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Abstract

We define and build H-fractional a-stable fields indexed by a metric space (E,d). We mainly
apply these results to spheres, hyperbolic spaces and real trees.

1 Introduction

The H-Fractional Brownian Motion By [8, 18], indexed by the Euclidean space (R™, ||.|]), is a
centered Gaussian field such that the variance of its increments is equal to a fractional power
of the norm:

E(Bu(M) - Bu(N))* = |[MN[*" VM,NeR".
In other words, the normalized increments of the H-Fractional Brownian are constant in dis-
tribution:

Bu(M) - Bu(N) »p

Z VM,NeR",
[[MNH

where Z is a centered Gaussian random variable with variance 1. It is well-known that the
H-Fractional Brownian Motion By exists iff 0 < H < 1. [5] proposes to build Fractional Brow-
nian Motions indexed by a metric space (E,d) as centered Gaussian fields which normalized
increments are constant in distribution:

Byp(M) - Bg(N) »p
EOE D 7 YVMNCE,

where Z is still a centered Gaussian random variable with variance 1. When (E, d) is the sphere
or the hyperbolic space endowed with their geodesic distances, [5] proves that the Fractional
Brownian Motion exists iff 0 < H < 1/2. When (E,d) is a real tree with its natural distance,
[5] proves that the Fractional Brownian Motion exists at least for 0 < H < 1/2.

The following question then arises: what happens when we move from the Gaussian case to the
stable case? One knows that there exists several H-self-similar a-stable fields with stationary
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increments indexed by (R™,]|.||), with various conditions on the fractional index H, providing
0<H<1l/aif0<a<land0< H <1ifl< a<2][10]. Let us mention some of them (cf.
[13]):

e Linear Fractional Stable Motions: 0 < H < 1 and H # 1/«

a-Stable Lévy Motions: H =1/«

Log-fractional Stable Motions: H =1/«

Real Harmonizable Fractional Stable Motions: 0 < H < 1,

Lévy-Chentsov fields: H =1/«
e [-Takenaka fields: 0 < 8 <1 and H = /a.

All these fields have normalized increments that are constant in distribution:

X(M) - X(N) »p
)2V Dog, YM,NeR®,
[M N[

where S, is a standard symmetric a-stable random variable, i.e. a random variable which
characteristic function is given by:

E(e”‘s‘*) = e N7,

We propose to call H-fractional a-stable field an a-stable field X (M), M € E which normalized
increments are constant in distribution:

X(M)-X(N) p

« VM,NE€E,
L) Sy ¥ €

where S, is a standard symmetric a-stable random variable.
Let us summarize our main results.
e Non-existence.
Let Sg = sup{f > 0 such that d? is of negative type}. For instance, Og is equal to 1 for
spheres and hyperbolic spaces. We prove that there is no H-fractional a-stable field
when oH > (g.
e Existence.
We mainly prove the following. Assume that E contains a dense countable subset and
that d is a measure definite kernel:
— if 0 < @ <1, we construct H-fractional a-stable fields for any 0 < H < 1/a.
—if 1 < a < 2, we construct H-fractional a-stable fields for any H € (0,1/(2a)] U

[1/2,1/a].
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2 Non-existence

Let us first recall the definitions of functions of positive or negative type. Let X be a set.

e A symmetric function (z,y) — ¢(x,y), X x X — R* is of positive type if, Vz1,..., 2, €
X, VA,..., n €R

4,j=1

e A symmetric function (z,y) — ¥(x,y), X x X — R7 is of negative type if
- Ve e X, Y(x,z) =0

— Vay,..., 2, € X, VA1,..., Ay € R such that » ;=0

i=1
n
> AAaia;) < 0.
i,j=1
Schoenberg’s Theorem [14] implies the equivalence between
e Function ¢ is of negative type.
o Vz e X, ¢¥(x,x) =0 and Vt > 0, function exp(—ty) is of positive type.

Lemma 2.1
Let v be a function of negative type and let 0 < < 1. Then 1? is of negative type.

