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1 Introduction

‘This track, as you perceive, was made by a rider who was going from the direction of the school.’
‘Or towards it?’

‘No, no, my dear Watson. The more deeply sunk impression is, of course, the hind wheel, upon

which the weight rests. You perceive several places where it has passed across and obliterated the

more shallow mark of the front one. It was undoubtedly heading away from the school.’

From The Adventure of the Priory School, a Sherlock Holmes story by A. Conan Doyle.

The radial projection of a Brownian motion started at the origin and run for unit time in
d dimensions defines a random occupation measure on the sphere Sd−1. Can we determine
the endpoint of the Brownian path from this projected occupation measure? The problem of
recovering data given a projection of the data is a common theme both inside and outside of
probability theory. The title of this paper is adapted from a handout distributed by Peter Doyle,
where the geometric problem of recovering from bicycle tracks the exit direction of the cyclist
was posed.

An interesting feature of the present reconstruction problem is that the answer in low dimensions
is different from the answer in dimensions d ≥ 3. This would not be too surprising, except that
the behavior in the one-dimensional case involves a conditioning identity which does not seem
inherently one-dimensional. This identity concerns the conditional distribution of the endpoint
given the occupation measure. One of the aims of this paper is to understand why this identity
breaks down in higher dimensions, and what version of this identity might hold even when the
occupation measure determines the endpoint and indeed determines the entire unprojected path.
In high dimensions, recovery of the endpoint (and entire path), while intuitively plausible, is
somewhat tricky because, as described in [17, page 275], the particle “comes in spinning”. In
particular, the range of the projected path is a.s. a dense subset of the sphere (see remark at
the end of this introduction). Thus some quantitative criterion on accumulation of measure is
required even to recover the set of occupied points on the sphere from the occupation measure.

Throughout the paper d is a positive integer, and Sd−1 ⊆ R
d is the unit sphere. We often

omit d in the notation for various spaces and mappings whose definition depends on d. Let
π : R

d → Sd−1 be the spherical projection π(x) = x/|x| for x 6= 0, with some arbitrary
conventional value for π(0). Let (Wt, t ≥ 0) denote a standard Brownian motion in R

d with
W0 = 0, which we take to be defined on some underlying probability space (Ω,F ,P). For t ≥ 0
let Θt := π(Wt), and let Θ := (Θt, 0 < t ≤ 1). Let µΘ denote the random occupation measure
of Θ on Sd−1, that is

µΘ(B) :=
∫ 1

0
1Θt∈B dt (1.1)

for Borel subsets B of Sd−1. We may regard µΘ as a random variable defined on (Ω,F ,P) with
values in the space (prob(Sd−1),F2) of Borel probability measure on Sd−1 endowed with the
σ-field generated by the measures of Borel sets.

The questions considered in this paper arose from the following identity: for each Borel subset
B of Sd−1, we have

P (Θ1 ∈ B |µΘ(B)) = µΘ(B). (1.2)
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If d = 1 then S0 = {−1, 1}, and µΘ({1}) and µΘ({−1}) are the times spent positive and negative
respectively by a one-dimensional Brownian motion up to time 1. As observed in Pitman-Yor
[28], formula (1.2) in this case can be read from Lévy’s description [22] of the joint law of the
arcsine distributed variable µΘ({1}) and the Bernoulli(1/2) distributed indicator 1W1>0. The
truth of (1.2) in higher dimensions is not so easily checked, due to the lack of explicit formulae for
the distribution of µΘ(B) even for the simplest subsets B of Sd−1; see for instance [4]. However,
(1.2) can be deduced from the scaling property of Brownian motion, which implies that the
process (Θt, t ≥ 0) is 0-self-similar, meaning there is the equality in distribution

(Θt, t ≥ 0) d= (Θct, t ≥ 0)

for all c > 0. According to an identity of Pitman and Yor [30], recalled as Proposition 2.1
in Section 2, the identityi (1.2) holds for an arbitrary jointly measurable 0-self-similar process
(Θt, t ≥ 0) with values in an abstract measurable space, for any measurable subset B of that
space.

Formula (1.2) led us to the following question, which we discuss further in Section 3:

Question 1.1 For which processes Θ := (Θt, 0 ≤ t ≤ 1), does the identity

P (Θ1 ∈ B |µΘ) = µΘ(B) (1.3)

hold for all measurable subsets B of the range space of Θ?

To clarify the difference between (1.2) and (1.3), P (Θ1 ∈ B |µΘ(B)) on the LHS of (1.3) is a
conditional probability given the σ-field generated by the real random variable µΘ(B), whereas
P (Θ1 ∈ B |µΘ) on the LHS of (1.3) is a conditional probability given the σ-field generated by
the random measure µΘ, that is by all the random variables µΘ(C) as C ranges over measurable
subsets of the range space of Θ. For a general process Θ, formula (1.3) implies (1.2), but not
conversely.

Now let Θ be the spherical projection of Brownian motion. If d = 1 then the σ-field generated
by µΘ is identical to that generated by either µΘ({1}) or by µΘ({−1}) = 1 − µΘ({−1}). So
(1.3) is a consequence of (1.2) if d = 1. But (1.3) fails for d ≥ 2. We show this for d = 2 in
Section 4 by some explicit estimates involving the occupation times of quadrants. For d ≥ 3
formula (1.3) fails even more dramatically. In Section 5 we show that if d ≥ 3 then Θ1 is a.s.
equal to a measurable function of µΘ. Less formally, we say that Θ1 can be recovered from µΘ.
This brings us to the question of what features of the path of the original Brownian motion
W := (Wt, 0 ≤ t ≤ 1) can be recovered from µΘ. If d = 3 it is well known that the path
W has self-intersections almost surely, so one can define a measure-preserving map T on the
Brownian path space that reverses the direction of an appropriately selected closed loop in the
path. Regarding µΘ = µΘ(W ) as a function on path space, we then have µΘ(W ) = µΘ(TW ),
hence P(W ∈ A |µΘ) = P(W ∈ T−1A |µΘ), from which it follows that W itself cannot be
recovered from µΘ. However, for d = 3 it is possible to recover from µΘ both the random set

range(W ) := {Wt : 0 ≤ t ≤ 1}
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and the final value W1. We regard range(W ) as a random variable with values in the space
cb-sets of closed bounded subsets of Rd , equipped with the Borel σ-field for the Hausdorff metric

d(S, T ) := max{sup
x∈S

d(x, T ) , sup
y∈T

d(y, S)}

where d(x, S) := infy∈S |x− y|. We now make a formal statement of the recovery result:

