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Abstract

We consider the solution u to the one-dimensional parabolic Anderson model with homoge-

neous initial condition u(0, ·) ≡ 1, arbitrary drift and a time-independent potential bounded

from above. Under ergodicity and independence conditions we derive representations for both

the quenched Lyapunov exponent and, more importantly, the p-th annealed Lyapunov exponents

for all p ∈ (0,∞).
These results enable us to prove the heuristically plausible fact that the p-th annealed Lyapunov

exponent converges to the quenched Lyapunov exponent as p ↓ 0. Furthermore, we show that u

is p-intermittent for p large enough.

As a byproduct, we compute the optimal quenched speed of the random walk appearing in the

Feynman-Kac representation of u under the corresponding Gibbs measure; related results for the

discrete time case have been derived by [GdH92] and [Flu07]. In our context, depending on the

negativity of the potential, a phase transition from zero speed to positive speed appears as the

drift parameter or diffusion constant increase, respectively.
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1 Introduction

1.1 Model and notation

We consider the one-dimensional parabolic Anderson model with arbitrary drift and homogeneous

initial condition, i.e. the Cauchy problem

∂ u

∂ t
(t, x) = κ∆hu(t, x) + ξ(x)u(t, x), (t, x) ∈ R+ ×Z,

u(0, x) = 1, x ∈ Z,






(1.1)

where κ is a positive diffusion constant, h ∈ (0,1] an arbitrary drift and ∆h denotes the discrete

Laplace operator with drift h given by

∆hu(t, x) :=
1+ h

2
(u(t, x + 1)− u(t, x)) +

1− h

2
(u(t, x − 1)− u(t, x)).

Here and in the following, (ξ(x))x∈Z ∈ Σ := (−∞, 0]Z is a non-constant ergodic potential bounded

from above. The distribution of ξ will be denoted Prob and the corresponding expectation 〈·〉. In our

context ergodicity is understood with respect to the left-shift θ acting on ζ ∈ Σ via θ((ζ(x))x∈Z) :=

(ζ(x + 1))x∈Z. Without further loss of generality we will assume

ess supξ(0) = 0. (1.2)

Note that the case ess supξ(0) = c reduces to (1.2) by the transformation u 7→ ec tu. We can now

write

Prob ∈M e
1(Σ). (1.3)

Here,M1(E) denotes the space of probability measures on a topological space E, and if we have a

shift operator defined on E (such as θ for E = Σ), then byM s
1(E) andM e

1 (E) we denote the spaces

of shift-invariant and ergodic probability measures on E, respectively. If not mentioned otherwise,

we will always assume the measures to be defined on the corresponding Borel σ-algebra and the

spaces of measures to be endowed with the topology of weak convergence. We denote Σb := [b, 0]Z

and Σ+
b

:= [b, 0]N0 for b ∈ (−∞, 0). Since the potential plays the role of a (random) medium, we

likewise refer to ξ as the medium.

Examples motivating the study of (1.1) reach from chemical kinetics (cf. [GM90] and [CM94]) to

evolution theory (see [EEEF84]). In particular, we may associate to (1.1) the following branching

particle system: At time t = 0 at each site x ∈ Z there starts a particle moving independently from

all others according to a continuous-time random walk with generator κ∆−h. It is killed with rate

ξ− and splits into two with rate ξ+. Each descendant moves independently from all other particles

according to the same law as its ancestor. The expected number of particles at time t and site x

given the medium ξ solves equation (1.1).

1.2 Motivation

Our central interest is in the quenched and p-th annealed Lyapunov exponents, which if they exist,

are given by

λ0 := lim
t→∞

1

t
log u(t, 0) a.s. (1.4)
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and

λp := lim
t→∞

1

t
log〈u(t, 0)p〉1/p, p ∈ (0,∞), (1.5)

respectively (cf. Theorems 2.1 and 2.7). By means of these Lyapunov exponents we will then

investigate the occurrence of intermittency of the solution u, which heuristically means that u is

irregular and exhibits pronounced spatial peaks. The motivation for this is as follows. In equation

(1.1) two competing effects are present. On the one hand, the operator κ∆h induces a diffusion

(in combination with a drift) which tends to smooth the solution. On the other hand, the influence

of the random potential ξ favours the spatial inhomogeneity of the solution u. The presence of

intermittency is therefore evidence that the effect of the potential dominates that of the diffusion.

Corresponding problems have been investigated in the zero-drift case (see [BK01a]) and it is there-

fore natural to ask if similar effects occur for the model with drift.

A standard procedure in the study of intermittency is to investigate the exponential growth of mo-

ments.1 While the following definition is a straightforward generalisation of the corresponding

definition in [ZMRS88] or [GdH06], it is more restrictive than the definition given in the zero-drift

case of [BK01a] which exhibits itself through more refined second order asymptotics only.

Definition 1.1. For p ∈ (0,∞), the solution u to (1.1) is called p-intermittent if λp+ǫ > λp for all

ǫ > 0 sufficiently small.

Remark 1.2. Note that λp+ǫ ≥ λp is always fulfilled due to Jensen’s inequality. Furthermore, it will

turn out in Proposition 2.11 (a) that p-intermittency implies λp+ǫ > λp for all ǫ > 0.

If u is p-intermittent, then Chebyshev’s inequality yields

Prob(u(t, 0)> eαt)≤ e−αpt〈u(t, 0)p〉 ≍ e(−α+λp)pt → 0

for α ∈ (λp,λp+ǫ) and, at the same time,

〈u(t, 0)p+ǫ1u(t,0)≤eαt 〉 ≤ eα(p+ǫ)t = o(〈u(t, 0)p+ǫ〉)

as t →∞, which again implies

〈u(t, 0)p+ǫ1u(t,0)>eαt 〉 ∼ 〈u(t, 0)p+ǫ〉.

In particular, setting Γ(t) := {x ∈ Z : u(t, x) > eαt} and considering large centered intervals It , we

get

|It |−1
∑

x∈It

u(t, x)p+ǫ ≈ |It |−1
∑

x∈It∩Γ(t)
u(t, x)p+ǫ

due to Birkhoff’s ergodic theorem. This justifies the interpretation that for large times the solution

u develops (relatively) higher and higher peaks on fewer and fewer islands. For further reading, see

[GK05] and [GM90].

Motivated by the definition of intermittency, the main goal of this article is to find closed formulae

in particular for the p-th annealed Lyapunov exponent for all p ∈ (0,∞), cf. Theorem 2.7. As a first

step towards this aim we compute the quenched Lyapunov exponent (see Theorem 2.1). On the one

1 An explicit geometric characterisation is more difficult and beyond the scope of this article. For the zero-drift case,

see [GKM07].
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hand the auxiliary results leading to Theorem 2.1 can be employed to obtain results on the optimal

speed of the random walk under the random potential ξ (see Corollary 2.3 and Proposition 2.5),

while on the other hand the techniques used in its proof prepare the ground for the computation of

the annealed Lyapunov exponents thereafter. Having these formulae at hand, we then investigate

the occurence of intermittency (see Proposition 2.9).

In systems such as the one we are considering one formally derives

lim
p↓0

1

p
log〈u(t, 0)p〉=

� d

dp
log〈u(t, 0)p〉
�¯
¯
p=0
=
〈(logu(t, 0))u(t, 0)p〉

〈u(t, 0)p〉

¯
¯
¯
p=0
= 〈log u(t, 0)〉. (1.6)

Although one still has to scrutinise whether the interchange of limits and integration is valid, it is

believed due to (1.6) that the p-th annealed Lyapunov exponent converges to the quenched Lya-

punov exponent as p ↓ 0. Since we are able compute the p-th annealed Lyapunov exponent for all

p ∈ (0,∞), we can prove this conjecture, cf. Theorem 2.10.

In order to formulate our results, we introduce some more notation. Let Y = (Yt)t∈R+ be a

continuous-time random walk on Z with generator κ∆−h. By Px we denote the underlying prob-

ability measure with Px(Y0 = x) = 1 and we write Ex for the expectation with respect to Px . Let Tn

be the first hitting time of n ∈ Z by Y and define for β ∈ R,

L+(β) :=
D�

logE1 exp
n
∫ T0

0

(ξ(Ys) + β) ds
o�+E

,

L−(β) :=
D�

logE1 exp
n
∫ T0

0

(ξ(Ys) + β) ds
o�−E

as well as

L(β) := L+(β)− L−(β) (1.7)

if this expression is well-defined, i.e. if at least one of the two terms on the right-hand side is finite.

We denote βcr the critical value such that L+(β) =∞ for β > βcr and L+(β)<∞ for β < βcr . With

this notation, we observe that L(β) is well-defined for all β ∈ (−∞,βcr) at least. By constraining

the random walk Y to stay at site x with ξ(x)≈ 0 (cf. (1.2)), it can be easily shown that

βcr ∈ [0,κ]. (1.8)

2 Main results

2.1 Quenched regime

We start by considering the quenched Lyapunov exponent λ0 and note that even the existence of

the limit on the right-hand side of (1.4) is not immediately obvious. We will impose that either the

random field ξ is ergodic and bounded, i.e.

Prob ∈M e
1 (Σb) (2.1)

for some b < 0, or that ξ consists of i.i.d. random variables, i.e.

Prob= ηZ (2.2)

for some law η ∈M1((−∞, 0]). We then have the following result.
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Theorem 2.1. Assume (1.2) and either (2.1) or (2.2). Then the quenched Lyapunov exponent λ0 exists

a.s. and is non-random. Furthermore, λ0 equals the zero of β 7→ L(−β) in (−βcr , 0) or, if such a zero

does not exist, it equals −βcr .

Remark 2.2. As βcr plays a crucial role here and in the following, we note in anticipation of Lemma

5.5 that

βcr = κ(1−
p

1− h2)

holds if (2.2) is fulfilled. In particular, we observe that βcr is independent of the very choice of the

potential in this case.

For an outline of the proof of Theorem 2.1 and in order to understand the corollary below, we remark

that the unique bounded non-negative solution to (1.1) is given by the Feynman-Kac formula

u(t, x) = E0 exp
n
∫ t

0

ξ(Xs) ds
o

=
∑

n∈Z
E0 exp
n
∫ t

0

ξ(Xs) ds
o

1X t=n

=
∑

n∈Z
En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0.

(2.3)

Here, in analogy to Y we denote by X = (X t)t∈R+ a continuous-time random walk on Z with gener-

ator κ∆h. Note that X and Y may be regarded as time reversals of each other. Departing from (2.3),

the strong Markov property supplies us with

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

= En

�

exp
n
∫ T0

0

ξ(Ys) ds
o

1T0≤t

�

E0 exp
n
∫ t−r

0

ξ(Ys) ds
o

1Yt−r=0

�

r=T0

�

.

(2.4)

The advantage of considering the time reversal of (2.3) is now apparent: For a fixed realisation of

the medium, the term E0 exp{
∫ t−r

0
ξ(Ys) ds}1Yt−r=0 sees the same part of the medium, independent

of which n ∈ Z the random walk Y is starting from.

The proof of Theorem 2.1 now roughly proceeds as follows. Considering (2.3) and (2.4), the idea

is that the main contributions should stem from summands n≈ α∗ t, i.e.

u(t, 0)≍
∑

n≈α∗ t
En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0. (2.5)

Here, α∗ ≥ 0 denotes the optimal speed of the random walk X within the random medium, cf.

Corollary 2.3 below. To show the desired behaviour we use large deviations for (T0/n)n∈N under

the perturbed measure suggested by (2.4) which in combination with further estimates yield the

variational formula

λ0 = sup
α∈[0,γ]

inf
β<βcr

(−β +αL(β)), (2.6)

for γ large enough, cf. Corollary 4.5. In this formula, the infimum over β optimises the behaviour

of T0/n while the supremum over α optimises the speed of the random walk. As with respect to the

competition between the two factors exp{
∫ T0

0
ξ(Ys) ds}1T0≤t and (E0 exp{

∫ t−r

0
ξ(Ys) ds}1Yt−r=0)r=T0
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appearing in (2.4), one can show that it makes sense for the random walk to linger in the bulk

and only hit 0 shortly before time t, i.e. T0 ≈ t (indeed, this is implied by the reasoning about

the supremum directly after (4.3)). With (2.6) at hand, it is an easy task to complete the proof of

Theorem 2.1. See section 4 for further details.

As a byproduct we obtain the following corollary on the optimal speed of the random walk X in the

random potential ξ, i.e. under the Gibbs measure

P
ξ
t (·) :=

E0 exp{
∫ t

0
ξ(Xs) ds}1X t∈·

E0 exp{
∫ t

0
ξ(Xs) ds}

on R. In particular, we say that the random walk X in the random potential ξ has speed α∗ if

X t/t → α∗ in P
ξ
t probability as t →∞.

Corollary 2.3. Let the assumptions of Theorem 2.1 be fulfilled.

(a) If limβ↑βcr
L(β)> 0, then for all ǫ > 0,

λ0 > lim sup
t→∞

1

t
logE0 exp
n
∫ t

0

ξ(Xs) ds
o

1X t /∈t(α∗−ǫ,α∗+ǫ)

with

α∗ := (L′(−λ0))
−1 =
DE1T0 exp{
∫ T0

0
(ξ(Ys)−λ0) ds}

E1 exp{
∫ T0

0
(ξ(Ys)−λ0) ds}

E−1

∈ (0,∞).

(b) If limβ↑βcr
L(β) = 0, then for m ∈ [0, (limβ↑βcr

L′(β))−1] and all ǫ > 0,

λ0 = lim inf
t→∞

1

t
logE0 exp
n
∫ t

0

ξ(Xs) ds
o

1X t∈t(m−ǫ,m+ǫ),

while

λ0 > lim sup
t→∞

1

t
logE0 exp
n
∫ t

0

ξ(Xs) ds
o

1X t /∈t[−ǫ,(limβ↑βcr
L′(β))−1+ǫ].

(c) If limβ↑βcr
L(β)< 0, then for all ǫ > 0,

λ0 > lim sup
t→∞

1

t
logE0 exp
n
∫ t

0

ξ(Xs) ds
o

1X t /∈t(−ǫ,ǫ).

Remark 2.4. (a) The existence of L′ under the assumptions of part (b) from above will be shown in

Lemma 3.5 below. Since L is increasing and convex on (−∞,βcr), the limit limβ↑βcr
L′(β)> 0

then exists.

(b) Part (b) of the corollary can be viewed as a transition between the cases (a) and (c), which

correspond to the positive and zero-speed regimes, respectively. Note that the result of (c)

can be considered a screening effect, where the random walk is prevented from moving with

positive speed due to the distribution of ξ putting much mass on very negative values, cf. also

[BK01b].
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(c) Inspecting the proof of this corollary, one may observe that continuing the corresponding ideas

we would obtain a large deviations principle for the position of the random walk under the

above Gibbs measure. However, since our emphasis is rather on Lyapunov exponents and

intermittency, we will not carry out the necessary modifications.

(d) In this context it is worth mentioning that in [GdH92] the authors consider a discrete time

branching random walk with drift in random environment. They derive a variational formula

for the optimal speed which on the one hand is more involved than the one we obtain in the

above corollary, but on the other hand provides information on the optimal path behaviour of

the random walker as well.

Furthermore, also in the discrete time context, in [Flu07] large deviations principles for a

random walk with drift in random potential have been derived using the Laplace-Varadhan

method applied to earlier results of [Zer98]. However, it has to be emphasised that in the

model treated there the influence of the drift of the random walk is essentially different from

our situation; in fact, it only appears in terms of the end point of the random walker at a given

time, while in our model the influence of the drift is also via the length of the random walk

path.

Similarly to corresponding results in [GdH92], in the context of Corollary 2.3 it is interesting to

investigate the dependence of the speed on h. For this purpose, for the rest of this subsection we

write Lh to denote the function we previously denoted L.

Proposition 2.5. Assume (1.2) and (2.2).

(a) For h> 0 small enough the assumptions of Corollary 2.3 (c) are fulfilled and thus a.s. the random

walk in the random potential ξ has speed 0.

(b) If limβ↑κ L1(β)> 0, then for h≤ 1 large enough the assumptions of Corollary 2.3 (a) are fulfilled

and thus a.s. the random walk in the random potential ξ has speed α∗.

If limβ↑κ L1(β)< 0, then for h≤ 1 large enough the assumptions of Corollary 2.3 (c) are fulfilled

and thus a.s. the random walk in the random potential ξ has speed 0.

Note here that it may happen that the random walk has speed 0 for h arbitrarily close to 1 which is

different from the results of [GdH92].

In addition to the behaviour proven in Proposition 2.5, we conjecture that the speed of the random

walk in the random potential ξ is nondecreasing as a function of the drift parameter h ∈ (0,1].

Since the proof of Proposition 2.5 requires results developed later on, it is postponed to section 7.

