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Abstract

Recently, Abraham and Delmas constructed the distributions of super-critical Lévy
trees truncated at a fixed height by connecting super-critical Lévy trees to (sub)critical
Lévy trees via a martingale transformation. A similar relationship also holds for dis-
crete Galton-Watson trees. In this work, using the existing works on the conver-
gence of contour functions of (sub)critical trees, we prove that the contour functions
of truncated super-critical Galton-Watson trees converge weakly to the distributions
constructed by Abraham and Delmas.
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1 Introduction

In this note, we are interested in studying the scaling limits of contour functions of
Galton-Watson trees. Since the (sub)critical case has been extensively studied, see e.g.
[6] and [11], we mainly focus on the super-critical case.

In [6], it was shown that the scaling limits of contour functions of (sub)critical
Galton-Watson trees are the height processes which encode the Lévy trees; see also
[11] and references therein for some recent developments. In the super-critical case,
however, it is not so convenient to use contour functions to characterize either Galton-
Watson trees or Lévy trees which may have infinite mass. To this end, Abraham and
Delmas in [1] showed that the distributions of super-critical continuous state branch-
ing processes (‘CSBPs’ in short) stopped at a fixed time are absolutely continuous w.r.t.
(sub)critical CSBPs, via a martingale transformation. Since the Lévy trees code the ge-
nealogy of CSBPs, they further defined the distributions of the super-critical Lévy tree
truncated at a fixed height by a similar change of probability.

In this work, we shall show that such distributions defined in [1] arise as the weak
limits of scaled contour functions of super-critical Galton-Watson trees cut at a given
level. Our main result is Theorem 3.3. A key to this result is the observation shown
in Lemma 2.1 which could be regarded as a discrete counterpart of martingale trans-
formation for Lévy trees constructed in [1]. Then by a collection of related results on
convergence of Galton-Watson processes to CSBPs, we obtain our main result.
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Galton-Watson trees

Let us mention some related works here. In [16], the authors studied the local
time processes of contour functions of binary Galton-Watson trees in continuous time.
Duquesne and Winkel in [7] and [8] also constructed super-critical Lévy trees as in-
creasing limits of Galton-Watson trees. In their works, the trees are viewed as metric
spaces and the convergence holds in the sense of the Gromov-Hausdorff distance; see
Remark 3.5 below for a discussion of the relation between the present work and [8].

The paper is organized as follows. In Section 2, we recall some basic definitions and
facts on trees and branching processes. In Section 3, we present our main result and
its proof.

We shall assume that all random variables in the paper are defined on the same
probability space (Ω,F ,P). Define N = {0, 1, 2, . . .}, R = (−∞,∞) and R+ = [0,∞).

2 Trees and branching processes

2.1 Discrete trees and Galton-Watson trees

We present the framework developed in [17] for trees; see also [13] for more nota-
tion and terminology. Introduce the set of labels

U =
∞⋃
n=0

(N∗)n,

where N∗ = {1, 2, . . .} and by convention (N∗)0 = {∅}.
An element of U is thus a sequence w = (w1, . . . , wn) of elements of N∗, and we

set |w| = n, so that |w| represents the generation of w or the height of w. If w =

(w1, . . . , wm) and v = (v1, . . . , vn) belong to U, we write wv = (w1, . . . , wm, v1, . . . , vn) for
the concatenation of w and v. In particular w∅ = ∅w = w.

A (finite or infinite) rooted ordered tree t is a subset of U such that

1. ∅ ∈ t.

2. (w1, . . . , wn) ∈ t \ {∅} =⇒ (w1, . . . , wn−1) ∈ t.

3. For every w ∈ t, there exists a finite integer kwt ≥ 0 such that if kwt ≥ 1, then
wj ∈ t for any 1 ≤ j ≤ kwt (kwt is the number of children of w ∈ t).

Then ∅ is called the root of tree t. Let T∞ denote the set of all such trees t. For each
u ∈ U, define Tu = {t ∈ T∞ : u ∈ t}. We endow t∞ with the σ-algebra σ(Tu, u ∈ U);
see [17] for details. Given a tree t, we call an element in the set t ⊂ U a node of t.
Denote the height of a tree t by |t| := max{|ν| : ν ∈ t}. For h = 0, 1, 2, . . . , define
rht = {ν ∈ t : |ν| ≤ h}, which is a finite tree. Denote by #t the number of nodes of t.
Let

T := {t ∈ T∞ : #t <∞}

be the set of all finite trees.
We say that w ∈ t is a leaf of t if kwt = 0 and set

L(t) := {w ∈ t : kwt = 0}.

