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Abstract

In this note, we study the n×n random Euclidean matrix whose entry (i, j) is equal to
f(‖Xi−Xj‖) for some function f and the Xi’s are i.i.d. isotropic vectors inRp. In the
regime where n and p both grow to infinity and are proportional, we give some suffi-
cient conditions for the empirical distribution of the eigenvalues to converge weakly.
We illustrate our result on log-concave random vectors.
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1 Introduction

Let Y be an isotropic random vector in Rp, i.e. EY = 0, E[Y Y T ] = I/p, where I is
the identity matrix. Let (X1, · · · , Xn) be independent copies of Y . We define the n × n
matrix A by, for all 1 6 i, j 6 n,

Aij = f(‖Xi −Xj‖2),

where f : [0,∞) → R is a measurable function and ‖ · ‖ denotes the Euclidean norm.
The matrix A is a random Euclidean matrix. It has already attracted some attention see
e.g. Mézard, Parisi and Zhee [16], Vershik [18] or Bordenave [7] and references therein.

If B is a symmetric matrix of size n, then its eigenvalues, say λ1(B), · · · , λn(B) are
real. The empirical spectral distribution (ESD) of B is classically defined as

µB =
1

n

n∑
i=1

δλi(B),

where δx is the Dirac delta function at x. In this note, we are interested in the asymp-
totic convergence of µA as p and n converge to +∞. This regime has notably been
previously considered in El Karoui [10] and Do and Vu [9]. More precisely, we fix a
sequence p(n) such that

lim
n→∞

p(n)

n
= y ∈ (0,∞). (1.1)
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Euclidean random matrices

Throughout this note, we consider, on a common probability space, an array of random
variables (Xk(n))16k6n such that (X1(n), · · · , Xn(n)) are independent copies of Y (n), an
isotropic vector in Rp(n). For each n, we define the Euclidean matrix A(n) associated.
For ease of notation, we will often remove the explicit dependence in n: we write p, Y ,
Xk or A in place of p(n), Y (n), Xk(n) or A(n).

The Marcenko-Pastur probability distribution with parameter 1/y is given by

νMP (dx) = (1− y)+δ0(dx) +
y

2πx

√
(y+ − x)(x− y−)1[y−,y+](x)dx,

where x+ = (x ∨ 0), y± = (1 ± 1√
y )

2 and dx denotes the Lebesgue measure. Since the
celebrated paper of Marcenko and Pastur [15], this distribution is known to be closely
related to empirical covariance matrices in high-dimension.

We say that Y has a log-concave distribution, if Y has a density on Rp which is
log-concave. Log-concave random vectors have an increasing importance in convex ge-
ometry, probability and statistics (see e.g. Barthe [5]). For example, uniform measures
on convex sets are log-concave. We will prove the following result.

Theorem 1.1. If Y has a log-concave distribution and f is three times differentiable at
2, then, almost surely, as n → ∞, µA converges weakly to µ, the law of f(0) − f(2) +
2f ′(2)− 2f ′(2)S, where S has distribution νMP .

With the weaker assumption that f is differentiable at 2, Theorem 1.1 is conjectured
in Do and Vu [9]. (For more background, we postpone to the end of the introduction).
Their conjecture has motivated this note. It would follow from the thin-shell hypothesis
which asserts that there exists c > 0, such that for any isotropic log-concave vector Y in
Rp, E(‖Y ‖ − 1)2 6 c/p (see Anttila, Ball and Perissinaki [3] and Bobkov and Koldobsky
[6]). Klartag [14] has proved the thin-shell hypothesis for isotropic unconditional log-
concave vectors.

The proof of Theorem 1.1 will rely on two recent results on log-concave vectors. Let
X = X(n) be the n × n matrix with columns given by (X1(n), · · · , Xn(n)). Pajor and
Pastur have proved the following :

Theorem 1.2 ([17]). If Y has a log-concave distribution, then, in probability, as n→∞,
µXTX converges weakly to νMP .

We will also rely on a theorem due to Guédon and Milman.

Theorem 1.3 ([12]). There exist positive constants c0, c1 such that if Y is an isotropic
log-concave vector in Rp, for any t > 0,

P(|‖Y ‖ − 1| > t) 6 c1 exp
(
−c0
√
p
(
t ∧ t3

))
.

With Theorems 1.2 and 1.3 in hand, the heuristic behind Theorem 1.1 is simple.
Theorem 1.3 implies that ‖Xi‖2 ' 1 with high probability. Hence, since ‖Xi − Xj‖2 =

‖Xi‖2 + ‖Xj‖2 − 2XT
i Xj , a Taylor expansion of f around 2 gives

Aij '
{
f(2)− 2f ′(2)XT

i Xj if i 6= j

f(0) if i = j.