PrOOF.
For x > 0, and 0 < 8 < 1, by performing the change of variable y = Az, one has:
+oo -z
8 _ e -1
x = 05/0 7)\11%3 dA s
with

+00 o=A _ -1
Csz = (/0 i d)\>

Let Aq,..., A\, such that Z)‘i =0:
i=1
oo o Aidje M)

N dX .

o AN (@iay) = Cp

ij=1 0

By Schoenberg’s Theorem, Z )\i)\je*/w(zi@j) > 0. Since Cg < 0:
ij=1

ANl (way) <0,

4,j=1
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and Lemma 2.1 is proved. U

For the metric space (F,d), let us define:
Bg = sup{3 > 0 such that d” is of negative type} , (1)

with the convention Bz = 0 if d° is never of negative type. Let us note that if £ contains
three points M7y, My, M3 such that:

d(Ml,MQ) > d(Ml,Mg) R
d(Ml,Mg) > d(Mg,Mg) s

then Op < co. Indeed, with A\ = —1/2, Ao = —1/2 ;A3 = 1, one has
3

> AiNdP (Mg, My) ~ 1/2 dP (My, M) > 0 as 8 — +00.

ij=1

Corollary 2.1
If B # 0, then {8 > 0 such that d° of negative type} = (0, Bg] .

ProoF.
It follows from Lemma 2.1 that d° is of negative type for 8 < (g, and is never of negative
type for 8 > Bg. Let (8,)p>0 be an increasing sequence converging to Sg (when g < 00).

For all My, ..., M, € E and \y,..., A, € R such that » _X; = 0:
i=1
n
Z /\i/\jdﬁp(Mi,Mj) < 0. (2)
ij=1
Let now perform (8, — Bg in (2):

> Nidd®® (M;, M;)

i,7=1

IA
o

It follows that d°” is of negative type. O

Let us now give some values of 0.

e Euclidean space (R™, [|.|])-
One easily checks that function (z,y) — ||z — y||? is of negative type. Indeed, take

P
ALy ..., Ap With Zx\i=0and Z1,...,2p € R™

i=1

p P
STz =zl = =2 NP <o0.

i,j=1 i=1



246

Electronic Communications in Probability

Then, by Lemma 2.1, function (z,y) — ||z — y||? is of negative type when 0 < 8 < 2.
Consider now four vertices My, Ma, M3, My of a square with side length 1 and take
4

M= =1and Ay = Ay = —1. Then > AN [IMM|1P = =8+ 4v2” and s strictly
ij=1
positive when § > 2. It follows that Og» = 2.

Space (R™, ||.|¢a) where ||z][}, = Z |z;]?. When n >3, ¢ > 2, [6, 7] imply Sg» = 0.
i=1

Spheres S, = {x € R™*! ||z|| = 1} with its geodesic distance. It follows from [5] that
Bs, = 1.

n
Hyperbolic spaces H, = {x € R"*!, fo — a2y =1, 41 > 1} with its geodesic

=1
distance d. It has been proved by [4] that d is of negative type. [4, Prop. 7.6] implies
that /8Hn =1.

Real trees. A metric space (T,d) is a real tree (e.g. [3]) if the following two properties
hold for every x,y € T.

— There is a unique isometric map f5, from [0,d(z,y)] into T such that f; ,(0) =z
and fqy(d(z,y)) = y-

— If ¢ is a continuous injective map from [0, 1] into T', such that ¢(0) = z and ¢(1) = y,
we have

¢([0,1]) = fo4 ([0, (2, y)]).

It has been proved by [17] that the distance on real trees is of negative type: Or > 1.

One can build trees with S > 1. Nevertheless, we give a family of simple trees (T},)p>1

such that lirf Br, = 1. Ap is the root of the tree. Ay has p sons Ay,... A4,, with:
p—+o0

d(Ag,A;) = 1 i#0,
Choose \g =1 and \; = —1/pfori=1,...,p. Then

p

-1
SN (ALA) = 24 2P
= p
1,j=0

-1
-2+ QﬁL is positive for 8 > 1 + log, (pl) . It follows that Sr, < 1+ log, <p>
p p p

Proposition 2.1
There is no H-fractional a-stable fields when aH > (.

PROOF.
We prove Proposition 2.1 by contradiction. Let A, A1,..., A, € Rand My,...,M,, € E. On
one hand:
n n 2
> ANE[eap(A(X (M;) — X(M;)] = E|> Xexp(iAX(M;))| >0.
ij=1 i=1




Fractional stable fields

247

On the other hand:

> ANE [eap(iA(X (M;) = X(M))] = > Aidjexp(—|A[*d™H (M;, M) .

i,j=1 4,j=1

If «H > g, Schoenberg’s Theorem implies that there exists A such that exp(—|\|*d“H (M, N))
is not of positive type and Proposition 2.1 is proved.

