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Abstract: We study the problem of estimating piecewise monotone vec-
tors. This problem can be seen as a generalization of the isotonic regres-
sion that allows a small number of order-violating changepoints. We focus
mainly on the performance of the nearly-isotonic regression proposed by
Tibshirani et al. (2011). We derive risk bounds for the nearly-isotonic re-
gression estimators that are adaptive to piecewise monotone signals. The
estimator achieves a near minimax convergence rate over certain classes
of piecewise monotone signals under a weak assumption. Furthermore, we
present an algorithm that can be applied to the nearly-isotonic type es-
timators on general weighted graphs. The simulation results suggest that
the nearly-isotonic regression performs as well as the ideal estimator that
knows the true positions of changepoints.
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1. Introduction

Isotonic regression is a popular statistical method based on partial order struc-
tures, which has a long history in statistics (Ayer et al. 1955, Brunk 1955, van
Eeden 1956). Suppose that θ∗ ∈ R

n is a monotone vector satisfying θ∗1 ≤ θ∗2 ≤
· · · ≤ θ∗n, and y is a noisy observation of θ∗. The goal of the isotonic regression
is to find a least-square fit under the monotone constraint:

minimize ‖y − θ‖2 subject to θ1 ≤ θ2 ≤ · · · ≤ θn. (1)

In other words, the isotonic regression is the least squares estimator θ̂ = θ̂K↑
n

over a closed convex cone K↑
n := {θ ∈ R

n : θ1 ≤ θ2 ≤ · · · ≤ θn}. Broadly
speaking, the isotonic regression is an example of shape restricted regression. For
comprehensive reviews on this field, see Robertson et al. (1988), Groeneboom
and Jongbloed (2014), Chatterjee et al. (2015), Guntuboyina and Sen (2018)
and references therein.

In this paper, we study the problem of estimating piecewise monotone vectors,
which can be regarded as a generalization of isotonic regression that allows order-
violating changepoints. We formulate the problem precisely as follows. Let us
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consider the Gaussian sequence model

yi = θ∗i + ξi, i = 1, 2, . . . , n, (2)

where y = (y1, y2, . . . , yn)
� ∈ R

n is the observed vector, θ∗ = (θ∗1 , θ
∗
2 , . . . , θ

∗
n)

� ∈
R

n is the unknown parameter of interest, and ξ = (ξ1, ξ2, . . . , ξn)
� is the un-

observed noise distributed according to the Gaussian distribution N(0, σ2In).
Given the noisy observation y, the problem is to find a good piecewise monotone
approximation of θ∗. Here we define piecewise monotone vectors as follows.

Definition 1.1. Let Π = (A1, A2, . . . , Am) be a connected partition of [n] =
{1, 2, . . . , n}, that is, there exists a sequence 1 = τ1 < τ2 < · · · < τm < τm+1 =
n + 1 such that Ai = {τi, τi + 1, . . . , τi+1 − 1} (i = 1, 2, . . . ,m). We say that
a vector θ ∈ R

n is piecewise monotone on Π if the restriction on each Ai is
monotone:

θτi ≤ θτi+1 ≤ · · · ≤ θτi+1−1, for i = 1, 2, . . . ,m.

We also say that θ is m-piecewise monotone if θ is piecewise monotone on some
partition Π with |Π| = m.

We are particularly interested in the case where the number of pieces m
is larger than two but much smaller than n because it is reduced to simpler
problems if otherwise. From Definition 1.1, a monotone vector in K↑

n is m-
piecewise monotone for any m ≥ 1. In particular, the least squares estimators
over 1-piecewise monotone vectors coincide with the isotonic regression. Besides,
since any vector in R

n is n-piecewise monotone, the least squares estimator over
n-piecewise monotone vectors is merely the identity function θ̂id = y.

In real-world applications, there are many signals that can be approximated
by piecewise monotone vectors. Here, we provide a few examples. First, in seis-
mology, geological observations such as tide gauge records (Nagao et al. 2013)
and GPS records (Roggers and Dragert 2003) often consist of a long-term mono-
tonic trend and discontinuous jumps caused by tectonic activities. In particular,
Roggers and Dragert (2003) reported that GPS measurements that are nearby a
subduction zone in North America can be approximated by a sawtooth function.
The top panel of Figure 1 shows an example of GPS measurements. Second, the
numbers of search queries for some words related to seasons (e.g., “Christmas”
and “gift”) can be seen as periodic piecewise monotone signals (see the bottom
panel of Figure 1 for examples). Third, in the ranking systems in online shop-
ping websites, sales ranks of rarely sold items behave like piecewise monotone
signals because they suddenly rise every time the items are sold (Hattori and
Hattori 2010).

In this paper, we focus on the performance of nearly-isotonic regression pro-
posed by Tibshirani et al. (2011). Given y ∈ R

n and a tuning parameter λ ≥ 0,

the nearly-isotonic regression estimator θ̂λ is defined as

θ̂λ ∈ argmin
θ∈Rn

{
1

2
‖y − θ‖22 + λ

n−1∑
i=1

(θi − θi+1)+

}
, (3)
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Fig 1. Examples of piecewise monotone signals in real-world data. Top: The difference of
the east-west component of GPS measurements between Victoria (British Columbia, Canada)
and Seattle (United States). The trend factor seems to be approximated by a piecewise mono-
tone signal. A possible reason for this behavior is the seismological phenomenon reported in
Roggers and Dragert (2003). See Section 6.3 for a more detailed explanation of this data.
Bottom: The numbers of search queries for two words “Christmas” and “gift” in Google
Trends (https: // www. google. com/ trends ).

where (z)+ := max{z, 0}. Intuitively, the tuning parameter λ controls the degree
of monotonicity. The term (θi − θi+1)+ poses a positive penalty if and only if
the directed edge (i, i+1) is order violating, i.e., θi > θi+1. Hence, a large value

of λ > 0 makes the estimator θ̂λ close to a monotone vector. In particular, there
is a sufficiently large λ such that the solution θ̂λ becomes exactly the same as
the isotonic regression (1).

Our goal in this paper is to show that the nearly-isotonic regression can
adapt to piecewise monotone vectors. As suggested in Tibshirani et al. (2011),
the nearly-isotonic regression can fit to a “nearly monotone” vector that is close
to K↑

n in �2-sense. That is, the estimator performs well if θ∗ has a small �2-
misspecification error dist(θ∗,K↑

n) defined as

dist(θ∗,K↑
n) := inf

θ∈K↑
n

‖θ∗ − θ‖2.

Moreover, we can observe that the nearly-isotonic regression can fit to piece-
wise monotone vectors, even if θ∗ is far from monotone in �2-sense. Figure 2
shows an example of the nearly-isotonic regression with n = 100. The true
parameter θ∗ (orange line) is 2-piecewise monotone. By varying the values of
the tuning parameter λ ≥ 0, the nearly-isotonic regression behaves as follows:
If λ = 0, the nearly-isotonic regression is just the identity estimator θ̂id = y,
which clearly overfits to the noisy observation. If λ is set to a sufficiently large
value, θ̂λ coincides with the isotonic regression. In this example, however, the �2-
misspecification error dist2(θ∗,K↑

n) is large compared with the normalized noise

variance σ2/n. We can see that the mean squared error (MSE) 1
nEθ∗‖θ̂−θ∗‖22 of

https://www.google.com/trends
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Fig 2. Examples of the nearly-isotonic regression estimators with different choices of
tuning parameters. The nearly-isotonic regression interpolates between the identity estimator
θ̂id = y and the isotonic regression θ̂

K
↑
n
.

the isotonic regression can be much worse than that of the identity estimator,
which coincides with σ2/n (see Section 3.2). Indeed, we can choose a 2-piecewise

monotone vector θ∗ ∈ K↑
n/2×K↑

n/2 with arbitrarily large �2-misspecification er-

ror. If we choose an intermediate value of λ, the nearly-isotonic regression seems
to fit to the true parameter. This suggests the adaptation property to piecewise
monotone vectors.

1.1. Summary of theoretical results

In this paper, we investigate the adaptation property of the nearly-isotonic
regression estimators defined in (3).

In the monotone regression setting (i.e., m = 1), it is known that the isotonic

regression estimator θ̂K↑
n
achieves the risk bound

1

n
Eθ∗‖θ̂K↑

n
− θ∗‖22 ≤ C

(
σ2V(θ∗)

n

)2/3

+
Cσ2 log en

n
,

where V(θ) = θn − θ1 is the total variation of the monotone vector θ. It is also
known that the rate O((σ2V/n)2/3) is minimax optimal under the assumption
that θ∗ is monotone and V(θ∗) ≤ V (Zhang 2002). Hence, a natural question is
whether a similar rate can be achieved in piecewise monotone regression.

In Section 3.1, we provide the minimax lower bound over the class of piecewise
monotone vectors. Let Θn(m,V) be the set of m-piecewise monotone vectors
whose “upper” total variations are bounded by V (a precise definition is provided
in Section 3.1). Then, the minimax risk over Θn(m,V) is bounded from below
by a constant multiple of

max

{(
σ2V
n

)2/3

,
σ2m

n
log

en

m

}
.

In Section 5, we construct a concrete (but not computationally efficient) esti-
mator that adaptively achieves this rate, and hence this lower bound is tight in
the sense of the order in n,m, and V . Intuitively, this suggest that the cost of

not knowing the true partition is of order O(σ
2m
n log en

m ).
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In Section 4, we provide the following risk bound for the nearly-isotonic
regression estimator (3). A precise statement is given in Corollary 4.12.

Claim 1.2. Let θ∗ be a piecewise monotone vector on a partition Π = (A1, A2,
. . . , Am). Suppose that the following assumptions hold:

(a) The partition is equi-spaced: |A1| = |A2| = · · · = |Am| (= n
m ).

(b) For each segment Aj , θ
∗
Aj

is monotone and the total variation is bounded

as V(θ∗Aj
) ≤ V/m.

(c) θ∗Aj
satisfies an appropriate “growth condition” for each j = 1, . . . ,m.

Then, the estimator (3) with optimally tuned parameter λ satisfies the following
risk bound:

1

n
Eθ∗‖θ̂λ − θ∗‖22 ≤ C

{(
σ2V log en

n

)2/3

+
σ2m

n
log

en

m

}
. (4)

The above claim is obtained as a corollary of a more general risk bound in
Section 4. In the above statement, we make somewhat restrictive assumptions.
Here, (a) and (b) are introduced just for the sake of notation simplicity, whereas
(c) is an essential assumption. If we assume only (a) and (b), the rate that ap-
peared in (4) is minimax optimal up to a logarithmic multiplication factor.
However, we require an extra growth condition (c), which seems to be unavoid-
able for the estimator (3). We will provide a precise definition of the growth
condition in Section 4.3.

1.2. Organization

The rest of this paper is organized as follows. In Section 2, we give a brief
literature review on the shape restricted regression and regularization based es-
timators and relate our theoretical results to previous work. We provide lower
bounds on the risks in the piecewise monotone regression problem in Section 3.
In Section 4, we describe our main results on the risk upper bounds for the
nearly-isotonic regression estimator and its constrained form variant. In partic-
ular, a precise statement of Claim 1.2 in the above is provided in Section 4.3. In
Section 5, we discuss the attainability of the minimax lower bound; herein, we
provide a concrete example of a model selection-based estimator that achieves
the optimal rate. Furthermore, we present some numerical examples in Section 6.
Finally, we present our conclusion in Section 7. We have also included appen-
dices which contain additional numerical examples on two-dimensional signals,
explanations of algorithms, and all proofs of the theoretical results.

1.3. Notation

Throughout this paper, we assume that y = θ∗ + ξ is distributed according to
an isotropic normal distribution N(θ∗, σ2In), where θ∗ ∈ R

n is the true mean
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parameter of interest and ξ ∼ N(0, σ2In) is the noise vector. The symbol Eθ∗

denotes the expectation with respect to y.
We sometimes denote by C an absolute positive constant whose value may

vary.
For any θ ∈ R

n, we define the total variation V(θ) and the lower total varia-
tion V−(θ) by

V(θ) :=
n−1∑
i=1

|θi − θi+1| and V−(θ) :=
n−1∑
i=1

(θi − θi+1)+,

where (z)+ := max{z, 0} for any z ∈ R. For example, if θ is monotone non-
decreasing, then V(θ) = θn − θ1 and V−(θ) = 0. In this paper, the mean-

ing of subscripts of θ depends on the context (e.g., θi, θA, θ̂λ, and θ̂K↑
n
). If

A = {τ, τ + 1, . . . , τ + J − 1} is a connected subset of [n], we denote by θA a
sub-vector (θτ , θτ+1, . . . , θτ+J−1)

� ∈ R
J . We also denote by VA(θA) the total

variation of θA.

2. Related work

There are two classes of estimators that are closely related to the nearly-isotonic
regression (3): the isotonic regression and the fused lasso.

As we mentioned above, the isotonic regression is an instance of shape re-
stricted regression. Many existing estimators in shape restricted regression can
be formulated as least squares estimators (denoted by θ̂K) onto closed convex
sets (denoted by K). Examples include, but not limited to, the isotonic re-
gression, the isotonic regression in two-dimensional grid or more general partial
orders (see e.g., Robertson and Wright (1975) and Kyng et al. (2015)), and
convex regression (Hildreth 1954).

Recently, researchers have developed two important techniques for analyzing
risk behaviors of least squares estimators. First, Chatterjee (2014) proved that

the Euclidean norm ‖θ̂K−θ∗‖2 is tightly concentrated around a certain quantity
defined by the localized Gaussian width. As applications of Chatterjee’s method,
non-asymptotic upper bounds that have similar rates to the minimax risks have
been proved for the isotonic regression (Chatterjee 2014, Bellec 2018), the multi-
isotonic regression on two or more high dimension (Chatteejee et al. 2018, Han
et al. 2019), the multi-dimensional convex regression (Han and Wellner 2016),
and the constrained form trend filtering estimator (Guntuboyina et al. 2020). See
also Section 2.2 in Bellec (2018) for a related result. Second, risk bounds based
on the statistical dimension of the tangent cone of K has been developed by
Oymak and Hassibi (2016) and Bellec (2018). This technique is useful because it
takes into account the facial structure of K, which leads to risk bounds that are
adaptive to low dimensional sub-structures. It has been shown that some least
squares estimators are adaptive to piecewise constant vectors: for example, the
isotonic regression (Bellec 2018) and the multi-isotonic regression (Chatteejee
et al. 2018, Han et al. 2019). In particular, for the one-dimensional isotonic
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regression, Chatterjee et al. (2015) and Bellec (2018) proved the following oracle
inequality

1

n
Eθ∗‖θ̂K↑

n
− θ∗‖22 ≤ inf

θ∈K↑
n

{
1

n
‖θ − θ∗‖22 +

σ2k(θ)

n
log

en

k(θ)

}
, (5)

where k(θ) is the number of constant pieces of θ. If θ∗ is monotone and k(θ∗)
is small, the right-hand side can be much smaller than the worst-case rate of
O((σ2V/n)2/3). However, the first term in the right-hand side can become arbi-
trarily large if θ∗ is not included in K↑

n.
The fused lasso (Tibshirani et al. 2005), also known as the total variation

regularization (Rudin et al. 1992), is a penalized estimator defined as

θ̂FL,λ = argmin
θ∈Rn

{
1

2
‖y − θ‖22 + λ

n−1∑
i=1

|θi − θi+1|
}
, (6)

where λ ≥ 0 is the tuning parameter. The fused lasso poses the penalty whenever
θi �= θi+1, whereas the penalty of the nearly-isotonic regression (3) activates only
if θi > θi+1. Theoretical risk bounds for the fused lasso have been studied by
Mammen and van de Geer (1997), Dalalyan et al. (2017), Lin et al. (2017), and
Guntuboyina et al. (2020). In particular, Guntuboyina et al. (2020) showed an
oracle inequality of the following form:

1

n
Eθ∗‖θ̂FL,λ∗ − θ∗‖22

≤ inf
θ∈Rn

{
1

n
‖θ − θ∗‖22 + C

σ2k(θ)

n
log

en

k(θ)
+ CΔFL(θ)

}
, (7)

where λ∗ is an optimally tuned parameter. One can control the quantity ΔFL(θ)
by assuming a mild regularity condition on θ∗ so that the inequality (7) recovers
the minimax rate for the piecewise constant vectors (see e.g., Gao et al. (2017)).
However, even if θ∗ is a monotone vector, (7) does not recover the rate of the
isotonic regression (5) because ΔFL(θ) becomes zero if and only if θ is just a
constant vector.

Our risk bound for the nearly-isotonic regression in Section 4.2 fills the gap
between the above risk bounds for the isotonic regression and the fused lasso.
We will show an oracle inequality of the following form:

1

n
Eθ∗‖θ̂NI,λ∗ − θ∗‖22

≤ inf
θ∈Rn

{
1

n
‖θ − θ∗‖22 + C

σ2k(θ)

n
log

en

k(θ)
+ CΔNI(θ)

}
.

Like in the case of the fused lasso (7), this inequality provides a meaningful risk
bound even if we cannot approximate θ∗ by a monotone vector. Furthermore,
ΔNI(θ) becomes zero for any monotone vector θ ∈ K↑

n. Hence, our result can
exactly recover the rate achieved by the isotonic regression (5).
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3. Lower bounds

In this section, we provide lower bounds for the risk in one-dimensional piecewise
monotone regression.