2.1.1 Further properties of the quenched Lyapunov exponent

Writing λ0(κ) to denote the dependence of λ0 on κ, we get the following properties for the quenched

Lyapunov exponent.

Proposition 2.6. Let the assumptions of Theorem 2.1 be fulfilled.

(a) The function (0,∞) ∋ κ 7→ λ0(κ) is convex and nonincreasing.
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(b) limκ↓0λ0(κ) = 0.

(c) The limits limκ→∞ κ
−1λ0(κ) and limκ↓0 κ

−1λ0(κ) exist and are given by

lim
x↓0

lim
t→∞

1

t
logE0 exp
n

x

∫ t

0

ξ(Xs) ds
o

= 0 (2.7)

and

lim
x→∞

lim
t→∞

1

t
logE0 exp
n

x

∫ t

0

ξ(Xs) ds
o

∈ [−1,0), (2.8)

respectively, where X is generated by ∆h.

2.2 Annealed regime

In order to avoid technical difficulties, we always assume that

Prob= ηZ (2.9)

for some η ∈ M1([b, 0]) and b ∈ (−∞, 0) in the annealed case. We are interested in the existence

of the annealed Lyapunov exponents λp for all p > 0 and will derive specific formulae for them. The

proof will use process level large deviations applied to the random medium ξ. In order to be able to

formulate our result, we have to introduce some further notation. For ζ ∈ Σb we denote by Rn(ζ)

the restriction of the empirical measure n−1
∑n−1

k=0 δθ k◦ζ ∈ M1(Σb) toM1(Σ
+
b
).2 Using assumption

(2.9) we get that the uniformity condition (U) in section 6.3 of [DZ98] is satisfied for (ξ(x))x∈Z.
Hence, Corollaries 6.5.15 and 6.5.17 of the same reference provide us with a full process level large

deviations principle for the random sequence of empirical measures (Rn ◦ξ)n∈N on scale n with rate

function given by

I (ν) :=

¨

H(ν∗1 |ν∗0 ⊗η), if ν is shift-invariant,

∞, otherwise,
(2.10)

for ν ∈ M1(Σ
+
b
). In this expression, H denotes relative entropy and writing πk for the projection

mapping from RN0 to Rk given by (xn)n∈N0
7→ (x0, . . . , xk−1), measures ν∗i are defined as follows:

For i ∈ {0,1} and shift-invariant ν ∈ M1(Σ
+
b
), we denote by ν∗i the unique probability measure on

[b, 0]Z∩(−∞,i] such that, for each k ∈ N and each Borel set Γ⊆ [b, 0]k,

ν∗i ({(. . . , x i−k+1, . . . , x i) : (x i−k+1, . . . , x i) ∈ Γ}) = ν ◦π−1
k
(Γ).

Note that ν∗i is well-defined due to the shift-invariance of ν . Furthermore, set

L(β ,ν) :=

∫

Σ+
b

logE1 exp
n
∫ T0

0

(ζ(Ys) + β) ds
o

ν(dζ)

2If clear from the context, we will interpret elements ν ofM1(Σb) as elements ofM1(Σ
+
b
) without further mentioning

by considering ν ◦ π−1
+

instead, where π+ : (xn)n∈Z 7→ (xn)n∈N0
. In the same fashion, we consider elements of Σb as

elements of Σ+
b
.
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for all β ∈ R and ν ∈M1(Σ
+
b
). In particular, we have L(β) = L(β , Prob). Employing the notation

Lsup
p (β) := sup

ν∈M s
1(Σ

+
b
)

�

L(β ,ν)−
I (ν)

p

�

, β ∈ R, (2.11)

we are ready to formulate our main result for the annealed setting.

Theorem 2.7. Assume (1.2) and (2.9). Then, for each p ∈ (0,∞), the p-th annealed Lyapunov

exponent λp exists. Furthermore, λp equals the zero of β 7→ L
sup
p (−β) in (−βcr , 0) or, if such a zero

does not exist, it equals −βcr .

Remark 2.8. (a) In fact, L
sup
p has at most one zero as it is strictly increasing, cf. Lemma 5.11

below.

(b) Recall that as (2.9) implies (2.2), we once again infer βcr = κ(1−
p

1− h2), cf. Remark 2.2.

With respect to the proof of this theorem, it turns out that the asymptotics of the p-th moment

〈u(t, 0)p〉 is the same as the quenched behaviour of u(t, 0)p but under a different distribution of

the environment ξ. This will be made precise by the use of the aforementioned process level large

deviations for Rn ◦ ξ.

The term L
sup
p defined in (2.11) and appearing in the above characterisation of λp admits a con-

venient interpretation as follows. On the one hand, distributions ν of our random medium which

provide us with high values of L(β ,ν) can play an important role in attaining the supremum in the

right-hand side of (2.11). On the other hand, we have to pay a price for obtaining such (rare) dis-

tributions, which is given by I (ν)/p. As is heuristically intuitive and evident from formula (2.11),

this price in relation to the gain obtained by high values of L(β ,ν) becomes smaller as p gets larger.

Note that, heuristically, L(·,ν) corresponds to the function L characterising the quenched Lyapunov

exponent for a potential distributed according to ν .

As mentioned before, we are interested in the intermittency of u for which we have the following

result:

Proposition 2.9. Let the assumptions of Theorem 2.7 be fulfilled. Then for p > 0 large enough, the

solution u to (1.1) is p-intermittent.

Furthermore, as mentioned previously, one expects the p-th annealed Lyapunov exponent λp to

converge to the quenched Lyapunov exponent λ0 as p ↓ 0.

Theorem 2.10. Let the assumptions of Theorem 2.7 be fulfilled. Then

lim
p↓0
λp = λ0.

2.2.1 Further properties of the annealed Lyapunov exponent

In addition to the previous results we have the following properties of the annealed Lyapunov expo-

nents.

Proposition 2.11. Let the assumptions of Theorem 2.7 be fulfilled.
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(a) The function p 7→ λp is nondecreasing in p ∈ [0,∞).

(b) The function p 7→ pλp is convex in p ∈ (0,∞).

(c) For any p ∈ [0,∞), κ 7→ λp(κ) is convex in κ ∈ (0,∞).

(d) If u is p-intermittent for some p ∈ (0,∞), it is q-intermittent for all q > p as well.

2.3 Related work

The parabolic Anderson model without drift and i.i.d. or Gaussian potential is well-understood, see

the survey [GK05] as well as the references therein. As a common feature, these treatments take

advantage of the self-adjointness of the random Hamiltonian κ∆+ ξ which allows for a spectral

theory approach to the respective problems. In our setting, however, the (random) operators κ∆h+

ξ are not self-adjoint, whence we do not have the common functional calculus at our disposal.

As hinted at earlier, we therefore retreat to a large deviations principle for the sequence T0/n.

Heuristically, another difference caused by the drift is that the drift term of the Laplace operator

makes it harder for the random walk X appearing in the Feynman-Kac representation (2.3) of the

solution to stay at islands of values of ξ close to its supremum 0.

Our model without drift has been dealt with in [BK01a] (not restricted to one dimension) and

[BK01b]. Here the authors found formulae for the quenched and p-th annealed Lyapunov exponents

for all p ∈ (0,∞) using a spectral theory approach; as mentioned before, in their investigations they

relied on a weaker notion of intermittency. Furthermore, they investigated the so-called screening

effect that can appear in dimension one.

A situation similar in spirit to ours has been examined in the seminal article [GdH92] motivated

from the point of view of population dynamics. The model treated there is a discrete-time branching

model in random environment with drift and corresponds to the case of a bounded i.i.d. potential.

Their aim is the investigation of the quenched and first annealed Lyaupunov exponents and their

starting point is similar to ours in the sense that they look for the speed of optimal trajectories of the

random walker, which in our situation corresponds to α∗ of (2.5). Due to the discrete time nature

of their model, it is then possible to single out the dependence of the drift term just in terms of large

deviations for what in our model corresponds to Yn/n under the perturbed measure. In contrast, the

dependence of the drift term in our model appears in the function L which is less explicit.

Continuing their investigation they obtain a representation of the quenched and annealed Lyapunov

exponents by the use of large deviation principles for the speed as well as for a functional of a empir-

ical pair distribution of a certain Markov process; the latter is important due to its close connection

to local times of the random walk. As a consequence, the resulting variational formulae character-

ising the Lyapunov exponents are on the one hand more involved than the ones we obtain; on the

other hand, their evaluation gives rise to a deeper understanding of the path behaviour of optimal

trajectories of the random walk.

While the authors obtain a more explicit dependence of the results on the drift parameter h than we

do, an advantage of our approach is that we may compute the p-th annealed Lyapunov exponents

for all p ∈ (0,∞) and characterise them in a simpler way.

Also in the context of discrete time, it is well worth mentioning recent results of [Flu07]. Departing

from a different model, the author computed the quenched and first annealed Lyapunov exponents
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and obtains large deviations for discrete-time random walks with drift under the influence of a

random potential in arbitrary dimensions. Using the Laplace-Varadhan method, he derives the result

from a large deviations principle established in [Zer98] for the case without drift. Note also that the

moment generating function appearing in the derivation of the large deviations principle of [Zer98]

is quite similar in spirit to our function Λ.

However, coming back to [Flu07], it is not clear how to apply the corresponding techniques to our

situation. Firstly, as pointed out in [Zer98], this large deviations principle does not carry over to the

continuous-time case automatically, which also involves large deviations on the number of jumps

leading to quantitatively different results. In particular, the way the drift term is taken into account

is substantially different to the situation we are dealing with: While in the model of [Flu07] the

drift only enters through the end point of the random walk at a certain time, in our situation the

influence of the drift also depends on the number of jumps the random walk has performed up to a

certain time; again, this is an effect that cannot appear in the context of discrete time.

Secondly, and more importantly, it is not clear how to adapt the methods of [Zer98] and [Flu07] to

obtain λp for general p ∈ (0,∞), which is the main focus of this paper.

2.4 Outline

Section 3 contains auxiliary results both for the quenched and annealed context. The proofs of

Theorem 2.1 and Corollary 2.3 will be carried out in section 4. In section 5 we prove some results

needed for the proof of Theorem 2.7. The latter is then the subject of section 6, while section 7

contains the proofs of the result on the transition from zero to positive speed (Proposition 2.5) as

well as the proofs of the results of subsections 2.1.1 and 2.2.1. Furthermore, the intermittency and

continuity results, Proposition 2.9 and Theorem 2.10, are proven in this section.

While the results we gave in section 2 are valid for arbitrary h ∈ (0,1], the corresponding proofs in

sections 3 to 6 contain steps which a priori hold true for h ∈ (0,1) only. Section 8 deals with the

adaptations necessary to obtain their validity for h= 1 also. Finally, in section 8 we will also give a

more convenient representation for λp with p ∈ N, see Proposition 8.2.

3 Auxiliary results

In this section we prove auxiliary results which will primarily facilitate the proof of the quenched

results given in section 2, but will also play a role when deriving the annealed results.

All of the results hereafter implicitly assume (1.2) and (1.3) mentioned in subsection 1.1.

The main results of this section are Proposition 3.1, which controls the aforementioned term, and

the large deviations principle of Theorem 3.8, which helps to control the remaining part of the

right-hand side in (2.4). The remaining statements of this section are of a more technical nature.

The following result is motivated in spirit by section VII.6 in [Fre85]. Note that we exclude the case

of absolute drift h= 1.

Proposition 3.1. (a) For h ∈ (0,1) and x , y ∈ Z, the finite limit

c∗ := lim
t→∞

1

t
logEx exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=y (3.1)
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exists a.s., equals

sup
t∈(0,∞)

1

t
logE0 exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0 (3.2)

as well as

lim
t→∞

1

t
logE0 exp
n
∫ t

0

ξ(Ys) ds
o

1TM>t,Yt=0 (3.3)

for all M ∈ Z\{0}, and is non-random. Furthermore, c∗ ≤ −βcr . If either (2.1) or (2.2) hold

true, then

c∗ =−βcr . (3.4)

(b) For β >−c∗, we have

E1 exp
n
∫ T0

0

(ξ(Ys) + β) ds
o

=∞ a.s. (3.5)

If either (2.1) or (2.2) hold true, then for each β < βcr there exists a non-random constant

Cβ <∞ such that

E1 exp
n
∫ T0

0

(ξ(Ys) + β) ds
o

≤ Cβ a.s. (3.6)

Remark 3.2. Identity (3.4) links the two expectations in (2.4), one involving fixed time, the other a

hitting time. As such, it will prove useful for the simplification of the variational problems arising in

sections 4 and 6.

Proof. We start with the proof of (a) and split it into four steps.

(i) We first show that for all x , y ∈ Z, the limit in (3.1) exists and equals the expression in (3.2).

For t ≥ 0 and x , y ∈ Z, define

px ,y(t) := logEx exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=y .

Using the Markov property, we observe that p0,0 is super-additive. Therefore, the limit c∗ of p0,0(t)/t

as t →∞ exists and

c∗ = sup
t∈(0,∞)

p0,0(t)/t ∈ (−∞, 0]. (3.7)

For x , y ∈ Z, the Markov property applied at times 1 and t + 1 yields

Ex exp
n
∫ t+2

0

ξ(Ys) ds
o

1Yt+2=y

≥ Ex

�

1Ys∈{0∧x ,...,0∨x}∀s∈[0,1],Y1=0 exp
n
∫ t+2

0

ξ(Ys) ds
o

×1Yt+1=0,Ys∈{0∧y,...,0∨y}∀s∈[t+1,t+2],Yt+2=y

�

≥ cx ,yE0 exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0,

(3.8)
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where cx ,y is an a.s. positive random variable given by

cx ,y := min
k∈{0∧x ,...,0∨x}

eξ(k) × Px(Ys ∈ {0∧ x , . . . , 0∨ x}∀s ∈ [0,1], Y1 = 0)

× min
k∈{0∧y,...,0∨y}

eξ(k) × P0(Ys ∈ {0∧ y, . . . , 0∨ y}∀s ∈ [0,1], Y1 = y). (3.9)

Similarly,

E0 exp
n
∫ t+2

0

ξ(Ys) ds
o

1Yt+2=0 ≥ cy,xEx exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=y . (3.10)

Now, combining (3.7) to (3.10) we conclude that limt→∞ px ,y(t)/t exists and equals (3.2).

(ii) We next show that c∗ is non-random and (3.3) holds.

Naming the dependence of c∗ on the realisation explicitly, we obtain

c∗ = c∗(ξ) = c∗(θ ◦ ξ)

by the use of (i). Thus, c∗ is non-random by Birkhoff’s ergodic theorem.

In order to derive (3.3), observe that for M ∈ N the function

pM (t) := logE0 exp
n
∫ t

0

ξ(Ys) ds
o

1T−M>t,Yt=0

is super-additive. Hence c∗M := limt→∞ pM (t)/t is well-defined and equals supt∈(0,∞) pM (t)/t. Obvi-

ously, pM (t) is nondecreasing in M and pM (t)≤ p0,0(t), whence

c∗M ≤ c∗ (3.11)

for all M ∈ N. On the other hand, since c∗M ≥ pM (t)/t and pM (t) ↑ p0,0(t) as M → ∞, we get

limM→∞ c∗M ≥ p0,0(t)/t for all t and, consequently, limM→∞ c∗M ≥ c∗. Together with (3.11) it follows

that

lim
M→∞

c∗M = c∗. (3.12)

Similarly to the previous step we compute

E0 exp
n
∫ t+2

0

ξ(Ys) ds
o

1T−M>t+2,Yt+2=0

≥ c1,1E1 exp
n
∫ t

0

ξ(Ys) ds
o

1T−M>t,Yt=1

= c1,1E0 exp
n
∫ t

0

(θ ◦ ξ)(Ys) ds
o

1T−(M+1)>t,Yt=0.

Taking logarithms, dividing both sides by t and letting t tend to infinity, we obtain c∗M (ξ)≥ c∗M+1(θ ◦
ξ). Iterating this procedure and using the monotonicity of c∗M in M , we obtain

c∗M (ξ)≥
1

n

k−1∑

j=1

c∗M+ j(θ
j ◦ ξ) +

1

n

n∑

j=k

c∗M+k(θ
j ◦ ξ)
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for all n ∈ N and k ≤ n. Birkhoff’s ergodic theorem now yields c∗M (ξ)≥ 〈c∗M+k
(ξ)〉 a.s. for all k ∈ N.

Because we clearly have c∗M (ξ) ≤ c∗
M+k
(ξ), this implies that c∗M is constant a.s. and independent of

M . Due to (3.12) this gives c∗M = c∗ a.s. for all M ∈ N, and thus c∗ equals (3.3) for all M ∈ −N. By

a similar derivation as above we find that c∗ equals (3.3) for all M ∈ Z\{0}.
(iii) The next step is to prove that βcr ≤−c∗.

