Electron. Commun. Probab. 17 (2012), no. 37, 1-9. ELECTRONIC

DOI: 10.1214/ECP.v17-2040 COMMUNICATIONS
ISSN: 1083-589X in PROBABILITY

On the distribution of critical points of a polynomial
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Abstract

This paper proves that if points Zi, Z», ... are chosen independently and identically
using some measure u from the unit circle in the complex plane, with p,(z) = (2 —
Z1)(z — Z2)...(z — Zy), then the empirical distribution of the critical points of p,
converges weakly to p.
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1 Introduction

Across many fields of mathematics, one of the fundamental questions about a func-
tion is the location of its zeros. Entire fields such as algebraic geometry and the emer-
gent study of stable functions have locations of zeros as their focus.

The relation between the zeros of a function and the zeros of its derivative (the crit-
ical points) is interesting and not always obvious. In the case where all zeros are real,
Rolle’s theorem tells us that the zeros of the derivative interlace the zeros of the func-
tion itself. In the case of complex polynomials the analogous result is the Gauss-Lucas
theorem which states that the zeros of the derivative of f must lie in the convex hull of
the zeros of f and gives a representation of the zeros of f’ as convex combinations of
the zeros of f. A corollary of this is that differentiating preserves stability. Differentia-
tion is also known never to increase the number of non-real zeros of a polynomial.

Two famous conjectures in this area are the conjectures of Sendov and Smale. The
former, made by Blagovest Sendov during the 1950’s, states that if the roots 21, 25, ..., 2,
of a polynomial all lie inside the closed unit disc, then for each root of the polynomial,
the closed unit disc centered at the root must contain at least one critical point. The
latter, made by Steve Smale, states that if f is a polynomial of degree n with at least
one root 0 and f’(0) # 0, then,
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where K =1 or "7*1 Sendov’s conjecture has been proven for the case when zq, 25, ..., 2,
all lie on the unit circle, whereas Smale’s conjecture has been proven for when f has

*University of Pennsylvania, USA. E-mail: ssneha@math.upenn.edu


http://dx.doi.org/10.1214/ECP.v17-2040
http://ecp.ejpecp.org/
http://arXiv.org/abs/1207.0125v1
mailto:ssneha@math.upenn.edu

On the distribution of critical points of a polynomial

all its roots, save 0, on the unit circle. The most general forms of these conjectures are
still unsolved. More information on these conjectures and proofs of some of the special
cases can be found in [12].

Recent work in random marix theory has put forward numerous connections be-
tween the zeros and critical points of Riemann zeta function and those of the charac-
teristic polynomial of a unitary matrix in the Circular Unitary Ensemble. While Keating
and Snaith in [8] conjectured values for all even moments of Riemann zeta function
on the critical line, Dueilez et al. ([6]) compared the horizontal distribution of critical
points of the Riemann zeta function to the radial distribution of critical points of the
characteristic polynomial of a random unitary matrix.

A probabilistic study on the roots of derivatives of polynomials was done by Pemantle
and Rivin in [11]. Let f be a polynomial with n roots that are chosen independently and
uniformly from a measure ;. on the complex plane. They conjectured that the empirical
distribution of the roots of f’ converges weakly to y as n — oco. They prove this in the
special case when p has finite 1-energy, namely when u satisfies

//ﬁdﬂ(z)du(w) < o0.

This condition cannot hold, however, when p is supported on any set of dimension 1 or
less. The aim of the present paper is to extend their result to the case of any measure
supported on the unit circle.

The author would like to mention that while this paper was being refereed, a proof of
the Pemantle-Rivin conjecture in the general case was found in [7], along very different
lines from the approach taken here.

2 Notations and Background

Say, 71, Z>, ... is a sequence of points chosen i.i.d. with respect to some distribution
w on the unit circle. Write, Z, = exp(2mify), so that {0} is a collection of IID random
variables whose common law is supported on [0, 1], which we denote by v.

Let

pn(z) = (2= 2Z1)(z — Z3)...(z — Zy),

and y\", y{" ...y, be the roots of p/, (z).