In other words, the matrix A is close to the matrix

M = (f(0)− f(2) + 2f ′(2))I + f(2)J − 2f ′(2)XTX, (1.2)

where I is the identity matrix and J is the matrix with all entries equal to 1. From
Theorem 1.2, µXTX converges weakly to νMP . Moreover, since J has rank one, it is
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negligible for the weak convergence of ESD. It follows that µM is close to µ. The actual
proof of Theorem 1.1 will be elementary and it will follow this heuristic. We shall use
some standard perturbation inequalities for the eigenvalues. The idea to perform a
Taylor expansion was already central in [10, 9].

Beyond Theorems 1.2-1.3, the proof of Theorem 1.1 is not related to log-concave
vectors. In fact, it is nearly always possible to linearize f as soon as the norms of the
vectors concentrate around their mean. More precisely, let us say that two sequences
of probability measures (µn), (νn), are asymptotically weakly equal, if for any bounded
continuous function f ,

∫
fdµn −

∫
fdνn converges to 0.

Theorem 1.4. Assume that there exists an integer ` > 1 such that E|‖Y ‖ − 1|2` =

O(p−1), and that for any ε > 0,

lim
n→∞

P

(
max

16i,j6n

{∣∣‖Xi −Xj‖2 − 2
∣∣ ∨ ∣∣‖Xi‖2 − 1

∣∣} 6 ε

)
= 1. (1.3)

Then, if f is ` times differentiable at 2, almost surely, µA is asymptotically weakly equal
to the law of f(0)− f(2) + 2f ′(2)− 2f ′(2)S, where S has distribution EµXTX .

The case ` = 1 of Theorem 1.4 is contained in Do and Vu [9, Theorem 5]. Besides
Theorem 1.2, some general conditions on the matrix X guarantee the convergence of
µXTX , see Yin and Krishnaiah [19], Götze and Tikhomirov [11] or Adamczak [1].

In settings where E|‖Y ‖ − 1|2 = O(p−1), statements analogous to Theorem 1.4 were
already known, notably in the case where the entries of Y are i.i.d., see El Karoui [10,
Theorem 2.2] or Do and Vu [9, Corollary 3]. When the vector Y satisfies a concentration
inequality for all Lipschitz functions, see El Karoui [10, Theorem 2.3]. (it applies notably
to log-concave vectors which density in Rp of the form e−V (x) with Hess(V ) > cI and
c > 0).

2 Proofs

2.1 Perturbation inequalities

We first recall some basic perturbation inequalities of eigenvalues and introduce a
good notion of distances for ESD. For µ, ν two real probability measures, the Kolmogorov-
Smirnov distance can be defined as

dKS(µ, ν) = sup

{∫
fdµ−

∫
fdν : ‖f‖BV 6 1

}
,

where, for f : R → R, the bounded variation norm is ‖f‖BV = sup
∑
k∈Z |f(xk+1) −

f(xk)|, and the supremum is over all real increasing sequence (xk)k∈Z. The following
inequality is a classical consequence of the interlacing of eigenvalues (see e.g. Bai and
Silverstein [4, Theorem A.43]).

Lemma 2.1 (Rank inequality). If B, C are n× n Hermitian matrices, then,

dKS(µB , µC) 6
rank(B − C)

n
.

For p > 1, let µ, ν be two real probability measures such that
∫
|x|pdµ and

∫
|x|pdν

are finite. We define the Lp-Wasserstein distance as

Wp(µ, ν) =

(
inf
π

∫
R×R

|x− y|pdπ
) 1

p
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where the infimum is over all coupling π of µ and ν (i.e. π is probability measure on
R × R whose first marginal is equal to µ and second marginal is equal to ν). Hölder
inequality implies that for 1 6 p 6 q, Wp 6 Wq. Moreover, the Kantorovich-Rubinstein
duality gives a variational expression for W1:

W1(µ, ν) = sup

{∫
fdµ−

∫
fdν : ‖f‖L 6 1

}
,

where ‖f‖L = supx 6=y |f(x)−f(y)|/|x−y| is the Lipschitz constant of f . The next classical
inequality is particularly useful (see e.g. Anderson, Guionnet and Zeitouni [2, Lemma
2.1.19]).

Lemma 2.2 (Hoffman-Wielandt inequality). If B, C are n× n Hermitian matrices, then

W2(µB , µC) 6

√
1

n
tr(B − C)2.

We finally introduce the distance

d(µ, ν) = sup

{∫
fdµ−

∫
fdν : ‖f‖L 6 1 and ‖f‖BV 6 1

}
.

By Lemmas 2.1 and 2.2, we obtain that for any n× n Hermitian matrices B, C,

d(µB , µC) 6

√
1

n
tr(B − C)2 ∧ rank(B − C)

n
. (2.1)

Notice that d(µn, µ)→ 0 implies that µn converges weakly to µ.