Given t,ǫ > 0, we apply the Markov property at time t to obtain

E0 exp
n
∫ T−1

0

(ξ(Ys)− c∗ + ǫ) ds
o

≥ E0 exp
n
∫ T−1

0

(ξ(Ys)− c∗ + ǫ) ds
o

1T−1>t,Yt=0

= E0 exp
n
∫ t

0

(ξ(Ys)− c∗+ ǫ) ds
o

1T−1>t,Yt=0

×E0 exp
n
∫ T−1

0

(ξ(Ys)− c∗ + ǫ) ds
o

.

The second factor on the right-hand side is positive a.s. while, as we infer from (3.3) for M = 1, the

first one is logarithmically equivalent to etǫ. Thus, we deduce

E0 exp
n
∫ T−1

0

(ξ(Ys)− c∗ + ǫ) ds
o

=∞ a.s., (3.13)

and, using the shift invariance of ξ, we get

E1 exp
n
∫ T0

0

(ξ(Ys)− c∗ + ǫ) ds
o

=∞ a.s. (3.14)

In particular, this implies L+(−c∗+ ǫ) =∞ and thus βcr ≤−c∗.

(iv) This part consists of showing that βcr ≥−c∗ if either (2.1) or (2.2) is fulfilled.

Note that the shift invariance of ξ yields

L+(β) =
D�

logE0 exp
n
∫ T−1

0

(ξ(Ys) + β) ds
o�+E

.

Using (3.7) as well as (3.10) and taking into account that c∗ ≤ 0, we get

E0 exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=−1 ≤ ec∗ t/c−1,0 (3.15)

for all t ∈ (0,∞). Consequently, we compute for n ∈ N and ǫ > 0:

E0 exp
n
∫ T−1

0

(ξ(Ys)− c∗ − ǫ) ds
o

1T−1∈(n−1,n],Ys=−1∀s∈[T−1,n]

≤ E0 exp
n
∫ n

0

ξ(Ys) ds
o

1Yn=−1 exp{−ξ(−1)}exp{−c∗n− ǫ(n− 1)}

≤ exp{−ǫ(n− 1)− ξ(−1)}/c−1,0 a.s.,

(3.16)
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where we have used c∗ ≤ 0 to deduce the first inequality and (3.15) to obtain the last one. Analo-

gously, the strong Markov property at time T−1 supplies us with the lower bound

E0 exp
n
∫ T−1

0

(ξ(Ys)− c∗ − ǫ) ds
o

1T−1∈(n−1,n],Ys=−1∀s∈[T−1,n]

≥ E0 exp
n
∫ T−1

0

(ξ(Ys)− c∗ − ǫ) ds
o

1T−1∈(n−1,n]P−1(Ys = −1∀s ∈ [0,1]).

(3.17)

Since P0(T−1 <∞) = 1, combining (3.16) with (3.17) and summing over n ∈ N, we get

E0 exp
n
∫ T−1

0

(ξ(Ys)− c∗ − ǫ) ds
o

≤ C
∑

n∈N
exp{−ǫn}<∞ a.s., (3.18)

where

C :=
�
P−1(Ys =−1∀s ∈ [0,1])

�−1
exp{ǫ− ξ(−1)}/c−1,0. (3.19)

We now distinguish cases and first assume (2.1). In this case, c−1,0 can be bounded from below by

some constant c−1,0 > 0 a.s., whence C can be bounded from above by the non-random constant

C :=
�
P−1(Ys = −1∀s ∈ [0,1])

�−1
exp{ǫ− b}/c−1,0. (3.20)

In particular, using (3.18) this implies L+(−c∗− ǫ)<∞, whence we deduce βcr ≥−c∗.

To treat the second case assume (2.2). Due to (1.2) and (2.2), we infer Prob(ξ(−1),ξ(0) ≥ b) > 0

for any b ∈ (−∞, 0); fix one such b. On {ξ(−1),ξ(0)≥ b}, as before, C may be bounded from above

by the corresponding non-random constant C of (3.20) and therefore

E0 exp
n
∫ T−1

0

(ξ(Ys)− c∗ − ǫ) ds
o

≤ C
∑

n∈N
exp{−ǫn}<∞ (3.21)

Prob(·|ξ(−1),ξ(0)≥ b)-a.s. Since the left-hand side of (3.21) does not depend on the actual realisa-

tion of ξ(−1), (3.21) even holds Prob(·|ξ(0) ≥ b)-a.s. But the left-hand side of (3.21) is increasing

in ξ(0), whence (3.21) holds Prob-a.s. This finishes the proof of part (a).

It remains to prove (b). The first part was already established in (3.14). Under assumption (2.1),

the upper bound is a consequence of (3.18) with C replaced by C of (3.20); otherwise, if (2.2) is

fulfilled, the upper bound follows from the last conclusion in the proof of part (a) (iv).

Proposition 3.1 enables us to control the asymptotics of the second expectation on the right of (2.4).

To deal with the first expression, we define for n ∈ N and ζ ∈ Σ+ the probability measures

P
ζ
n(A) := (Zζn )

−1
En exp
n
∫ T0

0

ζ(Ys) ds
o

1A

with A∈ F and the normalising constant

Zζn := En exp
n
∫ T0

0

ζ(Ys) ds
o

.
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The expectation with respect to Pζn will be denoted Eζn. By considering Pξn ◦ (T0/n)
−1, we obtain

a random sequence of probability measures on R+ for which we aim to prove a large deviations

principle (see Theorem 3.8 below). As common in the context of large deviations, we define the

moment generating function

Λ(β) := lim
n→∞

1

n
logEξn exp{βT0}= 〈logE

ξ
1 exp{βT0}〉, β ∈ R,

where the last equality stems from Birkhoff’s ergodic theorem. Note that

Λ(β) = L(β)− L(0) (3.22)

whenever the right-hand side is well-defined.

The following lemma tells us that the critical value βcr of L+ also applies to Λ and is positive.

Lemma 3.3. Assume h ∈ (0,1). Then

(a) Λ(β)<∞ for β < βcr , while Λ(β) =∞ for β > βcr ;

(b) βcr is positive.

Remark 3.4. Note that for h = 1 we can explicitly compute βcr = κ as well as c∗ = ξ(0) − κ. In

particular, h= 1 is the only case in which c∗ is random, cf. Proposition 3.1 (a).

Proof. (a) Since Z
ξ
1 ≤ 1, we get

�

logE1 exp
n
∫ T0

0

(ξ(Ys) + β) ds
o�+

≤ logE
ξ
1 exp{βT0} (3.23)

for β ≥ 0. Consequently, since βcr ≥ 0, it is evident that Λ(β) =∞ for β > βcr . For the remaining

part of the statement, we estimate with β ∈ [0,κ) :

E
ξ
1 exp{βT0} ≤

E1 exp
�∫ T0

0
(ξ(Ys) + β) ds
	
1T0≤T2

E1 exp
�∫ T0

0
ξ(Ys) ds
	
1T0≤T2

+
E1 exp
�∫ T0

0
(ξ(Ys) + β) ds
	
1T2≤T0

E1 exp
�∫ T0

0
ξ(Ys) ds
	
1T0≤T2

=

1+h

2

κ

κ−ξ(1)−β +
1−h

2

κ

κ−ξ(1)−βE2 exp
�∫ T0

0
(ξ(Ys) + β) ds
	

1+h

2

κ

κ−ξ(1)

≤
κ− ξ(1)
κ− ξ(1)− β
�

1+E2 exp
n
∫ T0

0

(ξ(Ys) + β) ds
o�

≤
κ

κ− β
�

1+E1 exp
n
∫ T0

0

((θ ◦ ξ)(Ys) + β) ds
o

×E1 exp
n
∫ T0

0

(ξ(Ys) + β) ds
o�

a.s. (3.24)
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Taking logarithms on both sides and using the inequality log(1+ x y) ≤ log 2+ log+ x + log+ y for

x , y > 0, we arrive at

logE
ξ
1 exp{βT0} ≤ log

κ

κ− β + log 2+
�

logE1 exp
n
∫ T0

0

((θ ◦ ξ)(Ys) + β) ds
o�+

+
�

logE1 exp
n
∫ T0

0

(ξ(Ys) + β) ds
o�+

. (3.25)

We observe that for β < βcr(≤ κ due to (1.8)) the right-hand side is integrable with respect to Prob

and hence so is the left-hand side; thus, Λ(β)<∞ for β < βcr .

(b) It is sufficient to prove βcr > 0 for the vanishing potential ξ(x) ≡ 0. But in this case we have

βcr =−c∗ due to part (a) of Proposition 3.1. Therefore, using the definition of c∗, the proof reduces

to a standard large deviations bound and will be omitted.

We next prove the following properties of L defined by (1.7). Recall that L is well-defined for

β < βcr .

Lemma 3.5. (a) If L(β)> −∞ for some β ∈ (−∞,βcr), then the same is true for all β ∈ (−∞,βcr).

(b) If the function L is finite on (−∞,βcr), then it is continuously differentiable on this interval. Its

derivative is given by

L′(β) =
DE1T0 exp{
∫ T0

0
(ξ(Ys) + β) ds}

E1 exp{
∫ T0

0
(ξ(Ys) + β) ds}

E

. (3.26)

(c) If the assumptions of (b) apply, then

lim
β→−∞

L′(β) = 0.

Remark 3.6. When L is finite, this lemma yields that Λ′(β) is also given by the expression in (3.26)

(cf. (3.22)).

Proof. (a) Assume L(β) > −∞ for some β ∈ (−∞,βcr). Due to the monotonocity of L, it suffices

to show L(β − c) > −∞ for all c > 0. We apply a reverse Hölder inequality for q < 0 < r < 1 with

q−1 + r−1 = 1 to obtain

E1 exp
n
∫ T0

0

(ξ(Ys) + β − c) ds
o

= E1 exp
n
∫ T0

0

(ξ(Ys) + β)/r ds
o

exp
n
∫ T0

0

((ξ(Ys) + β)/q− c) ds
o

≥
�

E1 exp
n

r

∫ T0

0

(ξ(Ys) + β)/r ds
o� 1

r
�

E1 exp
n

q

∫ T0

0

((ξ(Ys) + β)/q− c) ds
o� 1

q

=
�

E1 exp
n
∫ T0

0

(ξ(Ys) + β) ds
o� 1

r
�

E1 exp
n
∫ T0

0

(ξ(Ys) + β − qc) ds
o� 1

q
.
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Using the definition of L, we obtain

L(β − c)≥
1

r
L(β) +

1

q
L(β − qc)

and for |q| > 0 small enough such that β − qc < βcr , the second summand is finite. The first

summand is finite by assumption, whence the claim follows.

(b) The proof is standard and uses assertion (3.6) of Proposition 3.1 in the case h ∈ (0,1). The

details are left to the reader.

(c) Due to (b) it is sufficient to show that the integrand converges to 0 pointwise and then apply

dominated convergence3 to infer the desired result.

For this purpose fix a realisation of the medium and observe P
ξ
1 ◦ T−1

0 ≪ λ with λ denoting the

Lebesgue measure on R+. Then the random density

f :=
dP
ξ
1 ◦ T−1

0

dλ

is well-defined. It follows that

E
ξ
1 T0 exp{βT0}=

∫

R+

x exp{β x} f (x) d x

and splitting this integral we compute for ǫ > 0 and β < 0:

∫ ǫ

0

x exp{β x} f (x) d x ≥ c

∫ ǫ

0

x exp{β x} d x = c
� 1

β
x exp{β x}|ǫx=0−

1

β2
(exp{βǫ} − 1)
�

= c
� ǫ

β
exp{βǫ}+

1

β2
−

1

β2
exp{βǫ}
�

,

(3.27)

where c > 0 is chosen such that f ≥ c holds λ[0,ǫ]-a.s. Similarly, the remaining part is estimated by

∫ ∞

ǫ

x exp{β x} f (x) d x ≤ ǫ exp{βǫ}
∫ ∞

ǫ

f (x) d x ≤ ǫ exp{βǫ}

for β < −ǫ−1. Thus, for each ǫ > 0 we can choose β small enough such that E
ξ
1 T0 exp{βT0}1T0≥ǫ ≤

E
ξ
1 T0 exp{βT0}1T0≤ǫ whence it follows for such β that

E
ξ
1 T0 exp{βT0} ≤ 2ǫE

ξ
1 exp{βT0}.

This proves that the above integrand converges to 0 a.s. for β →−∞ and the result follows.

In contrast to L, the function Λ may never take the value −∞, as is seen in the following lemma.

Lemma 3.7. Λ(β)>−∞ for all β ∈ (−∞,βcr).

3 Indeed, dominated convergence is applicable since the integrand is increasing in β as one can check by considering

its derivative, and it is integrable for β = 0, cf. e.g. (3.24), Lemma 3.3 (b) and Proposition 3.1 (b).
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Proof. Due to monotonicity, it is sufficient to show Λ(β)> −∞ for all β ∈ (−∞, 0). For this purpose

we choose such β and estimate

E1 exp{
∫ T0

0
(ξ(Ys) + β) ds}

E1 exp{
∫ T0

0
ξ(Ys) ds}

≥
E1 exp{
∫ T0

0
(ξ(Ys) + β) ds}1T0≤T2

E1 exp{
∫ T0

0
ξ(Ys) ds}1T0≤T2

(P1(T0 ≤ T2))
−1

=
1+ h

2

κ− ξ(1)
κ− ξ(1)− β .

Taking logarithms and expectations, we see that Λ(β)> −∞ for all β ∈ (−∞, 0).

We now have the necessary tools available to tackle the desired large deviations principle. Let Λ∗

denote the Fenchel-Legendre transform of Λ given by

Λ∗(α) := sup
β∈R
(βα−Λ(β)) = sup

β<βcr

(βα−Λ(β)), α ∈ R,

where the second equality is due to Lemma 3.3 (a). Furthermore, for M > 0, n ∈ N and ζ ∈ Σ+
define

P
ζ
M ,n := Pζn(·|{τk ≤ M ∀k ∈ {1, . . . , n}}) (3.28)

where

τk := Tk−1 − Tk, k ∈ N. (3.29)

The corresponding expectation is denoted by E
ζ
M ,n.

Theorem 3.8. For almost all realisations of ξ, the sequence of probability measures (Pξn ◦(T0/n)
−1)n∈N

on R+ satisfies a large deviations principle on scale n with deterministic, convex good rate function Λ∗.

Proof. Being the supremum of affine functions, Λ∗ is lower semi-continuous and convex. Further-

more, since Λ(0) = 0, it follows that Λ∗(u)≥ 0 for all u ∈ R. Choosing β ∈ (0,βcr), which is possible

due to Lemma 3.3 (b), we find that for any M ≥ 0 the set

{α ∈ R : βα−Λ(β)≤ M} ∩ {α ∈ R :−βα−Λ(−β)≤ M}

is compact and, in particular, Λ∗ has compact level sets; thus, Λ∗ is a good convex rate function.

The upper large deviations bound for closed sets is a direct consequence of the Gärtner-Ellis theorem

(cf. Theorem 2.3.6 in [DZ98]).

To prove the lower large deviations bound for open sets, we cannot directly apply the Gärtner-Ellis

theorem since the steepness assumption (cf. Definition 2.3.5 (c) in [DZ98]) is possibly not fulfilled.

Indeed, if h= 1 it may occur that limβ↑βcr
|Λ′(β)|<∞ since in this case βcr = κ,

Λ′(β) =
DE

ξ
1 T0 exp{βT0}
E
ξ
1 exp{βT0}

E

=
D 1

κ− β − ξ(0)
E

(3.30)

and Λ is steep if and only if −1/ξ(0) is not integrable.

To circumvent this problem, we retreat to the measures P
ξ
M ,n and for the corresponding logarithmic

moment generating function we write

ΛM (β) := lim
n→∞

1

n
logE

ξ
M ,n exp{βT0}= 〈logE

ξ
M ,1 exp{βT0}〉, β ∈ R,
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where the equality is due to Birkhoff’s ergodic theorem. Using dominated convergence, one checks

that ΛM is essentially smooth (cf. Definition 2.3.5 in [DZ98]). We may therefore apply the Gärtner-

Ellis theorem to the sequence (P
ξ
M ,n ◦ (T0/n)

−1)n∈N to obtain for any G ⊆ R+ open and x ∈ G the

estimate

lim inf
n→∞

1

n
logP

ξ
M ,n ◦ (T0/n)

−1(G)≥−Λ∗M (x), (3.31)

where Λ∗M (α) := supβ∈R(βα−ΛM (β)) denotes the Fenchel-Legendre transform for α ∈ R.

