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Abstract

This note extends the work of Foss and Tweedie (1998), who showed that availability of the
classic Coupling from the Past (CFTP) algorithm of Propp and Wilson (1996) is essentially
equivalent to uniform ergodicity for a Markov chain (see also Hobert and Robert 2004). In
this note we show that all geometrically ergodic chains possess dominated CFTP algorithms
(not necessarily practical!) which are rather closely connected to Foster-Lyapunov criteria.
Hence geometric ergodicity implies dominated CFTP.

1 Introduction

Throughout this paper X will denote an aperiodic Harris-recurrent Markov chain on a measur-
able state space X which is a Polish space (the Polish condition is required in order to ensure
existence of regular conditional probabilities). Let m denote the equilibrium probability distri-
bution of X. Recall that X is said to be geometrically ergodic if it converges in total variation
and at geometric rate to statistical equilibrium 7, with multiplicative constant depending on
the starting point:

distpv (£ (Xn),m) < V(Xo)y" (1)

for some function V : X — [1, 00) and some rate v € (0,1). The chain X is said to be uniformly
ergodic if the function V' can be chosen to be constant.
We also recall the notion of a small set:

Definition 1 A subset C C X is a small set (of order k) for the Markov chain X if there is
a minorization condition: for 8 € (0,1), and probability measure v,

PXreE|Xo=2] > PBllzeC]xv(E) for all measurable E C X . (2)

Results are often stated in terms of the more general notion of petite sets; however for -
irreducible aperiodic chains the two notions are equivalent (Meyn and Tweedie 1993, Theorem
5.5.7).
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Foss and Tweedie (1998) use small set theory to show that the condition of uniform ergodicity
for such X is equivalent to the existence of a Coupling from the Past algorithm (based on
X) in the sense of Propp and Wilson (1996). This classic CFTP algorithm delivers a perfect
sample from the equilibrium distribution of X. The key to the Foss and Tweedie argument
is to remark that in case of uniform ergodicity the entire state space is small. Sub-sampling
the process X if necessary (to reduce the order of the small set to 1), one can then devise
a classic CFTP algorithm which is actually of the form introduced by Murdoch and Green
(1998) as the multigamma coupler. Hobert and Robert (2004) develop the Foss and Tweedie
argument to produce approximations to deal with burn-in (time till approximate equilibrium)
in the geometrically ergodic case.

The Foss and Tweedie result might be thought to delimit and constrain the possible range of
applicability of CFTP. However it is also possible to sample perfectly from the equilibrium
of some strictly geometrically ergodic chains using a generalization: namely dominated CFTP
(dom CFTP) as introduced in Kendall (1998), Kendall and Mgller (2000), Cai and Kendall
(2002). In this note we show that this is generic: geometric ergodicity implies the existence
of a special form of dom CFTP algorithm adapted to the geometric ergodicity in question.
Recent expositions of quantitative convergence rate estimation depend heavily on small sets
and their relatives (see for example Rosenthal 2002), so this piece of CFTP theory connects
to quantitative convergence theory in a rather satisfying way.

To describe this special form of dom CFTP, we must first introduce the notion of a Foster-
Lyapunov condition. Geometric ergodicity for our X is equivalent to a geometric Foster-
Lyapunov condition involving recurrence on small sets (this can be extracted from Meyn and
Tweedie 1993, Theorem 16.0.1):

E[A(Xni1) | Xn=2] < aA(@)+bI[X,€C], (3)

for some a € (0,1) and b > 0, some small set C, and a drift function A : X — [1,00) which is
bounded on C. Note that a + b > 1 is required, as is A|ce > a~!, since we impose A > 1.
Now the moment condition (3) implies that every sub-level set {z € X : A(z) < ¢} is small
(as indeed do weaker conditions; Meyn and Tweedie 1993, Theorem 14.2.3).

It is convenient to isolate the notion of a pseudo-drift function as A in Equation (3).

Definition 2 A (Foster-Lyapunov) pseudo-drift function for a Markov chain state space X is
a measurable function

A: X > [1,0)
such that sub-level sets {x € X : A(z) < A} are small for all X\ > 1.