2.2 Concentration inequality

For x = (x1, · · · , xn) ∈ Mp,n(R), define a(x) as the Euclidean matrix obtained from
the columns of x : a(x)ij = f(‖xi − xj‖2). In particular, we have A = a(X). Let
i ∈ {1, · · · , n}, x′ = (x′1, · · · , x′n) ∈ Mp,n(R) and assume that x′j = xj for all j 6= i. Then
a(x) and a(x′) have all entries equal but the entries on the i-th row or column. We get

rank(a(x)− a(x′)) 6 2.

It thus follows from Lemma 2.1 that for any function f with ‖f‖BV <∞,∣∣∣∣∫ fdµa(x) −
∫
fdµa(x′)

∣∣∣∣ 6 2‖f‖BV
n

.

Using Azuma-Hoeffding’s inequality, it is then straightforward to check that for any
t > 0,

P

(∫
fdµA − E

∫
fdµA > t

)
6 exp

(
− nt2

8‖f‖2BV

)
. (2.2)

(For a proof, see [8, proof of Lemma C.2] or Guntuboyina and Leeb [13]). Using the
Borel-Cantelli Lemma, this shows that for any such function f , a.s.∫

fdµA −
∫
fdEµA → 0. (2.3)

Now, recall that M was defined by (1.2). Note that the matrix J has rank one. We
get from Theorem 1.2 and Lemma 2.1 that EµM converges weakly to µ.

Proposition 2.3. Under the assumptions of Theorem 1.1, we have

lim
n→∞

d(EµA,EµM ) = 0.
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Theorem 1.1 is a corollary of Proposition 2.3. Indeed, it implies that EµA is a tight
sequence of probability measures. Hence, a.s. µA is also tight. Then, since the set of
continuous functions on an interval endowed with the uniform norm is separable, from
(2.3) we get that a.s. µA and EµA are asymptotically weakly equal. Now, Theorem 1.1
follows from a new application of Proposition 2.3.

2.3 Proof of Proposition 2.3

The idea is to perform a multiple Taylor expansion which takes the best out of (2.1).

Step 1 : concentration of norms

By assumption, there exists an open interval K = (2 − δ, 2 + δ) such that f is C1 in K

and, for any x ∈ K,

f(x) = f(2) + f ′(2)(x− 2) +
f ′′(2)

2
(x− 2)2 +

f ′′′(2)

6
(x− 2)3(1 + o(1)).

For any i 6= j, (Xi −Xj)/
√
2 is an isotropic log-concave vector. Define the sequence

ε(n) = n−κ ∧ (δ/2) with 0 < κ < 1/6. It follows from Theorem 1.3 and the union bound
that the event

E =

{
max
i,j

{∣∣‖Xi −Xj‖2 − 2
∣∣ ∨ ∣∣‖Xi‖2 − 1

∣∣} 6 ε(n)

}
has probability tending to 1 as n goes to infinity.

Step 2 : Taylor expansion around ‖Xi‖2 + ‖Xj‖2

We consider the matrix

Bij =

{
f(‖Xi‖2 + ‖Xj‖2)− 2f ′(‖Xi‖2 + ‖Xj‖2)XT

i Xj if i 6= j

f(0) if i = j.

On the event E , ‖Xi‖2 + ‖Xj‖2 ∈ K. Since f is C1 in K, we may perform a Taylor
expansion of f(‖Xi −Xj‖2) around ‖Xi‖2 + ‖Xj‖2. It follows that for i 6= j,

|Aij −Bij | = o
(
‖Xi −Xj‖2 − ‖Xi‖2 − ‖Xj‖2

)
6 δ(n)

∣∣XT
i Xj

∣∣,
where δ(n) is a sequence going to 0. From (2.1) and Jensen’s inequality, we get

d(EµA,EµB) 6 Ed(µA, µB) 6 P(Ec) +

 1

n

∑
i 6=j

E|Aij −Bij |21E

1/2

6 P(Ec) + δ(n)
(
nE
∣∣XT

1 X2

∣∣2)1/2.
Now, from the assumption that X1 and X2 are independent and isotropic, we find

E
∣∣XT

1 X2

∣∣2 = E

(
p∑
k=1

Xk1Xk2

)2

=

p∑
k=1

(
EX2

k1

)2
=

1

p
.

By assumption (1.1), we deduce that

lim
n→∞

d(EµA,EµB) = 0.

It thus remains to compare EµB and EµM .
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Step 3 : Taylor expansion around 2

We define the matrix

Cij =

{
f(‖Xi‖2 + ‖Xj‖2)− 2f ′(2)XT

i Xj if i 6= j

f(0) if i = j.