So L(t) denotes the set of leaves of t and #L(t) is the number of leaves of t.

To code the finite trees, we introduce the so-called contour functions; see [13] for
details. Suppose that the tree t ∈ T is embedded in the half-plane in such a way that
edges have length one. Imagine that a particle starts at time s = 0 from the root of the
tree and then explores the tree from the left to the right, moving continuously along
the edges at unit speed, until all edges have been explored and the particle has come
back to the root. Then the total time needed to explore the tree is ζ(t) := 2(#t − 1).
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The contour function of t is the function (C(t, s), 0 ≤ s ≤ ζ(t)) whose value at time
s ∈ [0, ζ(t)] is the distance (on the tree) between the position of the particle at time s
and the root. We set C(t, s) = 0 for s ∈ [ζ(t), 2#t].

Given a probability distribution p = {pn : n = 0, 1, . . .} with p1 < 1, following [17] and
[4], call a T∞-valued random variable Gp a Galton-Watson tree with offspring distribu-
tion p if

i) the number of children of ∅ has distribution p:

P(k∅Gp = n) = pn, ∀n ≥ 0;

ii) for each h = 1, 2, . . . , conditionally given rhGp = t with |t| ≤ h, for ν ∈ t with
|ν| = h, kνGp are i.i.d. random variables distributed according to p.

The second property is called branching property. From the definition we have for
a ∈ N∗ and any t ∈ T such that |t| ≤ a,

P(raGp = t) =
∏

ν∈t:|ν|<a

pkνt. (2.1)

Define m(p) =
∑
k≥0 kpk. We say Gp is sub-critical (resp. critical, super-critical) if

m(p) < 1(resp. m(p) = 1,m(p) > 1).

Given a tree t ∈ T∞, then rat is a finite tree whose contour function is denoted by
{Ca(t, s) : s ≥ 0}. For k ≥ 0, we denote by Yk(t) the number of individuals in generation
k:

Yk(t) = #{ν ∈ t : |ν| = k}, k ≥ 0.

Given a probability measure p = {pk : k ≥ 0} with
∑
k≥0 kpk > 1. Let Gp be a super-

critical Galton-Watson tree with offspring distribution p. Then P(#Gp < ∞) = f(p),
where f(p) is the minimal solution of the following equation of s:

gp(s) :=
∑
k≥0

skpk = s, 0 ≤ s ≤ 1.

Let q = {qk : k ≥ 0} be another probability distribution such that

qk = f(p)k−1pk, for k ≥ 1, and q0 = 1−
∑
k≥1

qk.

Then
∑
k≥0 kqk < 1. Let Gq be a subcritical GW tree with offspring distribution q.

Note that (Yk(Gq), k ≥ 0) is a Galton-Watson process starting from a single ancestor
with offspring distribution q. We first present a simple lemma.

Lemma 2.1. Let F be any nonnegative measurable function on T. Then for t ∈ T,

P [Gp = t] = f(p)P [Gq = t] (2.2)

and for any a ∈ N,

E [F (raGp)] = E
[
f(p)1−Ya(G

q)F (raGq)
]
. (2.3)

Proof. (2.2) is just (4.8) in [2]. The proof of (2.3) is straightforward. Fix a ∈ N∗ and
t ∈ T such that |t| ≤ a. By (2.1), we have

P(raGq = t) =
∏

ν∈t:|ν|<a

f(p)kνt−1pkνt = f(p)Ya(t)−1
∏

ν∈t:|ν|<a

pkνt = f(p)Ya(t)−1P(raGp = t)

since Ya(t)− 1 =
∑
ν∈t:|ν|<a(kνt− 1). We have completed the proof.
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Remark 2.2. It is easy to see that (f(p)−Yn(G
q), n ≥ 0) is a martingale with respect to

Fn = σ(rnGq). In fact, by the branching property, we have for all 0 ≤ m ≤ n,

E

[
f(p)−Yn(G

q)

∣∣∣∣rmGq] =
[
E
[
f(p)−Yn−m(Gq)

]]Ym(Gq)
= f(p)−Ym(Gq). (2.4)

Since contour functions code finite trees in T, we immediately get the following
result.

Corollary 2.3. For any nonnegative measurable function F on C(R+,R+) and a ∈ N,

E [F (Ca(Gp, ·))] = E
[
f(p)1−Ya(G

q)F (Ca(Gq, ·))
]
. (2.5)

Lemma 2.1 could be regarded as a discrete counterpart of the martingale transfor-
mation for Lévy trees in Section 4 of [1]; see also (2.11) below in this paper. To see this,
we need to introduce continuous state branching processes and Lévy trees.