Thus a pseudo-drift function has the properties of a Foster-Lyapunov drift function but is not
endowed with a specific moment condition.

Now we can define the special form of dom CFTP which we require, which is adapted to a
specified pseudo-drift function.

Definition 3 Suppose that A is a pseudo-drift function for an Harris-recurrent Markov chain
X. We say the stationary ergodic random process Y on [1,00) is a dominating process for X
based on the pseudo-drift function A (with threshold h and coalescence probability &) if it is
coupled co-adaptively to realizations of X® ! (the Markov chain X begun at x at time —t) as
follows:

(a) for allz € X, n >0, and —t < 0, almost surely
AXZF) < Yo = AMXZTL0) <0 Yorgntas (4)
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(b) moreover if Y, < h for some fized m then the probability of coalescence (conditional on
past of Y and past potential coalescence events) is at least €, where coalescence means
that the set

{XZ1 : suchthat —t <m and A(X%5 ') < Y}

is a singleton set (inequality is used in —t < m rather than equality as this is a condition
on coupling of X®~t for all —t < m);

(c) and finally, P[Y,, < h] must be positive.

Suppose Y is a dominating process for X based on the pseudo-drift function A. The following
dom CFTP algorithm then yields a draw from the equilibrium distribution of X.

Algorithm 4
Sitmulate Y backwards in equilibrium till the most recent T < 0 for which Yp < h;
while coalescence does not occur at time T ':

extend Y backwards till the most recent S < T for which Ys < h;
setT + S;

simulate the coupled X forwards from time T + 1, starting with the unique state produced
by the coalescence event at time T (conditioned on 'Y );

return Xo as a perfect draw from equilibrium.

This algorithm terminates almost surely as a consequence of the conditions imposed in Defi-
nition 3.

Practical implementation considerations are: (1) can one draw from the equilibrium of Y'?
(2) can one simulate Y backwards in equilibrium? (3) can one couple the dominated target
processes X%~ with Y so as to ensure the possibility of regeneration? (4) can one determine
when this regeneration has occurred? and, of course, (5) will the algorithm not run too slowly?
The simplest kind of ordinary small-set CFTP, as in Murdoch and Green (1998), is recovered
from this Algorithm by taking Y = h, and requiring the whole state-space to be contained in
{z : A(z) < h} and hence small. In actual constructions, care must be taken to ensure that ¥’
dominates a coupled collection of X for which coalescence is possible as specified in Definition
3(b) (see the treatment of CFTP for Harris chains in Corcoran and Tweedie 2001).

The proof that this algorithm returns a perfect draw from the equilibrium distribution of X
is an easy variation on the usual dom CFTP argument, found at varying levels of generality
in Kendall 1998; Kendall and Mgller 2000; Cai and Kendall 2002. The key is to observe that
Algorithm 4 reconstructs a coalesced trajectory which may be viewed as produced by the
Markov chain begun at time —oo at some specified state z such that A(z) < h: the proof is
then an exercise in making this heuristic precise.

The Foss and Tweedie (1998) argument, and the fact that the geometric Foster-Lyapunov
condition (3) would certainly produce a dominating process if the expectation inequality was
replaced by a stochastic domination, together suggest our main result, to be proved in Section
2:

Theorem 5 If X is a geometrically ergodic Markov chain, and A is a pseudo-drift function
for X which is derived from some geometric Foster-Lyapunov condition, then there is an
almost surely terminating domCFTP algorithm for X (possibly subject to sub-sampling) using
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a dominating process based on the pseudo-drift function A, as in Algorithm 4 and Definition
3.

As in the case of the Foss and Tweedie (1998) result, this algorithm need not be at all practical!

2 Proof of Theorem 5

We begin with a lemma concerning the effect of sub-sampling on the geometric Foster-Lyapunov
condition.

Lemma 6 Suppose X satisfies a geometric Foster-Lyapunov condition: for some a < 1, some
pseudo-drift function A, and small set C = {z € X : A(z) < c}.