In order to use this result for our original problem, we recall that a sequence of functions ( fn)n∈N
from R to R epi-converges to a function f : R→ R at x0 ∈ R if and only if

lim inf
n→∞

fn(xn)≥ f (x0)

for all sequences (xn)n∈N ⊂ R converging to x0 and

lim sup
n→∞

fn(xn)≤ f (x0)

for some sequence (xn)n∈N ⊂ R converging to x0.

Using the facts that

(a) Λ is continuous on (−∞,βcr),

(b) ΛM → Λ pointwise as M →∞,

(c) ΛM is a monotone function and the sequence (ΛM )M∈N is monotone when restricted either to

(−∞, 0] or [0,∞),

we deduce that ΛM epi-converges towards Λ as M →∞. Therefore, since we note that Λ (cf. Lemma

3.7) and the (ΛM )M∈N are proper, lower semi-continuous and convex functions, we conclude using

Theorem 11.34 in [RW98] that Λ∗M epi-converges towards Λ∗ as M →∞ along N. Choosing G and

x as above we therefore find a sequence (xM )M∈N ⊂ G with limM→∞Λ
∗
M (xM ) = Λ

∗(x). Employing

(3.31) we thus obtain

lim sup
M→∞

lim inf
n→∞

1

n
logP

ξ
M ,n(T0/n)

−1(G)≥−Λ∗(x),

which in combination with

P
ξ
n ◦ (T0/n)

−1(G)≥ PξM ,n(T0/n)
−1(G) · PξM (τk ≤ M ∀k ∈ {1, . . . , n})

yields

lim inf
n→∞

1

n
logPξn ◦ (T0/n)

−1(G)≥−Λ∗(x).

This finishes the proof of the lower bound.
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4 Proofs for the quenched regime

The outline of this section is as follows. We will use the large deviations principle of Theorem 3.8

to derive a variational formula for the lower logarithmic bound of u (cf. Lemma 4.1). In combina-

tion with further estimates, the large deviations principle will also prove valuable in establishing a

similar estimate for the upper bound, see Lemma 4.2. Combining Lemmas 4.1 and 4.2 we obtain

Corollary 4.5 and can then complete the proof of Theorem 2.1. Both the lower and upper bounds

will essentially depend on the fact that (2.3) can be used to obtain (2.5). This result will then be

shown explicitly to yield the proof of Corollary 2.3. Here, ≍ means exponential equivalence.

We start with the proof of the lower bound.

Lemma 4.1. Let I ⊂ [0,∞) be an interval. Then for almost all realisations of ξ,

lim inf
t→∞

1

t
log
∑

n∈t I

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0 ≥ sup

α∈
◦
I∪(I∩{0})

inf
β<βcr

(−β +αL(β)). (4.1)

Proof. For δ > 0 and α ∈
◦
I we obtain using (2.4):

E⌊αt⌋ exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

≥ E⌊αt⌋
�

exp
n
∫ T0

0

ξ(Ys) ds
o

1 T0
⌊αt⌋≤

1

α

�

E0 exp
n
∫ t−r

0

ξ(Ys) ds
o

1Yt−r=0

�

r=T0

�

≥ sup
m∈(0,1/α)

E⌊αt⌋
�

exp
n
∫ T0

0

ξ(Ys) ds
o

1 T0
⌊αt⌋∈(0,1/α)∩(m−δ,m+δ)

×
�

E0 exp
n
∫ t−r

0

ξ(Ys) ds
o

1Yt−r=0

�

r=T0

�

.

Applying Proposition 3.1 (a) to the inner expectation and Theorem 3.8 to the remaining part of the

right-hand side, we have

lim inf
t→∞

1

t
logE⌊αt⌋ exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

≥ sup
m∈(0,1/α)

�

lim inf
t→∞

1

t
logE⌊αt⌋ exp
n
∫ T0

0

ξ(Ys) ds
o

1 T0
⌊αt⌋∈(0,1/α)∩(m−δ,m+δ)

+ lim inf
t→∞

1

t
logE0 exp
n
∫ t(1−α(m−δ))

0

ξ(Ys) ds
o

1Yt(1−α(m−δ))=0

�

≥ sup
m∈(0,1/α)

�

α
�
− inf

x∈(0,1/α)∩(m−δ,m+δ)
Λ∗(x) + L(0)
�
+ (1−α(m−δ))c∗

�

. (4.2)

Note here that for a potential unbounded from below, L(0) =−∞ is possible; nevertheless, observe

that in this case also L(β) = −∞ for all β < βcr , see Lemma 3.5 (a). Therefore, the follow-

ing computations hold true even if L(0) = −∞. The lower semi-continuity of Λ∗ supplies us with
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limδ↓0 infx∈(0,1/α)∩(m−δ,m+δ)Λ
∗(x) = Λ∗(m). Hence, taking δ ↓ 0 in (4.2) yields

lim inf
t→∞

1

t
logE⌊αt⌋ exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

≥ sup
m∈(0,1/α)

�
α(−Λ∗(m) + L(0)) + (1−αm)c∗

�

= c∗ +α sup
m∈(0,1/α)

inf
β<βcr

(m(βcr − β) + L(β)), (4.3)

where we used (3.22) and (3.4) to obtain the equality. Thus, the supremum in m is taken for

m= 1/α. Hence,

lim inf
t→∞

1

t
logE⌊αt⌋ exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0 ≥ inf
β<βcr

(−β +αL(β)). (4.4)

Now for the case α= 0 we observe

lim inf
t→∞

1

t
logE0 exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0 =−βcr

due to Proposition 3.1 (a). Since infβ<βcr
(−β +αL(β)) evaluates to −βcr for α= 0, in combination

with (4.4) this finishes the proof of (4.1).

Next, we turn to the upper bound which is slightly more involved.

Lemma 4.2. Let I ⊂ [0,∞) be a compact interval. Then for almost all realisations of ξ,

lim sup
t→∞

1

t
log
∑

n∈t I

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0 ≤ sup
α∈I

inf
β<βcr

(−β +αL(β)). (4.5)

Proof. (i) First, assume that inf I > 0 and write I = [ǫ,γ]. Then for δ > 0 we choose numbers

(αδ
k
)n

k=1
such that ǫ = αδ1 < α

δ
2 < · · ·< αδn = γ and maxk=1,...,n−1(α

δ
k+1
−αδ

k
)< δ. Then

lim sup
t→∞

1

t
log
∑

n∈t I

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

= max
k=1,...,n−1

lim sup
t→∞

1

t
log
∑

n∈t[αδ
k
,αδ

k+1
]

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0.

Using (2.4) and Proposition 3.1 (a) we get

∑

n∈t[αδ
k
,αδ

k+1
]

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

=
∑

n∈t[αδ
k
,αδ

k+1
]

En

�

exp
n
∫ T0

0

ξ(Ys) ds
o

1T0≤t

�

E0 exp
n
∫ t−r

0

ξ(Ys) ds
o

1Yt−r=0

�

r=T0

�

≤
∑

n∈t[αδ
k
,αδ

k+1
]

En exp
n
∫ T0

0

ξ(Ys) ds
o

1 T0
n
≤ 1

αδ
k

exp{c∗(t − T0)},

(4.6)
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which by (3.4) and the exponential Chebyshev inequality can be bounded from above by

inf
β>0

∑

n∈t[αδ
k
,αδ

k+1
]

En exp
n
∫ T0

0

(ξ(Ys)− c∗ − β) ds
o

exp{c∗ t}exp{βn/αδk}

≤ exp{c∗ t} inf
β<βcr

∑

n∈t[αδ
k
,αδ

k+1
]

En exp
n
∫ T0

0

(ξ(Ys) + β) ds
o

exp{(−β − c∗)n/αδk}.
(4.7)

Therefore, combining (4.6) and (4.7) we arrive at

lim sup
t→∞

1

t
log
∑

n∈t[αδ
k
,αδ

k+1
]

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

≤ c∗
�

1−
αδjk

αδ
k

�

+αδjk
inf
β<βcr

(−β/αδk + (Λ(β) + L(0))),

(4.8)

where jk = k if the summands on the right-hand side of (4.7) have nonpositive exponential rates in

n for some β > 0 and jk = k+ 1 otherwise. Now if L(0) = −∞, then obviously the right-hand side

of (4.8) equals −∞ and (4.5) holds true. Therefore, we assume L(0) > −∞ from now on, which

due to Lemma 3.5 (a) implies L(β) > −∞ for all β ∈ (−∞,βcr). By (3.22), the right-hand side of

(4.8) evaluates to

c∗
�

1−
αδjk

αδ
k

�

+
αδjk

αδ
k

inf
β<βcr

(−β +αδk L(β)). (4.9)

Using Lemma 3.5 (c) one can show that the family of functions indexed by δ, which are defined

piecewise constant by the right-hand side of (4.9) for α ∈ [αδ
k
,αδ

k+1
), k ∈ {1, . . . , n− 2}, and α ∈

[αδn−1,αδn], converges uniformly in α ∈ [ǫ,γ] to

inf
β<βcr

(−β +αL(β)) (4.10)

as δ ↓ 0. Taking δ ↓ 0 and the supremum over α ∈ [ǫ,γ], we therefore obtain from the previous

relations:

lim sup
t→∞

1

t
log
∑

n∈t[ǫ,γ]

En exp
n
∫ t

0

ξ(Ys)ds
o

1Yt=0 ≤ sup
α∈[ǫ,γ]

inf
β<βcr

(−β +αL(β)). (4.11)

(ii) It remains to consider the case that inf I = 0. Then we either find ǫ > 0 such that

lim sup
t→∞

1

t
log
∑

n∈t I

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

= lim sup
t→∞

1

t
log
∑

n∈t(I∩[ǫ,∞))
En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0, (4.12)
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in which case the problem reduces to the previous case and (4.5) holds true in particular. Otherwise,

for each ǫ > 0 we have “>” in (4.12) instead of “=”. We would then find a function ϕ : [0,∞)→ N0

such that ϕ(t)/t → 0 as t →∞ and which satisfies the first equality in

lim sup
t→∞

1

t
log
∑

n∈t I

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

= lim sup
t→∞

1

t
logEϕ(t) exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

= lim sup
t→∞

1

t
logEϕ(t)

�

exp
n
∫ T0

0

ξ(Ys) ds
o

1T0≤t

×
�

E0 exp
n
∫ t−r

0

ξ(Ys) ds
o

1Yt−r=0

�

r=T0

�

≤ sup
α∈[δ,1−δ]

�

lim sup
t→∞

1

t
logEϕ(t)

�

exp
n
∫ T0

0

ξ(Ys) ds
o

1T0∈t[α−δ,α+δ]

�

× sup
r∈t[α−δ,α+δ]

E0 exp
n
∫ t−r

0

ξ(Ys) ds
o

1Yt−r=0

�

(4.13)

with δ > 0 small. The exponential Chebyshev inequality for β ∈ (0,βcr) supplies us with

Eϕ(t) exp
n
∫ T0

0

ξ(Ys) ds
o

1T0≥(α−δ)t

≤ Eϕ(t) exp
n
∫ T0

0

(ξ(Ys) + β) ds
o

exp{−β(α−δ)t}.
(4.14)

Taking δ ↓ 0 and β ↑ βcr in this inequality, we deduce

lim sup
t→∞

1

t
logEϕ(t) exp
n
∫ T0

0

ξ(Ys) ds
o

1T0≥(α−δ)t ≤−αβcr .

Now taking δ ↓ 0 in (4.13) we obtain in combination with Proposition 3.1 (a):

lim sup
t→∞

1

t
log
∑

n∈t I

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

≤ sup
α∈[0,1]

(−αβcr + (1−α)c∗) = −βcr . (4.15)

But −βcr is just the result when replacing supα∈I by α = 0 in (4.5). This finishes the proof of the

lemma.

The next result establishes the intuitively plausible fact that only summands in the direction of the

drift are relevant on an exponential scale.
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Lemma 4.3. For all δ ≥ 0 and γ≥ δ we have

lim sup
t→∞

1

t
log
∑

n∈t[−γ,−δ]
En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

≤ δ log
1− h

1+ h
+ lim inf

t→∞

1

t
log
∑

n∈t[δ,γ]

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0 a.s. (4.16)

Proof. First we observe that the function

(0,∞) ∋ α 7→ inf
β<βcr

(−β +αL(β))

is either constant −∞ (if and only if L ≡−∞ on (−∞,βcr), cf. Lemma 3.5 (a)) or continuous, since

it is concave. In combination with the proofs of Lemmas 4.1 and 4.2 we therefore infer the existence

of α+ ∈ [δ,γ] such that

lim
t→∞

1

t
log
∑

n∈t[δ,γ]

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0 = lim
t→∞

1

t
logE⌊α+ t⌋ exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

= sup
α∈[δ,γ]

inf
β<βcr

(−β +αL(β)) a.s.

Employing similar arguments, one may show that the analogues of Lemmas 4.1 and 4.2 for I ⊂
(−∞, 0] also hold and we infer the existence of α− ∈ [−γ,−δ] such that

lim
t→∞

1

t
log
∑

n∈t[−γ,−δ]
En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0 = lim
t→∞

1

t
logE⌊α− t⌋ exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0 (4.17)

exists and is deterministic also. Next we observe that for n ∈ N

E−n exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0 = E0 exp
n
∫ t

0

ξ(Xs) ds
o

1X t=−n

=
�1− h

1+ h

�n

E0 exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=−n

d
=
�1− h

1+ h

�n

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0,

(4.18)

where the first equality follows from time reversal, the second by comparing the transition proba-

bilities of X and Y, and the last equality follows from the shift invariance of ξ.
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Employing (4.18) in combination with (4.17) we conclude

lim
t→∞

1

t
log
∑

n∈t[−γ,−δ]
En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

= lim
t→∞

1

t
logE⌊α− t⌋ exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

= |α−|
1− h

1+ h
+ lim

t→∞

1

t
logE−⌊α− t⌋ exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

≤ |α−|
1− h

1+ h
+ lim

t→∞

1

t
log
∑

n∈t[δ,γ]

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0.

Indeed, to justify the last equality note that the limits on both sides exist and are constant a.s.;

(4.18) then yields the equality in question. This finishes the proof.

Lemma 4.4. We have

lim sup
t→∞

1

t
log
∑

n/∈t[−γ,γ]
En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0→−∞ (4.19)

as γ→∞.

Proof. Note that by the use of Stirling’s formula we obtain for γ > κe:

∑

n≥γt

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0 ≤
∑

n≥γt

Pn(T0 ≤ t)≤
∑

n≥γt

∑

k≥n

e−κt
(κt)k

k!

≤ e−κt
∑

n≥γt

∑

k≥n

�κte

γt

�k

= Ce−κt
∑

n≥γt

�κe

γ

�n

= Ce−κt
�κe

γ

�⌊γt⌋

where C is a generic constant depending on κ and γ, swallowing all sums appearing in the geometric

series. Since an analogous result is valid for

∑

n≤−γt

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0,

we infer that (4.19) holds as γ→∞.

Corollary 4.5. The quenched Lyapunov exponent λ0 exists and is given by

λ0 = sup
α∈[0,γ]

inf
β<βcr

(−β +αL(β)) (4.20)

for all γ > 0 large enough.
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Proof. We take advantage of (2.3) to split for γ > 0 :

u(t, 0)≤
∑

n/∈t[−γ,γ]
En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=n

+
∑

n∈[0,γt]

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=n (4.21)

+
∑

n∈[−γt,0]

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=n.

Lemma 4.3 yields that the third summand is logarithmically negligible when compared to the sec-

ond. Since the first summand can be made arbitrarily small for γ large, according to Lemma 4.4, we

obtain in combination with Lemma 4.2:

lim sup
t→∞

1

t
log u(t, 0)≤ sup

α∈[0,γ]

inf
β<βcr

(−β +αL(β))

for γ large enough.

With respect to the lower bound, Lemma 4.1 in combination with (2.3) supplies us with

lim inf
t→∞

1

t
log u(t, 0)≥ sup

α≥0

inf
β<βcr

(−β +αL(β)).

Combining these two estimates we infer the existence of λ0 and the variational formula (4.20).

We are now ready to prove the results of subsection 2.1.

Proof of Theorem 2.1. Corollary 4.5 supplies us with the existence of λ0 and the variational for-

mula (4.20). If L does not have a zero in (0,βcr), then we have L(β) < 0 for all β < βcr . Thus, the

supremum in α is taken in α= 0 and the right-hand side of (4.20) evaluates to −βcr . If L does have

a zero in (0,βcr), then inspecting (4.20) and differentiating with respect to β , we observe that the

supremum over α is a maximum taken in α= (L′(βz))
−1, with βz denoting the zero of L in (0,βcr).

Consequently, we deduce that λ0 equals −βz , which finishes the proof.