3 Construction of H-fractional a-stable fields
3.1 Main result
Let us recall the definition of a measure definite kernel (cf. [12]).

Definition 3.1 Measure definite kernel.
A function (M,N) — (M, N), from E x E onto RT, is a measure definite kernel if there
exists a measure space (H,o(H), 1) and a map M +— Hys from E onto o(H) such that:

Y(M,N) = p(HyAHy),
where A denotes the symmetric difference of sets.

For 3 >0, f € L?(H, 1), define the pseudo-norm:

1/
Il = (/H |fﬁdu) .

¢(M’N) = /‘IHAI_IHN|dM
H

It follows that:

= ||1HM - 1HNH§ :

Theorem 3.1
Let 1/2 < H < 1/a. The following formula, with n > 1,\,...; A\, €R, My,..., M, € E,

«
n

E (exp | i) A\ X (M) = exp [ —[|D - Mlay, (3)
j=1

J=t 1/H

defines the distribution of an a-stable field X (M), M € E satisfying:

X(M)-X(N) »

W (M, N) Se VM,N€eE, (4)

where Sy, is a standard symmetric a-stable random variable.

Proor.
We follow Theorem 1 and Lemma 4 of [1]. We have seen that function (z,y) — |z—y|7, z,y € R

is of negative type if 0 < v < 2. It follows that function (f, g) — ||f — 9”1?57 f.ge LVAH, p)
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is of negative type when H > 1/2. Since aH < 1, one can apply Lemma 2.1: function
(foa) = |lf —9lli/u. f.9€ LYH(H, ) is of negative type. Schoenberg’s Theorem implies
that, for all A € R, function (f,g) — exp(—[A[*[|f — gl|{/x), f.9 € LYH(H, ) is of positive
type. (3) is therefore a characteristic function.

Fix now 1 < jp < n in (3). We clearly have:

[e3

exp | — Z )\leMj

Ajo—0 ] it
J=1.3#jo 1/H

lim B |exp i) X\X(M;)
j=1

n
E exp 7 Z AJX(M])
J=1,j#jo

The Kolmogorov consistency theorem then proves that (3) defines the distribution of an a-
stable stochastic fields.
Choosing n = 2 and A\ = —\2 in (3) leads to (4).

O

Remark 3.1
One should wonder if function (f,g) — ||f — g%,y is of negative type for H < 1/2. Assume

that we can choose three disjoints sets Ay, As and As such that u(Ay) = p(As) = p(A4s) =c >
3

0. Put f = Nla,. Then:
1

3 aH
Iy = ¥ (ZI/MI”H> :
1

But one knows [6, 7] that function (x,y) — ||z — y|[},, =,y € R™ is never of negative type
when n >3, 0 <p <2 and q > 2. Function (f,g) = [|f — gl|%/y is not of negative type for
H<1/2.

3.2 Direct applications of Theorem 3.1
3.2.1 Euclidean spaces (R",||.||), n >1

Although it is not our goal, we have a look to the Euclidean spaces. One knows that, for
0 < B8 < 1, functions (z,y) — ||z — y||® =,y € R™ are measure definite kernels. This is known
as Chentsov’s construction (8 = 1) [2] and Takenaka’s construction [15] (0 < 5 < 1), see [13,
p. 400-402] for a general presentation. Let us briefly describe these two constructions.

e Chentsov’s construction (5 =1).
For any hyperplane h of R", let r be the distance of h to the origin of R™ and let s € S;,_1
be the unit vector orthogonal to h. The hyperplane h is parametrized by the pair (s, 7).
Let H be the set of all hyperplanes that do not contain the origin. Let o(H) be the Borel
o-field. Let u(ds,dr) = dsdr, where ds denotes the uniform measure on S,,_1 and dr the

Lebesgue measure on R. Let Hj; be the set of all hyperplanes separating the origin and
the point M. Then, there exists a constant ¢ > 0 such that

IMN|| = cu(HyAHy) .
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e Takenaka’s construction (0 < 8 < 1).