2.2 Continuous state branching processes

Let α ∈ R, β ≥ 0 and π be a σ-finite measure on (0,+∞) such that
∫
(0,+∞)

(1 ∧
r2)π(dr) < +∞. The branching mechanism ψ with characteristics (α, β, π) is defined by:

ψ(λ) = αλ+ βλ2 +

∫
(0,+∞)

(
e−λr − 1 + λr1{r<1}

)
π(dr). (2.6)

A càd-làg R+-valued Markov process Y ψ,x = (Y ψ,xt , t ≥ 0) started at x ≥ 0 is called
ψ-continuous state branching process (ψ-CSBP in short) if its transition kernels satisfy

E[e−λY
ψ,x
t ] = e−xut(λ), t ≥ 0, λ > 0,

where ut(λ) is the unique nonnegative solution of

∂ut(λ)

∂t
= −ψ(ut(λ)), u0(λ) = λ.

ψ and Y ψ,x are said to be sub-critical (resp. critical, super-critical) if ψ′(0+) ∈ (0,+∞)

(resp. ψ′(0+) = 0, ψ′(0+) ∈ [−∞, 0)). We say that ψ and Y ψ,x are (sub)critical if they are
critical or sub-critical.

In the sequel of this paper, we will assume that the following assumptions on ψ are in
force:

(H1) The Grey condition holds: ∫ +∞ dλ

ψ(λ)
< +∞. (2.7)

The Grey condition is equivalent to the a.s. finiteness of the extinction time of the
corresponding CSBP. This assumption is used to ensure that the corresponding
height process is continuous.

(H2) The branching mechanism ψ is conservative: for all ε > 0,∫
(0,ε]

dλ

|ψ(λ)|
= +∞.

The conservative assumption is equivalent to the finiteness of the corresponding
CSBP at all time.
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Let us remark that (H1) implies β > 0 or
∫
(0,1)

rπ(dr) = +∞. And if ψ is (sub)critical,

then we must have α −
∫
(1,+∞)

rπ(dr) ∈ [0,+∞). We end this subsection by collecting
some results from [1].

Let (Xt, t ≥ 0) denote the canonical process of D := D(R+,R). Let Pψx be the probability
measure on D(R+,R) such that Pψx (X0 = x) = 1 and (Xt, t ≥ 0) is a ψ-CSBP under
Pψx . It is well-known that under (H1) and (H2), Pψx -a.s. X∞ = limt→∞Xt exists with
X∞ ∈ {0,∞} and

Pψx (X∞ = 0) = e−γx,

where γ is the largest root of ψ(λ) = 0.

Lemma 2.4. (Lemma 2.4 in [1]) Assume that ψ is supercritical satisfying (H1) and (H2).
Then for any nonnegative random variable measurable w.r.t. σ(Xt, t ≥ 0), we have

Eψx [W |X∞ = 0] = Eψγx [W ],

where ψγ(·) = ψ(·+ γ).

2.3 Height processes

To code the genealogy of the ψ-CSBP, Le Gall and Le Jan [15] introduced the so-
called height process, which is a functional of the Lévy process with Laplace exponent
ψ; see also Duquesne and Le Gall [6].

Assume that ψ is (sub)critical satisfying (H1). Let Pψ be a probability measure on D
such that under Pψ, X = (Xt, t ≥ 0) is a Lévy process with nonnegative jumps and with
Laplace exponent ψ:

Eψ
[
e−λXt

]
= etψ(λ), t ≥ 0, λ ≥ 0.

The so-called continuous-time height process denoted by H is defined for every t ≥ 0

by:

Ht = lim inf
ε→0

1

ε

∫ t

0

1{Xs<Ist+ε}ds,

where the limit exists in Pψ-probability and Ist = infs≤r≤tXr; see [6]. Under Pψ, the
process H has a continuous modification. From now on we only consider this modifica-
tion. Under Pψ, for a ≥ 0, the local time of the height process at level a is the continuous
increasing process (Las , s ≥ 0) which can be characterized via the approximation

lim
ε→0

sup
a≥ε

Eψ
[
sup
s≤t

∣∣∣∣ε−1 ∫ s

0

1{a−ε<Hr≤a}dr − L
a
s

∣∣∣∣] = 0. (2.8)

Furthermore, for any nonnegative measurable function g on R+,∫ s

0

g(Hr)dr =

∫
R+

g(a)Lasda, s ≥ 0. (2.9)