Proof of Corollary 2.3. (a) Note that L has a zero in (0,βcr) by assumption and thus Theorem 2.1

implies −λ0 < βcr . Therefore, by Lemma 3.5 (b) we may deduce (L′(−λ0))
−1 ∈ (0,∞).

Using the time reversal of (2.3) and Lemma 4.4, it suffices to show

λ0 > lim sup
t→∞

1

t
log
∑

n∈t([−γ,γ]\(α∗−ǫ,α∗+ǫ))
En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0 (4.22)

for γ large enough. First, observe that due to Lemma 4.2 we have

lim sup
t→∞

1

t
log
∑

n∈t([0,γ]\(α∗−ǫ,α∗+ǫ))
En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

≤ sup
α∈[0,γ]\(α∗−ǫ,α∗+ǫ)

inf
β<βcr

(−β +αL(β)). (4.23)
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Differentiating the expression

− β +αL(β) (4.24)

with respect to β we obtain

− 1+α
DE

ξ
1 T0 exp{βT0}
E
ξ
1 exp{βT0}

E

, (4.25)

cf. Lemma 3.5 (b). Now (4.25) as a function of β is continuous at −λ0 and inserting β = −λ0 as

well as α = α∗, the term in (4.25) evaluates to 0. Therefore, for ǫ ∈ (0,α∗) there exists δ > 0 such

that for all α with |α−α∗| ≥ ǫ and β with |β − (−λ0)| < δ, the derivative (4.25) is bounded away

from 0. Since, according to Theorem 2.1, setting β = −λ0 in (4.24) evaluates to λ0 independently

of the value of α, this boundedness yields

inf
β<βcr

(−β +αL(β))≤ λ0−δ∗

for some δ∗ > 0 and all α /∈ (α∗− ǫ,α∗ + ǫ). Consequently, we get

sup
α∈[0,γ]\(α∗−ǫ,α∗+ǫ)

inf
β<βcr

(−β +αL(β))≤ λ0−δ∗ < λ0.

Therefore, using (4.23) we have

lim sup
t→∞

1

t
log
∑

n∈t([0,γ]\(α∗−ǫ,α∗+ǫ))
En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0 < λ0.

Combining this estimate with Lemma 4.3 thus yields

lim sup
t→∞

1

t
log
∑

n∈t([−γ,0]\(−α∗−ǫ,−α∗+ǫ))
En exp
n
∫ T0

0

ξ(Ys) ds
o

1Yt=0 < λ0. (4.26)

Furthermore, the same lemma supplies us with the first inequality in

lim sup
t→∞

1

t
log
∑

n∈t(−α∗−ǫ,−α∗+ǫ)
En exp
n
∫ T0

0

ξ(Ys) ds
o

1Yt=0

≤ (α∗− ǫ) log
1− h

1+ h
+ sup
α∈[0,γ]\(α∗−ǫ,α∗+ǫ)

inf
β<βcr

(−β +αL(β))< λ0.

(4.27)

Combining (4.23), (4.26) and (4.27) gives (4.22) and hence finishes the proof of part (a).

(b) To show the equality, observe that the assumption limβ↑βcr
L(β) = 0 implies that L has no zero

in (−βcr , 0) and hence λ0 = −βcr due to Theorem 2.1. Now choose m ∈ [0, (limβ↑βcr
L′(β))−1] and

ǫ ∈ (0, m). Employing time reversal and Lemma 4.1 we arrive at

lim inf
t→∞

1

t
logE0 exp
n
∫ t

0

ξ(Xs) ds
o

1X t∈t(m−ǫ,m+ǫ)

= lim inf
t→∞

1

t
log
∑

n∈t(m−ǫ,m+ǫ)
En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

≥ sup
α∈(m−ǫ,m+ǫ)

inf
β<βcr

(−β +αL(β)) = inf
β<βcr

(−β + (m− ǫ)L(β)),

(4.28)
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where the last equality follows since L(β) < 0 for β < βcr . Differentiating the inner term of the

right-hand side with respect to β yields −1+ (m− ǫ)L′(β) which due to our choice of m is smaller

than 0 for all β < βcr . Thus, (4.28) evaluates to −βcr , and this proves the desired equality.

To prove the inequality, observe that Lemmas 4.2, 4.3 and 4.4 yield

lim sup
t→∞

1

t
log
∑

n≤−tǫ

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0 ≤ ǫ log
1− h

1+ h
+ sup
α≥ǫ

inf
β<βcr

(−β +αL(β)).

Using Corollary 4.5 we have that the right-hand side is strictly smaller than λ0.

For the remaining summands, Lemma 4.2 in combination with Lemma 4.4 yields

lim sup
t→∞

1

t
log
∑

n≥t((limβ↑βcr
L′(β))−1+ǫ)

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

≤ sup
α≥(limβ↑βcr

L′(β))−1+ǫ

inf
β<βcr

(−β +αL(β)),

(4.29)

and the derivative −1+αL′(β) of the inner term on the right-hand side with respect to β is positive

and bounded away from 0 for all β < βcr large enough and all α ≥ (limβ↑βcr
L′(β))−1 + ǫ. Thus,

we conclude that the right-hand side of (4.29) is strictly smaller than λ0 =−βcr , which finishes the

proof.

(c) Using time reversal we get for γ > ǫ :

lim sup
t→∞

1

t
logE0 exp
n
∫ t

0

ξ(Xs) ds
o

1X t /∈t(−ǫ,ǫ)

= lim sup
t→∞

1

t
log
∑

n/∈t(−ǫ,ǫ)
En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

= lim sup
t→∞

1

t
log
∑

n/∈t(−γ,γ)
En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

∨ lim sup
t→∞

1

t
log
∑

n∈t((−γ,γ)\(−ǫ,ǫ))
En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

According to Lemma 4.4, the first term on the right-hand side tends to −∞ as γ→∞, while Lemma

4.3 combined with Lemma 4.2 implies that the second can be estimated from above by

sup
α∈[ǫ,γ]

inf
β<βcr

(−β +αL(β)) = inf
β<βcr

(−β + ǫL(β)),

where the equality follows since L(β) < 0 for all β < βcr by assumption. Thus, this expression

evaluates to −βcr + ǫ limβ↑βcr
L(β)<−βcr = λ0, and the statement follows.

5 Auxiliary results particular to the annealed regime

This section contains mainly technical results, which will be employed in the proof of Theorem 2.7.

The results given here are in parts generalisations of corresponding results for a finite state space

given in section IX .2 and A.9 of [Ell85].
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Lemma 5.1. Let n ∈ N, ρ ∈M1(R) and ν ∈M s
1(R
N0). Then

n∑

i=1

H(πiν |πi−1ν ⊗ρ) = H(πnν |ρn). (5.1)

Proof. The result is a consequence of the decomposition of relative entropy given for example in

Theorem D.13, [DZ98]. Indeed, from this theorem it follows that

H(πnν |ρn) = H(πn−1ν |ρn−1) +

∫

R
n−1

H
�
πnν

(x1,...,xn−1)|(ρn)(x1,...,xn−1)
�
πn−1ν(d(x1, . . . , xn−1))

(5.2)

where for a measure µ on B(Rn) the regular conditional probability distribution of µ given πn−1

is denoted by Rn−1 ∋ (x1, . . . , xn−1) 7→ µ(x1,...,xn−1) ∈ M1(R
n). Thus, to establish (5.1) it suffices to

show

H(πnν |πn−1ν ⊗ρ) =
∫

R
n−1

H
�
πnν

(x1,...,xn−1)|(ρn)(x1,...,xn−1)
�
πn−1ν(d(x1, . . . , xn−1)) (5.3)

for all n ∈ N\{1}. But applying the quoted theorem to the left-hand side of the previous equation

we obtain

H(πnν |πn−1ν ⊗ρ) =
∫

R
n−1

H
�
πnν

(x1,...,xn−1)|(πn−1ν ⊗ρ)(x1,...,xn−1)
�
πn−1ν(d(x1, . . . , xn−1)),

and since (πn−1ν ⊗ρ)(x1,...,xn−1) = δ(x1,...,xn−1)
⊗ρ = (ρn)(x1,...,xn−1), (5.3) follows.

Proposition 5.2. The function I|M s
1
(Σ+

b
) is affine and for ν ∈M s

1(Σ
+
b
) we have

H(πnν |πn−1ν ⊗η) ↑ I (ν) (5.4)

as n→∞.

Proof. We know (cf. Lemma 6.5.16, Corollary 6.5.17 and the preceding discussion in [DZ98])

that for ν ∈ M s
1(Σ

+
b
) the value of I (ν) is given as the limit of the nondecreasing sequence

H(πnν |πn−1ν ⊗η) of relative entropies.

To show that I restricted to M s
1(Σ

+
b
) is affine, let β ∈ (0,1) and µ,ν ∈ M s

1(Σ
+
b
). We distinguish

cases:

(i) Assume I (ν),I (µ) < ∞. Then (5.4) applies and using Lemma 5.1 we deduce πnν ≪ ηn and

πnµ≪ ηn for all n ∈ N. The convexity of relative entropy yields

βH(πnν |ηn) + (1− β)H(πnµ|ηn)

≥ H(βπnν + (1− β)πnµ|ηn)

≥
∫

[b,0]n

�

β
dπnν

dηn
log
�
β

dπnν

dηn

�
+ (1− β)

dπnµ

dηn
log
�
(1− β)

dπnµ

dηn

�
�

dηn

= βH(πnν |ηn) + β logβ + (1− β)H(πnµ|ηn) + (1− β) log(1− β).

(5.5)

2312



Dividing by n and taking n→∞ we obtain in combination with Lemma 5.1 and (5.4) that

I (βν + (1− β)µ) = βI (ν) + (1− β)I (µ). (5.6)

(ii) It remains to consider the case where at least one of the terms I (µ),I (ν) equals infinity. In

this case we want to have I (βν + (1− β)µ) =∞, and in consideration of (5.4) the only nontrivial

situation can occur if we have H(πn(βν+(1−β)µ)|πn−1(βν+(1−β)µ)⊗η)<∞ for all n ∈ N. Then

πn(βν +(1−β)µ)≪ πn−1(βν +(1−β)µ)⊗η and iteratively we deduce πn(βν +(1−β)µ)≪ ηn

and thus πnν ≪ ηn as well as πnµ ≪ ηn for all n ∈ N. The same reasoning as in (5.5) and (5.6)

then yields the desired result.

Corollary 5.3. The only zero of I is given by ηN0 .

Proof. Proposition 5.2 in combination with Lemma 5.1 shows that for ν such that I (ν) is finite,

I (ν) is given as the limit of the nondecreasing sequence (H(πnν |ηn)/n)n∈N. Now since the only

zero of H(·|ηn) is given by ηn, we have H(πnν |ηn) = 0 for all n ∈ N if and only if πnν = η
n for all

n ∈ N. This, however, is equivalent to ν = ηN0 by Kolmogorov’s consistency theorem, which finishes

the proof.

The next lemma is standard.

Lemma 5.4. The set of extremal points ofM s
1(Σ

+
b
) is given byM e

1 (Σ
+
b
).

Proof. The proof proceeds analogously to Theorem A.9.10 of [Ell85] and is omitted here.

The following result is closely connected to Proposition 3.1 (b) and shows that the critical value

βcr also applies to the constant zero-potential. It is crucial for proving the finiteness of L
sup
p on

(−∞,βcr) (cf. Lemma 5.11) and as such in the transition from the variational formula of Corollary

6.6 to the representation of the annealed Lyapunov exponents given in Theorem 2.7.

Lemma 5.5. Assume (2.2) and h ∈ (0,1). Then

E1 exp{βT0}=∞

for all β > βcr , while

E1 exp{βcr T0} ≤ 2

r

1+ h

1− h
<∞.

In particular,

βcr = κ(1−
p

1− h2),

and thus βcr is independent of the very choice of the potential ξ.

Proof. The first equality follows from the definition of βcr . To prove the inequality, we start with

showing that E1 exp{βT0} is finite for all β < βcr . For this purpose choose such β . We now assume

E1 exp{βT0}=∞ (5.7)
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and lead this assumption to a contradiction. Indeed, setting ǫ := βcr−β > 0, due to Proposition 3.1

(b) there exists a finite constant Cβ+ǫ/2 such that

E1 exp
n
∫ T0

0

(ξ(Ys) + β + ǫ/2) ds
o

≤ Cβ+ǫ/2 a.s. (5.8)

But

1ξ(m)≥−ǫ/2∀m∈{1,...,n}E1 exp
n
∫ T0

0

(ξ(Ys) + β + ǫ/2) ds
o

1Ys∈{1,...,n}∀s∈[0,T0)

≥ 1ξ(m)≥−ǫ/2∀m∈{1,...,n}E1 exp{βT0}1Ys∈{1,...,n}∀s∈[0,T0)
.

(5.9)

With (5.7), we deduce

E1 exp{βT0}1Ys∈{1,...,n}∀s∈[0,T0)
→∞ (5.10)

as n→∞; furthermore, due to (1.2) and (2.2), ({ξ(m) ≥ −ǫ/2∀m ∈ {1, . . . , n}})n is a decreasing

sequence of sets with positive probability each, and therefore, (5.10) in combination with (5.9)

yields a contradiction to the a.s. boundedness given in (5.8). Hence, (5.7) cannot hold true. To

finish the proof we decompose for β < βcr :

E1 exp{βT0}=
1+ h

2

κ

κ− β +
1− h

2

κ

κ− β E2 exp{βT0}

≥
(1− h)κ

2(κ− β) (E1 exp{βT0})2.

Consequently,

E1 exp{βT0} ≤
2(κ− β)
κ(1− h)

and monotone convergence yields E1 exp{βcr T0} ≤
2(κ−βcr )

κ(1−h)
= 2
Æ

1+h

1−h
< ∞. Here, the equality

follows using the formula for βcr given in last statement of this lemma.

To prove this presentation of βcr , expand

E1 exp{βT0}=
κ

κ− β
�1+ h

2
+

1− h

2
E1 exp{βT0}
�

and investigate the solvability of this equation in E1 exp{βT0} in dependence of β .

Lemma 5.6. For fixed β ∈ (−∞,βcr),

(a) there exist constants 0< c < C <∞ such that

E1 exp
n
∫ T0

0

(ζ(Ys) + β) ds
o

∈ [c, C]

for all ζ ∈ Σ+
b

.

(b) the mapping

Σ+
b
∋ ζ 7→ logE1 exp

n
∫ T0

0

(ζ(Ys) + β) ds
o

is continuous.
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Proof. (a) For any ζ ∈ Σ+
b

we have

E1 exp
n
∫ T0

0

(ζ(Ys) + β) ds
o

≥ E1 exp{(b+ β)T0}=: c > 0.

The upper bound follows from Lemma 5.5.

(b) This follows using part (a) and dominated convergence.

Corollary 5.7. For fixed β ∈ (−∞,βcr), the mapping

M1(Σ
+
b
) ∋ ν 7→ L(β , ·)

is continuous and bounded.

Proof. (a) This follows directly from the previous lemma.

For technical reasons we will need the following two lemmas in the proof of the lower annealed

bound; they can be considered refinements of the corresponding results in the quenched case (cf.

Lemma 3.5 (b) and (c)).

Lemma 5.8. For fixed ν ∈M1(Σ
+
b
), the mapping

(−∞,βcr) ∋ β 7→ L(β ,ν)

is continuously differentiable with derivative

∂ L

∂ β
(β ,ν) =

∫

Σ+
b

E1T0 exp{
∫ T0

0
(ζ(Ys) + β) ds}

E1 exp{
∫ T0

0
(ζ(Ys) + β) ds}

ν(dζ). (5.11)

Proof. The proof proceeds in analogy to the proof of Lemma 3.5 (b) and takes advantage of Lemma

5.5.

With respect to the following lemma, recall (3.28) for the definition of E
ζ
M ,1.

Lemma 5.9. (a) For arbitrary y ∈ (0,∞), ν ∈M1(Σ
+
b
) and large enough M ∈ (0,∞), there exists

βM (y) ∈ R such that

y =

∫

Σ+
b

E
ζ
M ,1T0 exp{βM (y)T0}

E
ζ
M ,1 exp{βM (y)T0}

ν(dζ).

(b) For all b ∈ (−∞, 0),

lim
β→−∞

sup
ν∈M 1(Σ+

b
)

∂ L

∂ β
(β ,ν) = 0.
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Proof. (a) It suffices to show the assertions that

∫

Σ+
b

E
ζ
M ,1T0 exp{βT0}

E
ζ
M ,1 exp{βT0}

ν(dζ)→∞ (5.12)

for β large enough and M →∞ as well as that its integrand tends to 0 a.s. for M fixed as β →−∞.

The result then follows from the continuity of this integrand and the Intermediate Value theorem in

combination with dominated convergence.

The second of these assertions follows as in the proof of part (c) of Lemma 3.5, replacing P
ξ
1 by P

ζ
M ,1.