A hypersphere in R™ is parametrized by a pair (z,A), where x € R™ is its center and
A € RT its radius. Let H be the set of all hyperspheres in R™. Let o(H) be the Borel
o-field. pg is the measure pg(dz, d\) = M=n=1dzd\. Let Hys be the set of hyperspheres
separating the origin and the point M. Then, there exists a constant c¢g > 0 such that

IMN|I* = cpup(HuAHN) -
Theorem 3.1 can therefore be applied with ¢ = [|.||?, 0 < 3 < 1. This leads SH-fractional
a-stable fields for any 0 < 6 < 1 and any H providing 1/2 < H < 1/a. The range of feasible
parameters is therefore 0 < H < 1/au.
3.2.2 Spheres S,

When [9] introduces the Spherical Brownian Motion, he proves that the geodesic distance d is
a measure definite kernel. Indeed, for any point M on the unit sphere, define a half-sphere by:

Hy = {N€S,, dM,N)<nr/2}.

Let ds be the uniform measure on S, let w, be the surface of the sphere, and define the
measure pu by:

T
d = —ds.
p(ds) oo
Then:
d(M, N) = M(HMAHN) .

Theorem 3.1 can be applied with ¢ = d. This leads to H-fractional a-stable fields for any H
providing 1/2 < H < 1/a.

3.2.3 Hyperbolic spaces H,

The geodesic distance is a measure definite kernel [16, 11]. The proof is more technical and
we give only a rough outline. H,, is considered as a subset of the real projective space P"(R).
Let Hjys be the set of hyperplanes that separates M and the origin 0 of H,, in P*(R) — l.
Let p be a measure on H,, invariant under the action of the Lorentz group. Then, up to a
normalizing constant, the geodesic distance d can be written as:

dM,N) = u(HyAHy).

Theorem 3.1 can be applied with ) = d. This leads to H-fractional a-stable fields for any H
providing 1/2 < H < 1/a.

3.2.4 Real trees

Let us shortly explain the construction given in [17]. Fix O in the tree T. Set Hjps be the
geodesic path between O and M. Then d(M,N) = pu(HyAHy) where p is the Valette’s
measure of the tree: distance d is a measure definite kernel.

Theorem 3.1 can be applied with ¢ = d. This leads to H-fractional a-stable fields for any H
providing 1/2 < H < 1/c.
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4 Space with countable dense subspace

We will now extend the result of Theorem 3.1.

Assume that F contains a countable dense subset I' and that distance d is a measure definite
kernel. A measure definite kernel is always of negative type [12, Prop. 1.1]. It follows from
Lemma 2.1 that (M, N) — d°(M,N), M,N € E, 0 < 8 < 1, is of negative type. [12, Prop.
1.4] proves that the square root of a function of negative type defined on a countable space
is a measure definite kernel. It follows that (M, N) — d?/?(M,N), M,N €T, 0 < 3 < 1, is
a measure definite kernel since I' is countable. Theorem 3.1 can be applied with (M, N) =
dP/2(M,N), M,N €T, 0 < 8 < 1: we have build a field X(M), M € T. Since this field is
a-stable, it has finite moments of order 0 < o/ < « and there exists a constant ¢ > 0 (cf. [13,
Prop. 1.2.17]) such that, for all N, N’ € I":

E[X(N)— X(N)|* = cd®PH2(N,N'). (5)
Let M € E—T and let N — M, N €T'. From (5), one can define X (M) as:

X(M) £ lim X(N).
N—M,Nell

We have therefore build an a-stable field X (M), M € E satisfying:

X(M)-X(N) p

w YM,NcE,
LN Sy ¥ €

where S, is a standard symmetric a-stable random variable.

Let us now apply this construction to the spheres and hyperbolic spaces with their geodesic
distances. We build SH/2-fractional a-stable fields with any 0 < 8 <1,1/2 < H <1/a.

Let us summarize this construction with the previous construction of sections 3.2.2 and 3.2.3.
We are able to build H-fractional a-stable fields in the following cases:

e when a < 1, with any 0 < H < 1/a; and one knows from Proposition 2.1 that H > 1/«
is forbidden;

e when 1 < a < 2, with any 0 < H < 1/(2a) and 1/2 < H < 1/«; and one knows from
Proposition 2.1 that H > 1/« is still forbidden; the interval (1/(2«a),1/2) is “missing”.

Remark 4.1
One doesn’t know if d7 is a measure definite kernel for 1/2 <~ < 1. This is the reason of the
“missing” interval (1/(2a),1/2).
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