For k > 1, let ¢, = E(Z*), where Z ~ u. Denote by Z(f) the empirical distribu-
tion of the roots of a random polynomial f. That is, if f has roots X;, Xs, ..., X;,, then

Z(f) = % Z;;l 5Xj .
We shall write D for the open unit disc, and C for the unit circle.
In their paper, [11], the authors conjectured that, for any distribution x on the closed

unit disc, Z(p),) converges weakly to . That paper also proves the following proposi-
tion.
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Proposition 2.1. Let u be the uniform measure on C. Then Z(p]) converges to C in
probability, that is, P(Z(S) > €) — 0) for any € > 0 and any closed set S C D, disjoint
from C. O

In this note, we shall generalize this to prove that

Lemma 2.2. For any distribution i on C, Z(p),) converges to C in probability. In fact, if
1 is not uniform on C, the convergence is almost everywhere.

The above leads us to prove our main result, which is a special case of the aforemen-
tioned conjecture in [11]:

Theorem 2.3. For any distribution . on C, Z(p),) converges weakly to ;1 onC.

The proof, as shall be seen in forthcoming sections, can be divided in to two parts,
the latter following a pattern similar to the proof of Weyl’s equidistribution criterion
(see, for example [1]). The former requires the following theorem (proved both in [9]
and in [2]) regarding a companion matrix of the critical points.

Proposition 2.4. If z1,29,...,2, € C, and y1, Yo, ...,yn—1 are the critical points of the
polynomial p,(2) = (z — z1)(z — 22)...(z — z,), then, the matrix

n

D<IJ> Ly 2.1)
n

has y1,y2,...,yn—1 as its eigenvalues, where D = diag(z1, 29, ..., 2zn—1), I is the identity
matrix of ordern — 1 and J is the (n — 1) x (n — 1) matrix of all entries 1. O

3 Proofs of Lemma 2.2 and Theorem 2.3
We first begin by proving a small lemma.

Lemma 3.1. Let u be a distribution on the unit circle C with ¢, = E(Z*), where Z ~ p.
Then ¢, = 0 for all k > 1 if and only if p is uniform on C.

Proof. Clearly if 1 is uniform on C then ¢; = 0 for all £ > 1. Now say u is not uni-
form on the circle but we still have ¢, = 0 for all ¥ > 1. Then the law v is not uni-
form on [0,1]. Now, if Zy, Zs, ... are points on C, chosen i.i.d. using p, and if we write
Z; = exp(2mif;),j = 1,2, ..., then 6;,0,, ... are points in [0, 1] that are i.i.d. v.

By the Strong Law of Large Numbers, for all £ > 1,

Zr+ Zk + .. ZF as g
n )

and so by Weyl’s criterion, forany 0 < a < b < 1,

Zj:l ]1{916[@»11]} a5,
n

b—a.

But 14p,cfab)},J = 1,2,... are i.i.d. random variables taking values 0 or 1 with expecta-
tion v([a, b]). Therefore,

n
=1 140,¢lab
Z]*l {0;€[a,b]} E} V([a,b]).
n
Since v is not uniform on [0, 1], we have arrived at a contradiction. So, there must exist
at least one non-zero cy,. O
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We proceed to use this fact for the proof of Lemma 2.2.

Proof of Lemma 2.2. Assume p is not the uniform distribution on the circle (as the uni-
form case has been taken care of in [11]). Then, as mentioned above, there is at least
one non-zero c;. Thus the power series function f(z) = Y .2, ¢r+12" exists at every
point z € D, is analytic there (since |cx| < 1,Vk), and so has only finitely many zeros
inside any r-ball, where r < 1.

Define

n

Vn(z) = TZ;L Z)

1

n o Z— Zj

V., has n — 1 zeros, which are exactly the zeros of p/,(z), and n poles, which are exactly
the zeros of p,(z). Thus V,,(z) is analytic inside ID. We shall show that as n — oo, V,,
converges inside the disc to — f, uniformly over compact sets. To see this, note that for
z €D,

1< —1/7. 1 n_ oo ~

j=1k=0

ZE 47k . 2k

where, we write af*! for the kth power sum average - » By Strong Law of

Large Numbers, a* %% ¢, forall k > 1.