For the first assertion, let β be large enough such that E
ζ
1 exp{βT0}=∞ on a set of positive measure.

It follows for such β that the above integrand tends to infinity as M →∞ on the corresponding set,

from which we infer (5.12) for M →∞.

(b) For this purpose, due to Lemma 5.8, it suffices to show that

∂ L

∂ β
(β ,δζ)→ 0

uniformly in ζ ∈ Σ+
b

as β →−∞. As in the above we obtain the estimate (3.27), but now c > 0 can

be chosen not to depend on ζ ∈ Σ+
b

due to the uniform boundedness of ζ. Proceeding as in part (a),

the claim follows.

The next lemma states that the supremum in the definition of L
sup
p is actually a maximum.

Lemma 5.10. For β ∈ (−∞,βcr), there exists ν ∈M s
1(Σ

+
b
) such that L

sup
p (β) = L(β ,ν)−I (ν)/p.

Proof. Fix β ∈ (−∞,βcr). Since M s
1(Σ

+
b
) endowed with the weak topology is a compact metric

space, we find a converging sequence (νn)n∈N0
⊂M s

1(Σ
+
b
) such that L(β ,νn)−I (νn)/p→ L

sup
p (β)

for n → ∞. As L(β , ·) is continuous (Corollary 5.7) and I is lower semi-continuous, we deduce

L(β ,ν)−I (ν)/p = L
sup
p (β) for ν := limn→∞ νn ∈M s

1(Σ
+
b
).

In order to deduce the representation for λp given in Theorem 2.7, we will need the following

lemma.

Lemma 5.11. The function β 7→ L
sup
p (β) is finite, strictly increasing, convex and continuous on

(−∞,βcr).

Proof. Lemma 5.5 implies that L
sup
p is finite on (−∞,βcr). With respect to the strict monotonicty,

choose ν ∈ M s
1(Σ

+
b
) such that L

sup
p (β) = L(β ,ν)−I (ν)/p, which is possible due to Lemma 5.10.

The fact that L(·,ν) is strictly increasing and L
sup
p ≥ L(·,ν)−I (ν)/p now imply that L

sup
p is strictly

increasing.

The convexity follows since L(·,ν) is convex and thus L
sup
p as a supremum of convex functions is

convex; continuity is implied by convexity.
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6 Proofs for the annealed regime

The aim of this section is to prove Theorem 2.7. Similarly to the quenched case we derive upper and

lower bounds for t−1 log〈u(t, 0)p〉1/p as t →∞ (cf. Lemmas 6.1 and 6.3). The additional techniques

needed here are Varadhan’s Lemma (see proof of Lemma 6.1) as well as an exponential change of

measure (in the proof of Lemma 6.3), both applied to the sequence (Rn◦ξ)n∈N of empirical measures.

Further estimates similar to the quenched regime (Lemmas 6.4 and 6.5) lead to a variational formula

for λp given in Corollary 6.6. Results on the properties of L
sup
p (Lemmas 5.10 and 5.11) then

complete of the proof of Theorem 2.7.

As in Theorem 2.7, we assume (1.2) and (2.9) for the rest of this section. Notice that since the

potential is bounded, L is well-defined on R.

Lemma 6.1. Let I ⊂ [0,∞) be a compact interval and p ∈ (0,∞). Then

lim sup
t→∞

1

t
log
D�∑

n∈t I

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

�pE 1
p ≤ sup

α∈I

inf
β<βcr

(−β +αLsup
p (β)). (6.1)

Proof. (i) With the same notations as in the quenched case we first assume I = [ǫ,γ] with ǫ > 0

and deduce using the exponential Chebyshev inequality:

D� ∑

n∈t[αδ
k
,αδ

k+1
]

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

�pE

(6.2)

≤
D� ∑

n∈t[αδ
k
,αδ

k+1
]

En exp
n
∫ T0

0

ξ(Ys) ds
o

1 T0
n
≤ 1

αδ
k

exp{c∗(t − T0)}
�pE

≤ inf
β>0

D� ∑

n∈t[αδ
k
,αδ

k+1
]

En exp
n
∫ T0

0

(ξ(Ys)− β) ds
o

exp{−βcr(t − T0)}
�pE

exp
nβpn

αδ
k

o

≤ inf
β>0

exp
n

pt
�βαδ

k+1

αδ
k

− βcr

�oD� ∑

n∈t[αδ
k
,αδ

k+1
]

exp
�

nL(−β + βcr ,Rn ◦ ξ)
	
�pE

, (6.3)

where to obtain the penultimate line we used (3.4). Recall that at the beginning of subsection 2.2,

Rn was defined as the empirical measure of a shifted sequence. Consequently, we conclude

lim sup
t→∞

1

t
log
D� ∑

n∈t[αδ
k
,αδ

k+1
]

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

�pE

≤ inf
β>0

h

p
�βαδ

k+1

αδ
k

− βcr

�

+ lim sup
t→∞

1

t
log



exp
�
αδjk

pt L(−β + βcr ,R⌊αδ
jk

t⌋ ◦ ξ)
	�
i

(6.4)

with jk = k+ 1 if the second summand in (6.4) is positive in that case and jk = k otherwise (note

that this decision depends on β but not on the choice of jk). Corollary 5.7 tells us that the conditions

concerning L(β , ·) with respect to the upper bound of Varadhan’s lemma (Lemma 4.3.6 in [DZ98])
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are fulfilled. Thus, bearing in mind the large deviations principle for Rn ◦ξ given in Corollary 6.5.15

of [DZ98] with rate function I (cf. (2.10)), we can estimate the right-hand side of (6.4) by

inf
β>−βcr

h�

p
(β + βcr)α

δ
k+1

αδ
k

− βcr

�

+αδjk
sup

ν∈M s
1(Σ

+
b
)

�
pL(−β ,ν)−I (ν)

�
i

.

Since inf I > 0 by assumption, the ratios αδ
k+1
/αδ

k
are bounded from above and similarly to the

quenched case (proof of Lemma 4.2) we obtain in combination with the previous and taking δ ↓ 0 :

lim sup
t→∞

1

t
log
D�∑

n∈t I

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

�pE 1
p ≤ sup

α∈I

inf
β<βcr

(−β +αLsup
p (β)).

(ii) Now assume inf I = 0. We proceed similarly to the quenched part (cf. proof of Lemma 4.2) and

use Proposition 3.1 (b) to estimate the first factor on the right-hand side of (4.14) uniformly by a

constant.

In order to prove the lower bound, we need the following technical lemma for which we recall the

definition of τk as Tk−1 − Tk in (3.29).

Lemma 6.2. For β ∈ R, M > 0, ζ ∈ Σ+
b

and n ∈ N denote

P
ζ

n,β ,M
(A) :=

En exp
�∫ T0

0
(ζ(Ys) + β) ds
	
1τk≤M ∀k∈{1,...,n}1A

En exp
�∫ T0

0
(ζ(Ys) + β) ds
	
1τk≤M ∀k∈{1,...,n}

with A ∈ F . Then, for ǫ > 0 and ν ∈M s
1(Σ

+
b
) there exist δ > 0 and a neighbourhood U(ν) of ν such

that for all ζ ∈ Σ+
b

,

P
ζ

n,β ,M
(T0/n /∈ (y − ǫ, y + ǫ))1Rn(ζ)∈U(ν) ≤ 2 exp{−nδ}1Rn(ζ)∈U(ν)

holds for all n ∈ N, where

y :=

∫

Σ+
b

E
ζ

n,β ,M
(T0) dν .

Proof. Define the function

GM (β) : Σ+
b
∋ ζ 7→ logE1 exp

n
∫ T0

0

(ζ(Ys) + β) ds
o

1T0≤M .

Using the exponential Chebyshev inequality for α≥ 0, we compute with δ > 0

P
ζ

n,β ,M
(T0/n≥ y + ǫ)1Rn(ζ)∈U(ν) ≤ Eζn,β ,M

exp{αT0− nα(y + ǫ)}1Rn(ζ)∈U(ν)

≤ exp{−nα(y + ǫ)}exp
n

n
�
∫

Σ+
b

(GM (β +α)− GM (β)) dν +δ
�o

1Rn(ζ)∈U(ν)

(6.5)

for some neighbourhood U(ν) of ν (depending on α also) such that

¯
¯
¯

∫

Σ+
b

(GM (β +α)− GM (β)) dν −
∫

Σ+
b

(GM (β +α)− GM (β)) dµ

¯
¯
¯≤ δ
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holds for all µ ∈ U(ν). Writing

g(α) := −α(y + ǫ) +
∫

Σ+
b

(GM (β +α)− GM (β)) dν ,

the right-hand side of (6.5) equals exp{n(g(α) + δ)}1Rn(ζ)∈U(ν). We observe g(0) = 0 and g ′(0) =
−y − ǫ + y < 0. Hence, there exists α > 0 such that g(α) < 0. Setting δ := −g(α)/2 and refining

U(ν) such that
¯
¯
¯

∫

Σ+
b

GM (α) dν −
∫

Σ+
b

GM (α) dµ

¯
¯
¯< δ

holds for all µ ∈ U(ν), we deduce from (6.5) with α= α that

P
ζ

n,β ,M
(T0/n≥ y + ǫ)1Rn(ζ)∈U(ν) ≤ exp{−nδ}1Rn(ζ)∈U(ν).

In complete analogy we obtain

P
ζ

n,β ,M
(T0/n≤ y − ǫ)1Rn(ζ)∈U(ν) ≤ exp{−nδ}1Rn(ζ)∈U(ν),

where possibly δ > 0 is even smaller and U(ν) even more refined; the result then follows.

We can now proceed to prove the lower annealed bound.

Lemma 6.3. Let I ⊂ [0,∞) be an interval and p ∈ (0,∞). Then

lim inf
t→∞

1

t
log
D�∑

n∈t I

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

�pE 1
p

≥ sup

α∈
◦
I∪(I∩{0})

inf
β<βcr

(−β +αLsup
p (β)).

(6.6)

Proof. Observe that for α ∈
◦
I , y ∈ (0,1/α) and ǫ > 0 small enough we have due to the independence

of the medium

D

E⌊αt⌋ exp
n
∫ T0

0

ξ(Ys) ds
o

1Yt=0

�pE

(6.7)

≥
D�

E⌊αt⌋ exp
n
∫ T0

0

ξ(Ys) ds
o

1 T0
⌊αt⌋∈(y−ǫ,y+ǫ)

�

E0 exp
n
∫ t−r

0

ξ(Ys) ds
o

1Yt−r=0

�

r=T0

�pE

≥
D�

E⌊αt⌋ exp
n
∫ T0

0

ξ(Ys) ds
o

1 T0
⌊αt⌋∈(y−ǫ,y+ǫ)

�pE

×
D

min
r∈(y−ǫ,y+ǫ)

�

E0 exp
n
∫ t(1−αr)

0

ξ(Ys) ds
o

1Yt(1−αr)=0,T1>t(1−αr)

�pE

. (6.8)

(i) To deal with the second of the factors on the right-hand side we observe

1

t
logE0 exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0, T1>t ≥ b+
1

t
logP0(Ys = 0∀s ∈ [0, t]) = b−κ (6.9)
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a.s. Hence, Jensen’s inequality and a modified version of Fatou’s lemma (taking advantage of (6.9))

apply to yield the inequality in

lim inf
t→∞

1

t
log
D�

E0 exp
n
∫ t(1−αy)

0

ξ(Ys) ds
o

1Yt(1−αy)=0, T1>t(1−αy)

�pE

≥ p
D

lim inf
t→∞

1

t
logE0 exp
n
∫ t(1−αy)

0

ξ(Ys) ds
o

1Yt(1−αy)=0, T1>t(1−αy)

E

= (1−αy)pc∗. (6.10)

To obtain the equality, we used the fact that c∗ equals (3.3) for M = 1, cf. Proposition 3.1 (a).

(ii)With respect to the first factor on the right-hand side of (6.8), we aim to perform an exponential

change of measure and introduce for β ∈ R, n ∈ N as well as M > 0 large enough (in order to apply

Lemma 5.9 (a)) the function

G
(n)
M (β) : Σ+

b
∋ ζ 7→ logEn exp

n
∫ T0

0

(ζ(Ys) + β) ds
o

1τk≤M ∀k∈{1,...,n}.

Choosing ν ∈M s
1(Σ

+
b
) such that

ν = ǫ Prob+(1− ǫ)νǫ (6.11)

for some ǫ > 0 and νǫ ∈M s
1(Σ

+
b
), we fix βM ∈ R such that

∫

Σ+
b

E1T0 exp
�∫ T0

0
(ζ(Ys) + βM ) ds

	
1T0≤M

E1 exp
�∫ T0

0
(ζ(Ys) + βM ) ds

	
1T0≤M

ν(dζ) = y, (6.12)

which is possible due to part (a) of Lemma 5.9. Since for β fixed, GM (β) := G
(1)
M (β) is bounded as

a function on Σ+
b

, we find for each δ > 0 a neighbourhood U(ν) of ν inM1(Σ
+
b
) such that

¯
¯
¯

∫

Σ+
b

GM (βM ) dν −
∫

Σ+
b

GM (βM ) dµ

¯
¯
¯≤ δ/2 (6.13)

for all µ ∈ U(ν). We obtain

D�

En exp
n
∫ T0

0

ξ(Ys) ds
o

1 T0
n
∈(y−ǫ,y+ǫ)

�pE

=
D�

En exp
n
∫ T0

0

ξ(Ys) ds+ βM T0− G
(n)
M (βM )− βM T0+ G

(n)
M (βM )
o

×1 T0
n
∈(y−ǫ,y+ǫ)

�pE

≥
D�En exp
�∫ T0

0
(ξ(Ys) + βM ) ds

	
1τk≤M ∀k∈{1,...,n}1 T0

n
∈(y−ǫ,y+ǫ)

En exp
�∫ T0

0
(ξ(Ys) + βM ) ds

	
1τk≤M ∀k∈{1,...,n}

�p

× exp
�

pG
(n)
M (βM )
	
1Rn◦ξ∈U(ν)

E

exp{−nβM p(y ± ǫ)}

≥ exp{−nβM p(y ± ǫ)}exp
n

pn
�
∫

Σ+
b

GM (βM ) dν −δ/2
�o

×

�

1− Pζ
n,β ,M

(T0/n /∈ (y − ǫ, y + ǫ))
�p
1Rn◦ξ∈U(ν)

�
, (6.14)
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where y ± ǫ is supposed to denote y + ǫ if βM > 0 and y − ǫ otherwise.

Therefore, choosing δ > 0 and U(ν) according to Lemma 6.2 we infer that P
ζ

n,β ,M
(T0/n /∈ (y−ǫ, y+

ǫ))1Rn◦ξ∈U(ν) decays exponentially in n. Thus, in combination with the large deviations principle for

Rn ◦ ξ given in Corollary 6.5.15 of [DZ98] we obtain

lim inf
n→∞

1

n
log

�
P
ζ

n,β ,M
(T0/n ∈ (y − ǫ, y + ǫ))

�p
1Rn◦ξ∈U(ν)

�
≥−I (ν).

Continuing (6.14) we get taking ǫ ↓ 0 on the right-hand side

lim inf
n→∞

1

n
log
D�

En exp
n
∫ T0

0

ξ(Ys) ds
o

1 T0
n
∈(y−ǫ,y+ǫ)

�pE

≥−βM p y + p
�
∫

Σ+
b

GM (βM )dν −δ/2
�

−I (ν).
(6.15)

We observe that M 7→ GM (β) is nondecreasing, whence the sets

n

β ∈ R :−β y +

∫

Σ+
b

GM (β) dν ≤ lim
M→∞

inf
β∈R

�

− β y +

∫

Σ+
b

GM (β) dν
�o

are nonincreasing in M . Furthermore, they are non-empty since differentiation of

β 7→ −β y +

∫

Σ+
b

GM (β) dν (6.16)

with respect to β yields that this function takes its infimum in β = βM (cf. (6.12)). From this in

combination with the strict convexity of the function in (6.16) we infer the boundedness of the above

sets. Furthermore, these sets are closed since the map in (6.16) is continuous. We therefore conclude

that the intersection over all M > 0 large enough of these sets contains some βν ∈ (−∞,βcr] (the

fact that βν ≤ βcr follows from (6.11)) and in combination with (6.15) we deduce

lim inf
n→∞

1

n
log
D�

En exp
n
∫ T0

0

ξ(Ys) ds
o

1 T0
n
∈(y−ǫ,y+ǫ)

�pE

≥−βν p y + p(L(βν ,ν)−δ/2)−I (ν). (6.17)

We now write S := {ν ∈ M s
1(Σ

+
b
) ∩ {I <∞} such that (6.11) holds}. Taking δ ↓ 0, (6.8), (6.10)

and (6.17) supply us with

lim inf
t→∞

1

t
log
D�

E⌊αt⌋ exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

�pE 1
p

≥ α sup
ν∈S

�
− βν y + L(βν ,ν)−I (ν)/p

�
+ (1−α(y − ǫ))c∗

≥ α sup
ν∈S

inf
c≤β≤βcr

�
− β y + L(β ,ν)−I (ν)/p

�
+ (1−α(y − ǫ))c∗,

(6.18)

where the last line holds for c ∈ (−∞, 0) small enough due to Lemma 5.9 (b).