Theorem 1.2 Fix the dimension d ≥ 3. There exist measurable functions

ψ : prob(Sd−1) → cb-sets and ϕ : cb-sets → R
d ,

such that there are almost sure equalities

ψ(µΘ) = range(W ) (1.4)
and ϕ ◦ ψ(µΘ) = W1. (1.5)

For d ≥ 4 it is a routine consequence of the almost sure parameterizability of a Brownian path
by its quadratic variation that W can be recovered from range(W ). So Theorem 1.2 implies that
W can be recovered from µΘ in dimensions d ≥ 4. The only part of the proof of Theorem 1.2
which involves probabilistic estimates for Brownian motion is Lemma 5.1, the remainder being
mostly point-set topology. We remark that the topological arguments below also show that in
dimension d = 2, the range of W and the endpoint W1 can be recovered from the occupation
measure of the planar path W := (Wt, 0 ≤ t ≤ 1)

As usual, the hardest (and most interesting) dimension is two. We conjecture that the high-
dimensional behavior does not extend to two dimensions, that is,

Conjecture 1.3 When d = 2, there is no map ψ : prob(Sd−1) → cb-sets such that almost surely

ψ(µΘ) = range(W ).

When d = 2 it can be deduced from work of Bass and Khoshnevisan [3, Theorem 2.9] that µΘ

almost surely has a continuous density, call it the angular local time process. The problem of
describing the conditional law of W given µΘ for d = 2 is then analogous to the problem studied
by Warren and Yor [36], who give an account of the randomness left in a one-dimensional
Brownian motion after conditioning on its occupation measure up to a suitable random time.
Aldous [1] and Knight [19] treat related questions involving the distribution of Brownian motion
conditioned on its local time process. However, as far as we know there is no Ray-Knight type
description available for the angular local time process, and this makes it difficult to settle the
conjecture.

Remark. Let Θt := Wt/|Wt| be the radial projection of Brownian motion in R
d . It is a classical

fact that for any ε > 0, the initial path segment {Θt : 0 < t < ε} is dense in the unit sphere
Sd−1. Since this fact motivates much of our work, we include an elementary explanation for it,
which is valid in greater generality. It suffices to show that for any open set U on the sphere and

4



any ε > 0, the probability of the event E(U, ε) that {Θt : 0 < t < ε} intersects U , equals one.
By compactness, some finite number NU of rotated copies of U cover the sphere, so by rotation
invariance of Brownian motion, P[E(U, ε)] ≥ N−1

U . Therefore

P

[ ∞⋂
n=1

E(U, 1/n)
]
≥ N−1

U ,

whence by the Blumenthal zero-one law, this probability must be 1.

2 Identities for scalar self-similar processes

Recall that a real or vector-valued process (Xt, t ≥ 0) is called β-self-similar for a β ∈ R if for
every c > 0

(Xct, t ≥ 0) d= (cβXt, t ≥ 0) (2.1)

Such processes were studied by Lamperti [20, 21], who called them semi-stable. See [34] for a
survey of the literature of these processes. The conditioning formula (1.2) for any 0-self-similar
process (Θt, t ≥ 0) is an immediate consequence of the following identity. To see the direct
implication, take X(t, ω) to equal 1(0,∞)(ω(t)).

Proposition 2.1 (Pitman and Yor [30]) Let (Xt, t ≥ 0) be stochastic process with X : R+×Ω →
R jointly measurable. Let X t := t−1

∫ t
0 Xs ds and suppose that

(Xt,X t)
d= (X1,X1) (2.2)

and E |X1 | < ∞. (2.3)

Then for every t > 0,
E(Xt |X t) = Xt. (2.4)

Proof: We simplify slightly the proof in [30]. Due to (2.2) it suffices to prove (2.4) for t = 1.
It also suffices to prove this on the event {X1 6= 0}, since this implies EX11X1 6=0 = EX 11X1 6=0

and subtracting the relation EX1 = EX 1 (a consequence of (2.2)) yields EX11X1=0 = 0. This
is equivalent to proving

E [f(X 1);X1 6= 0] = E

[
f(X1)

X1

X1

;X1 6= 0
]

(2.5)

for a suitably large class of functions f . Let ν be the law of X1. Since f(x)1x 6=0 for bounded
measurable f may be approximated in L2(ν) by bounded functions vanishing in a neighborhood
of zero and having bounded continuous derivative, this class suffices. Fix such a function f and
apply the chain rule for Lebesgue integrals (see, e.g., [32], Chapter 0, Prop. (4.6)), treating ω as
fixed, to obtain

f

(∫ 1

0
Xt dt

)
=
∫ 1

0
f ′
(∫ t

0
Xs ds

)
Xt dt.
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Boundedness of f ′ allows the interchange of expectation with integration, so using (2.2) we get
(2.5) from the following computation:

E [f(X 1);X1 6= 0] = Ef(X 1) =
∫ 1

0
E

[
f ′
(∫ t

0
Xs ds

)
Xt

]
dt

=
∫ 1

0
E
[
f ′(tX1)X1

]
dt

= E

[∫ 1

0
f ′(tX1)X1 dt

]

= E

[
f(X1)

X1

X1

]
.

�

For a different proof and variations of the identity see [29]. We see immediately that (2.2) holds
for any 0-self-similar process X. We observe also:

Corollary 2.2 Let (Yt) be any β-self-similar vector-valued process. Let Xt := 1{Yt∈C} where C
is any Borel set which is a cone, i.e., for λ > 0, x ∈ C ⇔ λx ∈ C. Then (Xt) satisfies (2.2), and
hence

P(Y1 ∈ C |X1) = X1. (2.6)

Applying Bayes’ rule to (2.6) yields the following corollary.

Corollary 2.3 Let {Yt} be any β-self-similar vector-valued process, and let Vt =
∫ t
0 Xs ds with

Xt := 1{Yt∈C} for a fixed positive cone C. Then

P(Vt ∈ dv |Yt ∈ C) =
vP(Vt ∈ dv)
tP(Yt ∈ C)

.