We now use the fact that f ′ is locally Lipschitz at 2. It follows that if E holds, for i 6= j,

|Bij − Cij | = O
(
XT
i Xj(‖Xi‖2 + ‖Xj‖2 − 2)

)
6 c ε(n)

∣∣XT
i Xj

∣∣.
The argument of step 2 implies that

lim
n→∞

d(EµB ,EµC) = 0.

It thus remains to compare EµC and EµM .

Step 4 : Taylor expansion around 2 again

We now consider the matrix

Dij =


f(2) + f ′(2)(‖Xi‖2 + ‖Xj‖2 − 2) + f ′′(2)

2 (‖Xi‖2 + ‖Xj‖2 − 2)2

+ f ′′′(2)
6 (‖Xi‖2 + ‖Xj‖2 − 2)3 − 2f ′(2)XT

i Xj if i 6= j

f(0) if i = j.

We are going to prove that
lim
n→∞

d(EµC ,EµD) = 0. (2.4)

We perform a Taylor expansion of order 3 of f(‖Xi‖2 + ‖Xj‖2) around 2. It follows
that if E holds, for i 6= j,

|Cij −Dij | = o
(
‖Xi‖2 + ‖Xj‖2 − 2

)3
6 δ(n)

∣∣‖Xi‖2 + ‖Xj‖2 − 2
∣∣3,

where δ(n) is a sequence going to 0. Using (2.1) and arguing as in step 2, in order to
prove (2.4), it thus suffices to show that

1

n

∑
i6=j

E|‖Xi‖2 + ‖Xj‖2 − 2|61E = O(1).

Since, for ` > 1, |x+ y|` 6 2`−1(|x|` + |y|`), it is sufficient to show that

nE
(
‖X1‖2 − 1

)6
1E = O(1).

To this end, for integer ` > 1, we write

E
∣∣‖X1‖2 − 1

∣∣`1E = E|‖X1‖ − 1|`|‖X1‖+ 1|`1E 6 3`E|‖X1‖ − 1|`.

Then, Theorem 1.3 implies that there exists c` such that

E|‖X1‖ − 1|` 6 c` p
−`/6.

It follows that

E
∣∣‖X1‖2 − 1

∣∣`1E = O
(
p−`/6

)
. (2.5)

This proves (2.4). It finally remains to compare EµD and EµM .
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Step 5 : End of proof

We set
zi = (‖Xi‖2 − 1).

We note that for i 6= j,
Dij =Mij +

∑
16k+`63

ck`z
k
i z
`
j ,

for some coefficients ck` depending on f ′(2), f ′′(2), f ′′′(2). Note that c10 = c01 = f ′(2).
Similarly,

Dii =Mii + 2f ′(2)zi =Mii + c10zi + c01zi.

Define the matrix E, for all 1 6 i, j 6 n,

Eij =Mij +
∑

16k+`63

ck`z
k
i z
`
j .

If E holds, then maxi |zi| 6 ε(n) and we find

|Eij −Dij | = 1(i = j)

∣∣∣∣∣∣
∑

26k+`63

ck`z
k
i z
`
i

∣∣∣∣∣∣ 6 c1(i = j)ε(n)2.

It follows from (2.1) that

d(EµD,EµE) 6 Ed(µD, µE) 6 P(Ec) +

 1

n

∑
i,j

E|Eij −Dij |21E

1/2

6 P(Ec) + cε(n)2.

We deduce that
lim
n→∞

d(EµD,EµE) = 0.

We notice finally that the matrix E −M is equal to∑
16k+`63

ck`ZkZ`
T ,

where Zk is the vector with coordinates (zki )16i6n. It implies in particular that rank(E−
M) 6 9, indeed the rank is subadditive and rank(ZkZ`

T ) 6 1. In particular, it follows
from (2.1) that

d(EµE ,EµM ) 6 Ed(µE , µM ) 6
9

n
.

This concludes the proof of Proposition 2.3 and of Theorem 1.1.

2.4 Proof of Theorem 1.4

The isotropy implies that∫
x2EµXTX(dx) =

1

n
Etr(XTX) = 1.

It follows that EµXTX and EµM are tight sequences of probability measures. Note also
that the concentration inequality (2.2) holds. It is thus sufficient to prove the analog of
Proposition 2.3. If ` > 2, the proof is essentially unchanged. In step 1, the assumption
(1.3) implies the existence of a sequence ε = ε(n) going to 0 such that P(E)→ 1. Then,
in step 4, it suffices to extend the Taylor expansion up to `.

For the case ` = 1 : in step 2, we perform directly the Taylor expansion around 2, for
i 6= j we write f(‖Xi −Xj‖2) = f(2) − 2f ′(2)XT

i Xj(1 + o(1)). We then move directly to
step 5. (As already pointed, this case is treated in [9]).
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