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Abstract
We define and build H-fractional α-stable fields indexed by a metric space (E, d). We mainly
apply these results to spheres, hyperbolic spaces and real trees.

1 Introduction

The H-Fractional Brownian Motion BH [8, 18], indexed by the Euclidean space (Rn, ||.||), is a
centered Gaussian field such that the variance of its increments is equal to a fractional power
of the norm:

E(BH(M)−BH(N))2 = ||MN ||2H ∀M,N ∈ Rn .

In other words, the normalized increments of the H-Fractional Brownian are constant in dis-
tribution:

BH(M)−BH(N)
||MN ||H

D= Z ∀M,N ∈ Rn ,

where Z is a centered Gaussian random variable with variance 1. It is well-known that the
H-Fractional Brownian Motion BH exists iff 0 < H ≤ 1. [5] proposes to build Fractional Brow-
nian Motions indexed by a metric space (E, d) as centered Gaussian fields which normalized
increments are constant in distribution:

BH(M)−BH(N)
dH(M,N)

D= Z ∀M,N ∈ E ,

where Z is still a centered Gaussian random variable with variance 1. When (E, d) is the sphere
or the hyperbolic space endowed with their geodesic distances, [5] proves that the Fractional
Brownian Motion exists iff 0 < H ≤ 1/2. When (E, d) is a real tree with its natural distance,
[5] proves that the Fractional Brownian Motion exists at least for 0 < H ≤ 1/2.
The following question then arises: what happens when we move from the Gaussian case to the
stable case? One knows that there exists several H-self-similar α-stable fields with stationary
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increments indexed by (Rn, ||.||), with various conditions on the fractional index H, providing
0 < H ≤ 1/α if 0 < α ≤ 1 and 0 < H < 1 if 1 < α < 2 [10]. Let us mention some of them (cf.
[13]):

• Linear Fractional Stable Motions: 0 < H < 1 and H 6= 1/α,

• α-Stable Lévy Motions: H = 1/α,

• Log-fractional Stable Motions: H = 1/α,

• Real Harmonizable Fractional Stable Motions: 0 < H < 1,

• Lévy-Chentsov fields: H = 1/α,

• β-Takenaka fields: 0 < β < 1 and H = β/α.

All these fields have normalized increments that are constant in distribution:

X(M)−X(N)
||MN ||H

D= Sα ∀M,N ∈ Rn ,

where Sα is a standard symmetric α-stable random variable, i.e. a random variable which
characteristic function is given by:

E(eiλSα) = e−|λ|
α

.

We propose to callH-fractional α-stable field an α-stable fieldX(M),M ∈ E which normalized
increments are constant in distribution:

X(M)−X(N)
dH(M,N)

D= Sα ∀M,N ∈ E ,

where Sα is a standard symmetric α-stable random variable.
Let us summarize our main results.

• Non-existence.

Let βE = sup{β > 0 such that dβ is of negative type}. For instance, βE is equal to 1 for
spheres and hyperbolic spaces. We prove that there is no H-fractional α-stable field
when αH > βE .

• Existence.

We mainly prove the following. Assume that E contains a dense countable subset and
that d is a measure definite kernel:

– if 0 < α ≤ 1, we construct H-fractional α-stable fields for any 0 < H ≤ 1/α.

– if 1 < α < 2, we construct H-fractional α-stable fields for any H ∈ (0, 1/(2α)] ∪
[1/2, 1/α].
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2 Non-existence

Let us first recall the definitions of functions of positive or negative type. Let X be a set.

• A symmetric function (x, y) 7→ φ(x, y), X×X → R+ is of positive type if, ∀x1, . . . , xn ∈
X, ∀λ1, . . . , λn ∈ R

n∑
i,j=1

λiλjφ(xi, xj) ≥ 0 .

• A symmetric function (x, y) 7→ ψ(x, y), X ×X → R+ is of negative type if

– ∀x ∈ X, ψ(x, x) = 0

– ∀x1, . . . , xn ∈ X, ∀λ1, . . . , λn ∈ R such that
n∑
i=1

λi = 0

n∑
i,j=1

λiλjψ(xi, xj) ≤ 0 .

Schoenberg’s Theorem [14] implies the equivalence between

• Function ψ is of negative type.