Corollary 2.4 Under the hypotheses of the Corollary 2.3, suppose X t has a beta(a, b) distribu-
tion. Then the conditional distribution of X t given Yt ∈ C is beta(a+ 1, b) and the conditional
distribution of Xt given Yt /∈ C is beta(a, b+ 1).

Example 2.5 Stable Lévy Processes. Let {Yt} be a stable Lévy process that satisfies P(Yt >
0) = p for all t. It is well known [23, 15] that the distribution of the total duration V1 that {Yt}
is positive up to time 1, is beta(p, 1−p). It follows that the conditional distributions of V1 given
the sign of Y1 are respectively

(V1 |Y1 > 0) d= beta(1 + p, 1 − p) (2.7)

(V1 |Y1 < 0) d= beta(p, 2 − p). (2.8)
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Example 2.6 Perturbed Brownian Motions. Let Yt := |Bt| − µ`t, t ≥ 0, where B is a standard
one-dimensional Brownian motion started at 0, µ > 0 and (`t, t ≥ 0) is the local time process of
B at zero. F. Petit [27] showed that V −

1 :=
∫ 1
0 ds1(Ys<0) has beta

(
1
2 ,

1
2µ

)
distribution. Corollary

2.4 implies that the conditional distribution of V −
1 given Y1 < 0 is beta

(
3
2 ,

1
2µ

)
and that the

conditional distribution of V −
1 given Y1 > 0 is beta

(
1
2 , 1 + 1

2µ

)
. These results have been stated

and proved in [37, Th. 8.3] and in [8]. A more general class of beta laws has been obtained for
the times spent in R± by doubly perturbed Brownian motions, that is to say solutions of the
stochastic equation

Yt = Bt + α sup
0≤s≤t

Ys + β inf
0≤s≤t

Ys.

See, e.g., Carmona-Petit-Yor [9], Perman-Werner [26] and Chaumont-Doney [10].

Example 2.7 More about the Brownian case. Formula (1.2) has some surprising consequences
even in the simplest case when d = 1. Consider the function

f(t, a) := P (Bt > 0|V1 = a) (2.9)

for 0 < t ≤ 1 and 0 ≤ a ≤ 1, where B is a one-dimensional Brownian motion and V1 =
∫ 1
0 1(Bt >

0)dt. Without attempting to compute f(t, a) explicitly, which appears to be quite difficult, let
us presume that f can be chosen to be continuous in (t, a). Then∫ 1

0
f(t, a)dt = a = f(1, a) (0 ≤ a ≤ 1) (2.10)

where the first equality follows from (2.9) and the second equality is read from (1.2). On the
other hand, it is easily seen that

f(0+, a) = 1
2 (0 < a < 1) (2.11)

which implies that

for each a > 1
2 there exists t ∈ (0, 1) such that f(t, a) > a (2.12)

That is to say, given V1 = a > 1
2 , there is some time t < 1 such that the BM is more likely to be

positive at time t than it is at time 1.

3 Identities for self-similar processes in dimension d ≥ 2

Say that a jointly measurable process Θ := (Θt, 0 < t ≤ 1) has the sampling property if

P(Θ1 ∈ B |µΘ) = µΘ(B) (3.1)

for all measurable subsets B of the range space of Θ. The results of this section consist of
two examples where the sampling property does hold, and a characterization of the sampling
property in terms of exchangeability.
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Proposition 3.1 Suppose that Θ takes values in a Borel space. Let U1, U2, · · · be a sequence of
i.i.d. random variables with uniform distribution on (0, 1), independent of Θ. Then the following
are equivalent:

(i) (Θt) has the sampling property;

(ii) for each n = 1, 2, 3, · · ·,

(Θ1,ΘU2 ,ΘU3, · · · ,ΘUn) d= (ΘU1,ΘU2 ,ΘU3, · · · ,ΘUn). (3.2)

Proof: Clearly (ii) is equivalent to

P(Θ1 ∈ B | {ΘUj}∞j=2) = P(ΘU1 ∈ B | {ΘUj}∞j=2) (3.3)

for all measurable subsets B of the range space of Θ. To connect this to (i), observe that
{ΘUj}∞j=2 is a sequence of i.i.d. picks from µΘ. Hence this sequence is conditionally independent
of Θ given µΘ. Therefore, (3.3) can be rewritten as

P(Θ1 ∈ B |µΘ) = P(ΘU1 ∈ B |µΘ) (3.4)

for all measurable B, which is equivalent to (i). �

The conditions (3.2) increase in strength as n increases. For n = 2, (3.2) is just

(Θ1,ΘU2)
d= (ΘU1 ,ΘU2). (3.5)

which immediately implies
(Θ1,ΘU2)

d= (ΘU2 ,Θ1). (3.6)

Proposition 3.2 If the distribution of (Θs,Θt) depends only on t/s then the conditions (3.5)
and (3.6) are equivalent.

Proof: Construct U1 and U2 as follows. Let Y and Z be independent with Y uniform on [0, 1]
and Z having density 2x on [0, 1]. Let X be an independent ±1 fair coin-flip and set (U1, U2)
equal to (Z, Y Z) if X = 1 and (Y Z,Z) if X = −1. By construction, the law of (ΘU1,ΘU2) is
one half the law of (ΘZ ,ΘY Z) plus one half the law of (ΘY Z ,ΘZ). By the assumption on Θ this
is one half the law of (Θ1,ΘU2) plus one half the law of (ΘU2 ,Θ1). This and (3.6) imply (3.5).
�

We note that the spherical projection of Brownian motion in R
d satisfies (3.6) for all d. So this

condition is not enough to imply the sampling property for a 0-self-similar process Θ. When Θ
is not 0-self-similar it is easy to find cases where (3.6) holds but not (3.5).
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Example 3.3 Let (X,Y ) have a symmetric distribution and let Θt = X1t<a + Y 1t≥a for a
fixed a ∈ (0, 1). It is easy to see that (3.6) holds. On the other hand, if P(X = Y ) = 0, then
P(Θ1 = ΘU2) = 1−a while P(ΘU1 = ΘU2) = a2 +(1−a)2. Unless a = 1

2 , these two probabilities
are not equal.

We now mention some interesting examples of 0-self-similar processes which do have the sampling
property.