3.1. Minimax lower bound

We are interested in the lower bound for the minimax risk defined as

inf
θ̂

sup
θ∗∈Θ

1

n
Eθ∗‖θ̂ − θ∗‖22,

where Θ ⊂ R
n is a set of piecewise monotone vectors, and the infimum is taken

over all (measurable) estimators θ̂ : Rn → R
n. In particular, for 1 ≤ m ≤ n,

we consider the class of m-piecewise monotone vectors with a bounded total
variation that is defined as follows.

Definition 3.1. Let n ≥ 2 and 1 ≤ m ≤ n. For any V > 0, let Θ̃n(m,V) denote
the set of (at most) m-piecewise monotone vectors such that the upper total
variation is bounded by V . In other words, a vector θ ∈ R

n is an element of
Θ̃n(m,V) if and only if the following conditions hold:

(i) θ is piecewise monotone on a connected partition Π = {A1, . . . , Am∗} of
[n] whose cardinality |Π| = m∗ is not larger than m.

(ii) There exist numbers V1,V2, . . . ,Vm∗ such that
∑m∗

i=1 Vi = V , Vi ≥ 0, and
V(θAi) ≤ Vi for all i = 1, . . . ,m∗.

In addition, we also define Θn(m,V) as the set of m-piecewise monotone vectors
such that the total variations for all pieces are uniformly bounded by V/m. That
is, Θn(m,V) is obtained by replacing (ii) by the following condition:

(ii)’ V(θAi) ≤ V/m for all i = 1, . . . ,m∗.

First, we consider θ∗ is piecewise monotone on a known partition Π∗ =
{A1, A2, . . . , Am∗} and that the total variation of the sub-vector θ∗Ai

is bounded
as V(θ∗i ) ≤ Vi for each i = 1, 2, . . . ,m∗. Then, the problem is decomposed into
m∗ independent subproblems of estimating monotone vectors θ∗i . The minimax
risk lower bound for monotone vectors has been proved by Zhang (2002) and
Chatterjee et al. (2015). For simplicity in the notation, we assume here that
ni = |Ai| ≥ 2 for all i = 1, 2, . . . ,m. The minimax risk can be written as

inf
θ̂i

sup
θ∗
Ai

∈K↑
Ai

:

V(θ∗
i )≤Vi

1

ni
Eθ∗

Ai
‖θ̂i − θ∗i ‖22 ≥ C1

(
σ2Vi

ni

)2/3

for all i = 1, . . . ,m. (8)

Hence, the minimax risk over Θ̃n(m,V) is clearly bounded from below by

C1

m∗∑
i=1

ni

n

(
σ2Vi

ni

)2/3

. (9)
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If the partition Π∗ is known, then this convergence rate can be obtained by
concatenating the least squares estimators on all pieces. By Jensen’s inequality,
the quantity (9) is not larger than (σ2

∑
i Vi/n)

2/3.
In the general setting, we have to deal with unknown partitions. The following

proposition gives the lower bound over the class of piecewise monotone vectors
in Definition 3.1.

Proposition 3.2. Let n ≥ 3, 3 ≤ m ≤ n, and V > 0. Suppose that Θ is either
Θ̃n(m,V) or Θn(m,V) in Definition 3.1. Then, for any estimator θ̂ : Rn → R

n,
we have the following lower bound:

sup
θ∗∈Θ

1

n
Eθ∗‖θ̂ − θ∗‖22 ≥ Cmax

{(
σ2V
n

)2/3

,
σ2m

n
log

en

m

}
, (10)

where C > 0 is a universal constant.

It remains to verify that the lower bound (10) is tight. Thus, in Section 5,
we will construct an estimator that adaptively achieves a similar rate.

3.2. Lower bound of isotonic regression with misspecified partitions

Suppose that θ∗ is an m-piecewise monotone vector. As we mentioned in the
previous subsection, if we know the true partition on which θ∗ is monotone,
the least squares estimator can achieve the rate shown in (9). Here, we consider
what happens if we underestimate the true number of the pieces.

We consider the risk behavior of the isotonic regression θ̂K↑
n
, which corre-

sponds to the least squares estimator for the underestimated number of pieces
as m = 1. If the true number of pieces is larger than or equal to two, θ∗ may
not be contained in K↑

n. Recall that dist(θ
∗,K↑

n) is the �2-misspecification error
against the set of monotone vectors. Bellec (2018) showed that the isotonic re-
gression is robust against a small �2-misspecification, that is, if dist(θ∗,K↑

n) ≤ ε,
then

1

n
Eθ∗‖θ̂K↑

n
− θ∗‖22 ≤ ε2 +

σ2k(θ̄)

n
log

en

k(θ̄)
,

where k(θ̄) is the orthogonal projection of θ∗ onto K↑
n. Conversely, if the �2-

misspecification error is large, we see that the isotonic regression can have an
arbitrarily large risk.

Proposition 3.3. There is a positive number t = tn,σ2 that depends on n and
σ2 such that if the true parameter θ∗ satisfies dist(θ∗,K↑

n) > t, then the MSE
of the isotonic regression is bounded from below as

1

n
Eθ∗‖θ̂K↑

n
− θ∗‖22 > σ2.

In this case, the isotonic regression has a strictly larger MSE than that of the
identity estimator θ̂id = y.
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We can easily check that there is a 2-piecewise monotone vector with an
arbitrarily large �2-misspecification error. To see this, let θ∗ ∈ R

2n be a piecewise
constant vector defined as θ∗i = M > 0 for i = 1, . . . , n and θ∗i = 0 for i =

n+ 1, . . . , 2n. Then, it is easy to see that dist(θ∗,K↑
2n) =

√
nM2/2 diverges as

M → ∞. Figure 2 shows an example of a 2-piecewise monotone vector θ∗ such
that the isotonic regression has a larger squared loss value than the identity
estimator.

4. Risk bounds for nearly-isotonic regression

In this section, we develop the risk bound for the nearly-isotonic regression
estimator (3). Proofs of all the theorems and propositions in this section are
presented in Appendix D.

4.1. Risk bounds for constrained estimators

Before considering the original version of the nearly-isotonic regression (3), we

consider the performance of the constrained form nearly-isotonic regression θ̂V
defined by the following constrained optimization problem:

minimize ‖y − θ‖22 subject to

n−1∑
i=1

(θi − θi+1)+ ≤ V , (11)

where V ≥ 0 is the tuning parameter. By the fundamental duality theorem in
convex optimization, there exists a Lagrange multiplier λV ≥ 0 such that the
regularization type formulation (3) admits the same solution θ̂λV = θ̂V . Hence,

the solution path of penalized estimators {θ̂λ : λ ≥ 0} and that of constrained

estimators {θ̂V : V ≥ 0} are equivalent. However, the properties of estimators
with fixed values of λ ≥ 0 and V ≥ 0 can be different in the following sense:

• From a computational perspective, calculating the constrained estima-
tor (11) for a given V ≥ 0 is more difficult than the regularization esti-
mator (3). For the regularization estimator (3), we can use the Modified
Pool Adjacent Violators Algorithm (Modified PAVA) proposed by Tib-
shirani et al. (2011), which outputs the solution path for every λ ≥ 0.

In particular, given λ ≥ 0, we can always obtain an exact solution θ̂λ.
However, to the best of our knowledge, there are no practical algorithms
that obtain an exact solution for the constrained problem (11) that run as
fast as the algorithms for the penalized problem (3). We present detailed
explanations for the algorithms in Section A.

• From a statistical perspective, the correspondence between tuning param-
eters λ and V is not deterministic (i.e., it depends on the realization of
the data y). For this reason, a risk bound that is obtained for one of (3)
or (11) cannot be directly applied to the other.
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Fig 3. Illustration of the knot signs defined in (12). In this example, θ is assumed to be
k-piecewise constant with k = 8. The corresponding signs are given as (w1, w2, . . . , w8, w9) =
(0, 0, 0, 1, 0, 1, 1, 0, 0). Moreover, if we assume |A1| = |A2| = · · · = |A8|, the quantity M(θ)
defined in (13) is given as M(θ) = 1

|A4| +
1

|A5| +
1

|A6| +
1

|A8| = 4k
n
.

We show the main results on the adaptation property to piecewise monotone
vectors in terms of sharp oracle inequality.

Before proceeding, we introduce some notations. Suppose that θ ∈ R
n is

piecewise constant on a connected partition Πconst = {A1, . . . , Ak} of [n]. We
denote by k(θ) := |Πconst| the number of pieces in which θ becomes constant.
That is, there are integers 1 = τ1 < · · · < τk+1 = n + 1 such that (i) Ai =
{τi, τi + 1, . . . , τi+1 − 1} for i = 1, . . . , k and (ii) for any i ∈ [k], there exists
ti ∈ R such that θj = ti for all j ∈ Ai. We define the sign wi ∈ {0, 1} associated
with each knot τi (i = 1, . . . , k + 1) as

w1 = wk+1 = 0 and

wi =

{
1 (ti−1 > ti)

0 (ti−1 < ti)
for i = 2, . . . , k. (12)

In other words, wi = 1 if and only if the order violation θj−1 > θj occurs at
j = τi. See Figure 3 for the graphical illustration. Then, we define M(θ) as

M(θ) :=

k∑
j=2

max

{
1

|Aj |
,
k

n

}
1{wj−1 �=wj}. (13)

M(θ) determines the non-monotonicity of a piecewise constant vector θ. If θ is
m-piecewise monotone, then it is clear that M(θ) ≤ 2(m− 1). In particular, for
any monotone vector θ, we have M(θ) = 0. Based on these notations, we have
the following sharp oracle inequality.

Theorem 4.1. For any θ∗ ∈ R
n, the constrained nearly-isotonic regression (11)

satisfies the following oracle inequality:

1

n
Eθ∗‖θ̂V − θ∗‖22

≤ inf
θ∈R

n:
V−(θ)=V

{
1

n
‖θ − θ∗‖22 + Cσ2 k(θ)

n
log

en

k(θ)
+ Cσ2M(θ)

k(θ)
log

en

k(θ)

}
. (14)
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Moreover, for any η ∈ (0, 1), we have

1

n
‖θ̂V − θ∗‖22

≤ inf
θ∈R

n:
V−(θ)=V

{
1

n
‖θ − θ∗‖22 + Cσ2 k(θ)

n
log

en

k(θ)
+ Cσ2M(θ)

k(θ)
log

en

k(θ)

}

+
4σ2 log η−1

n
(15)

with probability at least 1− η.

The following risk bound for the best choice of the tuning parameter V ≥ 0
is an immediate consequence of Theorem 4.1.

Corollary 4.2. Suppose θ∗ ∈ R
n. Choose V∗ ≥ 0 that minimizes the upper

bound in (14) (thus, V∗ depends on the true parameter θ∗). Then, we have

1

n
Eθ∗‖θ̂V∗ − θ∗‖22

≤ inf
θ∈Rn

{
1

n
‖θ − θ∗‖22 + Cσ2 k(θ)

n
log

en

k(θ)
+ Cσ2M(θ)

k(θ)
log

en

k(θ)

}
. (16)

Also, choosing V := V∗ or V := V−(θ
∗), we have

1

n
Eθ∗‖θ̂V − θ∗‖22 ≤ Cσ2

{
k(θ∗)

n
log

en

k(θ∗)
+

M(θ∗)

k(θ∗)
log

en

k(θ∗)

}
. (17)

Remark 4.3. We briefly comment on the proof of Theorem 4.1 and Corol-
lary 4.2. A key ingredient is to obtain a bound on the statistical dimension
(Amelunxen et al. 2014) of the tangent cone of the constraint set {θ ∈ R

n :
V−(θ) ≤ V}. This methodology was first developed for the isotonic regression
and the convex regression by Bellec (2018). In particular, our approach is in-
spired by the analysis of the constrained trend filtering estimators by Guntuboy-
ina et al. (2020). See Appendix D for detailed proofs.

By restricting the region over which the infimum in (16) is taken, we have
the oracle inequality for monotone vectors

1

n
Eθ∗‖θ̂V∗ − θ∗‖22 ≤ inf

θ∈K↑
n

{
1

n
‖θ − θ∗‖22 + Cσ2 k(θ)

n
log

en

k(θ)

}
,

which recovers the existing results on the isotonic regression (Chatterjee et al.
2015, Bellec 2018) up to a constant multiplicative factor.

To understand the general upper bound in (16), we have to control the quan-
tity M(θ) defined in (13). To this end, we consider the minimal length condition;
we say that θ ∈ R

n satisfies the minimal length condition for a constant c > 0
if it satisfies

min{|Ai| : 1 ≤ i ≤ k, wi �= wi+1} ≥ cn

k
, (18)
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where the partition Πconst = {A1, A2, . . . , Ak} and the signs wi (i = 1, . . . , k+1)
are defined as in (13). Intuitively, a signal θ ∈ R

n is well approximated by
another signal that satisfies the minimal length condition if θ has “moderate
slopes” around the order-violating jumps. For further discussion on such growth
conditions, see Section 4.3.

Based on the minimal length condition, we have the following result from
Theorem 4.1.

Corollary 4.4. Suppose that θ∗ ∈ R
n satisfies the minimal length condi-

tion (18) for a constant c > 0. Assume that θ∗ is k(θ∗)-piecewise constant
and m(θ∗)-piecewise monotone. Then, the constrained nearly-isotonic regres-
sion (11) satisfies

1

n
Eθ∗‖θ̂V − θ∗‖22

≤ (V−(θ
∗)− V)2 + Cσ2

(
k(θ∗)

n
+

2c−1(m(θ∗)− 1)

n

)
log

en

k(θ∗)
. (19)

In particular, if the tuning parameter V is chosen so that

(V−(θ
∗)− V)2 ≤ C ′ k(θ

∗)

n
log

en

k(θ∗)

for a positive constant C ′, we have

1

n
Eθ∗‖θ̂V − θ∗‖22 ≤ C ′′σ2

(
k(θ∗)

n
+

2c−1(m(θ∗)− 1)

n

)
log

en

k(θ∗)
,

where C ′′ is a positive constant.

Remark 4.5. If θ is k-piecewise constant and m-piecewise monotone, it is
always true that k ≥ 2(m− 1). Hence, the inequality (19) can be simplified as

1

n
Eθ∗‖θ̂V − θ∗‖22 ≤ (V−(θ

∗)− V)2 + C(c)σ2 k(θ
∗)

n
log

en

k(θ∗)
,

where C(c) > 0 is a constant that depends on c alone.

Remark 4.6. We comment on the minimal length condition and the relation
to estimation of piecewise constant vectors. We conjecture that the minimum
length condition (18) is essentially unavoidable for the risk bound of the nearly-
isotonic regression due to the following analogy to the fused lasso. The minimal
length condition for the fused lasso is considered by Guntuboyina et al. (2020).
For the fused lasso, Fan and Guan (2018) showed that the minimum length
condition cannot be removed in the sense that there is a lower bound depending
on the minimum length Δ = mini |Ai| (see also the experimental result by
Guntuboyina et al. (2020), Remark 2.5).
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4.2. Risk bounds for penalized estimators

In this section, we consider the risk bounds for the nearly-isotonic regression (3)
in the original penalized form by Tibshirani et al. (2011).

Theorem 4.7. For any λ ≥ 0, let θ̂λ denote the nearly-isotonic regression
estimator defined in (3). Let θ∗ and θ be any vectors in R

n. Then, there exists
a tuning parameter λ∗ = λ∗(θ) ≥ 0 that depends only on θ such that, for any
λ ≥ λ∗, we have the following risk bound:

1

n
Eθ∗‖θ̂λ − θ∗‖22 ≤ 1

n
‖θ − θ∗‖22 + Cσ2 k(θ)

n
log

en

k(θ)
+ Cσ2M(θ)

k(θ)
log

en

k(θ)

+ 3(λ− λ∗)2M(θ), (20)

where M(θ) and k(θ) are defined similarly as in Theorem 4.1. Furthermore, for
any η ∈ (0, 1), the inequality

1

n
‖θ̂λ − θ∗‖22 ≤ 1

n
‖θ − θ∗‖22 + 2Cσ2 k(θ)

n
log

en

k(θ)
+ 2Cσ2M(θ)

k(θ)
log

en

k(θ)

+ 6(λ− λ∗)2M(θ) +
16σ2 log η−1

n
(21)

holds with probability 1− η.

We comment on some direct consequences of Theorem 4.7. In this theorem,
λ∗(θ) is defined as a function of θ. To understand the risk bound (20), we
consider the choice of the tuning parameter λ ≥ 0 that depends on the true
parameter θ∗. Let θ̄ be a vector that minimizes the quantity

1

n
‖θ − θ∗‖22 + Cσ2 k(θ)

n
log

en

k(θ)
+ Cσ2M(θ)

k(θ)
log

en

k(θ)

among all θ ∈ R
n. Then, taking λ∗∗ := λ∗(θ̄), we have the following oracle

inequality which has the same form as (16):

1

n
Eθ∗‖θ̂λ∗∗ − θ∗‖22

≤ inf
θ∈Rn

{
1

n
‖θ − θ∗‖22 + Cσ2 k(θ)

n
log

en

k(θ)
+ Cσ2M(θ)

k(θ)
log

en

k(θ)

}
.

Moreover, if λ := λ∗∗ or λ := λ∗(θ∗), we have

1

n
Eθ∗‖θ̂λ − θ∗‖22 ≤ Cσ2

{
k(θ∗)

n
log

en

k(θ∗)
+

M(θ∗)

k(θ∗)
log

en

k(θ∗)

}
.