• ∀x ∈ X, ψ(x, x) = 0 and ∀t ≥ 0, function exp(−tψ) is of positive type.

Lemma 2.1
Let ψ be a function of negative type and let 0 < β ≤ 1. Then ψβ is of negative type.

Proof.
For x ≥ 0, and 0 < β < 1, by performing the change of variable y = λx, one has:

xβ = Cβ

∫ +∞

0

e−λx − 1
λ1+β

dλ ,

with

Cβ =
(∫ +∞

0

e−λ − 1
λ1+β

dλ

)−1

.

Let λ1, . . . , λn such that
n∑
i=1

λi = 0:

n∑
i,j=1

λiλjψ
β(xi, xj) = Cβ

∫ +∞

0

∑n
i,j=1 λiλje

−λψ(xi,xj)

λ1+β
dλ .

By Schoenberg’s Theorem,
n∑

i,j=1

λiλje
−λψ(xi,xj) ≥ 0. Since Cβ ≤ 0:

n∑
i,j=1

λiλjψ
β(xi, xj) ≤ 0 ,
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and Lemma 2.1 is proved. �

For the metric space (E, d), let us define:

βE = sup{β > 0 such that dβ is of negative type} , (1)

with the convention βE = 0 if dβ is never of negative type. Let us note that if E contains
three points M1,M2,M3 such that:

d(M1,M2) > d(M1,M3) ,
d(M1,M2) > d(M2,M3) ,

then βE <∞. Indeed, with λ1 = −1/2, λ2 = −1/2 , λ3 = 1, one has
3∑

i,j=1

λiλjd
β(Mi,Mj) ∼ 1/2 dβ(M1,M2) > 0 as β → +∞.

Corollary 2.1
If βE 6= 0, then {β > 0 such that dβ of negative type} = (0, βE ] .

Proof.
It follows from Lemma 2.1 that dβ is of negative type for β < βE , and is never of negative
type for β > βE . Let (βp)p≥0 be an increasing sequence converging to βE (when βE < ∞).

For all M1, . . . ,Mn ∈ E and λ1, . . . , λn ∈ R such that
n∑
i=1

λi = 0:

n∑
i,j=1

λiλjd
βp(Mi,Mj) ≤ 0 . (2)

Let now perform βp → βE in (2):

n∑
i,j=1

λiλjd
βE (Mi,Mj) ≤ 0 .

It follows that dβE is of negative type. �

Let us now give some values of βE .

• Euclidean space (Rn, ||.||).
One easily checks that function (x, y) 7→ ||x − y||2 is of negative type. Indeed, take

λ1, . . . , λp with
p∑
i=1

λi = 0 and x1, . . . , xp ∈ Rn:

p∑
i,j=1

λiλj ||xi − xj ||2 = −2||
p∑
i=1

λixi||2 ≤ 0 .
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Then, by Lemma 2.1, function (x, y) 7→ ||x − y||β is of negative type when 0 < β ≤ 2.
Consider now four vertices M1,M2,M3,M4 of a square with side length 1 and take

λ1 = λ3 = 1 and λ2 = λ4 = −1. Then
4∑

i,j=1

λiλj ||MiMj ||β = −8 + 4
√

2
β

and is strictly

positive when β > 2. It follows that βRn = 2.

• Space (Rn, ||.||`q ) where ||x||q`q =
n∑
i=1

|xi|q. When n ≥ 3, q > 2, [6, 7] imply βRn = 0.

• Spheres Sn = {x ∈ Rn+1, ||x|| = 1} with its geodesic distance. It follows from [5] that
βSn = 1.

• Hyperbolic spaces Hn = {x ∈ Rn+1,

n∑
i=1

x2
i − x2

n+1 = −1, xn+1 ≥ 1} with its geodesic

distance d. It has been proved by [4] that d is of negative type. [4, Prop. 7.6] implies
that βHn = 1.

• Real trees. A metric space (T, d) is a real tree (e.g. [3]) if the following two properties
hold for every x, y ∈ T .

– There is a unique isometric map fx,y from [0, d(x, y)] into T such that fx,y(0) = x
and fx,y(d(x, y)) = y.

– If φ is a continuous injective map from [0, 1] into T , such that φ(0) = x and φ(1) = y,
we have

φ([0, 1]) = fx,y([0, d(x, y)]).

