � i = 1�2� � � � � n.

By the definition of PCD, the r.v.’s Sn−1 and Xn are PQD, and choosing X′
n so

that � �Xn� = � �X′
n� and X′

n is independent of X1�X2� � � � �Xn−1, allows us
to apply Lemma 5(b) to get

dK�� �Sn−1 +Xn��� �Sn−1 +X′
n�� ≤ Cov�Sn−1�Xn��

WhereasX′
n is independent of Sn−2�Xn−1 and Sn−2�Xn−1 are PQD, Lemma 6

assures that Sn−2 + X′
n�Xn−1 are also PQD. Choosing now X′

n−1 so that
� �Xn−1� = � �X′

n−1� and X′
n−1 is independent of X1�X2� � � � �Xn−2�X′

n, we
may write, by virtue of Lemma 5(b),

dK�� ��Sn−2 +X′
n� +Xn−1��� ��Sn−2 +X′

n� +X′
n−1��

≤ Cov�Sn−2 +X′
n�Xn−1��

Invoking the triangle inequality, we have

dK�� �Sn��� �Sn−2 +X′
n−1 +X′

n��
≤ Cov�Sn−2 +X′

n�Xn−1� + Cov�Sn−1�Xn��
which, after taking into account that Cov�X′

n�Xn−1� = 0, simplifies to

dK

(
�

( n∑
i=1
Xi

)
��

( n−2∑
i=1
Xi +X′

n−1 +X′
n

))

≤ Cov�Sn−2�Xn−1� + Cov�Sn−1�Xn��
It is now clear that by induction, we are led to

dK

(
�

( n∑
i=1
Xi

)
��

( n∑
i=1
X′
i

))
≤

n∑
i=2
Cov�Si−1�Xi� =

n∑
i=2

i−1∑
j=1
Cov�Xj�Xi�

and the proof of (5) is done.
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For the proof of (6), we employ exactly the same reasoning and the respec-
tive inequality for dW as mentioned in Lemma 5(c).
Let us now proceed to the proof of (7). It can be easily verified that for any

pair of nonnegative PQD r.v.’s X, Y, we have ��X = 0�Y = 0� ≥ ��X = 0�
��Y = 0�. Now, if X1�X2� � � � �Xn are nonnegative PCD r.v.’s, then Sn−1�Xn

are PQD and, therefore,

��Sn = 0� = ��Sn−1 = 0�Xn = 0� ≥ ��Sn−1 = 0���Xn = 0��
By the same token, ��Sn−1 = 0� ≥ ��Sn−2 = 0���Xn−1 = 0�, and working by
induction we get the LHS inequality of (7). For the proof of the RHS, observe
that

0 ≤ ��Xi = 0�1 ≤ i ≤ n� −
n∏
i=1

��Xi = 0�

= �

( n∑
i=1
Xi = 0

)
− �

( n∑
i=1
X′
i = 0

)

≤ dK
(
�

( n∑
i=1
Xi

)
��

( n∑
i=1
X′
i

))
≤ ∑
i<j

Cov�Xi�Xj�� ✷

The next two lemmas, apart from being instrumental in constructing the proof
of Theorem 3, contain results that are of independent interest. In the sequel,
Po�λ� denotes the Poisson distribution with mean λ.

Lemma 7. If X1�X2� � � � �Xn are independent binary variables with
��Xi = 1� = pi� then

dW

(
�

( n∑
i=1
Xi

)
�Po

( n∑
i=1
pi

))
≤

n∑
i=1
p2i �

Proof. LetY1�Y2� � � � �Yn be independent r.v.’s such that� �Yi� = Po�pi�.
Then, recalling the subadditivity property of dW for independent summands,
we get

dW

(
�

( n∑
i=1
Xi

)
��

( n∑
i=1
Yi

))
≤

n∑
i=1
dW�� �Xi��� �Yi��

=
n∑
i=1

∞∑
x=0

���Xi > x� − ��Yi > x��

=
n∑
i=1

(�1− pi − e−pi � + Ɛ�Yi� − ��Yi > 0�
)

= 2
n∑
i=1

�e−pi − 1+ pi� ≤
n∑
i=1
p2i

and the proof is complete. ✷
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Whereas dK ≤ dTV ≤ dW, Lemma 7 implies the well known fact that
the total variation distance between a generalized binomial distribution with
parameters p1� p2� � � � � pn and a Poisson distribution with mean

∑n
i=1pi is

bounded from above by the quantity
∑n
i=1p

2
i . For a similar result, see

Xia (1997).

Lemma 8. If Xi� i = 1�2� � � � � n, are independent nonnegative integer-
valued r.v.’s with Ɛ�Xi� <∞� then

dW

(
�

( n∑
i=1
Xi

)
�CP�λ1� λ2� � � ��

)
≤

n∑
i=1

Ɛ�Xi�2�(12)

where λj = ∑n
i=1��Xi = j� and CP�λ1� λ2� � � �� denotes a compound Poisson

distribution with probability generating function exp�−λ�1−∑
j≥1�λj/λ�zj��,

λ =∑
j≥1 λj.