Again, if we assume the minimal length condition (18) on θ∗, we obtain a sim-
plified bound of the form (17).

We move on to discuss a precise expression of λ∗(θ) in Theorem 4.7. The
next proposition provides an upper bound for λ∗(θ).
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Proposition 4.8. Suppose θ ∈ R
n. Let Πconst(θ) := {A1, A2, . . . , Ak} be the

constant partition of θ, and w1, w2, . . . , wk+1 be the associated signs defined
in (12). Then, there is a universal constant C > 0 such that λ∗(θ) in Theorem 4.7
is bounded from above by

Cσmin

⎧⎨
⎩ ‖θ‖2

V−(θ)
,

(
k∑

i=1

1{wi �=wi+1}
|Ai|

)−1/2
⎫⎬
⎭
√(

k(θ) +
nM(θ)

k(θ)

)
log

en

k(θ)
.

The purpose of the choice of λ∗ in Proposition 4.8 is to derive the theoreti-
cal convergence rate in terms of k(θ) and M(θ). However, different choices are
possible if we are interested in other theoretical aspects (e.g., estimation con-
sistency for changepoints). For the fused lasso estimator (6), several authors
have studied theoretical choices of tuning parameters that result in risk upper
bounds (Dalalyan et al. 2017, Lin et al. 2017, Guntuboyina et al. 2020).

Remark 4.9 (Example of parameter choice). Here, we provide an example
choice of the tuning parameter λ under a simple length condition. Let us assume
that (i) θ∗ is not globally monotone (i.e., M(θ∗) > 0) and (ii) |Ai| is of order
n/k, that is,

c1
n

k
≤ |Ai| ≤ c2

n

k
, i = 1, . . . , k

holds for some 0 < c1 < c2. Then, we can see that λ∗(θ∗) is bounded from above
by

C ′σ
√

n log en,

where C ′ is a constant that depends on C, c1, c2. For the fused lasso, the theo-
retical choice λ = O(σ

√
n log en) has been suggested by Dalalyan et al. (2017)

and Guntuboyina et al. (2020). For a detailed discussion, see Remark 2.7 by
Guntuboyina et al. (2020) and references therein.

Remark 4.10. In general, the choice of the tuning parameter that minimizes
the risk can be different from the theoretical suggestion. More importantly, we
cannot obtain the value of λ suggested in Proposition 4.8 because it depends on
the unknown true parameter θ∗ and the noise standard deviation σ. In practice,
there are two typical data-dependent choices of λ:

• Stein’s unbiased risk estimate: If we know σ or its estimate value σ̂,
we can reasonably choose a parameter λ by minimizing Stein’s unbiased
risk estimate (SURE)

SURE(λ) =
1

n
‖y − θ̂λ‖22 +

2σ̂2

n
d̂f(θ̂λ) + (constant). (22)

Here, d̂f(θ̂λ) := k(θ̂λ) is an unbiased estimate of the degrees of freedom.
See Tibshirani et al. (2011) for the derivation.

• Cross-validation:We can also apply the cross-validation when the model
(2) is interpreted as a discrete observation of a continuous signal. Specif-
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ically, suppose that the data is generated according to the following non-
parametric regression model:

yi = f∗(xi) + ξi, i = 1, . . . , n, (23)

where x1 < x2 < . . . < xn are given design points in [0, 1] and f∗ :
[0, 1] → R is an unknown piecewise monotone function. We define the

nearly-isotonic regression estimator f̂λ over the interval [0, 1] as follows:

First, we determine the values θ̂λ,i (i = 1, 2, . . . , n) by solving

θ̂λ ∈ argmin
θ∈Rn

{
1

2
‖y − θ‖22 + λ

n−1∑
i=1

(θi − θi+1)+
xi+1 − xi

}
. (24)

Then, we define f̂λ : [0, 1] → R by interpolation. For instance, one can out-

put a piecewise constant function so that f̂λ(xi) = θ̂λ,i. In this sense, given

a new design point xnew, we can predict the value of f∗(xnew) by f̂λ(x
new).

Hence, we can naturally apply the cross-validation in this situation.

4.3. Application to piecewise monotone vectors

To gain a deeper understanding of the adaptation property of the nearly-isotonic
regression, we study the risk bound under a more specific assumption. We define
the following moderate growth condition for piecewise monotone vectors.

Definition 4.11. Let n ≥ 2. We say that a monotone vector θ ∈ K↑
n satisfies

the moderate growth condition if

θi ≤ θ1 +
i− 1

n− 1
V(θ) for i = 1, 2, . . . , �n/2


and

θi ≥ θ1 +
i− 1

n− 1
V(θ) for i = �n/2
, �n/2
+ 1, . . . , n.

Figure 4 gives an illustration of the moderate growth condition. In words,
the signal θ ∈ R

n satisfying the moderate growth condition is not larger than
the linear signal in the left half of the domain, and not less than that in the
right half of the domain. Intuitively, the role of the moderate growth condi-
tion is to guarantee the minimal length condition (18) for a piecewise constant
approximation.

Suppose that the true signal θ∗ is piecewise monotone and every segment
satisfies the moderate growth condition. Then, the nearly-isotonic regression
achieves a nearly minimax convergence rate as follows.

Corollary 4.12. Suppose that the following assumptions hold:

(a) The partition is equi-spaced: |A1| = |A2| = · · · = |Am| (= n
m ).

(b) θ∗Aj
is monotone and V(θ∗Aj

) ≤ V/m for each j = 1, . . . ,m.
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Fig 4. Illustration of the moderate growth condition. Left: The plotted three signals are

monotone vectors in K↑
n with n = 20 and V(θ) = 1. The dotted line represents the linear

signal θlineari = i/n (i = 1, 2, . . . , n). The blue circles depict an example of a signal that

satisfies the moderate growth condition. That is, it is not larger than the linear signal θlineari

for 1 ≤ i ≤ 10, and not less than θlineari for 10 ≤ i ≤ 20. On the other hand, the orange
triangles depict a counterexample for this condition. Right: If θ satisfies the moderate growth
condition, there is a k-piecewise monotone vector such that the lengths of segments at both
ends are not less than k/n. See Appendix D.5 for a detailed explanation.

(c) θ∗Aj
satisfies the moderate growth condition for each j = 1, 2, . . . ,m.

Then, the estimator (3) with optimally tuned parameter λ satisfies the following
risk bound:

1

n
Eθ∗‖θ̂λ − θ∗‖22 ≤ Cmax

{(
σ2V log en

m

n

)2/3

,
σ2m

n
log

en

m

}
. (25)

The risk bound (25) achieves the minimax rate over Θn(m,V) in Propo-

sition 3.2 up to a multiplicative factor of log2/3 en
m . We should note that the

restrictive assumption (a) in Corollary 4.12 is employed merely for the sake of
simplicity of the proof. We may relax this assumption as

min
1≤i≤m

|Ai| ≥
c′n

m

for some c′ > 0.

5. Model selection based estimators

Here, we consider estimators obtained by model selection among all partitions
Π. The main purpose of this section is to discuss whether the minimax lower
bound in Proposition 3.2 can be achieved without any additional assumption
such as the moderate growth condition.

Given a connected partition Π = (A1, A2, . . . , Am) of [n], we write K↑
Π for

the set of piecewise monotone vectors on Π, i.e.,

K↑
Π := K↑

|A1| ×K↑
|A2| × · · · ×K↑

|Am|.
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Let θ̂Π denote the projection estimator onto K↑
Π. By definition, θ̂Π is obtained

by concatenating isotonic regression estimators defined in every segment.
If we know the true partition Π∗ on which θ∗ is piecewise monotone, then

the risk of the projection estimator θ̂Π∗ is bounded from above by

C

m∑
i=1

|Ai|
n

(
σ2VAi(θ∗Ai

)

|Ai|

)2/3

.

If the true partition is unknown, a natural idea is to select a data-dependent
partition Π̂ by a penalized selection rule:

Π̂ ∈ argmin
Π

{
‖y − θ̂Π‖22 + pen(Π)

}
. (26)

Here, pen(Π) is a positive penalty for the partition Π.
The penalized selection rules have been well studied in statistics. In partic-

ular, Birgé and Massart (2001) and Massart (2007) developed non-asymptotic
risk bounds for generic model selection settings in Gaussian sequence models.
Hereafter, we construct a penalized selection estimator in the spirit of Theorem
4.18 in Massart (2007).

Instead of selecting θ̂Π according to (26), we introduce the total variation
sieves. Namely, in addition to selecting partitions, we also select budgets of
piecewise total variations as follows. Let Π = (A1, A2, . . . , Am) be a connected
partition. For any vector V = (V1,V2, . . . ,Vm) with Vi ≥ 0 (i = 1, 2, . . .m), we
define the set of piecewise monotone vectors with bounded total variations as

K↑
Π(V) = K↑

Π(V1,V2, . . . ,Vm) := {θ ∈ K↑
Π : VAi(θAi) ≤ Vi for i = 1, 2, . . . ,m}.

Then, we define θ̂Π,V as the projection estimator onto K↑
Π(V). Next, we define

a countable set of vectors V as

V (m) := {(v(j1), v(j2), . . . , v(jm)) : (j1, j2, . . . , jm) ∈ N
m} ,

where v(j) := j3/2. Finally, we select a pair (Π̂, V̂) as the solution of the follow-
ing minimization problem:

min
Π

min
V∈V (|Π|)

{
‖y − θ̂Π,V‖22 + pen(Π,V)

}
. (27)

With a careful choice of the penalty term pen(Π,V), we have the following
result:

Theorem 5.1. There exists an absolute constant Cpen > 0 such that the fol-
lowing statement holds. For any pair (Π,V), define the penalty pen(Π,V) so
that

pen(Π,V) = Cpen

(
m∑
i=1

σ4/3|Ai|1/3V2/3
i + σ2m log

en

m

)
.
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Let (Π̂, V̂) be the minimizer in (27).

1

n
Eθ∗‖θ̂Π̂,V̂ − θ∗‖22

≤ min
Π

min
V∈V (|Π|)

{
3

n
dist2(θ∗,K↑

Π(V)) +
2

n
pen(Π,V)

}
+

256σ2

n
.

In particular, if θ∗ is piecewise monotone on Π = (A1, A2, . . . , Am), we have

1

n
Eθ∗‖θ̂Π̂,V̂ − θ∗‖22

≤ 2Cpen

⎧⎨
⎩

m∑
i=1

|Ai|
n

(
σ2(VAi(θ∗Ai

) + 1)

|Ai|

)2/3

+
σ2m

n
log

en

m

⎫⎬
⎭+

256σ2

n
. (28)

We emphasize that Theorem 5.1 does not require any additional assump-
tions on θ∗, e.g., the minimum length condition or the moderate growth condi-
tion introduced in the previous section. Therefore, it suggests the existence of a
penalized model selection estimator that achieves the minimax rate in Proposi-
tion 3.2. However, the estimator (27) is not practical for a computational reason
because it is obtained through the minimization over exponentially many pos-
sible partitions Π.

The dependence on the total variation of each segment in (28) is (VAi(θ∗Ai
)+

1)2/3 instead of (VAi(θ∗Ai
))2/3. The additional constant 1 is due to the mini-

mal resolution of the sieve. To establish a non-asymptotic risk bound for the
penalized model selection estimator without sieves (i.e., (26)) and remove the
dependence on the sieve resolution remains an open problem.

6. Simulations

We provide some numerical examples for piecewise monotone regression prob-
lems.

6.1. Dealing with inconsistency at boundaries

Before presenting the simulation results, we here explain a well-known practical
issue in the isotonic regression literature and a regularization method to cope
with it.

In the study of statistical estimation under monotonicity constraints, it is
known that the least squares estimator θ̂K↑

n
is inconsistent at the boundary

points (see e.g., Groeneboom and Jongbloed (2014) and Woodroofe and Sun
(1993)). A similar issue arises for the nearly-isotonic regression estimators. Since
the penalty term in (3) does not activate if the orders are not violated at the
boundary points (i.e., y1 < y2 or yn−1 < yn), the nearly-isotonic regression is
not robust against a negative noise at the left boundary or a positive noise at
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the right boundary. To overcome this issue, we consider the following boundary
correction regularization for the nearly-isotonic regression:

θ̂boundary,λ,μ = argmin
θ∈Rn

{
1

2
‖y − θ‖22 + λ

n∑
i=1

(θi − θi+1)+ + μ(θn − θ1)

}
, (29)

where μ > 0 is an additional tuning parameter. It can easily be checked that
the solution is equivalent to that of the ordinary nearly-isotonic regression (3)
applied to ỹ = (y1 + μ, y2 . . . , yn−1, yn − μ). Similar regularization methods for
isotonic regression have been studied by Chen et al. (2015), Wu et al. (2015)
and Luss and Rosset (2017).

6.2. Simulation data

Here, we evaluate the performance of the nearly-isotonic regression and re-
lated estimators on simulated data. According to the one-dimensional regression
model (23), we generated data with equi-spaced design points xi = (i − 1)/n
(i = 1, 2, . . . , n). For the true function f∗, we consider m-piecewise monotone
functions defined as

f (m)(x) :=

m∑
j=1

f(mx− (j − 1))1Ij (x)

where f : [0, 1) → R is a given monotone function and Ij := [(j − 1)/m, j/m)
for j = 1, 2, . . . ,m. Following Meyer and Woodroofe (2000), we choose f from
the following two monotone functions:

fsigmoid(x) = e16x−8/(1 + e16x−8),

fcubic(x) = (2x− 1)3 + 1.

Figure 2 shows an example of f = fsigmoid and m = 2. It is worth noting that
the former sigmoidal function fsigmoid satisfies the moderate growth condition
(see Definition 4.11), whereas the latter cubic function fcube does not. Hence, for

the case of piecewise sigmoidal functions f
(m)
sigmoid, the minimax rate of O(n−2/3)

is achieved by both the nearly-isotonic regression and the fused lasso (see Corol-
lary 4.12 above and Corollary 2.8 by Guntuboyina et al. (2020)).

In our experiments, the size n of the signal is chosen from {26, 27, . . . , 210}.
The noise standard deviation σ is assumed to be known and fixed to 0.25. We
evaluated the MSE for the following four estimators:

• Neariso: The nearly-isotonic regression (3).
• NearisoBC: The nearly-isotonic regression with boundary correction (29)
• Fused: The fused lasso (6).
• PO: The projection estimator with the partition oracle, i.e., the projection

estimator onto K↑
Π provided with the true partition Π.
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Fig 5. The risks of nearly-isotonic type estimators on simulated data. The upper line
shows log-log plots of the MSEs versus n. The lower line shows the difference of the MSEs
between regularization type estimators (i.e., Neariso NearisoBC and Fused) and the projection
estimator with the oracle partition choice (PO).

For Neariso and Fused, the tuning parameter λ is selected by generalized Cp

criteria (i.e., minimizing SURE (22)). For NearisoBC, the tuning parameters
(λ, μ) are selected by a similar criterion. To estimate the MSE, we generated
500 replications of the data and calculated the average value of the squared loss
1
n‖θ̂ − θ∗‖22.

Figure 5 presents the results for m = 2, 4 and f = fsigmoid, fcubic. The upper
line shows log-log plots of the MSE versus n. In each setting, the three regu-
larization based estimators (i.e., Neariso NearisoBC and Fused) performed as
well as the ideal estimator PO, whereas the former three estimators do not use
the information about the true partition. The risks of PO are well fitted by lines
of slopes of −2/3, which means that the speed of the convergence is about the
minimax optimal rate of O(n−2/3).

Next, we provide more detailed comparisons of regularization based estima-
tors. The lower line in Figure 5 shows the difference of MSEs from that of PO.
For piecewise sigmoidal functions, NearisoBC and Fused performed better than
Neariso. Notably, in the case of m = 2, the risks of Fused were even better
than PO for large values of n. A possible reason for the better performance of the
fused lasso is that the sigmoidal function can be well approximated by a piece-
wise constant function near the boundaries. On the other hand, for piecewise
cubic functions, Neariso performed slightly better than the other two estima-
tors for small values of n.
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6.3. Geological data

We conducted experiments on GPS data related to a seismological phenomenon
reported by Roggers and Dragert (2003). The aim here is to investigate the
performance of the nearly-isotonic type estimators on real-world data in which
piecewise monotone approximations have already been justified in the previ-
ous work. For the signal y, we used the difference of the east-west components
of GPS measurements between two observatories, which are located in Victo-
ria (British Columbia, Canada) and Seattle (United States). The GPS data
is provided by Melbourne et al. (2018). The top panel in Figure 6 shows the
plot. The data period starts on January 1, 2010, and ends on December 2,
2017. After removing missing records, the size of the signal is n = 2885. The
increasing trend of the signal is considered to be caused by the subduction pro-
cess at the plate boundary. We can also see periodic reversals in the signal,
and the entire signal may be approximated by a piecewise monotone signal.
Such reversals may be related to the seismological phenomenon so-called the
episodic tremor and slip. According to Roggers and Dragert (2003), such slip
events were observed in every 13 to 16 months in their data taken from 1997 to
2003.