For any x > 0, define
Tx = inf{t ≥ 0 : It ≤ −x},

where It = inf0≤r≤tXr.
Let C := C(R+,R+) be the space of nonnegative continuous functions with compact

support on R+ equipped with the usual topology of the uniform convergence on every
compact subsets. Denote by (et, t ≥ 0) the canonical process of C. Denote by Pψx the
law of (Ht∧Tx , t ≥ 0) under Pψ. Then Pψx is a probability distribution on C. Set Za = LaTx
under Pψx . Then (Za, a ≥ 0) has the same finite dimensional marginals as a CSBP with
branching mechanism ψ and initial value x; see Theorem 1.4.1 of [6]. In the following
we will work with the càd-làg modification of Z without changing notation.
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2.4 Super-critical Lévy trees

Height processes code the genealogy of (sub)critical CSBPs. However, for super-
critical CSBPs, it is not so convenient to introduce the height process since the super-
critical CSBPs may have infinite mass. Abraham and Delmas in [1] studied the distribu-
tions of trees cut at a fixed level, where a super-critical Lévy trees was constructed via
a Girsanov transformation. We recall their construction here.

For any f ∈ C(R+,R+) and a > 0, define

Γf,a(x) =

∫ x

0

1{f(t)≤a}dt, Πf,a(x) = inf{r ≥ 0 : Γf,a(r) > x}, x ≥ 0.

Note that since f has compact support, Πf,a(x) is finite for every x ≥ 0. Then we define

πa(f)(x) = f(Πf,a(x)), f ∈ C(R+,R+), x ≥ 0.

One can check that πa(f) ∈ C(R+,R+) and πa ◦ πb = πa for 0 ≤ a ≤ b. Let ψ be a super-
critical branching mechanism satisfying (H2). Denote by q∗ the unique (positive) root of
ψ′(q) = 0. Then the branching mechanism ψq(·) = ψ(·+q)−ψ(q) is critical for q = q∗ and
sub-critical for q > q∗. We also have γ > q∗. Because super-critical branching processes
may have infinite mass, in [1] it was cut at a given level to construct the corresponding
genealogical continuum random tree. Define

Mψq,−q
a = exp

{
−qZ0 + qZa + ψ(q)

∫ a

0

Zsds

}
, a ≥ 0.

Define a filtration Ha = σ(πa(e)) ∨ N , where N is the class of P
ψq
x negligible sets. By

(2.8), we have Mψq,−q is H-adapted.

Theorem 2.5. (Theorem 2.2 in [1]) For each q ≥ q∗, Mψq,−q is an H-martingale under
P
ψq
x .

Proof. See Theorem 2.2 and arguments in Section 4 in [1].
Define the distribution Pψ,ax of the ψ-CRT cut at level a with initial mass x, as the

distribution of πa(e) under M
ψq,−q
a dP

ψq
x : for any non-negative measurable function F on

C(R+,R+),

Eψ,ax [F (e)] = Eψqx

[
Mψq,−q
a F (πa(e))

]
, (2.10)

which do not depend on the choice of q ≥ q∗; see Lemma 4.1 of [1]. Taking q = γ in
(2.10), we see

Eψ,ax [F (e)] = Eψγx

[
e−γx+γZaF (πa(e))

]
(2.11)

and (e−γx+γZa , a ≥ 0) under P
ψγ
x is an H-martingale with mean 1.

Remark 2.6. Pψ,ax gives the law of super-critical Lévy trees truncated at height a. Then
the law of the whole tree could be defined as a projective limit. To be more precise, let
W be the set of C(R+,R+)-valued functions endowed with the σ-field generated by the
coordinate maps. Let (wa, a ≥ 0) be the canonical process on W. Proposition 4.2 in [1]
proved that there exists a probability measure P̄ψx on W such that for every a ≥ 0, the
distribution of wa under P̄ψx is Pψ,ax and for 0 ≤ a ≤ b

πa(wb) = πa P̄ψx − a.s.

Remark 2.7. The above definitions of Eψ,ax and P̄ψx are also valid for (sub)critical
branching mechanisms.
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3 From Galton-Watson forests to Lévy forests

Comparing (2.5) with (2.11), one can see that the l.h.s. are similar. The super-critical
trees (discrete or continuum) truncated at height a are connected to sub-critical trees,
via a martingale transformation. Motivated by Duquesne and Le Gall’s work [6], which
studied the scaling limit of (sub)critical trees, one may hope that the laws of suitably
rescaled super-critical Galton-Watson trees truncated at height a could converge to the
law defined in (2.11). Our main result, Theorem 3.3, will show it is true.

For each integer n ≥ 1 and real number x > 0,

• Let [x] denote the integer part of x and let dxe denote the minimal integer which
is larger than x.