Example 3.4 Walsh’s Brownian motions. Let B be a one-dimensional BM started at 0. Sup-
pose that each excursion of B away from 0 is assigned a random angle in [0, 2π) according to
some arbitrary distribution, independently of all other excursions. Let Θt be the angle assigned
to the excursion in progress at time t, with the convention Θt = 0 if Bt = 0. So (|Bt|,Θt) is
Walsh’s singular Brownian motion in the plane [35, 2]. As shown in [28, Section 4], the process
(Θt) is a 0-self-similar process with the sampling property, and the same is true of (Θt) defined
similarly for a δ-dimensional Bessel process instead of |B| for arbitrary 0 < δ < 2.

The proof of the sampling property of the angular part (Θt) of Walsh’s Brownian motion is
based on the following lemma, which is implicit in arguments of [28, Section 4] and [30, formula
(24)].

Lemma 3.5 Let Z be a random closed subset of [0, 1] with Lebesgue measure zero. For 0 ≤ t ≤ 1
let Nt − 1 be the number of component intervals of the set [0, t]\Z whose length exceeds t−Gt,
where Gt = sup{s : s < t, s ∈ Z}. So Nt has values in {1, 2, · · · ,∞}. Given Z, let (Θt)
be a process constructed by assigning each complementary interval of Z an independent angle
according to some arbitrary distribution on [0, 2π), and letting Θt = 0 if t ∈ Z. If (Nt) has the
sampling property, then so does (Θt).

According to [28, Theorem 1.2] and [30, formula (24)], for Z the zero set of a Brownian motion,
or more generally the range of a stable(α) subordinator for 0 < α < 1, the process (Nt) has
the sampling property, hence so does the angular part (Θt) of Walsh’s Brownian motion whose
radial part is a Bessel process of dimension δ for arbitrary 0 < δ < 2.

Example 3.6 A Dirichlet Distribution. Let Z be the set of points of a Poisson random measure
on (0,∞) with intensity measure θx−1dx, x > 0. Construct (Θt) from Z as in Lemma 3.5. So
between each pair of points of the Poisson process, an independent angle is assigned, with some
common distribution H of angles on [0, 2π). It was shown in [30] that (Nt) derived from this
Z has the sampling property, hence so does (Θt) derived from this Z. In this example µΘ is a
Dirichlet random measure governed by θH as studied in [14, 18, 16, 33].

We close this section by rewriting Proposition 2.1 as a statement concerning stationary processes.
Let (Xt) be a jointly measurable process and Yt = Xet . The process (Xt) being 0-self-similar
is equivalent to the process (Yt) being stationary, so a change of variables turns Proposition 2.1
into:

9



Corollary 3.7 (Pitman-Yor [29]) Fix λ > 0 and define Y λ :=
∫∞
0 λe−λtYt dt, where {Yt : t ∈ R}

is a stationary process and E |Y0 | <∞. Then

E(Y0 |Y λ) = Y λ.

The following proposition provides a partial converse:

Proposition 3.8 Let F be a distribution on [0,∞) and for a stationary process (Yt) let Y F

denote
∫∞
0 Yt dF . Assuming either F has a density or F is a lattice distribution, the identity

E (Y0 |Y F ) = Y F holds for every such process {Yt} if and only if F has density λe−λt for some
λ ∈ (0,∞) or F = δ0.

Proof: Fix F and suppose that E (Y0 |Y F ) = Y F holds for all stationary {Yt} with E |Y0 | <∞.
When also E |Y0 |2 < ∞, this implies EY0Y F = E (Y F )2. Let r(t) = EY0Yt and let ξ1, ξ2 be i.i.d.
according to F . Comparing

EY0Y F = Er(|ξ1 |)
with

E (Y F )2 = Er(|ξ1 − ξ2|),
we find that

Er(|ξ1 |) = Er(|ξ1 − ξ2|).
Taking Y to be an Ornstein-Uhlenbeck process shows that this holds for r(t) = e−αt, so that
|ξ1 − ξ2| has the same Laplace transform, hence the same distribution, as |ξ1|. Assuming
that F is concentrated on [0,∞) and has a density, Puri and Rubin [31] showed that this
condition implies F is an exponential. If F is a lattice distribution, they showed it must be δ0
or 1

2δ0 + 1
2δa or a times a geometric for some a > 0. It is easy to construct examples ruling out

the nondegenerate discrete cases. �

Changing back to Xt := Ylog t, Proposition 3.8 yields:

Corollary 3.9 Suppose F has a density f on (0, 1). The identity

E(X1 |
∫ 1

0
Xs dF ) =

∫ 1

0
Xs dF

holds for all 0-self-similar processes (Xt) with E |X1 | <∞ if and only if f(x) = λxλ−1 for some
λ > 0.
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4 Quadrants and the two-dimensional case

In this section we establish the following Proposition.

Proposition 4.1 Let d = 2 and let Q1, Q2, Q3, Q4 be the four quadrants in the plane, in clock-
wise order. Let

µ(Qi) :=
∫ 1

0
1Wt∈Qi dt

denote the time spent in Qi up to time 1 by a planar Brownian motion W started at the origin.
Then for each k ≤ 4, the random variable

P(W1 ∈ Qk |µ(Qi) : 1 ≤ i ≤ 4)

is not almost surely equal to µ(Qk).

Fix the dimension d = 2 throughout, and denote by Aε the event that µ(Q2) ∈ [ε, 2ε], µ(Q3) ∈
[ε, 2ε], and µ(Q4) ∈ [ε, 2ε]. Thus, if Aε occurs, then the Brownian motion W spends only a small
amount of time in Q2, Q3, and Q4. The idea behind the proof is that if Brownian motion spends
most of its time in Q1, then it is very unlikely to be in Q3 at time 1, since Q1 and Q3 do not
share a common boundary. More precisely, we will show that there is a constant C for which

P(W1 ∈ Q3|Aε) ≤ Cε2[log(1/ε)]3 (4.1)

for sufficiently small ε > 0, which clearly implies Proposition 4.1. The estimate (4.1) follows
immediately from the lower bound for P(Aε) and the upper bound for P({W1 ∈ Q3}∩Aε) given
in Lemmas 4.3 and 4.4 below.