GPS data contains several anomalous values. For the signal y considered
above, most of the values yi are between 20 and 50, except for a single out-
lier y2344 = 139.34. The behaviors of the estimators are extremely affected by
the existence of such outliers. In our situation, we can manually remove the
anomalous value (denoted by ỹ). However, it is often difficult to distinguish
outliers in practical situations. From this perspective, we also considered the
robust M -estimation version of the nearly-isotonic regression defined as (34)
with L(θ; y) =

∑n
i=1 �δ(θi − yi). Here, �δ is the Huber loss:

�δ(u) :=

⎧⎪⎨
⎪⎩

1

2
u2 (|u| ≤ δ)

δ|u| − 1

2
δ2 (|u| > δ)

,

which is commonly used in the robust regression literature.
We applied the nearly-isotonic regression (3) and its robust variant to the

signals y and ỹ in the above. The tuning parameters λ were determined by the
5-fold cross-validation, and δ in the Huber loss was fixed as δ = 0.01.

First, we consider the case where the outlier is removed manually. The sec-
ond panel in Figure 6 shows the result for the cross-validated nearly-isotonic
regression. The vertical lines denote the locations of downward jumps in the es-
timators. We can see that the period of jump clusters is about 12 to 14 months,
which is close to that of the seismological slip events suggested by Roggers and
Dragert (2003).

Next, we consider the case where the signal contains an outlier. In this case,
the value of the squared loss largely depends on the error at the coordinate
of the outlier. Then, the cross-validation may choose a large tuning parameter,
and the resulting estimator becomes close to a monotone signal. The third panel
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Fig 6. Nearly-isotonic type estimators applied to GPS data. See the text for details.

in Figure 6 shows that the number of downward jumps is considerably less
than the number that is expected from the known frequency of the slip events.
Conversely, the fourth panel in Figure 6 shows that the robust version of the
nearly-isotonic regression outputs similar clusters of change points as in the
second panel.

7. Discussion

In this paper, we studied the problem of estimating piecewise monotone signals.
The classical isotonic regression estimator cannot be applied in this setting be-
cause of the existence of arbitrarily large downward jumps. We derived the
minimax risk lower bound over piecewise monotone signals with bounded up-
per total variations. The minimax rate is tight up to multiplicative constant
because it can be achieved by a (computationally inefficient) model selection
based estimator. Our main results show that the nearly-isotonic regression es-
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timator achieves this rate under an additional growth condition. An advantage
of the nearly-isotonic regression is that the estimator can be calculated effi-
ciently on arbitrary directed graphs by parametric max-flow algorithms. The
simulation results demonstrate that the nearly-isotonic regression has an al-
most similar convergence rate as the ideal estimator that knows the true parti-
tion.

7.1. Non-Gaussian noises

In this paper, we provided risk bound for the nearly-isotonic regression under
the assumption that the noise distribution is Gaussian. However, in practice,
this assumption is too restrictive. We here briefly discuss the risk bound with
non-Gaussian error distributions.

Suppose that ξ1, . . . , ξn are i.i.d. random variables with E[ξ1] = 0 and Var(ξ1)
= σ2. Then, we can see that the “expectation bound” (20) holds with a different
constant C ′ > 0. See Remark D.14 in the appendix for the key ingredients for
the derivation. On the other hand, the “high-probability bound” (21) does not
hold in general since it requires a more strong concentration property (i.e., the
Gaussian concentration).

7.2. Future directions

An interesting direction for future work is to investigate the optimal rate of
piecewise monotone regression on higher dimensional grids or general graphs.
Recently, several researchers have analyzed the risk bounds for the isotonic re-
gression estimators on two or more higher dimensional grid graphs (Chatteejee
et al. 2018, Han et al. 2019). It is natural to ask whether one can construct a
computationally efficient estimator that is adaptive to piecewise monotone vec-
tors on a given graph. We believe that the nearly-isotonic type estimator (32)
is a candidate. A major difficulty is to determine an appropriate graph topol-
ogy. Given a partial order � on a set V = [n], the corresponding isotonic re-
gression estimator is uniquely determined. However, there are many directed
acyclic graphs that correspond to partial order �. Hence, the graph topology
for the nearly-isotonic type estimators is not unique. To control the connectiv-
ity, it may be useful to introduce edge weightings proposed by Fan and Guan
(2018).

Another direction is to develop a model selection method for least squares
estimators over unbounded cones. We introduced sieves on the total variation in
Section 5 to construct an estimator that is adaptive to piecewise monotone vec-
tors. In practice, sieve-based methods can be computationally inefficient. Con-
versely, if the true vector θ∗ is monotone, the isotonic regression automatically
achieves the minimax rate with respect to the total variation. We conjecture
that it is also possible to select the least squares estimator θ̂Π without using
sieves. In particular, we leave it as an open question whether the adaptive risk
bound is achieved by the penalized selection rule of the form (26).
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Appendix A: Algorithms for nearly-isotonic estimators

In this section, we present algorithms for the nearly-isotonic regression and
related estimators and discuss their computational complexities. Note that the
main purpose of this section is to give a review of existing algorithms, and hence
most results presented in this section are not new (except for Proposition A.1).

A.1. Penalized estimators

Here, we introduce two algorithms to solve the penalized form nearly-isotonic
regression (3). In Section A.1.1, we introduce the solution path algorithm devel-
oped by Tibshirani et al. (2011). The advantage of the solution path algorithm

is that it outputs the solutions θ̂λ for every λ ≥ 0 simultaneously. However,
the solution path algorithm cannot be applied to the estimators with general
weights and graphs. In Section A.1.2, we provide another algorithm that out-
puts the exact solution for a single λ. The latter algorithm can be applied to
the nearly-isotonic type estimators defined on any weighted directed graphs.

A.1.1. One-dimensional problem

The modified pool adjacent violators algorithm (modified PAVA, Tibshirani
et al. (2011)) is the algorithm used to calculate the solution path for the prob-
lem (3). Here, we present a variant of the modified PAVA for the following
weighted version of the estimator:

θ̂λ = argmin
θ∈Rn

{
1

2
‖y − θ‖22 + λ

n∑
i−1

ci(θi − θi+1)+

}
, (30)

where ci > 0 (i = 1, 2, . . . , n − 1) are positive weight parameters. Letting ci =
(xi+1 − xi)

−1, this formulation covers the nearly-isotonic regression for general
increasing design points (24).

The derivation of Algorithm 1 is straightforward from the original paper of
Tibshirani et al. (2011). We should note that the validity of this algorithm
crucially depends on the property that the solution path is piecewise linear and
“agglomerative”. It is well known that the piecewise linearity of the solution path
holds for many classes of regularization estimators (Rosset and Zhu 2007). We

say that the solution path {θ̂λ}λ≥0 is agglomerative if it satisfies the following

condition: if θ̂λ,i = θ̂λ,j holds for some λ = λ0, then the same equality holds for
any λ ≥ λ0. For the constant weights (ci ≡ 1), such agglomerative property was
proved by Tibshirani et al. (2011). However, for general non-unitary edge weights
(ci �= 1), this need not be true. Here, we provide the following proposition to
ensure the agglomerative property for non-unitary edge weights.

Proposition A.1. The solution path of weighted nearly-isotonic regression (30)
is piecewise linear and agglomerative if the edge weights satisfy the following
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Algorithm 1: Modified Pool Adjacent Violators Algorithm (Tibshirani
et al. 2011)

Input: y ∈ R
n, c1, . . . , cn−1 > 0

Output: Set of finitely many breakpoints Λ = {λ0, λ1, . . . , λN}, solution path {θ̂λ}λ∈Λ

1 λ0 ← 0, θ̂λ0
← y

2 Let Π0 be the constant partition of θ̂λ0
. Below, the solution θ̂λi

is kept to be constant
on Πi.
for i = 1, 2, . . . do

3 Let k = |Πi−1|. Let Aj = {τj , τj + 1, . . . , τj+1 − 1} be the j-th element in the

partition Πi−1, and tj be the value of θ̂λi−1
on Aj (j = 1, 2, . . . , k).

4 Set s0 = sk = 0 and c0 = 0. Compute sj = 1{tj>tj+1} for j = 1, 2, . . . , k − 1.

5 Compute the slopes mj (j = 1, 2, . . . , k) by

mj =
cτj−1sj−1 − cτj+1−1sj

|Aj |
.

6 Compute δ by

δ = min
1≤j≤k−1

tj+1 − tj

mj −mj+1
.

7 If δ ≤ 0, then terminate.
8 λi ← λi−1 + δ.

9 Set θ̂λi
to be the piecewise constant vector whose values on Aj are tj +mjδ

(j = 1, 2, . . . , k).

10 Set Πi to be the constant partition of θ̂λi
.

end

concavity condition.

cj−1 + cj+1 ≤ 2cj for all j = 0, 1, . . . , n− 2, (31)

where we defined c0 := 0. In particular, this condition implies that Algorithm 1
outputs the exact solution path.

The condition (31) demands that cj can be written as cj = f(j) for some
concave function f : R≥0 → R≥0 with f(0) = 0 and f(x) > 0 for all x > 0. In
particular, for any i ≤ j ≤ k, we have

cj ≥
(k − j)ci + (j − i)ck

k − i

and

cj ≥
j

k
ck.

Proof sketch of Proposition A.1. We can prove the validity of Algorithm 1 by a
similar argument as Tibshirani et al. (2011) if we assume the piecewise linear-
ity and the agglomerative property. The piecewise linearity is already shown in
Rosset and Zhu (2007). Hence, it remains to prove the agglomerative property
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under the condition (31). To this end, we leverage the “agglomerative cluster-
ing condition” defined in Appendix D.6. In particular, we defer the details to
Remark D.25 as well as Remark D.27.

A.1.2. General graphs

Let G = (V,E) be a directed graph with V := [n]. Suppose that each edge
(i, j) ∈ E is equipped with a positive weight c(i,j) > 0. We define the generalized
nearly-isotonic regression as

θ̂G,λ = argmin
θ∈Rn

{
1

2
‖y − θ‖22 + λVG(θ)

}
(32)

where VG is a nearly-isotonic type penalty defined as

VG(θ) :=
∑

(i,j)∈E

c(i,j)(θi − θj)+. (33)

For any choices of G and c, VG becomes a convex function. Clearly, the lower
total variation V− is a special case where E = {(i, i+1) : i = 1, 2, . . . , n−1} and
c(i,i+1) ≡ 1. Thus, (32) can be regarded as a generalization of the nearly-isotonic
regression to general directed graphs.

The problem of the form (32) has been well studied in the optimization lit-
erature. In particular, we can see that solving (32) is equivalent to solving a
certain parametrized family of minimum-cut problems. For detailed explana-
tions of such an equivalence, see Obozinski and Bach (2016) and Chapter 8 in
Bach (2013). Hence, (32) can be solved by the parametric max-flow algorithm

(Gallo et al. 1989) that runs in O(n|E| log n2

|E| ). Conversely, it has been pointed

out by Mairal et al. (2011) that, for many practical instances, some simplified
variants of the parametric max-flow algorithm output the solution faster than
the original algorithm by Gallo et al. (1989). We remark that Hochbaum and
Queyranne (2003) also developed the relationship between the isotonic regres-
sion and the parametric max-flow algorithm.

Algorithm 2 shows the Divide-and-Conquer algorithm (Chapter 9 of Bach
(2013)) that solves (32). In the inner loop, the algorithm recursively solves
max-flow problems by defining smaller networks (Algorithm 3). See Figure 7 for
examples of networks used in the first two recursions in the algorithm.

A.1.3. General convex loss functions

In practice, we are often interested in general convex loss functions other than
the squared loss. Here, we consider a generalized problem of the following form:

θ̂ ∈ argmin
θ∈Rp

{L(θ; y) + λVG(θ)} , (34)
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Algorithm 2: Divide-and-Conquer algorithm for the generalized nearly-
isotonic regression 32

Input: y ∈ R
V , a directed graph G = (V,E) with positive edge weights {c(i,j)}, a

tuning parameter λ ≥ 0.
Output: The solution θ̂λ of (32)

1 Construct a flow network N by adding a source node s and a sink node t to the graph
G.

2 Compute θ̂λ = ProxλFN (y) according to Algorithm 3.

Algorithm 3: ProxλFN (y)

Input: A flow network N = (V ∪ {s} ∪ {t}, E, c), y ∈ R
V and λ > 0.

Output: Proximal operator ProxλFN (y).

1 Let α ← 1
|V | (

∑
i∈V yi − λFN (V )), where FN (V ) is the capacity of the edge (s, t).

2 if |V | = 1 then

return θ̂ = α
end

3 Find a subset A ⊆ V minimizing the function A �→ λFN (A)−
∑

i∈A yi + α|A|. Herein,
FN is the s-t cut function of the network N . This step is equivalent to solving the
max-flow problem defined by the flow network in Figure 7-(a).

4 if λFN (A)−
∑

i∈A yi + α|A| = 0 then

return θ̂ = α1V .
end

5 Let θ̂A ← ProxλFN|A (yA), where N|A is the reduction of N on A. The corresponding

network is obtained by shrinking nodes V \A into the sink node t (Figure 7-(b)).

6 Let θ̂V \A ← ProxλFNA
(yV \A), where NA is the contraction of N by A. The

corresponding network is obtained by shrinking nodes A into the source node s and
adding −FN (A) to the capacity of (s, t) (Figure 7-(c)).

where θ �→ L(θ; y) is a convex loss function for any y ∈ R
n. As an example,

this formulation contains the M -estimator in the regression setting L(θ; y) =
1
2�(yi − 〈xi, θ〉), where (yi, xi) ∈ R × R

p (i = 1, 2, . . . , n) are the observed data
and � : R → R is a convex function.

We can also obtain algorithms that output approximate minimizers of (34)
as follows. First of all, note that Algorithm 2 outputs the proximal operator
of the regularization term VG(θ). Once we have an oracle for the proximal op-
erator, we can apply proximal gradient methods to solve (34). In particular, if
L(θ; y) is convex and smooth, the Fast Iterative Shrinkage Thresholding Al-
gorithm (FISTA, Beck and Teboulle (2009)) outputs an O(ε)-optimal solution
after O(ε−2) evaluations of the proximal operator.
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Fig 7. Flow networks in Algorithm 3. Algorithm 3 requires to solve minimum s-t cut
problems (or equivalently maximum flow problems) defined on certain flow networks. (a) A
network that corresponds to the minimization problem in line 3. (b) A network that corre-
sponds to the function B �→ λFN|A(B) − y(B) in line 5. (c) A network that corresponds to
the function B �→ λFNA (B)− y(B) in line 6. Note that we assumed λ = 1 in this example.

A.2. Constrained estimators

Consider the following generalized version of the constrained form of nearly-
isotonic regression (11):

minimize ‖y − θ‖22 subject to
∑

(i,j)∈E

c(i,j)(θi − θj)+ ≤ V . (35)

Unlike the penalized estimators, it is difficult to find an exact solution of (35).
However, since problem (35) is an instance of a quadratic programming problem,
there are polynomial time algorithms to obtain approximate solutions. Here,
we explain the existence of such algorithms. The following result is a direct
application of Theorem 1 by Lee et al. (2018), which provides a convergence
guarantee of a variant of cutting plane methods.

Proposition A.2. Suppose that G = ([n], E) is a directed graph equipped
with positive weights c(i,j) for every (i, j) ∈ E. Let y ∈ R

n be any vector and

V > 0. Then, for any ε > 0, there exists a randomized algorithm that outputs θ̃
satisfying

VG(θ̃) :=
∑

(i,j)∈E

c(i,j)(θ̃i − θ̃j)+ ≤ V + 2ε
∑

(i,j)∈E

c(i,j)

and
‖y − θ̃‖2 ≤ min

θ∈Rn: VG(θ)≤V
‖y − θ‖2 + 2ε‖y‖2

with a probability of 0.99. The overall complexity of the algorithm is O((n +

|E|)n2 logO(1) n
ε|E| ).
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Fig 8. Examples of estimators for piecewise monotone matrices. The true parameter θ∗

is a 32×32 matrix that is monotone on each 16×16 segment. The bivariate isotonic regression
(LSE) does not capture the piecewise monotone structure. The solution of the nearly-isotonic
regression (Neariso2) seems to be close to the partition oracle (PO).

Remark A.3. In practice, due to computational considerations, we recommend
to use the penalized estimator (33) instead of the constrained estimator (35).
For the penalized estimator, we empirically observed that Algorithm 2 runs
sufficiently fast graphs with several hundreds of nodes. For the constrained esti-
mator, Proposition A.2 theoretically guarantees polynomial time solvability of
the constrained problem (35), whereas it does not provide a practical algorithm.

Appendix B: Supplemental experiments

To understand the behavior of the nearly-isotonic regression in more generic set-
tings, we present additional simulation results for the nearly-isotonic regression
on general graphs (32). Here, we consider the problem of estimating piecewise
monotone signals on two-dimensional grids.

We say that an n1 × n2 matrix θ is monotone if θij ≤ θkl whenever i ≤ k
and j ≤ l. In other words, θ is monotone if it has no order-violating edges in
the two-dimensional grid graph G2 = (V2, E2), where V2 = [n1]× [n2] is the set
of all subscripts (i, j) and

E2 :={((i, j), (i, j + 1)) : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2 − 1}
∪ {((i, j), (i+ 1, j)) : 1 ≤ i ≤ n1 − 1, 1 ≤ j ≤ n2}.

We say that θ is piecewise monotone if there is a partition Π of V such that,
for each A ∈ Π, A is a weakly connected component of G2 and θA has no order-
violating edges in the induced subgraph. For simplicity of experimental settings,
we here only consider “block” type partitions, i.e., we say that Π is of block type
if it can be represented as a product of two partitions of the two coordinates.
The left panel in Figure 8 is an example of two-dimensional piecewise monotone
signals on a block type partition.