• Let p(n) = {p(n)k : k = 0, 1, 2, . . .} be a probability measure on N.

• Let Gp
(n)

1 ,Gp
(n)

2 , . . . ,Gp
(n)

[nx] be independent Galton-Watson trees with the same off-

spring distribution p(n).

• Define Y p
(n),x

k =
∑[nx]
i=1 Yk(Gp

(n)

i ). Then Y p
(n),x = (Y p

(n),x
k , k = 0, 1, . . .) is a Galton-

Watson process with offspring distribution p(n) starting from [nx].

• For a ∈ N, define the contour function of trees cut at level a, Cp
(n),x
a = (Cp

(n),x
a (t),

t ≥ 0), by concatenating the contour functions (C(raGp
(n)

1 , t), t ∈ [0, 2#raGp
(n)

1 ]), . . . ,

(C(raGp
(n)

[nx] , t), t ∈ [0, 2#raGp
(n)

[nx] ]) and setting Cp
(n),x
a (t) = 0 for t ≥ 2

∑[nx]
i=1 #raGp

(n)

i .

• For a ∈ R+, define Cp
(n),x
a = πa(Cp

(n),x
dae ).

• If
∑
k≥0 kp

(n)
k ≤ 1, then we define the contour function Cp

(n),x = (Cp
(n),x(t), t ≥ 0)

by concatenating the contour functions (C(Gp
(n)

1 , t), t ∈ [0, 2#Gp
(n)

1 ]), . . . , (C(Gp
(n)

[nx] , t),

t ∈ [0, 2#Gp
(n)

[nx] ]) and setting Cp
(n),x(t) = 0 for t ≥ 2

∑[nx]
i=1 #Gp

(n)

i .

Let (γn, n = 1, 2, . . .) be a nondecreasing sequence of positive numbers converging to
∞. Define

G(n)(λ) = nγn[gp
(n)

(e−λ/n)− e−λ/n],

where gp
(n)

is the generating function of p(n), and define a probability measure on [0,∞)

by

µ(n)

(
k − 1

n

)
= p

(n)
k , k ≥ 0.

We then present the following statements. By
(d)→ we mean convergence in distribution.

(A1) G(n)(λ)→ ψ(λ) as n→∞ uniformly on any bounded interval.

(A2) (
1

n
Y p

(n),x
[γnt]

, t ≥ 0

)
(d)−→ (Y ψ,xt , t ≥ 0), as n→∞, (3.1)

in D(R+,R+).

(A3) There exists a probability measure µ on (−∞,+∞) such that
(
µ(n)

)∗[nγn] → µ as
n→∞, where

∫
e−λxµ(dx) = eψ(λ).

The following lemma is a variant of Theorem 3.4 in [9].

Lemma 3.1. Let ψ be a branching mechanism satisfying (H1) and (H2). Then (A1),
(A2) and (A3) are equivalent.
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Remark 3.2. (A3) is just the condition (i) in Theorem 3.4 of [9]. Under our assumption
on ψ, we do not need condition (b) there. (A3) is also equivalent to the convergence of
random walks to ψ-Lévy processes; see Theorem 2.1.1 of [6] for (sub)critical case.

Proof. We shall show that (A2)⇔(A3) and (A3)⇔(A1).
i): If (A2) holds, then ψ is conservative implies that P(Yt <∞) = 1 for all t ≥ 0. Then

Theorem 3.3 in [9] gives (A2)⇒(A3). Meanwhile, Theorem 3.1 in [9] implies (A3)⇒(A2).

ii): We first show (A3)⇒(A1). Denote by L(n)(λ) the Laplace transform of
(
µ(n)

)∗[nγn]
.

Then Theorem 2.1 in [9], together with (A3), gives that for every real number d > 0

logL(n)(λ) = [nγn] log

(
eλ/n

nγn
G(n)(λ) + 1

)
→ ψ(λ), as n→∞, (3.2)

uniformly in λ ∈ [0, d], which implies that for any ε > 0, all n > n(d, ε) and λ ∈ [0, d],

nγn

(
e
ψ(λ)−ε
[nγn] − 1

)
< eλ/nG(n)(λ) < nγn

(
e
ψ(λ)+ε
[nγn] − 1

)
.

Then by |ex − 1− x| < e|x||x|2/2,

−2(ψ(λ)− ε)2e
|ψ(λ)−ε|

[nγn]

nγn
− 2ε < eλ/nG(n)(λ)− ψ(λ) <

(ψ(λ) + ε)2e
|ψ(λ)+ε|
nγn

nγn
+ ε.