Lemma 4.2 Let (Bt) be one-dimensional Brownian motion started from the origin. Then as
δ → 0

δ−1
P( min

t∈[0,1]
Bt ≥ −δ) →

√
2
π

(4.2)

and
δ−3

P( min
t∈[0,1]

Bt ≥ −δ and B1 < 0) → 1√
2π

(4.3)

Proof: The first limit results from the fact that mint∈[0,1]Bt has density 2φ(x) on (−∞, 0]
where φ is the standard normal density of B1. The second follows easily from the reflection
principle, which shows that the probability involved equals∫ 0

−δ
(φ(x) − φ(x− δ)) dx

.

�
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Lemma 4.3 There exists a constant C1 > 0 such that

P(Aε) ≥ C1ε

for sufficiently small ε > 0.

Proof: Let Dε be the set (
√
ε,
√
ε) +Q1 and let Sε be the event that

{|{t ∈ [0, 4ε] : Wt ∈ Qi}| ≥ ε for i = 2, 3, 4, and W4ε ∈ Dε}.

Let C2 = P(Sε) > 0. From the scaling properties of Brownian motion, we see that C2 does
not depend on ε. Let pε be the probability that mint∈[0,1−4ε]Bt > −√

ε. By the Markov
property and independence of the coordinates of W , P(Aε) ≥ C2p

2
ε . Lemma 4.2 tells us that

pε ≥ √
(2 − β)ε/π for any β > 0 and sufficiently small ε(β). This proves the lemma with any

C1 < 2C2/π. �

Lemma 4.4 There exists a constant C3 <∞ such that

P({W1 ∈ Q3} ∩Aε) ≤ C3ε
3[log(1/ε)]3

for sufficiently small ε > 0.

Proof: Choose C4 > 12 and let δ = C4

√
ε log(1/ε). Let Qδ

1 = {(x, y) : x > −δ, y > −δ}. Also
define Tδ = min{t : Wt /∈ Qδ

1}. Let R1 = Aε ∩ {Tδ ≤ 1 − 6ε}, R2 = Aε ∩ {1 − 6ε < Tδ ≤ 1},
and R3 = {W1 ∈ Q3} ∩ {Tδ > 1}. By splitting up the event {W1 ∈ Q3} ∩ Aε according to the
value of Tδ, we see that if {W1 ∈ Q3} ∩ Aε occurs, then either R1, R2, or R3 must occur. We
will prove the lemma by establishing upper bounds on P(R1), P(R2), and P(R3).

To bound P(R3), apply (4.3) to the two independent coordinate processes, yielding for sufficiently
small ε

P(R3) ≤ δ6 = C6
4ε

3 log(1/ε)3.

A bound for P(R2) follows from the observation that on Aε, there must be some t ∈ [1 − 6ε, 1]
for which Wt ∈ Q1. Thus on R2, one of the two coordinate processes has an oscillation of at
least δ on the time interval [1 − 6ε, 1]. This implies that one of the coordinate processes strays
by at least δ/2 from its starting value in the interval [1 − 6ε, 1], hence by the Markov property,

P(R2) ≤ 2P( max
0≤t≤6ε

|Bt| ≥ δ/2)

≤ 8P(B6ε ≥ δ/2), by the reflection principle,

≤ 8 exp(−δ2/48ε) = 8εC
2
4/48.

By choice of C4 > 12, this is o(ε3).

12



A bound on P(R1) may be obtained in a similar way. Observe that on Aε, there must be some
t ∈ [Tδ, Tδ + 6ε] for which Wt ∈ Q1. Thus one of the coordinates increases by at least δ from its
starting value on the time interval [Tδ, Tδ + 6ε]. The strong Markov property yields

P(R1) ≤ 2P( max
0≤t≤6ε

Bt ≥ δ) ≤ 4P(B6ε ≥ δ).

As before, the choice of C4 implies that P(R1) = o(ε3) and summing the upper bounds on
P(R1), P(R2) and P(R3) proves the lemma. �

Proof of Proposition 4.1: The inequality (4.1), and the theorem, follow directly from Lem-
mas 4.3 and 4.4: for sufficiently small ε > 0

P(W1 ∈ Q3|Aε) =
P({W1 ∈ Q3} ∩Aε)

P(Aε)
≤ C3ε

3 log(1/ε)3

C1ε
= Cε2 log(1/ε)3.

�

5 Recovery of the endpoint

In this section, let (Ω,F ,P) be the space of continuous functions ω : [0, 1] → R
d , endowed with

the Borel σ-field F (in the topology of uniform convergence) and Wiener measure P on paths
from the origin. We write simply µ instead of µΘ for the occupation measure of the spherical
projection (π(ωt), 0 ≤ t ≤ 1). So µ is a measurable map from (Ω,F) to the space (prob(Sd−1),F2)
of Borel probability measures on Sd−1. For a subinterval I of [0, 1], say I = (a, b) or I = [a, b],
let ωI denote the range of the restriction of ω to I.

We will use some known topological facts about Brownian motion in dimensions d ≥ 3:

(1) If I and J are disjoint open sub-intervals of [0, 1], then P almost surely the random set
{π(ωt), t ∈ I} does not contain {π(ωt), t ∈ J}.

(2) Almost every Brownian path ω : [0, 1] → R
d has a sequence of cut-times tn ↑ 1, that is,

ω(0, tn) ∩ ω(tn, 1) = ∅.
(3) With probability 1, no cut-point is a double point. Formally, for P-almost every ω, if

ω[0, 1] \ {ω(t)} is not connected, then ω(s) 6= ω(t) for s 6= t.

Fact (1) follows easily from Fubini’s theorem. Fact (2) is proved in Theorem 2.2 of Burdzy [5]
(see also [6]) and fact (3) is proved in Theorem 1.4 of Burdzy-Lawler [7].

The following lemma contains the probabilistic content of the argument and is proved at the
end of this section. Facts (2) and (3) are true when d = 2 as well, which is all that is needed to
establish the remark after Theorem 1.2.
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Lemma 5.1 Let D be a ball in the sphere Sd−1 ⊆ R
d . Then there is a measurable function

ρD : prob(Sd−1) → R
+ such that P-almost surely,

ρD(µ(ω)) = sup{|ω(t)| : π(ω(t)) ∈ D}. (5.1)

To construct ψ from Lemma 5.1 and fact (1), let Cj be a finite cover of Sd−1 by balls of radius
2−j and let Cen(D) denote the center of the ball D. The set of limit points of a sequence {Sn} of
elements in cb-sets, defined by {x : lim infn d(x, Sn) = 0}, is called the Hausdorff limsup, denoted
lim supn→∞ Sn. Observe that if Sn are cb-sets-valued random variables, then lim supn→∞ Sn is
measurable as well.