We compare the following three estimators:

• LSE: The bivariate isotonic regression (see e.g., Robertson et al. (1988)).
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• Neariso2: The two-dimensional nearly-isotonic regression with Cp-tuned
parameter.

• PO: The bivariate isotonic regression applied to the true partition.

For monotone matrices, Chatteejee et al. (2018) proved that LSE is minimax
rate optimal with respect to n = n1n2. Hence, the partition oracle estima-
tor PO can be regarded as an ideal benchmark that is minimax optimal over
piecewise monotone matrices. On the other hand, if the true matrix θ∗ is piece-
wise monotone, the risk of LSE can be arbitrarily large for the same reason as
Proposition 3.3. Neariso2 is the special case of the generalized nearly-isotonic
regression (32) applied to the graph G2 defined above. Neariso2 was originally
discussed in Tibshirani et al. (2011), but no experimental results have been
presented. Figure 8 shows examples of the solutions of the three estimators.

We construct an n×n matrix θ∗ as follows: We define a k×k small monotone
matrix U , and then we define θ∗ as an mk×mk block matrix by repeating U for
m times both in rows and columns (thus n = mk). We choose the small matrix
U = (Uij) from

U cubic2d
ij = (xi + xj − 1)3

or

U cubic1d
ij = (2xi − 1)3,

where we write xi =
i−1
k−1 for i = 1, 2, . . . , k. With the former choice, θ∗ becomes

an m2-piecewise monotone matrix. With the latter choice, θ∗ becomes an m-
piecewise monotone matrix such that θ∗ij does not depend on j.

We generated noisy observations y by adding independent Gaussian noises
ξij ∼ N(0, (0.25)2) to every entries of θ∗. To estimate the MSE, we used 500
replications of the data. Figure 9 shows the results. Clearly, the risks of LSE (blue
triangles) are much larger than those of the other two estimators. Neariso2
(green circles) has slightly larger risks compared to PO (magenta squares), while
their slopes seem to be close.

To visualize convergence rates, we fit the risks of PO by monomials ∝ n−a

(a > 0), and plotted as dashed lines in Figure 9. The values of the exponent
a are respectively as follows: 0.58 (cubic2d, m = 2); 0.56 (cubic2d, m = 4);
0.50 (cubic1d, m = 2); 0.45 (cubic2d, m = 4). We should note that, in mono-
tone matrix estimation, the theoretical convergence rate of LSE is known to be
Õ(n−1/2) (Chatteejee et al. 2018).

Appendix C: Proofs in Section 3

C.1. Proof of Proposition 3.2

Let Θ be either Θ̃n(m,V) or Θn(m,V), which are defined in Definition 3.1.
The minimax lower bound (10) is proved by combining the following two lower
bounds:



1540 K. Minami

Fig 9. The risks in piecewise monotone matrix estimation. See the text for details.

(i) (Lower bound for monotone vectors (Zhang 2002, Chatterjee
et al. 2015)) Let K(V) = {θ ∈ K↑

n : V(θ) ≤ V} be the set of monotone
vectors with bounded total variations. There is a universal constant C1 > 0
such that for any estimator θ̂,

sup
θ∗∈K(V)

1

n
Eθ∗‖θ̂ − θ∗‖22 ≥ C1

(
σ2V
n

)2/3

.

(ii) (Lower bound for piecewise constant vectors) Let C(m) be the set
of m-piecewise constant vectors in R

n, i.e., θ ∈ C(m) if |{i : θi �= θi+1}| ≤
m − 1. The minimax lower bound over C(m) can be related to sparse
estimation as follows. Let X be an n × n matrix whose (i, j) entries are
given as 1{i≥j}. Then, C(m) contains the set {θ = Xβ : ‖β‖0 ≤ m}, and
the lower bound for the minimax risk over C(m) follows from the well-
known results for �0 balls (e.g., Raskutti et al. (2011), Theorem 3-(b)). In
particular, for any m ≥ 3, the following lower bound is presented in Gao
et al. (2017):

sup
θ∗∈C(m)

1

n
Eθ∗‖θ̂ − θ∗‖22 ≥ C2

σ2m

n
log

en

m
,

where C2 > 0 is a universal constant.

It remains to show that Θ contains K(V) and C(m). C(m) ⊆ Θ is obvious
because an m-piecewise constant vector is also an m-piecewise monotone vector
such that the piecewise total variations are zero. From the definition, it is also
clear that K(V) ⊆ Θ̃n(m,V). If θ ∈ K(V), the jumps θi+1 − θi that strictly
exceeds V/m cannot occur more than m − 1 times. Hence, we can choose a
partition Π with |Π| ≤ m so that each A ∈ Π does not contain such large
jumps, which implies that θ ∈ Θn(m,V).

C.2. Proof of Proposition 3.3

The following theorem in the seminal paper of Chatterjee (2014) provides useful
upper and lower bounds for the risk of the least square estimator over any closed
convex set K.
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Theorem C.1 (Chatterjee (2014), Corollary 1.2). Let K ⊆ R
n be any closed

convex set, and let θ̂K denote the least squares estimator over K. For any
θ∗ ∈ R

n, define the function gθ∗ : R+ → R ∪ {−∞} as

gθ∗(t) := EZ∼N(0,σ2In)

[
sup

θ∈K:‖θ−θ∗‖2≤t

〈Z, θ − θ∗〉
]
− t2

2
.

Here, if the set {θ ∈ K : ‖θ − θ∗‖2 ≤ t} is empty, we define gθ∗(t) = −∞.
Then, gθ∗ is strictly concave for t ≥ dist(θ∗,K) and has a unique maximizer tθ∗ .
Moreover, there are universal constants C1, C2 > 0 such that

1

n
max

{
t2θ∗ − C1t

3/2
θ∗ , 0

}
≤ 1

n
Eθ∗‖θ̂K − θ∗‖22 ≤ C2

n
max

{
t2θ∗ , σ2

}
. (36)

To prove Proposition 3.3, we use the lower bound in (36). Note that for a
sufficiently large t0 > 0, t �→ t2−Ct3/2 is a strictly increasing in t ∈ [t0,∞). For
any n and σ2, choose t ≥ t0 so that t2 − Ct3/2 ≥ nσ2. Then, for any θ∗ such
that dist(θ∗,K) ≥ t, we have

1

n
Eθ∗‖θ̂K − θ∗‖22 ≥ 1

n
(t2θ∗ − C1t

3/2
θ∗ ) ≥ 1

n
(t2 − C1t

3/2) ≥ σ2.

Remark C.2. We should note that the above proof is valid for any closed
convex setK. For the specific choice ofK = K↑

n, the lower bound of tn,σ2 used in
the proof can be quite conservative. In practice, the risk of the isotonic regression
estimator can be larger than σ2 under a smaller value of �2-misspecification
error.

Appendix D: Proofs in Section 4

D.1. Preliminaries

To state the results for risk upper bounds, we first introduce some quantities
related to Gaussian processes.

Definition D.1. Let C be a closed convex set in R
n. Let E denote the expec-

tation with respect to an isotropic Gaussian random variable Z ∼ N(0, In).

(i) The Gaussian width of C is defined as

w(C) := E

[
sup
θ∈C

〈Z, θ〉
]
.

(ii) The Gaussian mean squared distance is defined as

D(C) := E[dist2(Z,C)],

where dist(z, C) := infx∈C‖x− z‖2.



1542 K. Minami

(iii) Suppose that C is a convex cone. The statistical dimension of C is defined
as

δ(C) := E

⎡
⎣( sup

θ∈C:‖θ‖2≤1

〈Z, θ〉
)2
⎤
⎦ .

We present some historical remarks on these definitions. The three quantities
in Definition D.1 can be interpreted as complexity measures for the subset C
in the Euclidean space. The Gaussian width has been well studied in convex
geometry, signal processing, high-dimensional statistics, and empirical process
theory; See e.g., Section 7.8 in Vershynin (2018) for a literature review. The
definition of the Gaussian mean squared distance is due to Oymak and Hassibi
(2016). As we will see in Lemma D.4 below, the Gaussian mean squared distance
is useful to provide the risk bounds for proximal denoising estimators. The
statistical dimension was defined in Amelunxen et al. (2014). Recently, Bellec
(2018) pointed out that the statistical dimension characterizes the adaptive risk
bounds for some shape restricted estimators including the isotonic regression
and the convex regression.

As suggested by the definitions, these three quantities are closely related to
each other. In particular, if C is a convex cone, these are comparable as follows.

Proposition D.2. Let C be a closed convex cone.

(i) (Amelunxen et al. (2014), Proposition 10.2) Let Sn−1 = {x ∈ R
n : ‖x‖2 =

1} be the unit sphere in R
n. Then, we have w2(C ∩ Sn−1) ≤ δ(C) ≤

w2(C ∩ Sn−1) + 1.
(ii) (Amelunxen et al. (2014), Proposition 3.1) Let C◦ be the polar cone of C

defined as

C◦ := {x ∈ R
n : 〈x, z〉 ≤ 0 for all z ∈ C}.

Then, we have D(C) = δ(C◦).

Now, we introduce two general results for risk bounds for general projection
estimators and proximal denoising estimators.

Let K be a closed convex set in R
n, and define the projection estimator

onto K as θ̂K = argminθ∈K‖y − θ‖2. Bellec (2018) proved the following oracle
inequality that relates the risk of the projection estimator to the statistical
dimension of the tangent cone of K. Here, the tangent cone TK(θ) of K at
θ ∈ K is defined as

TK(θ) := closure({t(z − θ) : t ≥ 0, z ∈ K}).

Lemma D.3 (Bellec (2018), Corollary 2.2). Let θ∗ ∈ R
n be any vector, and

suppose that the observation y is drawn according to N(θ∗, σ2In). Then, we
have the following risk bound:

1

n
Eθ∗‖θ̂K − θ∗‖22 ≤ inf

θ∈K

{
1

n
‖θ − θ∗‖22 +

σ2

n
δ(TK(θ))

}
.



Estimating piecewise monotone signals 1543

Moreover, for any η ∈ (0, 1), the inequality

1

n
‖θ̂K − θ∗‖22 ≤ inf

θ∈K

{
1

n
‖θ − θ∗‖22 +

2σ2

n
δ(TK(θ))

}
+

4σ2 log(η−1)

n

holds with probability at least 1− η.

Next, we provide a general result for proximal denoising estimators. Let f :
R

n → R be a convex function, and λ ≥ 0. We define the proximal denoising
estimator θ̂λ as

θ̂λ := argmin
θ∈Rn

{
1

2
‖y − θ‖22 + σλf(θ)

}
. (37)

The class of proximal denoising estimators contains the soft-thresholding es-
timator (Donoho et al. 1992), the total variation regularization (Rudin et al.
1992), the trend filtering (Kim et al. 2009) and the nearly-isotonic regression
(Tibshirani et al. 2011). Oymak and Hassibi (2016) pointed out that the risk
bound of proximal denoising estimators can be characterized by the Gaussian
mean squared distance of the set λ∂f(θ∗). Remarkably, based on this technique,
Guntuboyina et al. (2020) proved sharp adaptation results for the trend filtering
estimators. The following oracle inequality can be regarded as a generalization
of Theorem 2.2 in Oymak and Hassibi (2016). For the sake of completeness, we
also provide its proof below.

Lemma D.4. Let θ∗ ∈ R
n be any vector, and suppose that the observation y

is drawn according to N(θ∗, σ2In). Let f : Rn → R be a convex function, and

let θ̂λ denote the proximal denoising estimator defined as (37). Then, we have

1

n
Eθ∗‖θ̂λ − θ∗‖22 ≤ inf

θ∈Rn

{
1

n
‖θ − θ∗‖22 +

σ2

n
D(λ∂f(θ))

}
. (38)

Moreover, for any η ∈ (0, 1), the inequality

1

n
‖θ̂λ − θ∗‖22 ≤ inf

θ∈Rn

{
1

n
‖θ − θ∗‖22 +

2σ2

n
D(λ∂f(θ∗))

}
+

16σ2 log(η−1)

n
(39)

holds with probability at least 1− η.

Proof. Below, we write θ̂ := θ̂λ. To prove (38), it suffices to show that we have
almost surely

‖θ̂ − θ∗‖22 − ‖θ − θ∗‖22 ≤ σ2D(λ∂f(θ))

for any fixed vector θ ∈ R
n. We will assume θ �= θ̂ because otherwise the

inequality is trivial.

From the first order optimality condition of the convex minimization prob-
lem (37), we have

〈θ − θ̂, y − θ̂〉 ≤ σλ(f(θ)− f(θ̂)) for any θ ∈ R
n.
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See Lemma 6.1 in van de Geer (2015) for a formal proof. Using the elementary
fact that 2〈u, v〉 = ‖u‖22+‖v‖22−‖u−v‖22 and substituting y = θ∗+σz, we have

‖θ̂ − θ∗‖22 − ‖θ − θ∗‖22 ≤ 2σλ(f(θ)− f(θ̂))− 2σ〈z, θ − θ̂〉 − ‖θ − θ̂‖22. (40)

Now, take v ∈ ∂f(θ) arbitrarily. From the definition of the subgradient, we
have

f(θ)− f(θ̂) ≤ 〈v, θ − θ̂〉.

Hence, the right-hand side of (40) is bounded from above by

2σ〈λv − z, θ − θ̂〉 − ‖θ − θ̂‖22

= 2σ

〈
λv − z,

θ − θ̂

‖θ − θ̂‖2

〉
‖θ − θ̂‖2 − ‖θ − θ̂‖22

≤ σ2

〈
λv − z,

θ − θ̂

‖θ − θ̂‖2

〉2

(∵ 2ab− b2 ≤ a2)

≤ σ2‖λv − z‖22 ( ∵ The Cauchy–Schwarz inequality).

Since the choice of v ∈ ∂f(θ) is arbitrary, we have

‖θ̂ − θ∗‖22 − ‖θ − θ∗‖22 ≤ σ2 inf
v∈∂f(θ)

‖λv − z‖22 = σ2dist2(z, λ∂f(θ)). (41)

By taking the expectation of both sides, (38) is proved.

To prove the high-probability bound (39), we use the well-known Gaussian
concentration inequality (see e.g., Theorem 5.6 in Boucheron et al. (2013)); for
any L-Lipschitz function h : Rn → R and η ∈ (0, 1), we have

PrZ∼N(0,In)

{
h(Z)− E[h] ≥

√
2L2 log η−1

}
≤ η.

In fact, the map z �→ dist(z, λ∂f(θ)) is a 2-Lipschitz function because, for any
z1, z2 ∈ R

n, we have

|dist(z1, λ∂f(θ))− dist(z2, λ∂f(θ))| ≤ ‖(z1 − P (z1))− (z2 − P (z2))‖2
≤ 2‖z1 − z2‖2,

where P is the orthogonal projection map onto the set λ∂f(θ). Now, we take θ̄
as

θ̄ ∈ argmin
θ∈Rn

{
‖θ − θ∗‖22 + σ2

(√
D(λ∂f(θ)) +

√
8 log η−1

)2}
.

Combining (41) and the Gaussian concentration applied for θ = θ̄, we have the
desired result.
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D.2. Risk bounds for constrained estimators (Proof of Theorem 4.1)

In this subsection, we provide the proof of Theorem 4.1 as an application of
Lemma D.3. To this end, we have to evaluate the statistical dimension of the
tangent cone of a convex set

K−(V) := {θ ∈ R
n : V−(θ) ≤ V} =

{
θ ∈ R

n :

n−1∑
i=1

(θi − θi+1)+ ≤ V
}
. (42)

It is not surprising that the analysis of the tangent cone of K−(V) goes very
similar to that of the set with bounded total variation K(V) = {θ ∈ R

n : V(θ) ≤
V} in Guntuboyina et al. (2020). Our goal is to show the following upper bound
for the statistical dimension:

Proposition D.5. Suppose that θ is a vector with V−(θ) = V . Then, there
exists a universal constant C > 0 such that

δ(TK−(V)(θ)) ≤ Cn

{
k(θ)

n
log

en

k(θ)
+

M(θ)

k(θ)
log

en

k(θ)

}
,

where M(θ) is defined in (13).

We briefly outline the proof for this result. We divide the proof into four steps:
First, we provide some useful characterizations of the tangent cone. Second, we
decompose the tangent cone into finitely many pieces so that the Gaussian
widths become easy to evaluate. Third, we provide the concrete upper bounds
the Gaussian widths of these pieces. Lastly, we combine the upper bounds and
apply Lemma D.3 to complete the proof.

Step 1: Characterizing the tangent cone If V−(θ) < V , θ is contained
in the interior of K−(V), and the tangent cone becomes the entire Euclidean
space R

n. Hereafter, we assume that θ lies on the boundary of K−(V), that is,
V−(θ) = V . Let us recall the definition of the sign of jumps wi in (12). Roughly
speaking, the tangent cone of K−(V) is characterized by the sign of jumps.

Lemma D.6. Let θ be a vector in R
n such that V−(θ) = V . Let Π = {B1,

B2, . . . , Bk′} be any connected refinement 1 of the constant partition Πconst(θ)
of θ. Let 1 = τ1 < τ2 < · · · < τk′ < τk′+1 = n + 1 be a sequence such that
Bi = {τi, τi + 1, . . . , τi+1 − 1} for any i ∈ {1, 2, . . . , k′}. We define the signs
w2, w3, . . . , wk′ ∈ {0, 1} as

wi =

⎧⎪⎨
⎪⎩

1 if θτi−1 > θτi

0 if θτi−1 < θτi

arbitrary value in {0, 1} if θτi−1 = θτi

.