It has been proved by [17] that the distance on real trees is of negative type: βT ≥ 1.
One can build trees with βT > 1. Nevertheless, we give a family of simple trees (Tp)p≥1

such that lim
p→+∞

βTp = 1. A0 is the root of the tree. A0 has p sons A1, . . . Ap, with:

d(A0, Ai) = 1 i 6= 0 ,
d(Ai, Aj) = 2 i 6= j, i, j 6= 0 .

Choose λ0 = 1 and λi = −1/p for i = 1, . . . , p. Then
p∑

i,j=0

λiλjd
β(Ai, Aj) = −2 + 2β

p− 1
p

.

−2 + 2β
p− 1
p

is positive for β ≥ 1 + log2

(
p

p− 1

)
. It follows that βTp ≤ 1 + log2

(
p

p− 1

)
.

Proposition 2.1
There is no H-fractional α-stable fields when αH > βE.

Proof.
We prove Proposition 2.1 by contradiction. Let λ, λ1, . . . , λn ∈ R and M1, . . . ,Mn ∈ E. On
one hand:

n∑
i,j=1

λiλjE [exp(iλ(X(Mi)−X(Mj)))] = E

∣∣∣∣∣
n∑
i=1

λiexp(iλX(Mi))

∣∣∣∣∣
2

≥ 0 .
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On the other hand:
n∑

i,j=1

λiλjE [exp(iλ(X(Mi)−X(Mj)))] =
n∑

i,j=1

λiλj exp(−|λ|αdαH(Mi,Mj)) .

If αH > βE , Schoenberg’s Theorem implies that there exists λ such that exp(−|λ|αdαH(M,N))
is not of positive type and Proposition 2.1 is proved. �

3 Construction of H-fractional α-stable fields

3.1 Main result

Let us recall the definition of a measure definite kernel (cf. [12]).

Definition 3.1 Measure definite kernel.
A function (M,N) 7→ ψ(M,N), from E × E onto R+, is a measure definite kernel if there
exists a measure space (H, σ(H), µ) and a map M 7→ HM from E onto σ(H) such that:

ψ(M,N) = µ(HM∆HN ) ,

where ∆ denotes the symmetric difference of sets.

For β > 0, f ∈ Lβ(H, µ), define the pseudo-norm:

||f ||β =
(∫

H

|f |βdµ
)1/β

.

It follows that:

ψ(M,N) =
∫
H

|1HM
− 1HN

|dµ

= ||1HM
− 1HN

||ββ .

Theorem 3.1
Let 1/2 ≤ H ≤ 1/α. The following formula, with n ≥ 1, λ1, . . . , λn ∈ R, M1, . . . ,Mn ∈ E,

E

exp

i n∑
j=1

λjX(Mj)

 = exp

−
∣∣∣∣∣∣
∣∣∣∣∣∣
n∑
j=1

λj1HMj

∣∣∣∣∣∣
∣∣∣∣∣∣
α

1/H

 (3)

defines the distribution of an α-stable field X(M),M ∈ E satisfying:

X(M)−X(N)
ψH(M,N)

D= Sα ∀M,N ∈ E , (4)

where Sα is a standard symmetric α-stable random variable.

Proof.
We follow Theorem 1 and Lemma 4 of [1]. We have seen that function (x, y) 7→ |x−y|γ , x, y ∈ R
is of negative type if 0 < γ ≤ 2. It follows that function (f, g) 7→ ||f − g||1/H1/H , f, g ∈ L

1/H(H, µ)
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is of negative type when H ≥ 1/2. Since αH ≤ 1, one can apply Lemma 2.1: function
(f, g) 7→ ||f − g||α1/H , f, g ∈ L1/H(H, µ) is of negative type. Schoenberg’s Theorem implies
that, for all λ ∈ R, function (f, g) 7→ exp(−|λ|α||f − g||α1/H), f, g ∈ L1/H(H, µ) is of positive
type. (3) is therefore a characteristic function.
Fix now 1 ≤ j0 ≤ n in (3). We clearly have:

lim
λj0→0

E

exp

i n∑
j=1

λjX(Mj)

 = exp

−
∣∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=1,j 6=j0

λj1HMj

∣∣∣∣∣∣
∣∣∣∣∣∣
α

1/H


= E

exp

i n∑
j=1,j 6=j0

λjX(Mj)

 .