Let 0 < r < 1. Given any § > 0, 3K > 1 such that

e k

)
Zrk:lr—r<1'

k=K

Corresponding to the chosen K, there exists an NV > 1 such that,

o(1—r)

|a7]§*6k‘< D) )

VYn > N and Vk = 1,2, ..., K — 1. Therefore, Vn > N and all z € B,.(0),

K-1 00
Va(z) + f(2) < D laf —exlr® + > lal —cilr”
k=0 k=K+1
o(1 — )
g%-(1+r+r2+...+r“1)+2~1<5,

which proves uniform convergence of V,, to — f over compact sets.

Using Hurwitz’s theorem (see [3]), given any 0 < r < 1, there exists an M > 1 for
which V,, and f have the same number of zeros inside B, (0) for all n > M. That is, p/,
and f shall have the same number of zeros inside B,.(0) for all n > M. But, as discussed
above, f has only finitely many zeros inside B,(0). Thus Z(p,) converges to the unit
circle almost surely. O

Our main result, Theorem 2.3, will be a consequence of the following proposition.
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Proposition 3.2. Given any sequence of points z1, za,... with |z,| < M for all n, and
W — ¢, as n — oo, Yk > 1, the critical points yg ),y("), ,ygn)l of p(z) =

(z — 21)(z — 22)...(z — z,) also satisfy

W)+ ) 4 ()
n—1

— ¢ asn — oo,

vk > 1.

Proof. Note that, it is easy to see that this theorem holds true for £ = 1, because the
average of the critical points is exactly equal to the average of the roots (by comparing
the coefficients of 2"~ ! in p,,(z) with 2”2 of p/,(2)). To prove the result for general k, we
use Proposition 2.4 to see that for & > 2, (y{™)*, (y§")k, . (4™))* are the eigenvalues

of [D (I —1.J)+ 2= J*, and so,

n n n 1 n k
e i np(i-2) 2]

Note that the expansion of [D (I — 1.J) 4 2= J]* is the sum of all terms such as

o (B) o) o (52) o) (B2 ()

where the exponents Iy, [y, ..., 3; are non-zero integers, with l3;_o +13;_1 +13; = 1 for all
j = 1,2,.., k. Clearly the number of such terms is 3*, which does not depend on n, and
so, if we find that the trace of the matrix in the expression (3.1) converges as n — oo to
iy 1y... 15, then the trace of [D (I - %J) + %J] converges to > ay, i,,

Henceforth, we fix l1,ls,...I3x. Now, note that J™ = (n — 1)™~1Jm™~! for any m > 1,
and

(DPJ)(DJ) = (Zz) DP.J),

for any p,q > 0.

The above tells us that there exists p, q, sg, s1, S2, ..., Sk—1 > 0 such that, term (3.1) is
of the form

(—1)P 21 <”;1> <2n—n112> (Znnllzz> (an;zkl> ‘M, (3.2)

where the numbers p, q, sg, s1, ..., Syk—1 are determined solely by the /;’s (and so, are in-
dependent of n).

Also, M can only be one of the following terms: D* or 2/ or 2222 D™ for some
m,m1, mo > 0, which are fixed, < k, and dependent only on the /;’s. Furthermore, the
scalar coefficient in (3.2) is always O(1).

Observe that, if M = D, then the scalar coefficient in (3.2) is equal to 1 and % —
¢i. On the other hand, if M = % then
A S R Al
Tr(M) =222 n=l — o(n),
n
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and if M = 22 pme,

J
Tr(M)="Tr (Dm1+m2)
n
Zflm—an +Z;n1+m2 4o +Z£%ji|-m2

= - = o(n).

Thus,

Tr [D (I —L1J)+ 27"

n

—> Ck as n — 0.
n
O

We now have all the tools required to prove our main result, namely Theorem 2.3.

Proof of Theorem 2.3. Say we write,
g =1 exp(2migl™), j =1,2,...,n — 1.

The proof will consist of three major segments. Our first task is to prove that

n—1
j=1

In fact, unless p is uniform on the circle, we will show that

n—1
1 n a.s,
D (T
=1

Next, we shall use the above information to show that

eXp(2k’/Ti¢(1n)) + exp(2k7ri¢§n)) + .+ eXp(Zkﬂiqﬁfﬁ)l)
n—1

— Ck.
(Again, the convergence is almost sure, unless p is uniform on C.)