EAXn1) [ Xn=12] < al(z) +dI[AX,) <d]. (5)
Under k-sub-sampling we obtain a similar condition but with different constants:
EAXns) | Xo=a] < o 'Adx) +HI[ACX,) <], (6)
and also, if k > 2,
EA(Xnis) | Xn=2] < aA(@)+b"T[A(X,) <] . (7)

Moreover b' = b/(1 — a), ¢/ = b/(a*~1(1 — a)?) may be chosen not to depend on c, and
V' =b/(1—a), " =b/(a(l — a)?) may be chosen to depend neither on ¢ nor on k > 2.

We are able to choose V', ¢, b", ¢" not to depend on ¢ because we have allowed generous
sub-sampling (i.e.: k-sub-sampling to change a to a*~1).

Proof: Iterating Equation (5),

k
" A(z) + Zaj_lb]E[]I A Xptyk—j) < | Xp = 2]

E[A(Xn4r) | Xn=3] <
7j=1
k b
< aAz) + T
= o A@) — o1 - a)A() + 1 a f o
a*1A(z) if A(z) > m )

<
- a*~1A(x) +b/(1 —a) otherwise.

Hence we may choose b’ = b/(1 — a), ¢’ = b/(a*~1(1 — a)?). Alternatively

EAXnr) | Xn=2] < aAlz)—a(l—a* HA(z) +

1-o
(IA(.CL') if A(.Z') > W ,
- alA(z) +b/(1 —a) otherwise.

Hence we may choose b = b/(1 — a), ¢' = b/(a(l —a)?) if k > 2. a
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Proof (of Theorem 5):

We first construct the dominating process.

Consider Markov’s inequality applied to the geometric Foster-Lyapunov inequality (3). Any
dominating process Y must satisfy the stochastic domination (4) described in Definition 3.
Consequently, in default of further distributional information about P[A(X41)|X, = z], if
Y is to be a dominating process based on the pseudo-drift function A then we need Y to be
stationary ergodic but also to satisfy

E[A(X X, =
P [Yn+1 > azy | Y, = z] > sup [ ( n+1) | n -'L'] ‘
z:A(z)<z azy

(8)
Now if C C {z € X : A(z) < ¢} then

EA(Xnt1) | Xn = 2] al(z) + bz : Alz) < (]

sup < sup
z:A(z)<z azy z:A(z)<z azy
al(z 1 b
< sup () < - solongasz>c+ —.
z:A(z)<z ORY Y @

Consequently Y is a possible candidate for a dominating process based on the pseudo-drift
function A if

1y ifz>c+ % ,
1 otherwise.

PlYpt1 > azy|Y,=2] = { (9)
If we define U by Y = (¢ + b/a)exp(U) (so U is a log-dominating process) then U is the
system workload of a D/M/1 queue, sampled at arrivals, with arrivals every log(1/a) units of
time, and service times being independent and of unit Exponential distribution. The process
U is a random walk with reflection (of Skorokhod type) at 0: as its jump distribution is
Exponential(1) — log(1/a) we may deduce it is positive-recurrent if and only if o < e~!.
Incasee ! <a<1,U and Y = (¢ + b/a)exp(U) fail to be positive-recurrent. However the
same construction will work if we use Equation (6) of Lemma 6 to justify sub-sampling X
with a sampling period k large enough to ensure a geometric Foster-Lyapunov condition (3)
using A as pseudo-drift but with a replaced by a*~! < e~!, and amending b to V', ¢ to ¢’ as
in Inequality (6).

Thus without loss of generality we may assume o < e~!, and so this Y can be run in statistical
equilibrium, and thus qualifies as least partly as a dominating process for the purposes of
Theorem 5. In the sequel we assume moreover that further sub-sampling has been carried out
based on Equation (7), to ensure that the following small set is of order 1:

b b 1

{reX : A(z) < h} for h—max{c+a,a(1_a) <1+1—a>}' (10)
Here the level h > ¢+ b/a is fixed so as to ensure h = ¢ +b" /(1 — a) with b", ¢ given as
in Equation (7); thus h supplies a stable threshold for geometric Foster-Lyapunov conditions,
even allowing for further sub-sampling if required. Note in particular that Y = (¢+b/a) exp(U)
is able to sink below h, since h > ¢ + b/a and the system workload U can reach zero.
To fulfil the requirements on a dominating process given in Definition 3, we need to construct
a coupling between Y and the target process X expressed in terms of a random flow of
independent maps F_;ypqq : X — A

z,—t _ z,—t
X—t+n+1 - F—t+n+1(X—t+n)
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satisfying the distributional requirement that X% ~t should evolve as the Markov chain X, the
domination requirement expressed by the implication (4), and also the regeneration require-
ment that with probability € the set