Note that ψ is locally bounded. Thus as n → ∞, G(n)(λ) → ψ(λ), uniformly on any
bounded interval, which is just (A1). Similarly, one can deduce that if (A1) holds, then
L(n)(λ)→ eψ(λ) as n→∞, which implies (A3).

Now, we are ready to present our main theorem. Define Ep(n),x = inf{k ≥ 0 :

Y p
(n),x

k = 0} and Eψ,x = inf{t ≥ 0 : Y ψ,xt = 0} with the convention that inf ∅ = +∞.

Denote by gp
(n)

k the k-th iterate of gp
(n)

.

Theorem 3.3. Let ψ be a branching mechanism satisfying (H1) and (H2). Assume that
(A1) or (A2) holds. Suppose in addition that for every δ > 0,

lim inf
n→∞

gp
(n)

[δγn]
(0)n > 0. (3.3)

Then for x > 0,

1

γn
Ep

(n),x (d)→ Eψ,x on [0,+∞] (3.4)

and for any bounded continuous function F on C(R+,R+) and every a ≥ 0,

lim
n→∞

E
[
F
(
γ−1n Cp

(n),x
γna (2nγn·)

)]
= Eψ,ax [F (e)] . (3.5)

Before proving the theorem, we would like to give some remarks.

Remark 3.4. (3.3) is essential to (3.5); see the comments following Theorem 2.3.1 in
[6]. In fact under our assumptions (H1), (H2) and (A1), (3.3) is equivalent to (3.4). To
see (3.4) implies (3.3), note that

gp
(n)

[δγn]
(0)[nx] = P

[
Y p

(n),x
[δγn]

= 0
]

= P[Ep
(n),x/γn < δ]

which, together with (3.4), gives

lim inf
n→∞

gp
(n)

[δγn]
(0)[nx] = lim inf

n→∞
P[Ep

(n),x/γn < δ] ≥ P[Eψ,x < δ] > 0,

where the last inequality follows from our assumption (H1); see Chapter 10 in [12] for
details.
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Remark 3.5. Some related work on the convergence of discrete Galton-Watson trees
has been done in [6] and [8]. In [6], only the (sub)critical case was considered; see
Theorem 3.6 below. In Theorem 4.15 of [8], a similar work was done using a quite dif-
ferent formalism. The assumptions there are same as our assumptions in the Theorem
3.3. But the convergence holds for locally compact rooted real trees in the sense of the
pointed Gromov-Hausdorff distance, which is a weaker convergence. Thus Theorem
3.3 implies that the super-critical Lévy trees constructed in [1] coincides with the one
studied in [8]; see also [3] and [7].

We then present a variant of Theorem 2.3.1 and Corollary 2.5.1 in [6] which is es-
sential to our proof of Theorem 3.3.

Theorem 3.6. (Theorem 2.3.1 and Corollary 2.5.1 of [6]) Let ψ be a (sub)critical
branching mechanism satisfying (H1). Assume that (A1) or (A2) holds. Suppose in
addition that for every δ > 0,

lim inf
n→∞

gp
(n)

[δγn]
(0)n > 0. (3.6)

Then

1

γn
Ep

(n),x (d)→ Eψ,x on [0,+∞) (3.7)

and for any bounded continuous function F on C(R+,R+)×D(R+,R+),

lim
n→∞

E

[
F

(
πa

(
γ−1n Cp

(n),x(2nγn·)
)
,

(
1

n
Y p

(n),x
[γna]

)
a≥0

)]
= Eψx [F (πa(e), (Za)a≥0)] . (3.8)

Proof. The comments following Theorem 2.3.1 in [6] give (3.7). And by Corollary 2.5.1
in [6], we have

lim
n→∞

E

[
F

((
γ−1n Cp

(n),x(2nγn·)
)
,

(
1

n
Y p

(n),x
[γna]

)
a≥0

)]
= Eψx [F (e, (Za)a≥0)] . (3.9)

On the other hand, let Ca be the set of discontinuities of πa. (2.9) yields

Γe,a(x) =

∫ x

0

1{et≤a}dt =

∫
R+

1{s≤a}L
s
xds =

∫ x

0

1{et<a}dt, Pψx − a.s. (3.10)

Then by arguments on page 746 in [14], Pψx (Ca) = 0. Then (3.8) follows readily from
Theorem 2.7 in [5].

Recall that γ is the largest root of ψ(λ) = 0.