1 Here, we say that Π is a connected refinement of another connected partition Π′ if, for
any B ∈ Π, there exists a unique element A ∈ Π′ such that B ⊆ A.
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For any Π and w2, w3, . . . , wk′ taken as above, we define a convex cone T (Π, w)
as

T (Π, w) =

⎧⎨
⎩v ∈ R

n :

k′∑
i=1

VBi
− (vBi) ≤

k′∑
i=2

wi(vτi − vτi−1)

⎫⎬
⎭ , (43)

where VBi
− (vBi) is the lower total variation for the restricted vector vBi . Then,

for the tangent cone TK−(V)(θ), we have the followings:

(i) If Π = Πconst(θ), then TK−(V)(θ) = T (Π, w).
(ii) If Π is a connected refinement of Πconst(θ) and w is taken arbitrarily as

above, then TK−(V)(θ) ⊆ T (Π, w).

Proof. First, we show that TK−(V)(θ) ⊆ T (Π, w). By the definition of the tan-
gent cone, it suffices to show that v := z−θ ∈ T (Π, w) holds for any z ∈ K−(V).
Note that θ is constant on every Bi ∈ Π since Π is finer than the constant parti-
tion of θ. Since the lower total variation is not changed by adding any constant
value to each coordinates, we have VBi

− (zBi − θBi) = VBi
− (zBi). Then, we have

k′∑
i=1

VBi
− (vBi)−

k′∑
i=2

wi(vτi − vτi−1)

=

k′∑
i=1

VBi
− (zBi) +

k′∑
i=2

wi(zτi−1 − zτi)−
k′∑
i=2

wi(θτi−1 − θτi)

≤
k′∑
i=1

VBi
− (zBi) +

k′∑
i=2

(zτi−1 − zτi)+︸ ︷︷ ︸
=V−(z)≤V

−
k′∑
i=2

wi(θτi−1 − θτi)︸ ︷︷ ︸
=V−(θ)=V

≤ 0,

which proves v ∈ T (Π, w) and hence (ii).
Next, we prove that T (Π, w) ⊆ TK−(V)(θ) under the assumption

Π = Πconst(θ) = {B1, B2, . . . , Bk}.

In this case, the definition of w2, . . . , wk coincides that in (12). Fix any v ∈
T (Π, w). We want to show that z is obtained as v = t(z− θ) for some t > 0 and
z ∈ K−(V). To this end, we check that there exists a (sufficiently small) t−1 > 0
such that θ + t−1v ∈ K−(V). Here, we have

V−(θ + t−1v) =

k∑
i=1

VBi
− (θBi + t−1vBi)

+
k∑

i=2

((θτi−1 + t−1vτi−1)− (θτi + t−1vτi))+

= t−1
k∑

i=1

VBi
− (vBi) +

k∑
i=2

((θτi−1 + t−1vτi−1)− (θτi + t−1vτi))+.
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Recall that w2, . . . , wk are chosen so that (θτi−1 − θτi)+ = wi(θτi−1 − θτi). We
can choose sufficiently small t−1 > 0 so that

((θτi−1 + t−1vτi−1)− (θτi + t−1vτi))+ = wi((θτi−1 + t−1vτi−1)− (θτi + t−1vτi))

for every i = 2, 3, . . . , k. Indeed, if we choose t−1 > 0 so that

t−1|vτi−1 − vτi | < θτi−1 − θτi for every i = 2, 3, . . . , k,

the signs of θ do not change by adding t−1v. Consequently, we have

V−(θ + t−1v) = t−1
k∑

i=1

VBi
− (zBi)

+
k∑

i=2

wi((θτi−1 + t−1vτi−1)− (θτi + t−1vτi))

= V−(θ) + t−1

{
k∑

i=1

VBi
− (vBi) +

k∑
i=2

wi(vτi−1 − vτi)

}

≤ V−(θ) = V .

This proves that T (Π, w) ⊆ TK−(V)(θ) and hence (i).

From Proposition D.2-(i), we can bound the statistical dimension by the
Gaussian width as follows:

δ(TK−(V)(θ)) ≤ w2(TK−(V)(θ) ∩ Sn−1) + 1 ≤ w2(TK−(V)(θ) ∩Bn) + 1.

Here, Bn := {v ∈ R
n : ‖v‖2 ≤ 1} is the unit ball in R

n. Hence, it suffices to
consider the set TK−(V)(θ)∩Bn. In analogy to Lemma B.2 in Guntuboyina et al.
(2020), we obtain the following characterization of this set.

Lemma D.7. Let θ be a vector in R
n such that V−(θ) = V . Let Π = {B1, B2,

. . . , Bk′} be any connected refinement of Πconst(θ). Define the signs w2, w3, . . . ,
wk′ as in Lemma D.6, and let w1 = wk′+1 = 0. Then, for every v ∈ TK−(V)(θ)
with ‖v‖2 ≤ 1, there exists indices �1 ∈ B1, �2 ∈ B2, . . . , �k′ ∈ Bk′ such that

k′∑
i=1

Γi(v, �i) ≤

⎛
⎝ k′∑

i=1

1

|Bi|
1{wi �=wi+1}

⎞
⎠

1
2

, (44)

where we define Γi(v, �i) as

Γi(v, �i) := VBi
− (vBi)− wi(vτi − v	i)− wi+1(v	i − vτi+1−1) for i = 1, 2, . . . , k′.

(45)

Proof. Fix v ∈ TK−(V)(θ) ∩Bn. By Lemma D.6, we have

k′∑
i=1

VBi
− (vBi) ≤

k′∑
i=2

wi(vτi − vτi−1) =
k′+1∑
i=1

wi(vτi − vτi−1). (46)
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Let �1 ∈ B1, �2 ∈ B2, . . . , �k′ ∈ Bk′ be indices which will be specified later.
Defining Γi(v, �i) as in (45), we can rewrite (46) as

k′∑
i=1

Γi(v, �i) ≤
k′∑
i=1

wi(v	i − vτi) +

k′∑
i=1

wi+1(vτi+1−1 − v	i) +

k′+1∑
i=1

wi(vτi − vτi−1)

=

k′∑
i=1

(wi − wi+1)v	i

≤
k′∑
i=1

1{wi �=wi+1}|v	i | (47)

Now, let ti denote the �2 norm of vBi for i = 1, 2, . . . , k′. By the assumption,∑k′

i=1 t
2
i = ‖v‖22 ≤ 1. Then, for any i ∈ {1, 2, . . . , k′}, there exists �i ∈ Bi such

that |v	i | ≤ ti/
√

|Bi|. For these choices of �i, the right-hand side of (47) is
bounded from above by

k′∑
i=1

ti√
|Bi|

1{wi �=wi+1} ≤

⎛
⎝ k′∑

i=1

1

|Bi|
1{wi �=wi+1}

⎞
⎠1/2⎛⎝ k′∑

i=1

t2i

⎞
⎠1/2

≤

⎛
⎝ k′∑

i=1

1

|Bi|
1{wi �=wi+1}

⎞
⎠1/2

,

which proves the desired result.

Remark D.8. Note that Γi(v, �i) is always non-negative. This is checked as
follows: First, the lower total variation is always larger than the difference of
boundary points, that is, for every v ∈ R

m, we have

m−1∑
j=1

(vj − vj+1)+ ≥ (v1 − vm)+ ≥ w(v1 − vm),

where w is taken arbitrarily from {0, 1}. The equality holds if and only if v is
monotone non-increasing. Then, for any � ∈ [m] and w1, w2 ∈ {0, 1}, we have

V−(v) ≥
	−1∑
j=1

(vj − vj+1)+ +
m−1∑
j=	

(vj − vj+1)+ ≥ w1(v1 − v	) + w2(v	 − vm).

In particular, we obtain Γi(v, �i) ≥ 0. If θ is monotone non-decreasing (i.e.,
w0 = w1 = · · · = wk+1 = 0), then the right-hand side of (44) equals to 0, and
so Γi(v, �i) = 0.

Step 2: Quantizing the tangent cone Now, let Π = {B1, B2, . . . , Bk′} be
a connected refinement of Πconst(θ). Lemma D.7 implies that TK−(V)(θ)∩Bn is



Estimating piecewise monotone signals 1549

contained in the set such that
∑k′

i=1‖vBi‖22 ≤ 1 and
∑k′

i=1 Γi(v, �i) ≤ γ for some
�i ∈ Bi and γ > 0. From this perspective, we consider finitely many allocation
patterns of the budgets for ‖vBi‖22 and Γi(v, �i). To be more precise, we construct
a cover of the tangent cone in the following way. Consider a triple (t,q, l) such
that:

(a) t = (t1, t2, . . . , tk′) and q = (q1, q2, . . . , qk′) are vectors consisting of non-
negative numbers, and

(b) l = (�1, �2, . . . , �k′) is a set of indices such that �i ∈ Bi for i = 1, 2, . . . , k′.

For such triple, we define a set

T (t,q, l) =
{
v ∈ R

n : ‖vBi‖22 ≤ ti and Γi(v, �i) ≤ qiγ for i = 1, 2, . . . , k′
}
,

(48)
where γ is taken as the right-hand side of (44):

γ := γ(θ,Π) =

⎛
⎝ k′∑

i=1

1

|Bi|
1{wi �=wi+1}

⎞
⎠

1
2

. (49)

Then, quantizing the allocation vectors t and q, we can cover the set TK−(V)(θ)∩
Bn with finitely many T (t,q, l)s as the following lemma.

Lemma D.9. Suppose that Π = (B1, B2, . . . , Bk′) is a connected refinement
of Πconst(θ). Define the signs w1, w2, . . . , wk′ as in Lemma D.7. Let Q be a set
of allocation vectors satisfying the following condition; there exists an integer
vector m = (m1,m2, . . . ,mk′) ∈ N

k′
such that 1 ≤ mi ≤ k′ (i = 1, 2, . . . , k′)

and
∑k′

i=1 mi ≤ 2k′, and the allocation vector q = (q1, q2, . . . , qk′) ∈ Q can be
written as

qi =
mi

k′
for all i = 1, 2, . . . , k′.

Let L be a set of indices l = (�1, �2, . . . , �k′) such that �i ∈ Bi for all i =
1, 2, . . . , k′. Given t,q ∈ Q and l ∈ L, we define a set T (t,q, l) as (48). Then,
we have

TK−(V)(θ) ∩Bn ⊆
⋃

t,q∈Q,
l∈L

T (t,q, l). (50)

Proof. Fix any vector v in T (Π, w) ∩Bn. Since ‖vBi‖22 ≤ ‖v‖22 ≤ 1, there exists
an integer 1 ≤ mi ≤ k′ such that

mi − 1

k′
≤ ‖vBi‖22 ≤ mi

k′
.

Summing over i = 1, 2, . . . , k′, we have

k′∑
i=1

mi ≤ k′
k′∑
i=1

‖vBi‖22 + k′ ≤ 2k′,

which implies t = (m1/k
′, . . . ,mk′/k′) ∈ Q.
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Next, by Lemma D.7, there exist l = (�1, . . . , �k′) ∈ L such that
∑k′

i=1 Γi(v, �i)
≤ γ. Hence, for any i, there exists an integer 1 ≤ li ≤ k′ such that

(li − 1)γ

k′
≤ Γi(v, �i) ≤

liγ

k′

Suppose γ > 0. Summing over i = 1, 2, . . . , k′, we have
∑k′

i=1 li ≤ 2k′ and
thus q = (l1/k

′, . . . , lk′/k′) ∈ Q. For the case of γ = 0, it is clear that q =
(1/k′, 1/k′, . . . , 1/k′) ∈ Q.

We should note that the cardinalities of Q and L are respectively bounded
as follows:

Proposition D.10. Let Q and L are the sets defined in Lemma D.9. Then, we
have:

(i) log |Q| ≤ 2k′ log 2e, and
(ii) log |L| ≤ k′ log n

k′ .

Proof. For the first part, we observe that |Q| is not larger than the cardinality
of

2k′⋃
M=k′

{
m = (m1, . . . ,mk′) ∈ N

k′
: 1 ≤ mi ≤ k′,

∑
i

mi = M

}
.

Then, we have

|Q| ≤
k′∑
j=0

(
k′ + j − 1

k′ − 1

)
=

k′∑
j=0

(
k′ + j − 1

j

)
≤

k′∑
j=0

(
2k′ − 1

j

)

≤
(a)

(
(2k′ − 1)e

k′

)k′

≤ (2e)k
′
.

The proof of the inequality (a) in the above can be found in Proposition 4.3 of
Dudley (2014).

The second part is obtained by Jensen’s inequality as

log |L| =
k′∑
i=1

log |Bi| ≤ k′ log

⎛
⎝ k′∑

i=1

|Bi|
k′

⎞
⎠ = k′ log

n

k′
.

Step 3: Controlling Gaussian widths As mentioned before, our goal is to
obtain an upper bound of the Gaussian width

W̃ (θ) := w(TK−(V)(θ) ∩Bn) = E

[
sup

v∈TK−(V)(θ)∩Bn

〈v, Z〉
]
, (51)

where we convene that E = EZ∼N(0,In). Let (Π, w) is a pair of a partition and
a sign vector of knots defined as in Lemma D.7. Using the decomposition in
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Lemma D.9, we have

W̃ (θ) ≤ E

[
max

t,q∈Q, l∈L
sup

v∈T (t,q,l)

〈v, Z〉
]
.

Besides, leveraging a general result for Gaussian suprema (see Lemma F.4 be-
low), we have

W̃ (θ) ≤ max
t,q∈Q, l∈L

E

[
sup

v∈T (t,q,l)

〈v, Z〉
]
+ 3

√
k′ log

en

k′
+

√
π

2
. (52)

Here, we used Proposition D.10 to bound the cardinality of the set Q2×L. More
precisely, we used the following evaluation:

2 log |Q2 × L| ≤ 4k′ log 2e + 2k′ log
en

k′
≤ (4 log 2e + 2)k′ log

en

k′
< 8.8k′ log

en

k′
.

Given t,q ∈ Q and l ∈ L, we define

W̃ (t,q, l) = E

[
sup

v∈T (t,q,l)

〈v, Z〉
]
.

Dividing the supremum into k′ pieces vB1 , . . . , vBk′ , this quantity is bounded

from above as W̃ (t,q, l) ≤
∑k′

i=1 W̃i(ti, qi, �i), where

W̃i(ti, qi, �i) := EZi∼N(0,I|Bi|)

[
sup

vBi
∈Ti(ti,qi,	i)

〈vBi , Zi〉
]
. (53)

Here, we write Ti(ti, qi, �i) := {vBi ∈ R
Bi : ‖vBi‖22 ≤ ti, Γi(v, �i) ≤ qiγ}.

We now consider the quantity (53). In the set Ti(ti, qi, �i) over which the
supremum taken, the lower total variation of vBi is bounded from above as

VBi
− (vBi) ≤ wi(vτi − v	) + wi+1(v	i − vτi+1−1) + qiγ. (54)

As mentioned in Remark D.8, the reverse inequality

VBi
− (vBi) ≥ wi(vτi − v	) + wi+1(v	i − vτi+1−1)

is always true, and the equality can hold only if two sub-vectors (vτi , vτi +
1, . . . , �i) and (�i, �i + 1, . . . , vτi+1 − 1) are either monotone increasing or non-
increasing. From this point of view, we may consider that the meaning of the
condition (54) is that vBi is approximated by two nearly monotone pieces. This
suggests that the complexity of Ti(ti, qi, �i) can be evaluated by that of the class
of monotone functions.

Below, we provide the upper bound of the Gaussian width of the form (53).
First, the following lemma treats a special case where �i is taken as the rightmost
point in Bi.
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Lemma D.11. For every n ≥ 1, t > 0, w ∈ {0, 1} and γ ≥ 0, we have

E

[
sup

{
〈v, Z〉 : v ∈ R

n, ‖v‖2 ≤ t, and

n−1∑
i=1

(vi − vi+1)+ ≤ w(v1 − vn) + γ

}]
≤ (t+ 2γ

√
n− 1)

√
log(en). (55)

Proof. The proof is divided into two cases where w = 1 and w = 0.
Case 1 (w = 1): By scaling properly, we need only consider the case where

t = 1. For a vector v ∈ R
n, we define a monotone vector v+ as

v+1 = 0 and v+i =

i∑
j=2

(vj − vj−1)+ for i = 2, . . . , n.

We also define another monotone vector v− as

v−1 = −v1 and v−i = v−1 +

i∑
j=2

(vj−1 − vj)+ for i = 2, . . . , n.

It is easy to check that v = v+ − v−. Using these notations, we have

V−(v) =
n−1∑
i=1

(vi − vi+1)+ = v−n − v−1 .

Hence, the condition V−(v) ≤ v1 − vn + γ is equivalent to v+n ≤ γ, which leads
to

‖v+‖22 ≤ (n− 1)(v+n )
2 ≤ (n− 1)γ2

and
‖v−‖2 ≤ ‖v‖2 + ‖v+‖2 ≤ 1 + γ

√
n− 1.