The Kolmogorov consistency theorem then proves that (3) defines the distribution of an α-
stable stochastic fields.
Choosing n = 2 and λ1 = −λ2 in (3) leads to (4).

�

Remark 3.1
One should wonder if function (f, g) 7→ ||f − g||α1/H is of negative type for H < 1/2. Assume
that we can choose three disjoints sets A1, A2 and A3 such that µ(A1) = µ(A2) = µ(A3) = c >

0. Put f =
3∑
1

λi1Ai . Then:

||f ||α1/H = cαH

(
3∑
1

|λi|1/H
)αH

.

But one knows [6, 7] that function (x, y) 7→ ||x − y||p`q , x, y ∈ Rn is never of negative type
when n ≥ 3, 0 < p ≤ 2 and q > 2. Function (f, g) 7→ ||f − g||α1/H is not of negative type for
H < 1/2.

3.2 Direct applications of Theorem 3.1

3.2.1 Euclidean spaces (Rn, ||.||), n ≥ 1

Although it is not our goal, we have a look to the Euclidean spaces. One knows that, for
0 < β ≤ 1, functions (x, y) 7→ ||x− y||β x, y ∈ Rn are measure definite kernels. This is known
as Chentsov’s construction (β = 1) [2] and Takenaka’s construction [15] (0 < β < 1), see [13,
p. 400-402] for a general presentation. Let us briefly describe these two constructions.

• Chentsov’s construction (β = 1).

For any hyperplane h of Rn, let r be the distance of h to the origin of Rn and let s ∈ Sn−1

be the unit vector orthogonal to h. The hyperplane h is parametrized by the pair (s, r).
Let H be the set of all hyperplanes that do not contain the origin. Let σ(H) be the Borel
σ-field. Let µ(ds, dr) = dsdr, where ds denotes the uniform measure on Sn−1 and dr the
Lebesgue measure on R. Let HM be the set of all hyperplanes separating the origin and
the point M . Then, there exists a constant c > 0 such that

||MN || = cµ(HM∆HN ) .
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• Takenaka’s construction (0 < β < 1).

A hypersphere in Rn is parametrized by a pair (x, λ), where x ∈ Rn is its center and
λ ∈ R+ its radius. Let H be the set of all hyperspheres in Rn. Let σ(H) be the Borel
σ-field. µβ is the measure µβ(dx, dλ) = λβ−n−1dxdλ. Let HM be the set of hyperspheres
separating the origin and the point M . Then, there exists a constant cβ > 0 such that

||MN ||β = cβµβ(HM∆HN ) .

Theorem 3.1 can therefore be applied with ψ = ||.||β , 0 < β ≤ 1. This leads βH-fractional
α-stable fields for any 0 < β ≤ 1 and any H providing 1/2 < H ≤ 1/α. The range of feasible
parameters is therefore 0 < H ≤ 1/α.

3.2.2 Spheres Sn

When [9] introduces the Spherical Brownian Motion, he proves that the geodesic distance d is
a measure definite kernel. Indeed, for any point M on the unit sphere, define a half-sphere by:

HM = {N ∈ Sn, d(M,N) ≤ π/2} .

Let ds be the uniform measure on Sn, let ωn be the surface of the sphere, and define the
measure µ by:

µ(ds) =
π

ωn
ds .

Then:

d(M,N) = µ(HM∆HN ) .

Theorem 3.1 can be applied with ψ = d. This leads to H-fractional α-stable fields for any H
providing 1/2 ≤ H ≤ 1/α.

3.2.3 Hyperbolic spaces Hn

The geodesic distance is a measure definite kernel [16, 11]. The proof is more technical and
we give only a rough outline. Hn is considered as a subset of the real projective space Pn(R).
Let HM be the set of hyperplanes that separates M and the origin 0 of Hn in Pn(R) − l∞.
Let µ be a measure on Hn invariant under the action of the Lorentz group. Then, up to a
normalizing constant, the geodesic distance d can be written as:

d(M,N) = µ(HM∆HN ) .