Lemma 5.2 Define measurable functions Aj : prob(Sd−1) → cb-sets to be the sets of vectors

Aj(µ) := {ρD(µ)Cen(D) : D ∈ Cj}.

Then ψ := lim supj→∞Aj satisfies (1.4):

ψ ◦ µ(ω) = range(ω) for almost every ω.

Remark: In fact, from the proof we see that ψ = limAj almost surely when µ = µ(ω) and ω is
chosen from P.

Proof: It is easy to see that ψ◦µ(ω) ⊆ range(ω) for every ω: if D ∈ Cj then ρD(µ)(ω)Cen(D) is
equal to |ω(t)|Cen(D) for some t with |π(ω(t))−Cen(D)| ≤ 2−j , and is hence within 2−j |ω(t)| of
the point ω(t) ∈ range(ω); since range(ω) is closed and j is arbitrary, all limit points of sequences
{xj} with xj ∈ Aj are in range(ω).

To see that range(ω) ⊆ ψ ◦ µ(ω), fix t ∈ (0, 1) and consider x = ω(t) ∈ range(ω). For any
ε > 0, choose a δ > 0 such that |ω(s) − ω(t)| ≤ ε when |s − t| ≤ δ, and |ω(s)| < |x| for
0 ≤ s ≤ δ. By fact (1), the union π(ω[δ, t − δ]) ∪ π(ω[t+ δ, 1]) does not cover π(ω[t− δ, t+ δ]).
Thus we may choose an open ball D intersecting π(ω[t − δ, t + δ]) such that π(D) is disjoint
from π(ω[δ, t − δ]) ∪ π(ω[t + δ, 1]). For any D′ ⊆ D, it follows that |ρD′(µ) − |ω(t)|| ≤ ε. For
sufficiently large j there is a ball D′ ∈ Cj with x ∈ D′ ⊆ D, which implies Aj contains a point
ρD′(µ)Cen(D′) within 2−j |x| + ε of x. Since ε and j are arbitrary, x is a limit point of the sets
Aj . �

The construction of ϕ from here uses two further non-probabilistic lemmas.

Definition 5.3 Define the map Nδ : cb-sets → {0, 1, 2, . . . ,∞} by setting Nδ(S) to be the
number N of connected components of the closed set S that have diameter at least δ.

Lemma 5.4 For each δ the map Nδ is measurable.
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Proof: It suffices to show this when S is a subset of the unit ball. It will be convenient to
have a nested sequence of sets GRID1 ⊆ GRID2 ⊆ · · · such that GRIDj is 2−j−1-dense in the
unit ball. (To construct this, inductively choose GRIDj to be a maximal set with no two points
within distance 2−j−1.) The sets BALLSj defined to be the set of balls of radius 2−j centered at
points of GRIDj, form a sequence of covers of the unit ball such that each element of BALLSj+1

is contained in an element of BALLSj .

For each j and each S ∈ cb-sets let

Xj(S) =
⋃

{D ∈ BALLSj : D ∩ S 6= ∅}.

Let Pj be the set of connected components of Xj(S) viewed as subsets of BALLSj. In other
words, Pj(S) = {C ⊆ BALLSj :

⋃ C is a component of Xj(S)}. By the finiteness of BALLSj , we
see that each Pj is measurable. Since each D ⊆ Xj(S) is contained in a ball D′ ∈ BALLSj−1 also
intersecting S, Xj ⊆ Xj−1 and hence each component of Xj is contained in a unique component
of Xj−1. This defines a map parentj : Pj → Pj−1 which is measurable since it depends only on
Pj and Pj−1. Letting Pj,δ be the subset of Pj consisting of components of diameter at least δ,
it is clear that parentj maps Pj,δ to Pj−1,δ and that these are measurable.

Claim: Nδ(S) is the cardinality of the inverse limit of the system {Pj,δ, parentj : j ≥ 1}. Indeed,

suppose that {x(i)
j } satisfy x

(i)
j ∈ Pj,δ and parentj(x

(i)
j ) = x

(i)
j−1 for all j and i = 1, 2. Letting

set(x(i)
j ) :=

⋃
x

(i)
j denote the set of points in the component x(i)

j , we see that
⋂

j(set(x
(i)
j )) are

non-empty subsets of S and lie in different components unless x(1)
j = x

(2)
j for all j. Conversely,

if x and y are points of S lying in different connected components, then S is contained in a
disjoint union Xε∪Y ε for some sets X,Y with x ∈ X, y ∈ Y (where Zε denotes the set of points
within ε of the set Z). It follows that for each j there is an xj ∈ Pj,δ with x ∈ ⋃xj, there is a
yj ∈ Pj,δ with y ∈ ⋃ yj, and that for 2−j < ε, xj 6= yj.

Finally, the cardinality of the inverse limit is easily seen to be measurable. Say xj ∈ Pj,δ is a
survivor if for each k > j there is some yk ∈ Pk,δ with

⋃
yk ⊆ ⋃

xj . The set of survivors is
clearly measurable, and the cardinality of the inverse limit is the increasing limit of the number
of survivors in the set Pj,δ as j → ∞. �

The endpoint ω(1) will be recovered from ω[0, 1] as the only nonzero limit point of cutpoints,
which is not a cutpoint itself. To justify measurability of this operation, the following definition
and lemma are useful.

Definition 5.5 Let cutδ(S) denote the set of δ-cutpoints of S, that is, those x ∈ S such that
S \ x has at least two components of diameter at least δ (note: if S is not connected this
may be all of S). For each positive integer j and each δ > 0, define the measurable function
Aδ,j : cb-sets → cb-sets by

Aδ,j(S) :=
⋃

{D′ ∈ BALLSj : D′ ∩ S 6= ∅ and Nδ(S \D′) ≥ 2}.
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Let
Aδ := lim sup

j→∞
Aδ,j.