{F,(u) : such that A(u) < h}

should be a singleton set. The well-known link between stochastic domination and coupling
can be applied together with the arguments preceding Equation (9) to show that we can
couple the various X®~¢ with ¥ co-adaptively in this manner so that the implication (4)
holds: note that here and here alone we use the Polish space nature of X, which allows us to
construct the couplings by use of regular conditional probability distributions for the various
X2t conditioned on the A(X%~t). Thus all that is required is to show that this stochastic
domination coupling can be modified to allow for regeneration.

The small set condition for {z € X : A(z) < h} means there is a probability measure » and a
scalar 8 € (0,1) such that for all Borel sets B C [1,00), whenever A(z) < h,

P[A(Xps1) € B| Xn=2] > Pu(B). (11)

Moreover the stochastic domination which has been arranged in the course of defining Y means
that for all real u, whenever A(z) <y,

PA(Xp1) >u|Xp=2] < PY>u|Y=y]. (12)

We can couple in order to arrange for regeneration if we can identify a probability measure
U, defined solely in terms of v and the dominating jump distribution P[Y > u | Y =y], such
that for all real u

PAXny1) > u | Xn = 2] = Br((u, )

v((u;00))

PlY >u|Y =y] - Bv((u,0))

<
< ((u; 00))

and moreover
PlYot1 €B|Y,=y] > pBv(B).

For then at each step we may determine whether or not regeneration has occurred (with
probability 8); under regeneration we use stochastic domination to couple v to 7; otherwise
we use stochastic domination to couple the residuals.

Results to this effect may be gleaned from Roberts and Rosenthal (2001): for the sake of
explicit exposition we state and prove an interior lemma.

Lemma 7 Suppose U, V are two random variables defined on [1,00) such that

(a) The distribution L (U) is stochastically dominated by the distribution £ (V):

PlU>u < P[V>u for all real U ; (13)

(b) U satisfies a minorization condition: for some § € (0,1) and probability measure v:
B C[1,00),

P[U e B] > pv(B) for all Borel sets B C [1,00). (14)

Then there is a probability measure p stochastically dominating v and such that Su is minorized
by L (V). Moreover y depends only on Bv and L (V).
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Proof (of Lemma 7):

Subtract the measure Sv((u, 00)) from both sides of Inequality (13) representing the stochastic
domination £ (U) <X £ (V). By the minorization condition (14) the resulting left-hand-side is
nonnegtive. Thus for all real u

0 < PU>u-pr((u,00) < PV >u]-pr((u,o0))

Now £ (U) — Bv is a nonnegative measure (because of the minorization condition (14)). Con-
sequently P[U > u] — Bv((u,o0)) must be non-increasing in u and so we may reduce the
right-hand side by minimizing over w < u:

PIU > u] - Br((u, 00))

IN

inf {P[V > w] ~ f((w,0))}
= PV >u] - Bu((u, 00))
where p is the potentially signed measure defined by

Au(Lu]) = PV <u] - sup {PIV <w] = Br(l,w))} .

In fact p is a probability measure on [1,00). Both p({1}) = v({1}) and p([1,00)) = 1 follow
from considering v = 1, 4 = co. Now we show p is nonnegative:

Bu((u,u +u']) =Plu <V <u+u]
= — sup {P[V <w]-Br(l,w)}+ sup PV <w]-Br(l,w)} .

w<u+tu’

If the first supremum were to be attained at w < u then the two suprema would cancel. If the
first supremum were to be attained at w' € [u,u + '] then

Bu((w,u+u']) —Plu<V < u+u']
= PV <]+ Br([1,w) + ffi‘i{P[V <w] = Br([1,w))}
> =PV <w+Br(L,w))+P[V <u]—Br(L,u)
and hence
Bu((w,u+u']) > P <V <u+u]+pv(u,w')) > 0.