Denote by W̃ the left-hand side in (55) with t = 1. The argument in the
previous paragraph implies that

W̃ ≤ E

[
sup

v+∈K↑
n: ‖v+‖2≤γ

√
n−1

〈v+, Z〉
]
+ E

[
sup

v−∈K↑
n: ‖v−‖2≤1+γ

√
n−1

〈v−, Z〉
]

≤ (1 + 2γ
√
n− 1) · E

[
sup

v∈K↑
n: ‖v‖2≤1

〈v, Z〉
]
. (56)

The expectation in the last line is bounded as(
E

[
sup

v∈K↑
n: ‖v‖2≤1

〈v, Z〉
])2

≤ E

⎡
⎣( sup

v∈K↑
n: ‖v‖2≤1

〈v, Z〉
)2
⎤
⎦ ≤ log(en).

Here, the first inequality is the Jensen’s inequality, and the second inequality
is a consequence of equation (D.12) in Amelunxen et al. (2014). Combining
with (56), we have the desired result.
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Case 2 (w = 0): We can assume w.l.o.g. t = 1. As in Case 1, and we write a
vector as a difference of monotone vectors. For v ∈ R

n, we define v+ and v− as

v+1 = v1 and v+i =

i∑
j=2

(vj − vj−1)+ for i = 2, . . . , n

and

v−1 = 0 and v−i = v−1 +

i∑
j=2

(vj−1 − vj)+ for i = 2, . . . , n,

respectively. Under this notation, the condition V−(v) ≤ γ is equivalent to
v−n ≤ γ, and therefore we have

‖v+‖2 ≤ 1 + γ
√
n− 1 and ‖v−‖2 ≤ γ

√
n− 1.

Then, a similar argument as Case 1 yields the result.

Next, the following lemma provides an upper bound of W̃i for general choices
of �i ∈ Bi.

Lemma D.12. Fix n ≥ 1, 1 ≤ � ≤ n, t > 0 and γ ≥ 0. For every w1, w2 ∈ {0, 1},
the quantity

W̃ := E

[
sup

{
〈v, Z〉 : v ∈ R

n, ‖v‖2 ≤ t, and

V−(v) ≤ w1(v1 − v	) + w2(v	 − vn) + γ

}]

is bounded from above as

W̃ ≤

⎧⎪⎪⎨
⎪⎪⎩

(t+ 2γ
√
�− 1)

√
log(e�)

+ (t+ 2γ
√
n− �)

√
log(e(n− �+ 1)) if 1 < � < n

(t+ 2γ
√
n− 1)

√
log(en) if � = 1 or n.

(57)

In particular, we deduce a simpler bound

W̃ ≤ 2(t+ 2γ
√
n− 1)

√
log(en). (58)

Proof. Let (A1, A2) be a pair of sub-vectors of [n] defined as A1 = {1, 2, . . . , �}
and A2 = {�, � + 1, . . . , n}. If either � = 1 or � = n (i.e., one of A1 and A2

becomes a singleton), the result is a direct consequence of Lemma D.11.
Henceforth, we assume that 1 < � < n. Suppose that v ∈ R

n satisfies the
assumption V−(v) ≤ w1(v1 − v	) + w2(v	 − vn) + γ. Since V−(v) ≥ VA1

− (vA1) +
w2(v	 − vn), we have

VA1
− (vA1) ≤ w1(v1 − v	) + γ.
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Similarly, we have

VA2
− (vA2) ≤ V−(v)− w1(v1 − v	) ≤ w2(v	 − vn) + γ.

Based on these observations, we reduce to W̃ ≤

E

⎡
⎢⎢⎢⎣ sup

vA1
∈R

�:‖vA1
‖2≤t,

VA1
− (vA1

)≤w1(v1−v�)+γ

〈vA1 , ZA1〉

⎤
⎥⎥⎥⎦+ E

⎡
⎢⎢⎢⎣ sup

vA2
∈R

n−�+1:‖vA2
‖2≤t,

VA2
− (vA2

)≤w2(v�−vn)+γ

〈vA2 , ZA2〉

⎤
⎥⎥⎥⎦ ,

in which both terms in the right-hand side can be bounded using Lemma D.11.

Before going to the next step, we summarize the results in Step 3 as follows.

Proposition D.13. Fix θ ∈ R
n. Let Π = (B1, B2, . . . , Bk′) be any connected

refinement of Πconst(θ), and w1, w2, . . . , wk′ be the signs associated with Π as
in Lemma D.7. Define γ ≥ 0 as (49). Then, the quantity W̃ (θ) defined in (53)
is bounded from above by W̃ (θ) ≤

max
t,q∈Q

⎧⎨
⎩

k′∑
i=1

2(
√
ti + 2qiγ

√
|Bi| − 1)

√
log(e|Bi|) + 3

√
k′ log

en

k′
+

√
π

2

⎫⎬
⎭ . (59)

Proof. This is a direct consequence of (52) and (58).

Step 4: Applying Lemma D.3 We now are ready to complete the proof of
Theorem 4.1.

Recall that our goal is to obtain an upper bound for W̃ (θ) which is defined
in (53). To this end, we will construct a suitable refinement of Πconst(θ) with
moderate piece lengths so that we can control the first term in (59). In fact,
from an argument parallel to that in Guntuboyina et al. (2020), there exists a
refinement Π = (B1, B2, . . . , Bk′) such that

|Bi| ≤
4n

k′
for i = 1, 2, . . . , k′

and k(θ) ≤ k′ ≤ 2k(θ). We also define the signs w1, w2, . . . , wk′ in a similar
way as Lemma D.6, but if the knot τi is not contained in the original partition
Πconst(θ), the corresponding sign wi will be specified later.

We can bound the first term in (59) as the following two steps. First, from
the Cauchy–Schwarz inequality and the fact that t ∈ Q, we have

k′∑
i=1

√
ti
√

log(e|Bi|) ≤

⎛
⎝ k′∑

i=1

ti

⎞
⎠1/2⎛⎝ k′∑

i=1

log(e|Bi|)

⎞
⎠1/2

≤
√
2

√
k′ log

en

k′
≤ 2

√
k(θ) log

en

k(θ)
.
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Second, by the above construction of Π, we have

k′∑
i=1

qiγ
√
|Bi| − 1

√
log(e|Bi|) ≤ max

1≤i≤k′

[√
|Bi| log(e|Bi|)

] k′∑
i=1

qiγ

≤ 2γ · 2(1 + log 4)

√
n

k′
log

en

k′

≤ 10γ

√
n

k(θ)
log

en

k(θ)
.

Therefore, the right-hand side in (59) can be bounded from above by

10

√
k(θ) log

en

k(θ)
+ 20γ

√
n

k(θ)
log

en

k(θ)
. (60)

Here, to hide the constant term
√

π/2, we have also used the fact that√
m log

en

m
≥ 1

for every integer 1 ≤ m ≤ n.
Let w0

1, w
0
2, . . . , w

0
k(θ)+1 be the signs associated with the constant partition

Πconst(θ) = (A1, A2, . . . , Ak(θ)) (recall the definition (12)). Then, we can choose
the values of wi so that the following inequality holds:

γ2 =

k′∑
i=1

|Bi|−11{wi �=wi+1} ≤
k(θ)∑
j=1

[
min

{
|Aj |,

⌊
2n

k(θ)

⌋}]−1

1{w0
j �=w0

j+1}

≤
k(θ)∑
i=1

[
min

{
|Ai|,

n

k(θ)

}]−1

1{w0
i �=w0

i+1}

= M(θ). (61)

In fact, this is possible if we choose wi as the sign w0
j for the nearest knot that

is to the right of τi. Combining (61), (60) and Proposition D.2, the statistical
dimension of TK−(V)(θ) is bounded from above as

δ(TK−(V)(θ)) ≤ W̃ 2(θ) + 1 ≤ 800n

[
k(θ)

n
log

en

k(θ)
+

M(θ)

k(θ)
log

en

k(θ)

]
+ 1,

where we also used the elementary fact that (a+b)2 ≤ 2(a2+b2). Consequently,
applying Lemma D.3, we have desired result.

Remark D.14 (Non-Gaussian noises). For non-Gaussian noise setting, we
could prove an analogous result to Proposition D.5. We comment on a sketch
of the proof for such a generalization.

The proof of Proposition D.5 consists of (i) a decomposition argument for
the tangent cone and (ii) bounds for some probabilistic quantities (i.e., the sta-
tistical dimension and the Gaussian width). The former argument is completely
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deterministic and independent from the distributional assumption on the noise
variables. Regarding the probabilistic bounds, we used the following bound for
(Gaussian) statistical dimension of K↑

n:

δ(K↑
n) ≤ log(en).

Hence, if we can obtain a similar bound for non-Gaussian random variables, we
can prove a analogous result to Proposition D.5.

Let ξ1, . . . , xn be i.i.d. random variables with E[ξ1] = 0 and Var(ξ1) = σ2.
For a convex cone C, we define the statistical dimension as

δ̄(C) =
1

σ2
E

⎡
⎣( sup

θ∈C:‖θ‖2≤1

〈ξ, θ〉
)2
⎤
⎦ =

1

σ2
E‖ProjC(ξ)‖2.

Here, we write ProjC(x) = argminz∈C‖z−x‖2, and the last equality holds from
a deterministic relation(

sup
θ∈C:‖θ‖2≤1

〈ξ, θ〉
)2

= ‖ProjC(ξ)‖2.

(See Amelunxen et al. (2014) for details). Then, from Theorem 3.1 in Chatterjee
et al. (2015), we can check that

δ̄(K↑
n) ≤ 16 log(en).

Therefore, by following a similar argument as the proof of Proposition D.5, we
conclude that

δ̄(TK−(V)) ≤ C ′n

{
k(θ)

n
log

en

k(θ)
+

M(θ)

k(θ)
log

en

k(θ)

}

for some universal constant C ′ > 0. As a consequence, we can prove the expected
risk bound similar to (20) for non-Gaussian noise variables.

D.3. Proof of Corollary 4.4

Let α > 0 be a number to be specified later. Define a vector θ′ ∈ R
n as θ′1 = θ∗1

and

θ′i = θ∗1 +
i−1∑
j=1

(θ∗j+1 − θ∗j )+ − α

i−1∑
j=1

(θ∗j − θ∗j+1)+ for i = 2, 3, . . . , n.

Then, we have V−(θ
′) = αV−(θ

∗). Moreover, the constant partition and the sign
of θ′ (defined in (12)) are the same as those of θ∗, and therefore k(θ′) = k(θ∗)
and M(θ′) = M(θ∗).
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Now, we set α = V/V−(θ
∗) so that V−(θ

′) = V . Applying the upper bound
(14), we have

1

n
Eθ∗‖θ̂V − θ∗‖22 ≤ 1

n
‖θ′ − θ∗‖22 + Cσ2 k(θ

∗)

n
log

en

k(θ∗)
+ Cσ2M(θ∗)

k(θ∗)
log

en

k(θ∗)
.

The first term in the right-hand side is bounded from above as

1

n
‖θ′ − θ∗‖22 =

(1− α)2

n

n∑
i=2

⎛
⎝i−1∑

j=1

(θ∗j − θ∗j+1)+

⎞
⎠2

≤ (1− α)2(V−(θ
∗))2 = (V − V−(θ

∗))2.

From the minimal length condition (18) and the definition of M(θ), we also have

M(θ∗)

k(θ∗)
log

en

k(θ∗)
≤ 2c−1(m(θ∗)− 1)

n
log

en

k(θ∗)
.

Combining the above inequalities, we have the desired result.

D.4. Risk bounds for penalized estimators (Proof of Theorem 4.7)

We prove Theorem 4.7 as an application of Lemma D.4. Let ∂V−(θ) denote
the set of subgradients (i.e., subdifferential) of the convex function V−(·) at
θ ∈ R

n. The task is to provide a suitable upper bound for the Gaussian mean
squared distance of the set λ∂V−(θ). To do this, we use the technique developed
in Guntuboyina et al. (2020). The idea is stated roughly as follows: Recall that
the Gaussian mean squared distance of a convex cone can be written as the
statistical dimension of the polar cone (Proposition D.2-(ii)). This motivates
us to relate the Gaussian mean squared distance D(λ∂V−(θ)) to that of an
associated cone. In particular, we consider the conic hull of the subdifferential:

cone(∂V−(θ)) :=
⋃
λ≥0

λ∂V−(θ).

As we explain later, D(cone(∂V−(θ))) can be evaluated by the results in the
previous subsection. Then, we can complete the proof if we have an upper bound
of the following form:

D(λ∂V−(θ)) ≤ D(cone(∂V−(θ))) + Δ(θ, λ), (62)

where Δ(θ, λ) is a residual term that depends on θ and λ.

First, we show that D(cone(∂V−(θ))) has exactly the same value as the sta-
tistical dimension of the tangent cone of TK−(V−(θ))(θ), which we have already
provided a bound in the previous part in this paper.
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Proposition D.15. For any θ ∈ R
n, the following equality holds:

D(cone(∂V−(θ))) = δ(TK−(V(θ))(θ)).

In particular, we have the following upper bound:

D(cone(∂V−(θ))) ≤ Cn

{
k(θ)

n
log

en

k(θ)
+

M(θ)

k(θ)
log

en

k(θ)

}
,

where C is the same universal constant as in Proposition D.5.

Proof. Let us write T := TK−(V(θ))(θ). In the light of Proposition D.2-(ii), it
suffices to show that T is the polar cone of cone(∂V−(θ)). However, from fun-
damental results in convex geometry, we always have

cone(∂f(θ)) =
(
TK(θ)(θ)

)◦
with K(θ) := {z ∈ R

n : f(z) ≤ f(θ)}

for any convex function f : R
n → R (see Lemma A.5 and Lemma A.5 in

Guntuboyina et al. (2020)). For the case where f = V−, the set K(θ) above is

K−(V−(θ)) = {z ∈ R
n : V−(z) ≤ V−(θ)},

which implies the desired result.

Next, we provide an inequality of the form (62). Since cone(∂V−(θ)) ⊇
λ∂V−(θ) holds for every λ ≥ 0, the definition of the Gaussian mean squared
distance (Definition D.1-(ii)) suggests that D(cone(∂V−(θ))) ≤ D(λ∂V−(θ)).
However, we need a reverse inequality (62). To this end, we use the following
result proved by Guntuboyina et al. (2020).

Lemma D.16 (Guntuboyina et al. (2020), Proposition B.5). Let f : Rn → R

be a convex function, and θ ∈ R
n. Define a vector v0 as

v0 := argmin
v∈aff(∂f(θ))

‖v‖2, (63)

where aff(C) is the affine hull of the set C ⊆ R
n. Suppose that v0 �= 0. For any

z ∈ R
n, define λ(z) ≥ 0 as

λ(z) := argmin
λ≥0

dist(z, λ∂f(θ)).

Then, λ(z) is well-defined, and has a finite expectation EZ∼N(0,In)[λ(Z)] < ∞.
Further, define λ∗ as

λ∗ := λ∗(θ) = EZ∼N(0,In)[λ(Z)] +
2

‖v0‖2
.

Then, for every λ ≥ λ∗ and v∗ ∈ ∂f(θ), we have

D(λ∂f(θ))

≤ 4 +

(√
D(cone(∂f(θ))) +

4‖v∗‖2
‖v0‖2

+ 2 + (λ− λ∗)‖v∗‖2
)2

. (64)
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Before proceeding, we introduce an additional terminology: A convex function
f : Rn → R is said to be weakly decomposable if we have

argmin
v∈aff(∂f(θ))

‖v‖2 ∈ ∂f(θ) (65)

for every θ ∈ R
n. In other words, we can choose v0 ≡ v∗ in (64) if f is weakly

decomposable. Under the assumption that f is weakly decomposable, the in-
equality (64) can be simplified as follows:

Corollary D.17. Suppose that f : Rn → R is convex and weakly decompos-
able. Under the same notation as in Lemma D.16, we have

D(λ∂f(θ)) ≤ 3D(cone(∂f(θ))) + 3(λ− λ∗)2‖v0‖22 + 112.

Now, we apply Lemma D.16 to the case f = V−. The following proposition
provides the structural information of ∂V−(θ) that we need for evaluating the
upper bound (64). The proof is postponed to Appendix D.6.

Proposition D.18. (i) θ �→ V−(θ) is weakly decomposable.
(ii) For any θ ∈ R

n, let us define v0 as (63). Then, we have

‖v0‖22 =

k∑
i=1

1

|Ai|
1wi �=wi+1 . (66)

From Proposition D.18 and Corollary D.17, D(λ∂V−(θ)) is bounded from
above by

C ′n

{
k(θ)

n
log

en

k(θ)
+

M(θ)

k(θ)
log

en

k(θ)

}
+ C ′(λ− λ∗)2

k∑
i=1

1

|Ai|
1wi �=wi+1

provided that λ ≥ λ∗. Here, C ′ > 0 is a universal constant. Combining this
bound with Lemma D.4, we proved the desired risk bound.

Lastly, we provide an upper bound for the optimal tuning parameter λ∗. This
is obtained from the following estimate of E[λ(Z)].

Proposition D.19. Suppose that θ ∈ R
n and V−(θ) > 0. For any z ∈ R

n,
define λ(z) as

λ(z) := argmin
λ≥0

dist(z, λ∂V−(θ)).