Lemma 5.6 Let f : [0, 1] → R
d be any continuous function and denote its range by S. Fix

δ′ > δ > δ′′ > 0. Then
cutδ′(S) ⊆ Aδ ⊆ cutδ′′(S). (5.2)

Proof: Suppose first that x is a δ′-cutpoint of S. Let T and U be two components of S \ x of
diameter at least δ. If D is a ball of radius ε < (δ′ − δ)/2 containing x, then S \D will have at
least two components of diameter at least δ′ − 2ε. Thus x ∈ Aδ,j for 2−j < ε, hence x ∈ Aδ.

Suppose now that x ∈ Aδ and let {Dn} be balls converging to x in the Hausdorff metric, such
that each intersects S and has Nδ(S \Dn) ≥ 2. Let {D′

n} be balls with diameters going to zero
such that

⋃∞
j=nDj ⊆ D′

n. Then Nδ′′(S \D′
n) ≥ 2 when n is large enough so that the diameter

of D′
n is at most δ − δ′′.

Claim: there are points x1, . . . , xk and an N0 such that for n ≥ N0, each component
of S \D′

n of diameter at least δ′′ contains one of x1, . . . , xk.

Proof: Pick N0 so that Dn ⊆ B(x, δ′′/2) when n ≥ N0. Pick ε > 0 such that
|f(s)−f(t)| < δ′′/2 when |s−t| ≤ ε. The open set {t : |f(t)−x| > δ′′/2} decomposes
into a countable set of intervals. At most k := b1/εc of these intervals (uj , vj), j =
1, . . . , k can have v − u ≥ ε, and these are the only ones containing times t with
|f(t) − x| ≥ δ′′. Since S is connected, every component G of S \D′

n intersects ∂D′
n,

and if G has diameter at least δ′′ then G must contain one of the k sojourns f(uj, vj).
Choose xj ∈ f(uj, vj).

Since Nδ′′(S \D′
n) ≥ 2 for all n ≥ N0, there are i < j ≤ k such that infinitely many of the sets

S \Dn have distinct components Gn and Hn of size at least δ′′ containing xi and xj respectively.
The increasing limits

⋃
Gn and

⋃
Hn must then be contained in distinct components of S \{x},

showing that x ∈ cutδ′′(S). �

Proof of Theorem 1.2 assuming Lemma 5.1: Clearly the sets Aδ increase as δ → 0. Define

ϕ(S) = (lim sup
δ→0

Aδ) \ (
⋃
δ

Aδ ∪ {0}).

We have shown that ψ ◦ µ(ω) = ω[0, 1] almost surely with respect to P, and it follows from
Lemma 5.6 that ϕ(S) ∪ {0} is the topological boundary of the set of cut-points of S. Fact (2)
then implies that ω(1) ∈ ϕ(S). On the other hand, let x = ω(t) be any limit of cut-points,
where 0 < t < 1. Thus there are times tj → t with ω(tj) a cut-point. By fact (3), the sets
ω(tj , 1) and ω(0, tj) are disjoint, and each of them is connected. For tj > t, the set ω(tj, 1) is
disjoint from ω(0, t) so if tj ↓ t, then ω(t, 1) is disjoint from ω(0, t). Likewise if tj ↑ t then ω(0, t)
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is disjoint from ω(t, 1), hence t is a cut-time. This shows that x /∈ ϕ(S), so the only limits of
cut-points that are not cutpoints are ω(0) and ω(1), which completes the proof. �

To prove Lemma 5.1 we state several more lemmas. The cases d = 3 and d ≥ 4 differ slightly in
that the estimates required for two-dimensional balls (d = 3) include logarithmic terms. Since
recovery of the endpoint in dimension d ≥ 4 can be reduced to the three-dimensional case, and
since the estimates for two-dimensional balls are strictly harder than for higher-dimensional
balls, we assume for the remainder of the proof that d = 3. The formula for ρD in this case is
given by:

ρD(µ) :=

[
lim sup

D′⊆D,r(D′)→0

µ(D′)
2r(D′)2 log2 r(D′)

]1/2

. (5.3)

We remark that when d > 3, the term log2 r(D′) is replaced by | log r(D′)| and the constant 2
in the denominator changes as well; this is due to the different normalization needed for “thick
points” in dimension 3 and higher, see [11].

We begin by quoting two results from Dembo, Peres, Rosen and Zeitouni [12].

Lemma 5.7 ([12], Theorem 1.2). Let (Wt : t ≥ 0) be a standard Brownian motion in R
2 . Let

r(D) denote the radius of the ball D. Then for any fixed A > 0,

lim sup
r(D)→0

∫ A
0 1D(Wt)dt

r(D)2 log2 r(D)
= 2 a.s. (5.4)

�

Lemma 5.8 ([12], Lemma 2.1). Let Zt =
∫ t
0 1D(Wt) dt be the occupation time of a standard

two-dimensional Brownian motion up to time t in a ball D of radius r. Then for each t > 0
there is some λ > 0 not depending on r for which EeλZt /(r2| log r|) < ∞. Consequently, P(Zt >
Ar2 log(1/r) < Ce−γA for some positive C and γ.

Proof: Dembo et al prove the result when the Brownian motion is started at radius r (in their
notation r = r1 = r2) and the time t is instead the time to hit a ball of fixed radius r3 = O(1).
Accomodating these changes is trivial. �

We now state three more lemmas which together imply Lemma 5.1.
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Lemma 5.9 Let (Wt : t ≥ 0) be a standard three-dimensional Brownian motion. For 0 ≤ a <
b ≤ 1, let µa,b be projected occupation measure in the time interval [a, b], i.e., for D ⊆ S2,

µa,b(D) :=
∫ b

a
1D(π(Wt)) dt.

Then for each ball D ⊆ S2 and each ε > 0, with probability 1,

lim sup
D′⊆D,r(D′)→0

µε,1(D′)
r(D′)2 log2 r(D′)

≤ 2(sup{|Wt| : π(Wt) ∈ D})2. (5.5)

Lemma 5.10 In the notation of the previous lemma, there is a constant c2 such that for each
ε > 0, with probability 1,

lim sup
D′⊆D,r(D′)→0

µ0,ε(D′)
r(D′)2 log2 r(D′)

≤ c2(sup{|Wt| : t ∈ [0, ε]})2. (5.6)

Lemma 5.11 For each t ∈ (0, 1), with probability 1,

lim sup
D→π(Wt)

µ(D)
r(D)2 log2 r(D)

≥ 2|Wt|2.