So we can deduce B is in fact a nonnegative measure.
On the other hand

Bu((u,u+u']) —Plu<V <u+u]
= — sup {P[V <w]-pBr(1l,w)}+ 313{]1" [V <w]-pr([1,w)} <0,

w<u+u’

hence
0 < Buw(u,u+d]) < Plu<V <u+u], (15)

so Bu is absolutely continuous with respect to £ (V) and indeed we can deduce

Bdu(u) = TI[P[V > ]— Bv((-,o0)) hits current minimum at u]dP[V <u] . (16)
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The minorization of Su by £ (V) follows from this argument: dependence only on Sv and
L (V) from construction; finally, stochastic domination of Sv from

ful(u,00) =PIV >ul— inf {PIV > ] - pul(w, )}
= sup {fr((w,0)) —Plw<V <ul} > PBr((u,)).

w<u

O

Now use Lemma 7 to couple £ (Xpt1 | Xpn =2) to L (Yp41 | Yo = y) whenever A(z) <yina
way which implements stochastic domination and ensures all the X,, 1 regenerate simultane-
ously whenever Y < h. This concludes the proof of Theorem 5. d

Note that the algorithm requires us to be able to draw from the equilibrium distribution of Y’
and to simulate its time-reversed equilibrium dual. Up to an additive constant log(Y) is the
workload of a D/M /1 queue. This queue is amenable to exact calculations, so these simulation
tasks are easy to implement (specializing the theory of the G/M/1 queue as discussed, for
example, in Grimmett and Stirzaker 1992, ch. 11). However in general we do not expect this
“universal dominating process” to lead to practical dom CFTP algorithms! The difficulty in
application will arise in determining whether or not regeneration has occurred as in Algorithm
4. This will be difficult especially if sub-sampling has been applied, since then one will need
detailed knowledge of convolutions of the probability kernel for X (potentially a harder problem
than sampling from equilibrium!).

Of course, in practice one uses different dominating processes better adapted to the problem at
hand. For example an M/D /1 queue serves as a good log-dominating process for perpetuity-
type problems and gives very rapid dom CFTP algorithms indeed, especially when combined
with other perfect simulation ideas such as multishift CFTP (Wilson 2000b), read-once CFTP
(Wilson 2000a), or one-shot coupling (Roberts and Rosenthal 2002).

Finally note that, in cases when a € [e~!,1) or when the small set {z € X : A(z) < h} is of
order greater than 1, we are forced to work with coupling constructions that are effectively
non-co-adapted (that is, sub-sampling means that target transitions X, to X;nx+1 depend on
sequences Yk, Yimk+1, - - -» Ymr+k)- Lhe potential improvements gained by working with non-
adapted couplings are already known not only to theory (the non-co-adapted filling couplings
of Griffeath 1975; Goldstein 1979; and the efficiency considerations of Burdzy and Kendall
2000) but also to practitioners (Huber 2004: non-Markovian techniques in CFTP; Hayes and
Vigoda 2003: non-Markovian conventional MCMC for random sampling of colorings).

3 Counter-example

We complete this note by describing a counter-example to show that the use of sub-sampling
in the construction of Theorem 5 is essential.

Proposition 8 There is a Markov chain X satisfying a Foster-Lyapunov condition with drift
function A (and hence itself geometrically ergodic), such that without use of sub-sampling any
dominating process Y based on A will fail to be positive-recurrent.

Proof: We begin by choosing a sequence of disjoint measurable sets Sy, So, ..., subsets of
[1,00) such that each set places positive measure in every non-empty open set. We assert and
prove the possibility of this by using an interior lemma:
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Lemma 9 One can construct a measurable partition S1, Sz, ... of [1,00),
Sl|_|S2|_|Sg|_|... = [1,00)7
with the property Leb(S; N (u,v)) >0 for all 0 <u <v < o0, alli € {1,2,...}.