Theorem 3.1 can be applied with ψ = d. This leads to H-fractional α-stable fields for any H
providing 1/2 ≤ H ≤ 1/α.

3.2.4 Real trees

Let us shortly explain the construction given in [17]. Fix O in the tree T . Set HM be the
geodesic path between O and M . Then d(M,N) = µ(HM∆HN ) where µ is the Valette’s
measure of the tree: distance d is a measure definite kernel.
Theorem 3.1 can be applied with ψ = d. This leads to H-fractional α-stable fields for any H
providing 1/2 ≤ H ≤ 1/α.
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4 Space with countable dense subspace

We will now extend the result of Theorem 3.1.
Assume that E contains a countable dense subset Γ and that distance d is a measure definite
kernel. A measure definite kernel is always of negative type [12, Prop. 1.1]. It follows from
Lemma 2.1 that (M,N) 7→ dβ(M,N), M,N ∈ E, 0 < β ≤ 1, is of negative type. [12, Prop.
1.4] proves that the square root of a function of negative type defined on a countable space
is a measure definite kernel. It follows that (M,N) 7→ dβ/2(M,N), M,N ∈ Γ, 0 < β ≤ 1, is
a measure definite kernel since Γ is countable. Theorem 3.1 can be applied with ψ(M,N) =
dβ/2(M,N), M,N ∈ Γ, 0 < β ≤ 1: we have build a field X(M),M ∈ Γ. Since this field is
α-stable, it has finite moments of order 0 < α′ < α and there exists a constant c > 0 (cf. [13,
Prop. 1.2.17]) such that, for all N,N ′ ∈ Γ:

E|X(N)−X(N ′)|α
′

= cdα
′βH/2(N,N ′) . (5)

Let M ∈ E − Γ and let N →M, N ∈ Γ. From (5), one can define X(M) as:

X(M) P= lim
N→M,N∈Γ

X(N) .

We have therefore build an α-stable field X(M),M ∈ E satisfying:

X(M)−X(N)
dβH/2(M,N)

D= Sα ∀M,N ∈ E ,

where Sα is a standard symmetric α-stable random variable.

Let us now apply this construction to the spheres and hyperbolic spaces with their geodesic
distances. We build βH/2-fractional α-stable fields with any 0 < β ≤ 1, 1/2 ≤ H ≤ 1/α.
Let us summarize this construction with the previous construction of sections 3.2.2 and 3.2.3.
We are able to build H-fractional α-stable fields in the following cases:

• when α ≤ 1, with any 0 < H ≤ 1/α; and one knows from Proposition 2.1 that H > 1/α
is forbidden;

• when 1 < α < 2, with any 0 < H ≤ 1/(2α) and 1/2 ≤ H ≤ 1/α; and one knows from
Proposition 2.1 that H > 1/α is still forbidden; the interval (1/(2α), 1/2) is “missing”.

Remark 4.1
One doesn’t know if dγ is a measure definite kernel for 1/2 < γ < 1. This is the reason of the
“missing” interval (1/(2α), 1/2).
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Math. Belgique 42 (1990), 747–760. MR1316222

[18] A. Yaglom, Some classes of random fields in n-dimensional space, related to stationary
random processes, Theory of Probability and its Applications 2 (1957), 273–320. MR94844

http://www.ams.org/mathscinet-getitem?mr=1379369
http://www.ams.org/mathscinet-getitem?mr=365042
http://www.ams.org/mathscinet-getitem?mr=2198600
http://www.ams.org/mathscinet-getitem?mr=1150554
http://www.ams.org/mathscinet-getitem?mr=1711028
http://www.ams.org/mathscinet-getitem?mr=3441
http://www.ams.org/mathscinet-getitem?mr=190953
http://www.ams.org/mathscinet-getitem?mr=839294
http://www.ams.org/mathscinet-getitem?mr=1616751
http://www.ams.org/mathscinet-getitem?mr=1609459
http://www.ams.org/mathscinet-getitem?mr=1280932
http://www.ams.org/mathscinet-getitem?mr=1503439
http://www.ams.org/mathscinet-getitem?mr=1126180
http://www.ams.org/mathscinet-getitem?mr=618812
http://www.ams.org/mathscinet-getitem?mr=1316222
http://www.ams.org/mathscinet-getitem?mr=94844