Proof. Assume first that Xi’s have finite support 
0�1� � � � �m� and
express

∑n
i=1Xi as a sum of NA r.v.’s as

n∑
i=1
Xi =

n∑
i=1

m∑
j=1
jI�Xi=j�

[the multinomially distributed r.v.’s I�Xi=j�� j = 1�2� � � � �m, are NA; see Joag-
Dev and Proschan(1983) and, therefore, the r.v’s jI�Xi=j�� j = 1� � � � �m� i =
1�2� � � � � n, are also NA]. Denoting by I′ij� j = 1�2� � � � �m� i = 1�2� � � � � n, a
set of independent binary r.v.’s with success probabilities ��I′ij = 1� = 1−
��I′ij = 0� = ��Xi = j� and employing Theorem 1, we deduce

dW

(
�

( n∑
i=1

m∑
j=1
jI�Xi=j�

)
��

( n∑
i=1

m∑
j=1
jI′ij

))

≤
n∑
i=1
dW

(
�

( m∑
j=1
jI�Xi=j�

)
��

( m∑
j=1
jI′ij

))

≤ −2
n∑
i=1

∑
k<j

Cov�jI�Xi=j�� kI�Xi=k��

= 2
n∑
i=1

∑
k<j

jk��Xi = j���Xi = k�

=
n∑
i=1

Ɛ�Xi�2 −
n∑
i=1

m∑
j=1
j2��Xi = j�2�
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Let now Wj�j = 1�2� � � � �m� be independent Poisson r.v.’s such that λj =
Ɛ�Wj� =

∑n
i=1��Xi = j�. Employing Lemma 7, we get

dW

(
�

( m∑
j=1
j
n∑
i=1
I′ij

)
��

( m∑
j=1
jWj

))

≤
m∑
j=1
dW

(
�

(
j
n∑
i=1
I′ij

)
�� �jWj�

)

=
m∑
j=1
jdW

(
�

( n∑
i=1
I′ij

)
�Po

( n∑
i=1

��Xi = j�
))

≤
m∑
j=1
j
n∑
i=1

��Xi = j�2�

The proof is easily completed if we combine the preceding inequalities to
deduce (by virtue of the triangle inequality)

dW

(
�

( n∑
i=1
Xi

)
��

( m∑
j=1
jWj

))

≤
n∑
i=1

Ɛ�Xi�2 −
n∑
i=1

m∑
j=1

�j2 − j���Xi = j�2 ≤
n∑
i=1

Ɛ�Xi�2
(13)

and observe that the probability generating function of
∑m
j=1 jWj is given by

Ɛ
(
z
∑m
j=1 jWj

) = m∏
j=1

Ɛ�zjWj� =
m∏
j=1
exp�−λj�1− zj��

= exp
(
− λ

(
1−

m∑
j=1

λj

λ
zj
))
�

The extension of inequality (13) to the case of r.v.’s with infinite support (Xi ∈
Z+� can be easily achieved by considering first the truncated r.v.’s Yi�m =
XiI�Xi≤m� and a sequence Wj�j = 1�2� � � � � of independent Poisson r.v.’s such
that λj = Ɛ�Wj� = ∑n

i=1��Xi = j�. Recalling (1), we may state that for
m = 1�2� � � � �

dW

(
�

( n∑
i=1
Xi

)
�CP�λ1� λ2� � � ��

)

≤ dW
(
�

( n∑
i=1
Xi

)
��

( n∑
i=1
Yi�m

))
+

n∑
i=1

Ɛ�Yi�m�2

+dW
(
�

( m∑
j=1
jWj

)
��

( ∞∑
j=1
jWj

))
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≤ Ɛ

∣∣∣∣
n∑
i=1

�Xi −Yi�m�
∣∣∣∣+

n∑
i=1

Ɛ�Yi�m�2 + Ɛ

∣∣∣∣
∞∑

j=m+1
jWj

∣∣∣∣
= 2

n∑
i=1

Ɛ�XiI�Xi>m�� +
n∑
i=1

Ɛ�Yi�m�2

and, because Yi�m → Xi� XiI�Xi>m� → 0 (as m → ∞� a.s. and 0 ≤ Yi�m,
XiI�Xi>m� ≤Xi� the bounded convergence theorem completes the proof. ✷

Proof of Theorem 3. If X′
i are independent r.v.’s such that � �X′

i� =
� �Xi�� we may write

dW

(
�

( n∑
i=1
Xi

)
�CP�λ1� λ2� � � ��

)

≤ dW

(
�

( n∑
i=1
Xi

)
��

( n∑
i=1
X′
i

))
+ dW

(
�

( n∑
i=1
X′
i

)
�CP�λ1� λ2� � � ��

)

and the proof results immediately by employing Theorem 1 and Lemma 8.
The proof of the upper bound for dK is captured by reasoning similar to that
used earlier for dW. ✷
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