Finally, using arguments analogous to those in the proof of Weyl’s equidistribution
criterion, we shall arrive at our final result.

Assume, initially, that y is not the uniform law on C. For the first task as noted above,
observe that, by Lemma 2.2, given any € > 0,
1 Ny ws
w14 (rMep—eay ~
]:

Now, for any fixed positive integer k, (1 — e)"“]l{r<_n)e[1_€ gy < (r?"))k <1, and so

n—1 n—1
1 1
k }: (n)\k
(== Zﬂ{rﬁ”)e[ke,11} Soor st (3-3)
j=1 j=1

Clearly then, a simple squeeze theorem argument gives us

n—1

1 n a.s.

— S (MR e (3.4)
i=1
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Now, from Proposition 3.2, for any positive integer k,

07 + @) ot )

— Ck,
n—1
(n)\k ;4 (n) (n)\k ;4 (n) (n) \E ;4 (n)
2k 2k 2k
N (r1 )" exp(2kmigy ) + (ry )" exp(2kmigy ') + ... + (1, 21)" exp(2kic,, " ) L.
n—1
Note that (3.4) gives us that
e (n) (n) 1 (n)
n)\k . (n n)\ky a@-S;
— ;(1 = (§")") exp(2hrmi)™)| < — ;(1— (r;")F) <30,
and so,
exp(2k:7ri¢gn)) + exp(QkWiqSén)) +.. 4 exp(QkWiquLn_)l) et (3.5)
n—1
Now, for the final stage of our proof,
cr = E(Z%), where, Z ~ pu.
= ¢ = E(exp(2k7iO)) = E(cos(2kmO)) + iE(sin(2k7©)), where, © ~ v.
So, (3.5) gives,
cos(2kmd\™) + cos(2km ) + ... + cos(2kma™ ) 5 B (cos(2670)).
n
sin(2k7d(™) + sin(2krod) + ... + sin(2krd™), ) 5 B (sin(2kr0)).
n
Then, for any trigonometric polynomial ¢(z),
n—1 (n)
2= 900;7) 2% F(g(0)). (3.6)

n

Let f be a continuous real-valued function on [0, 1] and fix ¢ > 0. By Stone-
Weierstrass theorem ([13]), there exists a trigonometric polynomial ¢ such that |f —¢| <
€. So,

7'1—1 (n) r}—l (n) 7}—1 (n)
S0 gy < [SAIED Tzt
n—1 (n)
|21 o))+ Bla(e) - O]

The first and third terms on the right hand side are each < € while the second term goes
to 0 almost surely, by (3.6). Hence for any f continuous on [0, 1],

SIS FG) 0,

n

E(f(0)), (3.7)

and this holds for complex-valued continuous functions as well (which is easily seen
by comparing the real and imaginary parts). Thus, the joint empirical distribution of
aﬁg"), j = 1,2,...,n — 1, converges weakly to v, which means that the joint empirical

distribution of exp(27ri¢§-n)),j =1,2,...,n — 1, converges weakly to . This, along with
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Lemma 2.2, gives us the desired result for p not uniform on C.

Now suppose u is the uniform law on the unit circle. Then,

1 n—1 P
12 emepey — b
j=1
and as before, using (3.3) we get,
1 n—1
n P

n—1 Z(TJ( ))k — L

j=1

for any positive integer k.

Note that the above is a slightly weaker version of (3.4), since the convergence is
now in probability, and not almost sure.

For the rest of the proof, we can follow the same arguments as in the non-uniform
case, except that the almost sure convergence in each of the statements will be replaced
by convergence in probability. Thus we shall arrive at

n—1 (n)
SEEL R RG]

for any continuous function f : [0,1] — C. Then, as before, the joint empirical dis-
tribution of (;5;"), 7 =1,2,...,n — 1, converges weakly to v (which is the uniform law on
[0,1]), and so, the joint empirical distribution of exp(27m’<z>§.")),j =1,2,...,n—1, converges
weakly to uniform on C. Lemma 2.2 then gives us the desired result. O
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