Proof (of Lemma 9):

Enumerate the rational numbers in [0,1) by 0 = go, G, G2, - ... Choose a < 1/2, and define
o0 oo
A = JUln+kdn+k+a2™].
k=1 n=0

Then for each k > 1
a < Leb(AN[k,k+1) < 2a.

Continue by defining a sequence of nested subsets A, C A._; by

OOtk Gtk oa,
4 = UU[W,QT +472], a7
k=1 n=0
satisfying
Q@ k k+1 20

Thus the measurable shell B, = A, \ A,;1 places mass of at least 3= in each interval
[5, &)

It follows that if S is defined by

S = (Ar, \ Ar.41)

s

s=1

then Leb(SNU) > 0 for every open set U C [1,00). The desired disjoint sequence S1, Sa, . ..is
obtained by considering a countably infinite family of disjoint increasing subsequences of the
natural numbers. O

We revert to the proof of Proposition 8.

The Markov chain X is constructed on state space [1, 00), with pseudo-drift function A(z) = z.
We begin by fixing a € (e71,1), and set C = [1,a~1]. The set C will be the small set for the
Foster-Lyapunov condition. Choose a measurable partition S; LU Ss LIS3 U ... = [1,00) as in
Lemma 9. Enumerate the rational numbers in [1,00) by ¢1, ¢a, - ..

We define the transition kernel p(z,-) of X on [1,00) as follows:

For z € [1,a71], set
p(z,dy) = exp(—(y—1)dy fory>1,
so that if X,, € C then X, 11 — 1 has a unit rate Exponential distribution. Then:

C is a small set for X of order 1 (in fact it will be a regenerative atom!);
if X, € C then E[X,41] = 25
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if X has positive chance of visiting state 1 then the whole state space [1, c0) will be
maximally Leb-irreducible.

For z > o~ ! and z € S;, set

p(e,dy) = (1—2) () + L0 (dy).

qi

Note that, because we are using the identity pseudo-drift function A(z) = z,

ifx ¢ Cthen E[A(Xpt1) | Xn = 2] = E[Xpy1 | Xn = 2] = az;
if 2 ¢ C then P[Xp41 = 1| X, = 2] > 0.

Thus X satisfies a geometric Foster-Lyapunov condition based on drift function A and small
set C, and so is geometrically ergodic.

Suppose Y is a dominating process for X based on the identity function A(x) = z. This
means it must be possible to couple Y and X such that, if A(X,) = X,, <Y, then A(X,41) =
Xnt1 £ Yyp1. This can be achieved if and only if

HD[XTH_lZZ'Xn:’U/] S P[Yn+1ZZ|Yn:$C]
for all z > 1, and Lebesgue-almost all © < z. Therefore we require of such Y that

PlYpt1 2 azy | Yo =2] > esssup{P[X,q11 > azy| X, =u|}
u<lze

a 1
= supesssups — : a  <u<zx,u€S;qu>ary
P )

(3

«a 1

supy — : ¢ > oy = -,

i (4 Y
using Markov’s inequality, then the construction of the kernel of X, then the measure-density
of the S;.
So such a Markov chain Y must also (at least when above level a~1) dominate exp(Z), where
Z is a random walk with jump distribution Exponential(1) + log(a). Hence it will fail to be
positive-recurrent on the small set C when a > e!. O

There may exist some subtle re-ordering to provide dom CFTP for such a chain based on a
different pseudo-drift function; however the above lemma shows that dom CFTP must fail for
dominating processes for X based on the pseudo-drift function A.

4 Conclusion

We have shown that geometric ergodicity (more strictly, a geometric Foster-Lyapunov condi-
tion) implies the existence of a special kind of dom CFTP algorithm. The algorithm is not
expected to be practical: however it connects perfect simulation firmly with more theoretical
convergence results in the spirit of the Foss and Tweedie (1998) equivalence between clas-
sic CFTP and uniform ergodicity. Note also that the “universal dominating process”, the
sub-critical exp(D/M /1) so derived, is itself geometrically ergodic.

It is natural to ask whether other kinds of ergodicity (for example, polynomial ergodicity) can
also be related to perfect simulation in this way; this is now being pursued by Stephen Connor
as part of his PhD research at Warwick.
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