Lemma 3.7. Let ψ be a branching mechanism satisfying (H1) and (H2). Assume that
(A1) or (A2) holds. Suppose in addition that for every δ > 0,

lim inf
n→∞

gp
(n)

[δγn]
(0)n > 0. (3.11)

Then as n→∞,

f(p(n))[nx] → e−γx, x > 0. (3.12)

Proof. Recall that f(p(n)) denotes the minimal solution of gp
(n)

(s) = s. For each n ≥ 1,
define

q
(n)
k = f(p(n))k−1p

(n)
k , k ≥ 1 and q

(n)
0 = 1−

∑
k≥1

q
(n)
k .
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Then q(n) = {q(n)k : k ≥ 0} is a probability distribution with generating function given by

gq
(n)

(s) = gp
(n)
(
sf(p(n))

)
/f(p(n)), 0 ≤ s ≤ 1. (3.13)

Thus gq
(n)

(0) = gp
(n)

(0)/f(p(n)) and by induction we further have for all k ≥ 1,

gq
(n)

k+1(0) = gq
(n)
(
gq

(n)

k (0)
)

= gp
(n)
(
gq

(n)

k (0)f(p(n))
)
/f(p(n)) = gp

(n)

k+1(0)/f(p(n)). (3.14)

With (3.11), we see that for any δ > 0,

1 ≥ lim inf
n→∞

gq
(n)

[δγn]
(0)n = lim inf

n→∞
gp

(n)

[δγn]
(0)n/f(p(n))n ≥ lim inf

n→∞
gp

(n)

[δγn]
(0)n > 0. (3.15)

Let γ0 ∈ [0,∞) be such that e−γ0 = lim infn→∞ f(p(n))n > 0. Since f(p(n)) ≤ 1, we may
write f(p(n)) = e−an/n for some an ≥ 0. We further have lim supn→∞ an = γ0. We shall
show that γ0 = γ and {an : n ≥ 1} is a convergent sequence. To this end, let {ank : k ≥ 1}
be a convergent subsequence of {an : n ≥ 1} with limk→∞ ank =: γ̃ ≤ γ0. Then by (A1),

0 = nkγnk [gp
(nk)

(e−ank/nk)− e−ank/nk ]→ ψ(γ̃), as k →∞.

Thus ψ(γ̃) = 0. On the other hand, note that ψ is a convex function with ψ(0) = 0 and γ is
the largest root of ψ(λ) = 0. Then we have ψ(λ1) < 0 and ψ(λ2) > 0 for 0 < λ1 < γ < λ2.
If γ̃ 6= γ, then γ̃ = 0. In this case, we may find a sequence {bnk : k ≥ 1} with bnk > ank
for all k ≥ 1 such that bnk → γ and for k sufficiently large

gp
(nk)

(e−bnk/nk)− e−bnk/nk = 0.

This contradicts the fact that f(p(n)) = e−an/n is the minimal solution of gp
(n)

(s) = s.

Thus γ̃ = γ which implies that limn→∞ an = γ and limn→∞ f(p(n))[nx] = e−γx for any
x > 0.

We are in the position to prove Theorem 3.3.

Proof of Theorem 3.3: With Theorem 3.6 in hand, we only need to prove the result
when ψ is super-critical. The proof will be divided into three steps.

First step: One can deduce from (A1) and (3.12) that

nγn[gq
(n)
(
e−λ/n

)
− e−λ/n]

= nγn

[
gp

(n)
(
e−λ/nf(p(n))

)
− e−λ/nf(p(n))

]
/f(p(n))

→ ψ(λ+ γ), as n→∞, (3.16)

uniformly on any bounded interval. Then Lemma 3.1 and Theorem 3.6, together with
(3.15) and (3.16), imply that

1

γn
Eq

(n),x (d)→ Eψγ ,x on [0,+∞) (3.17)

and for any bounded continuous function F on C(R+,R+)×D(R+,R),

lim
n→∞

E

[
F

(
πa

(
(γ−1n Cq

(n),x(2nγn·)
)
,

(
1

n
Y q

(n),x
[γna]

)
a≥0

)]
= Eψγx [F (πa(e), (Za)a≥0)] .(3.18)

Second step: We shall prove (3.4). Note that

{Ep
(n),x <∞} = {Gp

(n)

i , i = 1, . . . , [nx] are finite trees }.
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Then by Corollary 2.3, for f ∈ C(R+,R+),