Now observe that f : [c,βcr]×S ∋ (β ,ν) 7→ −β y + L(β ,ν)−I (ν)/p is a real-valued function. In

addition, the function f (β , ·) is upper semi-continuous and concave on S for any β ∈ [c,βcr], while
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f (·,ν) is lower semi-continuous and convex on [c,βcr] for any ν ∈ S . Since furthermore [c,βcr] is

compact and convex while S is convex, we may apply Sion’s minimax theorem (cf. e.g. [Kom88]).

This then yields that the first summand of the last line of (6.18) equals

α inf
c≤β≤βcr

sup
ν∈S

�
− β y + L(β ,ν)−I (ν)/p

�
= α inf

c≤β≤βcr

sup
ν∈M s

1
(Σ+

b
)

�
− β y + L(β ,ν)−I (ν)/p

�
;

equality holds since for β ∈ [c,βcr] and ν ∈ M s
1(Σ

+
b
) we find a sequence (νn)n∈N ⊂ S with

L(β ,νn) − I (νn)/p → L(β ,ν) − I (ν)/p as n → ∞ (indeed, choose νn := (Prob+(n − 1)ν)/n

and use Lemma 5.2).

Taking ǫ ↓ 0 in (6.18) and the suprema in y and α we therefore get

lim inf
t→∞

1

t
log
D∑

n∈t I

En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

�pE 1
p

≥ sup

α∈
◦
I

sup
y∈(0,1/α)

�

α inf
β≤βcr

sup
ν∈M s

1(Σ
+
b
)

�
− β y + L(β ,ν)−I (ν)/p

�
+ (1−αy)c∗
�

≥ sup

α∈
◦
I

inf
β<βcr

(−β +αLsup
p (β)).

For the case 0 ∈ I it remains to estimate

lim inf
t→∞

1

t
log
D�

E0 exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

�pE 1
p
.

Analogously as for the second factor of (6.8) we obtain

lim inf
t→∞

1

t
log
D�

E0 exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

�pE 1
p ≥ c∗ = −βcr .

This finishes the proof.

Similarly to the quenched case, we have the following two results.

Lemma 6.4. For all δ ≥ 0 and γ≥ δ we have

lim sup
t→∞

1

t
log
D� ∑

n∈t[−γ,−δ]
En exp
n
∫ t

0

ξ(Ys)ds
o

1Yt=0

�pE 1
p

≤ δ log
1− h

1+ h
+ lim inf

t→∞

1

t
log
D� ∑

n∈t[δ,γ]

En exp
n
∫ t

0

ξ(Ys)ds
o

1Yt=0

�pE

. (6.19)

Proof. The proof proceeds similarly to the proof of Lemma 4.3 and is omitted here.

Lemma 6.5. We have

lim sup
t→∞

1

t
log
D� ∑

n/∈t[−γ,γ]
En exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

�pE

→−∞ (6.20)

as γ→∞.
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Proof. The proof is similar to that of Lemma 4.4 and is omitted here.

We are now ready to prove the existence of λp and give a variational formula.

Corollary 6.6. For p ∈ (0,∞), the annealed Lyapunov exponent λp exists and is given by

λp = sup
α∈[0,γ]

inf
β<βcr

(−β +αLsup
p (β)) (6.21)

for all γ > 0 large enough.

Proof. Using Lemmas 6.1, 6.3, 6.4 and 6.5 one may proceed similarly to the quenched case.

Proof of Theorem 2.7. In order to derive the representation of Theorem 2.7, we distinguish two

cases: First assume that L
sup
p does not have a zero in (0,βcr). From the fact that L

sup
p is continuous

and increasing (cf. Lemma 5.11), we infer that L
sup
p (β) < 0 for all β ∈ (−∞,βcr), whence taking

α ↓ 0 in Corollary 6.6 yields λp = −βcr .

Otherwise, if such a zero exists, the properties of L
sup
p derived in Lemma 5.11 first imply the unique-

ness of such a zero and then, in an analogous way to the proof of Theorem 2.1 and in combination

with (6.21), that λp equals the zero of L
sup
p (−·).

7 Further results

While in sections 4 and 6 we derived the existence of the corresponding Lyapunov exponents and

gave formulae for them, we now concentrate on the proofs of the remaining results.

7.1 Quenched regime

We start with proving the result on the transition from zero to positive speed of the random walk in

random potential, Proposition 2.5.

Proof of Proposition 2.5. (a) In order to deal with the explicit dependence of the respective quan-

tities on h, we use the notation (Y h
t )t∈R+ for a continuous-time random with generator κ∆h as well

as Zn for the set of discrete time simple random walk paths on Z starting in 1 and hitting 0 for the

first time at time 2n+ 1. Furthermore, J(Y ) denotes the number of jumps of the process Y to the

right before it hits 0 and we may and do assume h < 1. For β ≤ βh
cr := βcr = κ(1−

p

1− h2) we

then have

Lh(β) =
D

logE1 exp
n
∫ T0

0

(ξ(Y h
s ) + β) ds
oE

=
D

log
∑

n∈N0

∑

Z∈Zn

1+ h

2

�1− h2

4

�n
2n∏

k=0

κ

κ− ξ(Zk)− β
E

= log(1+ h) +
D

logE1 exp
n
∫ T0

0

(ξ(Y 0
s ) + β) ds+ J(Y 0) log(1− h2)

oE

.

(7.1)
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Now in order to prove (a), according to Corollary 2.3 it is enough to show

lim sup
h↓0

Lh(β
h
cr)< 0. (7.2)

By direct inspection or Lemma 5.5 we get that a.s. the expression

log(1+ h) + logE1 exp
n
∫ T0

0

(ξ(Y 0
s ) + β

h
cr) ds+ J(Y 0) log(1− h2)

o

= log
∑

n∈N0

∑

z∈Zn

p
1+ h

22n+1
p

1− h

2n∏

k=0

κ
p

1− h2

κ
p

1− h2− ξ(Zk)

(7.3)

is bounded from above uniformly in h ∈ [0,1/2). Considering the right-hand side of (7.3) one

observes that for h ↓ 0 it converges to (7.3) evaluated at h = 0. Since furthermore L0(β
0
cr) < 0,

dominated convergence yields (7.2).

(b) Departing from (7.1) we write

Lh(β
h
cr) =
D

log
∑

n∈N0

∑

Z∈Zn

2−(2n+1)κ
p

1+ h

κ
p

1− h− ξ(1)

2n∏

k=1

κ
p

1− h2

κ
p

1− h2− ξ(Zk)

E

.

Now if L1(β)→∞ for β ↑ β1
cr = κ, then Lh(β

h
cr)→∞ for h ↑ 1 as well. Otherwise, if limβ↑κ L1(β)<

∞, then dominated convergence yields Lh(β
h
cr)→ L1(κ) = 〈log κ

−ξ(1)〉 as h ↑ 1, and the claim follows.

Proof of Proposition 2.6. (a) We first show convexity. Writing uκ(t, x) to emphasise the depen-

dence of the solution to (1.1) on κ, we have for a random walk (X t)t∈R+ with generator ∆h:

λ0(κ) = lim
t→∞

1

t
log uκ(t, x) = lim

t→∞

1

t
logE0 exp
n
∫ t

0

ξ(Xκs) ds
o

= lim
t→∞

1

t
logE0 exp
n1

κ

∫ κt

0

ξ(Xs) ds
o

= κ lim
t→∞

1

t
logE0 exp
n1

κ

∫ t

0

ξ(Xs) ds
o

= κΨ(1/κ), (7.4)

where

Ψ(x) := lim
t→∞

1

t
logE0 exp
n

x

∫ t

0

ξ(Xs) ds
o

for x ≥ 0. Note that the limit defining Ψ(x) exists in [−1,0] for all x ∈ R+ due to Theorem 2.1

and (1.8). Hölder’s inequality now tells us that Ψ is convex and choosing α :=
β x

β x+(1−β)y and

γ :=
(1−β)y

β x+(1−β)y , we obtain the convexity of xΨ(1/x) in a similar manner:

(β x + (1− β)y)Ψ
� 1

β x + (1− β)y
�

= (β x + (1− β)y)Ψ
�α

x
+
γ

y

�

≤ α(β x + (1− β)y)Ψ(1/x) + γ(β x + (1− β)y)Ψ(1/y)

= β xΨ(1/x) + (1− β)yΨ(1/y).
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In combination with (7.4) the convexity of κ 7→ λ0(κ) follows.

To show that λ0(κ) is nonincreasing in κ ∈ (0,∞) assume to the contrary that there is 0 < κ1 < κ2

such that λ0(κ1) < λ0(κ2). The convexity of λ0 would then imply limκ→∞λ0(κ) = ∞ which is

impossible since we clearly have λ0(κ)≤ 0 for all κ ∈ (0,∞).
(b) From Theorem 2.1 we deduce

λ0(κ) ∈ [−βcr , 0], (7.5)

and using (1.8) the claim follows.

(c) (2.7) follows from (7.4) and the fact that limx↓0Ψ(x) = 0, which is due to the boundedness of

ξ from below. (2.8) follows using Ψ(1) = λ0(1) < 0, the fact that Ψ(x) ∈ [−1,0] (due to Theorem

2.1 and (1.8)), as well as (7.4) and the monotonicity of Ψ.

7.2 Annealed regime

In this subsection we primarily deal with proofs concerning the annealed Lyapunov exponents, i.e.

in particular we assume (2.9).

Proof of Proposition 2.11. (a) For p > 0 we directly obtain λ0 ≤ λp from the corresponding for-

mulae given in Theorems 2.1 and 2.7. If 0 < p < q, then Jensen’s inequality supplies us with

〈u(t, 0)p〉
1

p ≤ 〈u(t, 0)q〉
1

q and the statement follows from the definition of λp.

(b) For β ∈ (0,1) and 0< p < q we get

〈u(t, 0)βp+(1−β)q〉 ≤ 〈u(t, 0)p〉β〈u(t, 0)q〉1−β

by Hölder’s inequality, which implies the desired convexity on (0,∞).
(c) For p = 0 this follows from Proposition 2.6 (a); for p ∈ (0,∞) the proof proceeds in complete

analogy to the corresponding part of the proof of Proposition 2.6 (a).

(d) Assume to the contrary that u is p-intermittent but not q-intermittent for some q > p. Then, by

the definition of p-intermittency and part (a) of this same proposition we have λp < λp+ǫ for all

ǫ > 0 and there exists ǫ∗ > 0 such that λq = λq+ǫ∗ . Fixing ǫ := (q − p)/2 ∧ ǫ∗, we get using the

convexity statement of part (b) and λp < λq :

qλq ≤
ǫ

q+ ǫ− p
pλp +

q− p

q+ ǫ− p
(q+ ǫ)λq+ǫ <

ǫ

q+ ǫ− p
pλq +

q− p

q+ ǫ− p
(q+ ǫ)λq+ǫ

=
ǫp/q

q+ ǫ− p
qλq +

(q− p)(q+ ǫ)/q

q+ ǫ− p
qλq = qλq,

a contradiction. Hence, u must be q-intermittent as well.

Proof of Proposition 2.9. We first show that L
sup
p has a zero in (0,βcr) for p > 0 large enough and

then invoke Lemma 5.10 to conclude the proof.

To show the existence of such a zero, let µ ∈ M1([b, 0]) such that H(µ|η) < ∞ and

µ([−βcr/3,0]) = 1. Then due to (5.1) and Proposition 5.2 we have

I (µN0) = lim
n→∞

H(µn|µn−1 ⊗η) = H(µ|η)<∞

2325



as well as

L(βcr/2,µN0) =

∫

Σ+
b

logE1 exp
n
∫ T0

0

(ζ(Ys) + βcr/2) ds
o

µN0(dζ)

≥ logE1 exp{(−βcr/3+ βcr/2)T0}> 0.

We deduce

Lsup
p (βcr/2)≥ L(βcr/2,µN0)−I (µN0)/p > 0

for p > 0 large enough, in which case L
sup
p has zero −λp ∈ (0,βcr), cf. Theorem 2.7.

Lemma 5.10 now tells us that we find νp ∈ M s
1(Σ

+
b
) with L

sup
p (−λp) = L(−λp,νp) − I (νp)/p.

Since Prob can be assumed to be non-degenerate, one can show that for p large enough we have

νp 6= Prob . We then have I (νp) ∈ (0,∞) and for ǫ > 0 we obtain

L
sup
p+ǫ(−λp)≥ L(−λp,νp)−I (νp)/(p+ ǫ)> L(−λp,νp)−I (νp)/p = Lsup

p (−λp) = 0.

Therefore, L
sup
p+ǫ has a zero in (0,−λp), whence due to Theorem 2.7 we have λp+ǫ > λp and u is

p-intermittent.

The following claim is employed in the proof of Theorem 2.10.

Claim. For each neighbourhood U of Prob= ηN0 inM1(Σ
+
b
), there exists ǫ > 0 such that {I ≤ ǫ} ⊆ U.

Proof. Indeed, if this was not the case, we would find an open neighbourhood U of Prob such that

{I ≤ ǫ} 6⊆ U for all ǫ > 0. Now since I is a good rate function (cf. Corollary 6.5.15 in [DZ98])

{I ≤ ǫ}∩U c is compact and non-empty whence there exists ν ∈M1(Σ
+
b
) with I (ν) = 0 and ν 6∈ U .

But due to Corollary 5.3, ηN0 is the only zero of I , contradicting ν /∈ U .

Proof of Theorem 2.10. The continuity on (0,∞) follows from Proposition 2.11 (b). It therefore

remains to show the continuity in 0.

For this purpose, we first show that L
sup
p ↓ L pointwise as p ↓ 0 on (0,βcr).

Fix β ∈ (0,βcr). Then M := supν∈M s
1
(Σ+

b
) L(β ,ν) < ∞ due to Corollary 5.7 and for ǫ > 0 we may

therefore find a neighbourhood U(Prob) of Prob such that |L(β ,ν)− L(β)| < ǫ for all ν ∈ U(Prob).

Choosing δ > 0 small enough such that {I ≤ δ} ⊂ U(Prob) (which is possible due to the above

claim), we set pǫ := δ/(M − L(β)). Then for p ∈ (0, pǫ), we have |Lsup
p (β)− L(β)| ≤ ǫ. This proves

the above convergence.

The continuity of p 7→ λp in zero now follows from Theorems 2.1 and 2.7 where we may distinguish

the cases that L does or does not have a zero in (0,βcr).

8 The case of maximal drift

In subsection 8.1 we will give the modifications necessary to adapt the proofs leading to the results

of section 2 to the case h= 1.

Subsequently, in subsection 8.2 we will provide an alternative approach to establish the existence

of the first annealed Lyapunov exponent using a modified subadditivity argument. By means of the

2326



Laplace transform we will then retrieve an easy formula for the p-th annealed Lyapunov exponent

for p ∈ N.

Note that there have been some initial investigations of the first annealed Lyapunov exponent in the

case h= 1 using a large deviations approach to establish its existence (cf. [Sch05]).

8.1 Modifications in proofs for maximal drift

As one may have noticed, some of the results and proofs given so far depended on h being strictly

smaller than 1. Already Proposition 3.1 does not hold true anymore in the case of maximal drift.

Indeed, with the previous definitions one computes

βcr = κ≤ κ− ξ(0) =−c∗; (8.1)

in particular, c∗ is in general a non-degenerate random variable. On the other hand, in the case

h= 1 we have the simple representations

L(β) =
D

log
κ

κ− ξ(1)− β
E

and Λ(β) =
D

log
κ− ξ(1)
κ− ξ(1)− β
E

, β ∈ (−∞,κ).

Notwithstanding these differences between the cases of h = 1 and h ∈ (0,1), our main results are

still valid in the case h= 1. To verify this, we make use of the identity

E0 exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0 = exp{(−κ+ ξ(0))t}. (8.2)

We will now exhibit the modifications necessary to derive the results of section 2.