To see why Lemma 5.1 follows from Lemmas 5.9 - 5.11, define ρD as in equation (5.3). Since the
limsup may be taken over balls with rational centers and radii, ρD is measurable. Lemmas 5.9
and 5.10 together imply that with probability 1, for all ε > 0,

ρD(µ(ω)) ≤ [(sup{|Wt| : π(Wt) ∈ D})2 + (c2/2)(sup{|Wt| : t ∈ [0, ε]})2]1/2
,

and sending ε to 0 shows that the LHS of (5.1) is less than or equal to the RHS. On the other
hand, applying Lemma 5.11 for all rational t shows that with probability 1,

ρD(µ(ω)) ≥ sup{|ω(t)| : π(ω(t)) ∈ interior(D), t rational}

which yields the reverse inequality. It remains to prove Lemmas 5.9 - 5.11.

Proof of Lemma 5.9: Covering D with small balls, it suffices to assume r(D) < δ and prove
an upper bound of (1 + o(1)) times the RHS of (5.5) as δ → 0. Let β : S2 → R

2 be a conformal
map with Jacobian going to 1 near Cen(D). For example, take β to be stereographic projection
from the antipode to Cen(D) to a plane (identified with R

2) tangent to S2 at Cen(D). The path
{π(Wt) : t ≥ ε} is a time-changed Brownian motion on S2, and in particular, π(WG(t))) is a
Brownian motion started from π(W1), where G(t) is defined by

∫ 1
G(t) |Ws|−2 ds = t. Similarly,

(Xt := β(π(WG(H(t)))), t ∈ [0,M := H−1(G−1(ε))]) is a Brownian motion in R
2 , where M is

random and H(t) is another time change, with |H ′| going to 1 uniformly as r(D) → 0 and
π(WG(H(t))) is in D.
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Let D′ be any ball inside D. Let D′′ be a ball containing β(D′) and observe that we can take
r(D′′)/r(D′) → 1 uniformly over D′ ⊆ D as r(D) → 0. When π(Ws) ∈ D, G′(s) ≥ sup{|Wt| :
π(Wt) ∈ D}2. Thus

µε,1(D′) =
∣∣{t ∈ [ε, 1] : π(Wt) ∈ D′}∣∣

≤ ∣∣{G(H(s)) : β(π(WG(H(s)))) ∈ D′′}∣∣
≤ sup{|Wt| : π(Wt) ∈ D}2 supH ′ ∣∣{s : β(π(WG(H(s)))) ∈ D′′}∣∣
= sup{|Wt| : π(Wt) ∈ D}2 supH ′ ∣∣{s : Xs ∈ D′′}∣∣
≤ (2 + o(1)) sup{|Wt| : π(Wt) ∈ D}2r(D′′)2 log2(

1
r(D′′)

)

by Lemma 5.7 and the convergence of H ′ to 1. �

Proof of Lemma 5.10: Let D be any ball in S2 with center x. Let βx be projec-
tion to the orthogonal complement of x in R

3 . If π(Wt) ∈ D then βx(Wt) ∈ B(0, s) for
s := r(D) sup{|Wt| : t ∈ [0, 1]}. For fixed x, βx(Wt) is a standard Brownian motion, so an
application of the Lemma (5.8) yields

P

(
µ0,ε(D)

r(D)2 log2 r(D)
≥ c(sup{|Wt| : t ∈ [0, 1]})2

)

≤ P

( ∫ 1
0 dt1B(0,s)(βx(Wt))

s2| log s|| log r(D)|(log(r(D))/ log s)
≥ c

)

≤ Cr(D)−γc log r(D)/ log s.

We may choose c2 so that c2γ > 2, and find classes Cr of balls of radius r so that for any ε > 0,
for sufficiently small r, any ball of radius (1 − ε)r is contained in some element of Cr. One can
arrange for |Cr| = O(1/r)c2c0−δ, where c2c0 − δ > 2, ensuring that

P

(
∃D ∈ Cr :

µ0,ε(D)
r(D)2 log2 r(D)

≥ c2(sup{|Wt| : t ∈ [0, 1]})2
)

= o(rδ).

Summing over r = (1 − α)n and using Borel-Cantelli shows that the limsup on the LHS
of (5.6) is at most (1 − α)−2c2 sup{|Wt| : t ∈ [0, ε]}2, proving the lemma since α may be chosen
arbitrarily small. �

Proof of Lemma 5.11: Fix t ∈ (0, 1). Define β,G and H as in the proof of Lemma 5.9, so
that (Xs := β(π(WG(H(s))))) is a planar Brownian motion. For any ε > 0, Lemma 5.7 yields a
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random sequence of balls Dn → 0 in R
2 with∫ M

0

1Dn(Xs) ds
r(Dn)2 log2 r(Dn)

→ 2.

With probability 1, Wt is a single value, i.e., Wt 6= Ws for t 6= s, in which case for n sufficiently
large, Xs ∈ Dn implies |WG(H(s))| → |Wt| and G(H(s)) → t. The sets β−1(Dn) are contained in
balls D′

n with r(D′
n)/r(Dn) → 1, so∫ M

0

1D′
n
(π(WG(H(s))) ds

r(D′
n)2 log2 r(D′

n)
→ 2.

Changing variables reduces this integral to∫ 1

ε

1D′
n
(π(Wu))(G ◦H)′((G ◦H)−1(u)) du

r(D′
n)2 log2 r(D′

n)

and since (G ◦H)′ = (1 + o(1))|Wt|−2 uniformly on an interval containing H−1(G−1(t)), we get

|Wt|−2 µε,1(D′
n)

r(D′
n) log2 r(D′

n)
→ 2,

proving the lemma. �
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M. Ledoux, and M. Yor, editors, Séminaire de Probabilités XXXII, pages 343–375. Springer, 1998.
Lecture Notes in Math. 1686.

[20] J. Lamperti. Semi-stable stochastic processes. Trans. Amer. Math. Soc., 104:62–78, 1962.

[21] J. Lamperti. Semi-stable Markov processes I. Z. Wahrsch. Verw. Gebiete, 22:205–225, 1972.
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