E
[
f
(
Ep

(n),x/γn

)
1{Ep(n),x<∞}

]
= f(p(n))[nx]E

[
f
(
Eq

(n),x/γn

)]
which, by (3.12), (3.17) and Lemma 2.4, converges to

e−γxE
[
f
(
Eψγ ,x

)]
= E

[
f
(
Eψ,x

)
1{Eψ,x<∞}

]
,

as n→∞. We also have that

P[Ep
(n),x =∞] = 1− f(p(n))[nx] → 1− e−γx = P[Eψ,x =∞], as n→∞,

which gives (3.4).
Third step: We shall prove (3.5). By Corollary 2.3, for any continuous bounded

nonnegative functionl F on C(R+,R+) and a ≥ 0,

E
[
F (Cp

(n),x
dae (·))

]
= E

[
f(p(n))

[nx]−Y q
(n),x
dae F (Cq

(n),x
dae (·))

]
. (3.19)

Note that
Cq

(n),x
a = πaC

q(n),x
dae and πa(γ−1n Cq

(n),x) = γ−1n Cq
(n),x
γna .

Then by (3.19) we have for a ∈ R+

E
[
F (Cp

(n),x
a (·))

]
= E

[
f(p(n))

[nx]−Y q
(n),x
dae F (Cq

(n),x
a (·))

]
(3.20)

and

E
[
F
(
γ−1n Cp

(n),x
γna (2nγn·)

)]
= E

[
f(p(n))

[nx]−Y q
(n),x
dγnae F

(
πa

(
γ−1n Cq

(n),x(2nγn·)
))]

.

We shall show that {f(p(n))
[nx]−Y q

(n),x
dγnae , n ≥ 1} is uniformly integrable. Write Y na =

Y q
(n),x
dγnae /n for simplicity. First, note that E

[
f(p(n))[nx]−nY

n
a

]
= 1. Then with (3.12) and

(3.18) in hand, we have

lim
l→∞

lim
n→∞

E
[
f(p(n))[nx]−n(l∧Y

n
a )
]

= lim
l→∞

Eψγx

[
e−γx+γ(l∧Za)

]
= Eψγx

[
e−γx+γZa

]
= 1,

by bounded convergence theorem for the limit in n and by monotone convergence for
the limit in l. Note that both E

ψγ
x

[
e−γx+γ(l∧Za)

]
and E

[
f(p(n))[nx]−n(l∧Y

n
a )
]

are increas-
ing in l. Thus for every ε > 0, there exist l0 and n0 such that for all l > l0 and n > n0,

1− ε/2 < E
[
f(p(n))[nx]−n(l∧Y

n
a )
]
≤ 1.

Meanwhile, since

lim
l→∞

E
[
f(p(n))[nx]−n(l∧Y

n
a )
]

= E
[
f(p(n))[nx]−nY

n
a

]
= 1,

there exists l1 > 0 such that for all n ≥ 1,

1− ε/2 < E
[
f(p(n))[nx]−n(l1∧Y

n
a )
]
≤ E

[
f(p(n))[nx]−nY

n
a

]
= 1. (3.21)

Set
An = E

[
F
(
γ−1n Cp

(n),x
γna (2nγn·)

)]
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and
An,l = E

[
f(p(n))[nx]−n(l∧Y

n
a )F

(
γ−1n Cq

(n),x
γna (2nγn·)

)]
.

By (3.21), for any ε > 0, there exists l1 such that for any l ≥ l1 and n ≥ 1,

0 ≤ An −An,l ≤ ||F ||∞ε/2.

Meanwhile, (3.18) implies that for any l,

lim
n→∞

An,l = Eψγx

[
e−γx+γ(l∧Za)F (πae)

]
.

Thus for any l > l1,

Eψγx

[
e−γx+γ(l∧Za)F (πae)

]
≤ lim inf

n→∞
An ≤ lim sup

n→∞
An

≤ Eψγx

[
e−γx+γ(l∧Za)F (πae)

]
+ ||F ||∞ε/2,

which implies (3.5) since

lim
l→∞

Eψγx

[
e−γx+γ(l∧Za)F (πae)

]
= Eψγx

[
e−γx+γZaF (πae)

]
by monotone convergence. We have completed the proof.

Remark 3.8. Write Cnt = γ−1n Cp
(n),x(2nγnt) for simplicity and recall that (wa, a ≥ 0)

denotes the canonical process onW. Suppose that the assumptions of Theorem 3.3 are
satisfied. Then one can construct a sequence of probability measures P̄p

n

x on W such
that for every a ≥ 0, the distribution of wa under P̄p

n

x is the same as πa(Cn) and for
0 ≤ a ≤ b,

πa(wb) = πa P̄p
(n)

x − a.s.

We then have

P̄p
n

x → P̄ψx as n→∞. (3.22)

Remark 3.9. In [1], an excursion measure (‘distribution’ of a single tree) was also
defined. However, we could not find an easy proof of convergence of trees under such
excursion measure.
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