The proof of Lemma 4.1 is as follows:

Proof. For α > 0 and bearing in mind (8.1) and (8.2), the supremum on the right-hand side of (4.1)

is obtained as in the case h ∈ (0,1). For α = 0 it evaluates to −βcr = −κ and in this case, choosing

for arbitrary ǫ > 0 an n ∈ N such that ξ(n) > −ǫ yields in combination with the Markov property

applied at time t − 1:

lim inf
t→∞

1

t
logEn exp
n
∫ t

0

ξ(Ys) ds
o

1Yt=0

≥ lim inf
t→∞

1

t
log
�

En exp{ξ(n)t}1Yt−1=n

�
min

k∈{0,...,n}
exp{ξ(k)}Pn(Y0 = n, Y1 = 0)

�
�

= −κ− ǫ.

(8.3)

Since ǫ > 0 was chosen arbitrarily, this finishes the proof.

Bearing in mind (8.1) and (8.2) again, the proof of Lemma 4.2 proceeds very similarly to the case

h ∈ (0,1); note that, as it will frequently be the case, the proof facilitates lightly since for h = 1

we do not have to consider the negative summands appearing in (2.3). This is also the reason why

Lemma 4.3 is not required for h = 1. The proof of Lemma 4.4 does not depend on h at all, whence

no modifications are required. With these results at hand, Corollary 4.5 is proven as before and the

same applies to Theorem 2.1 and Corollary 2.3.
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When turning to section 5, we note that Lemma 5.5 is not needed in the case h = 1. Furthermore,

for h= 1 we note that βcr = κ, whence Lemma 5.6 can be easily verified to hold true using

E1 exp
n
∫ T0

0

(ζ(Ys) + β) ds
o

=
κ

κ− ζ(1)− β , β < κ, ζ ∈ Σ+
b

.

With respect to section 6, we note that to derive Lemma 6.1 we just have to employ the relations

(8.1) and (8.2) in the proof to obtain the same result. When it comes to Lemmas 6.2 and 6.3, we

observe that the proof goes along similar lines but facilitates at different steps. But note that e.g. in

(6.18) the infimum in β should be taken over [c,βcr −δ] for some δ > 0 small enough since L(βcr)

might be infinite (whereas the quoted minimax theorem is applicable to real-valued functions only).

Corollary 6.6 and Lemma 5.11 are proven analogously, whence the same applies to Theorem 2.7.

8.2 Analysis of the maximal drift case

When considering annealed Lyapunov exponents for an i.i.d. medium, the situation that h = 1 is

much easier to analyse than the case of h ∈ (0,1). This is the case since in this setting the indepen-

dence of the medium yields a product structure for expressions such as

D

E0 exp
n
∫ Tn

0

ξ(Xs) ds
oE

,

which evaluates to 〈κ/(κ− ξ(0))〉n.

8.2.1 Additional derivations for the annealed regime

While in general even showing the mere existence of the Lyapunov exponents requires quite some

effort, in the case of maximal drift and an i.i.d. potential, the existence of λ1 can be retrieved by a

modified subadditivity argument.

Lemma 8.1. Let f : R+ → R be a continuous function fulfilling the following property: For all δ > 0

there exists Kδ > 0 such that for all s, t ∈ R+ we have

f (s+ t)≤ Kδ +δs+ f (s) + f (t). (8.4)

Then limt→∞ f (t)/t exists in [−∞,∞).

Proof. For t and T such that 0 < t < T choose n ∈ N and r ∈ [0, t) such that T = nt + r. We infer

using (8.4) that

f (T )

T
≤

1

T

�
(Kδ +δt + f (t))n+ f (r)

�

≤
1

t
(Kδ +δt + f (t)) +

f (r)

T
.

It follows that

lim sup
T→∞

f (T )

T
≤ lim inf

t→∞

f (t)

t
+δ <∞

for all δ > 0 and thus limt→∞ f (t)/t exists [−∞,∞).
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When trying to apply this lemma to the function t → log〈u(t, 0)〉 we compute writing H(t) :=

log〈etξ(0)〉, denoting by Tn the first hitting time of n by X , and employing the strong Markov prop-

erty:

〈u(s+ t, 0)〉=
∑

n∈N0

D

E0 exp
n
∫ s+t

0

ξ(X r) dr
o

1Tn≤s<Tn+1

E

≤
∑

n∈N0

E0

�D

exp
n
∫ Tn

0

ξ(X r) dr
oED

1Tn≤s<Tn+1
E0

�

exp
n
∫ s+t

s

ξ(Xu) du
o¯
¯
¯Fs

�E�

=
∑

n∈N0

E0

�D

exp
n
∫ s

0

ξ(X r) dr
oE

e−H(s−Tn)1Tn≤s<Tn+1

D

En exp
n
∫ t

0

ξ(Xu) du
oE�

(8.5)

≤
∑

n∈N0

E0

�D

exp
n
∫ s

0

ξ(X r) dr
oE

1Tn≤s<Tn+1

�

e−H(s)〈u(t, 0)〉

≤ eKδ+δs〈u(s, 0)〉〈u(t, 0)〉,

where to obtain the last line we used 0 ≥ H(t)

t
→ 0 as t →∞, which implies that for all δ > 0 there

exists Kδ > 0 such that −H(t) ≤ Kδ + δt for all t > 0. Taking logarithms on both sides of (8.5),

Lemma 8.1 is applicable and yields the existence of λ1. It is now promising to consider the Laplace

transform

R ∋ β 7→
∫ ∞

0

e−β t〈u(t, 0)〉 d t; (8.6)

observe that λ1 is given as the critical value of β for the divergence of this integral. By direct

computation, the integral in (8.6) can be shown to equal

1

κ

∑

n∈N

D κ

κ+ β − ξ(0)
En

for β ≥ −κ, see also Lemma 3.2 in [Sch05]. Thus, given the existence of λ1 and using (8.6), we

observe that λ1 is given as the zero of

β 7→ log
D κ

κ+ β − ξ(0)
E

(8.7)

in (−κ, 0) if this zero exists; otherwise, we conclude λ1 ≤ −κ and by considering realisations of X

in (2.3) which stay at sites n with ξ(n) ≈ 0 for nearly all the time, we may conclude λ1 ≥ −κ, cf.

(8.3). Thus, we get λ1 = −κ in this situation. We have therefore proven the following proposition

for p = 1:

Proposition 8.2. Assume (1.2) as well as (2.9) to hold. Then for h= 1 and p ∈ N, the p-th annealed

Lyapunov exponent λp is given as the zero of

β 7→ log
D� κ

κ+ β − ξ(0)
�pE

(8.8)

in (−κ, 0) if this zero exists and −κ otherwise.
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Remark 8.3. While Theorem 2.7 yields the existence and implicit formulae for all λp, p ∈ (0,∞),
simultaneously, Proposition 8.2 provides a nicer representation in the cases p ∈ N with h= 1.

Proof. While for p = 1 we showed how to employ a subadditivity argument to infer existence of

λ1, for general p ∈ N we now refer to Theorem 2.7 for this purpose. We can then use the Laplace

transform again to deduce a more convenient representation of λp. For the sake of simplicity, we

prove the proposition for p = 2 and give corresponding remarks where generalisations to arbitrary

p ∈ N are not straightforward.

Denote by X (1) and X (2) two independent copies of X and by P0,0 and E0,0 we denote the probability

and expectation, respectively, of these processes both starting in 0. Note that since h= 1, these are

Poisson processes with intensity κ. We set τ
( j)

0 := 0, τ
( j)

k
:= T

( j)

k
− T

( j)

k−1
for k ∈ N and j ∈ {1,2},

where by T
j

k
we denote the first hitting time of k by X ( j). Note that the τ

( j)

k
are i.i.d. exponentially

distributed with parameter κ. We distinguish cases:

(i) Assume that for p = 2 the function of (8.8) has a zero in (−κ, 0).

Using Hölder’s inequality4 we estimate for

β > −2κ : (8.9)

∫ ∞

0

e−β t〈u(t, 0)2〉 d t

=

∫ ∞

0

e−β t
∑

m,n∈N0

D

E0,0

�

exp
n m∑

k=1

τ
(1)

k
ξ(k− 1) + (t − T (1)m )ξ(m)

o

× exp
n n∑

k=1

τ
(2)

k
ξ(k− 1) + (t − T (2)n )ξ(n)

o

1
X
(1)
t =m

1
X
(2)
t =n

�E

d t

≤
∑

m,n∈N0

D
∫ ∞

0

e−β t
�

E0,0 exp
n m∑

k=1

τ
(1)

k
ξ(k− 1) + (t − T (1)m )ξ(m)

o

1
X
(1)
t =m

�2

d t
E 1

2

×
D
∫ ∞

0

e−β t
�

E0,0 exp
n n∑

k=1

τ
(2)

k
ξ(k− 1) + (t − T (2)n )ξ(n)

o

1
X
(2)
t =n

�2

d t
E 1

2
.

(8.10)

4For arbitrary p we retreat to the generalised Hölder inequality with the p exponents 1/p, . . . , 1/p.
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We now can estimate the diagonal summands as follows:

D
∫ ∞

0

e−β t
E0,0

�

exp
n m∑

k=1

(τ
(1)

k
+τ

(2)

k
)ξ(k− 1)
o

exp{(2t − T (1)m − T (2)m )ξ(m)}1X
(1)
t =X

(2)
t =m

�

d t
E

=
D
∫ ∞

0

e−β t
E0,0

�

exp
n m∑

k=1

(τ
(1)

k
+τ

(2)

k
)ξ(k− 1) + (2t − T (1)m − T (2)m )ξ(m)

o

× exp
n

−κ(2t − T (1)m − T (2)m )
o

1
T
(1)
m ≤t

1
T
(2)
m ≤t

�

d t
E

≤ E0,0

D
∫ ∞

0

exp
n m∑

k=1

(τ
(1)

k
+τ

(2)

k
)(ξ(k− 1)− β/2)

o

× exp
�
(2t − T (1)m − T (2)m )(ξ(m)−κ− β/2)

	
1

T
(1)
m +T

(2)
m ≤2t

d t
E

t 7→t+
T
(1)
m +T

(2)
m

2
= E0,0

D

exp
n m∑

k=1

(τ
(1)

k
+τ

(2)

k
)(ξ(k− 1)− β/2)

oED
∫ ∞

0

exp{2t(ξ(0)− κ− β/2)} d t
E

︸ ︷︷ ︸

=:C<∞, since β>−2κ

= C
D� κ

κ+ β/2− ξ(0)
�2Em

.

(8.11)

Hence, combining (8.10) and (8.11) we have

∫ ∞

0

e−β t〈u(t, 0)2〉 d t ≤ C2
∑

m,n∈N0

D� κ

κ+ β/2− ξ(0)
�2Em+n

2

= C2
� ∑

m∈N0

D� κ

κ+ β/2− ξ(0)
�2Em

2
�2

. (8.12)
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For the lower bound we compute

∫ ∞

0

e−β t〈u(t, 0)2〉 d t ≥
∑

m∈N0

∫ ∞

0

D

E0,0 exp
n m∑

k=1

(τ
(1)

k
+τ

(2)

k
)(ξ(k− 1)− β/2)

o

× exp
�
(2t − T (1)m − T (2)m )(ξ(m)− β/2)

	
1

X
(1)
t =X

(2)
t =m

E

d t

=
∑

m∈N0

D

E0,0

�
∫ ∞

0

exp
n m∑

k=1

(τ
(1)

k
+τ

(2)

k
)(ξ(k− 1)− β/2)

o

× exp
�
(2t − T (1)m − T (2)m )(ξ(m)−κ− β/2)

	
1

T
(1)
m ≤t

1
T
(2)
m ≤t

d t
�E

t 7→t+
T
(1)
m +T

(2)
m

2
=
∑

m∈N0

D

E0,0

�
∫ ∞

0

exp
n m∑

k=1

(τ
(1)

k
+τ

(2)

k
)(ξ(k− 1)− β/2)

o

× exp{2t(ξ(m)−κ− β/2)}1
T
(1)
m −T

(2)
m

2
≤t
1

T
(2)
m −T

(1)
m

2
≤t

d t
�E

(8.13)

t 7→t+
|T(1)m −T

(2)
m |

2
=
∑

m∈N0

D

E0,0

�
∫ ∞

0

exp
n m∑

k=1

(τ
(1)

k
+τ

(2)

k
)(ξ(k− 1)− β/2)

o

× exp
�
(2t + |T (1)m − T (2)m |)(ξ(m)−κ− β/2)

	
d t
�E

≥
∑

m∈N0

D

E0,0

�

1|T (1)m −T
(2)
m |≤mδ

exp
n m∑

k=1

(τ
(1)

k
+τ

(2)

k
)(ξ(k− 1)− β/2)

o�E

×
D

exp{mδ(ξ(m)−κ− β/2)}
∫ ∞

0

exp{2t(ξ(m)−κ− β/2)} d t
E

.

(8.14)

Note here that for arbitrary p ∈ N the indicators appearing in (8.13) are replaced by

p∏

j=1

1

T
( j)
m −
∑

1≤k≤p T
(k)
m

p
≤t

which can be estimated from below by

1
max1≤ j,k≤p |T

( j)
m −T

(k)
m |≤t

.

The subsequent substitution can duely be replaced by

t 7→ t +
max1≤ j,k≤p |T

( j)
m − T (k)m |

p
,

and the remaining steps are analogous to p = 2.

Now we continue (8.14) with p = 2 and bearing in mind that β > −2κ, we estimate the right-hand
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side factor using Jensen’s inequality to get

D

exp{mδ(ξ(m)−κ− β/2)}
∫ ∞

0

exp{2t(ξ(m)−κ− β/2)} d t
E

≥
1

2

D

exp{ξ(m)− κ− β/2}δ
︸ ︷︷ ︸

→1 Prob -a.s. as δ↓0

� 1

κ+ β/2− ξ(m)
� 1

m

︸ ︷︷ ︸

→1 Prob -a.s. as m→∞

Em

≥
(1− ǫ)m

2
,

(8.15)

where the last inequality holds for arbitrary ǫ > 0 and all m ≥ mδ,ǫ large enough. Writing H(t) :=

log〈etξ(0)〉 again, we obtain combining (8.14) and (8.15):
∫ ∞

0

e−β t〈u(t, 0)2〉 d t ≥
1

2

∑

m≥mδ,ǫ

(1− ǫ)mE0,0

�

1|T (1)m −T
(2)
m |≤mδ

× exp
n m∑

k=1

�
H(τ

(1)

k
+τ

(2)

k
)− β/2(τ(1)

k
+τ

(2)

k
)
�
o�

.

Next we define

P̂m(A) :=
E0,0(exp{
∑m

k=1 H(τ
(1)

k
+τ

(2)

k
)− β/2(τ(1)

k
+τ

(2)

k
)}1A)

E0,0

�
exp
�

m∑

k=1

H(τ
(1)

k
+τ

(2)

k
)− β/2(τ(1)

k
+τ

(2)

k
)
	�

︸ ︷︷ ︸

=〈( κ
κ+β/2−ξ(0) )

2〉m<∞ as β>−2κ, cf. (8.9)

for m ∈ N and measurable A. Now (τ
(1)

k
−τ(2)

k
)k∈{1,...,m} have mean 0 and are square integrable and

i.i.d. with respect to P̂m. Thus, a weak law of large numbers supplies us with
∫ ∞

0

e−β t〈u(t, 0)2〉 d t ≥
∑

m≥mδ,ǫ

P̂m(|T (1)m − T (2)m | ≤ δm)
D� κ

κ+ β/2− ξ(0)
�2Em

(8.16)

×
(1− ǫ)m

2

≥
1

4

∑

m≥mδ,ǫ

�D� κ

κ+ β/2− ξ(0)
�2E

(1− ǫ)
�m

, (8.17)

where we choose mδ,ǫ large enough such that P̂m(|T (1)m − T (2)m | ≤ δm)≥ 1/2 for all m≥ mδ,ǫ due to

the law of large numbers.

Since ǫ > 0 was chosen arbitrarily, we infer combining (8.12) and (8.17) that λ2 equals the zero of

β 7→ log
D� κ

κ+ β − ξ(0)
�2E

.

(ii) Now assume that for p = 2 the function of (8.8) does not have a zero in (−κ, 0).

Again, considering realisations of X in (2.3) which stay at sites n with |ξ(n)| small for nearly all the

time, we arrive at λ2 ≥ −κ, cf. (8.3). But from (8.12) we infer λ2 ≤ −κ if (8.8) does not have a

zero in (−κ, 0) for p = 2, which finishes the proof.
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It is inherent to the approach along which we proved Proposition 8.2 that it applies to natural p

only. Nevertheless, we expect the formula to hold true for general p ∈ (0,∞).

Conjecture 8.4. Assume (1.2) as well as (2.9) to hold. Then for h = 1 and p ∈ (0,∞), the p-th

annealed Lyapunov exponent λp is given as the zero of

β 7→ log
D� κ

κ+ β − ξ(0)
�pE

in (−κ, 0) if this zero exists and −κ otherwise.
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