Then, we have

E[λ(Z)] ≤ min

⎧⎨
⎩ ‖θ‖2

V−(θ)
,

(
k∑

i=1

1{wi �=wi+1}
|Ai|

)−1/2
⎫⎬
⎭ [δ(TK−(V−(θ))(θ))]

1/2,

where E is the expectation with respect to Z ∼ N(0, In).
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Proof. Let C := cone(∂V−(θ)) be the conic hull of ∂V−(θ), and let PC denote
the orthogonal projection map onto C. By the definition of λ(z), there exists a
vector v(z) ∈ ∂V−(θ) such that λ(z)v(z) = PC(z).

First, we show a partial result

E[λ(Z)] ≤ ‖θ‖2
V−(θ)

√
δ(TK−(V−(θ))(θ)).

As we will see in Appendix D.6, V− is the support function for a certain convex
set. Then, by the fundamental fact for the support function that 〈θ, v〉 = V−(θ)
for all v ∈ ∂V−(θ) (see Corollary 8.25 in Rockafeller and Wets (1998)), we have

λ(z)V−(θ) = λ(z)〈θ, v(z)〉 (∵ v(z) ∈ ∂V−(θ))

= 〈θ, PC(z)〉 (∵ λ(z)v(z) = PC(z))

= 〈θ, z − PT (z)〉.

Here, in the last line, T := TK−(V−(θ))(θ) is the polar cone of C (see Proposi-
tion D.15), and we used the Moreau decomposition z = PC(z) + PT (z). Taking
the expectation of both sides with respect to z ∼ N(0, In), we have

V−(θ)E[λ(z)] = E[〈θ, z〉]︸ ︷︷ ︸
=0

−E[〈θ, PT (z)〉]

≤ ‖θ‖2E‖PT (z)‖2
≤ ‖θ‖2(E‖PT (z)‖22)1/2

= ‖θ‖2(δ(T ))1/2,

which implies the desired result. Here, we used the equality between the statis-
tical dimension and the expected squared norm of projection (see Proposition
3.1 in Amelunxen et al. (2014)):

δ(T ) = EZ∼N(0,In)‖PT (Z)‖22.

To prove the other inequality, we use the characterization of aff(∂V−(θ))
given in (72) in Appendix D.6 below. In particular, if we take v∗ as in (75), we
have

〈λ(z)v(z), v∗〉 = 〈v∗, PC(z)〉 ≤ ‖v∗‖2(δ(T ))1/2,
and

〈v(z), v∗〉 = ‖v∗‖22 =

k∑
i=1

1{wi �=wi+1}
|Ai|

,

and hence the result follows.

D.5. Proof of Corollary 4.12

First, we explain that a monotone vector satisfying the moderate growth con-
dition is approximated by a piecewise-constant vector such that the segments
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at both ends have sufficient lengths. To this end, we need the following lemma.
Here, the first two statements (i) and (ii) are shown in Lemma 2 in Bellec and
Tsybakov (2015). The third statement (iii) ensures that the moderate growth
conditions implies the minimal length condition (18).

Lemma D.20. Let θ ∈ K↑
n be a monotone vector satisfying the moderate

growth condition and θn − θ1 = V . Then, there exists another monotone vector
θ′ ∈ K↑

n satisfying the following three conditions.

(i) θ′ is k-piecewise constant with

k = max

{
3,

⌈(
V2n

σ2 log(en)

)1/3
⌉}

. (67)

Here, �t
 is the smallest integer that is not less than t.
(ii) We have

1

n
‖θ − θ′‖22 ≤ 1

4
max

{(
σ2V log(en)

n

)2/3

,
3σ2 log(en)

n

}
(68)

and

σ2k

n
log

en

k
≤ 2max

{(
σ2V log(en)

n

)2/3

,
3σ2 log(en)

n

}
. (69)

(iii) Let Π′ = {A1, A2, . . . , Ak} be the partition on which θ′ is constant. Then,
we have |A1| ≥ n/k and |Ak| ≥ n/k.

Proof. Let k be an integer defined in (67). We construct a k-piecewise con-
stant monotone vector θ′ ∈ K↑

n as follows: First, define an equi-spaced partition
I1, I2, . . . , Ik of the interval [θ1, θn] as

Ij :=

[
θ1 +

j − 1

k
V , θ1 +

j

k
V
)

for j = 1, 2, . . . , k − 1,

and Ik := [θ1 +
k−1
k V , θn]. Next, define a partition Π = (A1, A2, . . . , Ak) of [n]

as Aj := {i ∈ [n] : θi ∈ Ij} (j = 1, 2, . . . , k). Then, let θ′ be a piecewise-constant

vector such that θ′i := θ1+
j−1/2

k V for i ∈ Aj . See the right panel of Figure 4 for
an illustrative example for θ and its piecewise-constant approximation θ′. By a
similar argument as Lemma 2 in Bellec and Tsybakov (2015), we can check (i)
and (ii).

It remains to prove (iii) under the moderate growth condition. Below, we
will only check that the maximal element in A1 is not less than n/k because
|Ak| ≥ n/k can be checked in a similar way. Let i∗ := �n/k
. Note that we have
i∗ ≤ �n/2
 since k ≥ 3. By the moderate growth condition, we have

θi∗ ≤ θ1 +
n/k − 1

n− 1
V ≤ θ1 +

V
k
,

which means i∗ ∈ A1 and hence |A1| ≥ �n/k
.
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Now, we are ready to prove Corollary 4.12. Applying Lemma D.20 for ev-
ery segments A1, A2, . . . , Am, we have a k-piecewise constant and m-piecewise
monotone vector θ′ ∈ R

n such that

1

n
‖θ∗ − θ′‖22 ≤ 1

4
max

{(
σ2V log en

m

n

)2/3

,
3mσ2

n
log

en

m

}

and

σ2k

n
log

en

k
≤ 2max

{(
σ2V log en

m

n

)2/3

,
3mσ2

n
log

en

3m

}
.

Moreover, θ′ satisfies the minimum length condition (18) with c = 1. Therefore,
we have M(θ′) ≤ 2(m− 1)k/n and

σ2M(θ′)

k
log

en

k
≤ 2(m− 1)σ2

n
log

en

m
,

where we used an obvious inequality m ≤ k. Then, Theorem 4.7 implies that
there exists λ such that

1

n
Eθ∗‖θ̂λ − θ∗‖22 ≤ 1

n
‖θ∗ − θ′‖22 + C

σ2k

n
log

en

k
+ C

σ2M(θ′)

k
log

en

k

≤ C ′ max

{(
σ2V log en

m

n

)2/3

,
mσ2

n
log

en

m

}

for some universal constant C ′ > 0. This is the desired conclusion. Note that an
upper bound for such λ is suggested by Proposition 4.8.

D.6. Subdifferential and weak decomposability

In this subsection, we discuss the structure of the subdifferential of the nearly-
isotonic type penalties. The main purpose is to discuss the weak decomposability
(defined in Appendix D.4) of V−.

D.6.1. Characterization of the subdifferential

First, we observe that V−(θ) =
∑n−1

i=1 (θi − θi+1)+ can be written as a support
function of a certain convex set. In fact, by Theorem 8.24 in Rockafeller and
Wets (1998), we can see that

V−(θ) = max
v∈B

〈v, θ〉, (70)

where B is a closed convex set. Conversely, once we have a convex function V−,
the set B is specified as

B = {v ∈ R
n : ∀θ ∈ R

n, 〈v, θ〉 ≤ V−(θ)}.
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Many properties of the support function can be understood through the struc-
ture of the set B; In particular, we can characterize the subdifferential and weak
decomposability. Below, we investigate the more detailed structure of the set B
in terms of submodular functions.

Let G = (V,E) be a directed graph equipped with positive edge weights
{c(i,j)}. For any θ ∈ R

n, we define a nearly-isotonic type penalty VG(θ) for the
weighted graph G as in (33). For any subset A ⊆ [n], we also define κG(A) by
the total weights of outgoing edges:

κG(A) :=
∑

(i,j)∈E: i∈A, j /∈A

c(i,j). (71)

The function A �→ κG(A) is called the cut function of the weighted graph G.
It is well known that the cut function is a submodular function. Here, a func-

tion F : 2[n] → R is called submodular if F (∅) = 0 and

F (A) + F (B) ≥ F (A ∩B) + F (A ∪B)

holds for any subsets A,B ⊆ [n]. We refer the reader to Bach (2013) for fun-
damental properties of submodular functions. For any submodular function
F : 2[n] → R, we define the base polyhedron B(F ) ⊆ R

n as

B(F ) :=

{
v ∈ R

n :
∑
i∈V

vi = F (V ) and
∑
i∈A

vi ≤ F (A) for all A ⊆ V

}
.

The Lovász extension f : Rn → R of F is defined as the support function of
B(F ), that is, for any θ ∈ R

n, f(θ) := maxv∈B(F )〈v, θ〉.
We see that the nearly-isotonic type penalty (33) is actually the Lovász ex-

tension of the cut function (71).

Proposition D.21. For any directed graph G and edge weight c(i,j), the func-
tion VG is the Lovász extension of the cut function κG.

Proof. This is the consequence of the well-known result so-called the greedy
algorithm; see e.g., Proposition 3.2 in Bach (2013). In particular, we can find a
derivation in Section 6.2 of Bach (2013).

Now, we have the following useful characterizations of the subdifferential.

Proposition D.22. Define F : 2[n] → R be a submodular function and f :
R

n → R be its Lovász extension. Suppose θ ∈ R
n.

(i) The subdifferential ∂f(θ) coincides with a face of B(F ) given as

∂f(θ) = argmax
v∈B(F )

〈v, θ〉 = {v ∈ B(F ) : 〈v, θ〉 = f(θ)}.

(ii) There is an (ordered) partition (A1, A2, . . . , Ak) ⊆ [n] such that

aff(∂f(θ)) =

⎧⎨
⎩v ∈ R

n :
∑
j∈Si

vj = F (Si) for all i = 1, 2, . . . , k

⎫⎬
⎭ , (72)
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where Si :=
⋃i

j=1 Aj (i = 1, 2, . . . , k). In particular, we have ∂f(θ) =
B(F ) ∩ aff(∂f(θ)).

(iii) Let v be any point in the relative interior of ∂f(θ). Then, the normal cone
of ∂f(θ) at v is contained in the set of partition-wise constant vectors:

N∂f(θ)(v) ⊆ span{1A1 , 1A2 , . . . , 1Ak
}.

Proof. The first statement is just a well-known property for the support function
(Corollary 8.25 in Rockafeller and Wets (1998)). The second statement follows
from the characterization of faces for the base polyhedron (see Proposition 4.7 in
Bach (2013)). The third statement follows from (ii) and the characterization of
normal cones of polyhedra (see Theorem 6.46 in Rockafeller and Wets (1998)).

D.6.2. Weak decomposability

Here, we discuss the weak decomposability of the Lovász extension.
Before describing the result, we introduce some terminology. Let F : 2[n] → R

be a submodular function. We say that a set A ⊆ [n] is separable for F if there
is a non-empty proper subset B of A such that F (A) = F (B) + F (A \ B). We
also say that A is inseparable if it is not separable. For example, if F = κG is
the cut function defined in (71), A is inseparable if and only if it is a connected
component in the graph G. Furthermore, we define the following agglomerative
clustering condition.

Definition D.23. We say that a submodular function F : 2[n] → R satisfies
the agglomerative clustering (AC) condition if it has the following property: Let
A,B ⊆ [n] be a any disjoint pair of subsets such that A �= ∅ and A is inseparable
for the function FA

B : 2A → R defined by FA
B (C) := F (B ∪ C) − F (B). Then,

for any C ⊂ A, we have

|C|
|A| (F (B ∪A)− F (B)) ≤ F (B ∪ C)− F (B). (73)

Recall the definition of weak decomposability (65). The following proposi-
tion provides a sufficient condition for the weak decomposability of the Lovász
extension.

Proposition D.24. Let F : 2[n] → R be a submodular function satisfying the
AC condition in Definition D.23. Then, the Lovász extension of f of F is weakly
decomposable.

Proof. Fix θ ∈ R
n. Since f is the support function of the base polyhedron B(F ),

∂f(θ) coincides with a face of B(F ). Let A1, A2, . . . , Ak be a partition of [n] such
that aff(∂f(θ)) is represented as (72). For i = 1, 2, . . . , k, we write S0 := ∅ and
Si := A1 ∪A2 ∪ · · · ∪Ai. We should note that the above partition can be chosen
so that Ai is inseparable for the function defined as

(Ai ⊇) C �→ F (Si−1 ∪ C)− F (Si−1).



Estimating piecewise monotone signals 1565

In this case, ∂f(θ) is an n− k dimensional subset.
Define a vector v∗ as

v∗ :=

k∑
i=1

F (Si)− F (Si−1)

|Ai|
1Ai . (74)

Since ∑
j∈Si

v∗j =

i∑
j=1

(F (Sj)− F (Sj−1)) = F (Si)

holds for any i = 1, . . . , k, we have v∗ ∈ aff(∂f(θ)). Moreover, v∗ is also con-
tained in the normal cone of aff(∂f(θ)). Hence, if we prove v∗ ∈ ∂f(θ), we
have

∀v ∈ ∂f(θ), 〈v∗, v − v∗〉 = 0,

which implies that v∗ ∈ argminv∈∂f(θ)‖v‖22.
Now, our goal is to prove v∗ ∈ ∂f(θ) under the AC condition. If k = n, then

it is clear from (72) that ∂f(θ) = {v∗}. Below, we assume that k < n. Since
v∗ ∈ aff(∂f(θ)), it suffices to show that

∑
i∈S v∗i ≤ F (S) holds for any S ⊆ [n]

that determines a relative boundary of ∂f(θ). The relative boundary of ∂f(θ)
can be written as the union of all n− k− 1 dimensional faces of B(F ) that have
non-empty intersection with ∂f(θ). Such faces can be characterized as follows:
Let Π = (A1, A2, . . . , Ak) be the partition defined in the above, and choose Ai

with |Ai| ≥ 2. Let A′
i be any non-empty proper subset of Ai. We define a new

ordered partition of [n] by inserting (A′
i, Ai \A′

i) instead of Ai:

Π′ = (A1, A2, . . . , Ai−1, A
′
i, (Ai \A′

i), Ai+1, . . . , Ak).

Then, Π′ defines an n − k − 1 dimensional affine subspace by (72), which de-
fines a part of the relative boundary of ∂f(θ). Therefore, we have to show that∑

i∈S v∗i ≤ F (S) for any S that can be written as S = Si−1 ∪A′
i with A′

i ⊂ Ai.
From the AC condition, we have

∑
i∈S

v∗i =

k∑
j=1

F (Sj)− F (Sj−1)

|Aj |
|Aj ∩ S|

=
i−1∑
j=1

(F (Sj)− F (Sj−1)) +
F (Si−1 ∪A′

i)− F (Si−1)

|Ai|
|A′

i|

≤ F (Si−1) + (F (Si−1 ∪A′
i)− F (Si−1))

= F (S).

This proves that v∗ ∈ ∂f(θ), and hence f is weakly decomposable.

Remark D.25. The AC condition was originally introduced in Bach (2011). In
that paper, the author consider the proximal denoising estimators (37) where f
is the Lovász extension of a submodular function F . The name “agglomerative
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clustering” captures the following property: Let us consider the solution path
of the minimization problem (37) parametrized by λ, that is, the solution path

is the collection {θ̂λ}λ≥0 calculated for all λ ≥ 0. In general, the solution path

starts with θ̂λ = y for λ = 0, and θ̂λ shrinks toward some piecewise constant
vector as λ increases. Proposition 4 of Bach (2011) showed that the solution
path is agglomerative if F satisfies the AC condition.

We provide some examples of functions satisfying the AC condition:

• Let h : R → R be a concave function with h(0) = 0. A submodular
function defined as F (A) := h(|A|) satisfies the AC condition. Examples
of solutions paths for this class can be found in Bach (2011).

• The one-dimensional fused lasso has an agglomerative solution path. The
corresponding submodular function is the cut function of the undirected
one-dimensional grid graph, which satisfies the AC condition. Hence, by
Proposition D.24, the penalty of the one-dimensional fused lasso is weakly
decomposable. This provides an alternative proof for Lemma 2.7 in Gun-
tuboyina et al. (2020). On the other hand, the fused lasso on the two-
dimensional grid does not satisfy this condition. See Bach (2011) for de-
tails.

• The nearly-isotonic regression (3) has an agglomerative solution path.
A direct proof for this property is provided in Lemma 1 in Tibshirani et al.
(2011). Below, we prove that the cut function for directed one-dimensional
grid graph satisfies the AC condition, which provides an alternative proof
for this fact.

The following proposition provides a proof for Proposition D.18.

Proposition D.26. The cut function F associated with the nearly-isotonic
regression satisfies the AC condition. In particular, the lower total variation
V−(θ) is weakly decomposable. Moreover, for any θ ∈ R

n, the minimum value
of the �2-norm in ∂V−(θ) is given by (66).

Proof. For any A ⊆ V := [n], F (A) is given by the number of connected com-
ponents in A that does not contains the rightmost point n. Let A ⊆ [n] be a
connected subset, and B ⊆ [n] \ A. The value of F (B ∪ A)− F (B) depends on
whether one or both of two endpoints of A are adjacent to B.

We will check the AC condition by considering all patterns of adjacency as
Table 1. Here, C represents any proper subset of A, and “None” means that
A contains 1 or n. In each case, we can easily check that the inequality (73) is
satisfied. Hence, F satisfies the AC condition.

The second statement is a consequence of Proposition D.24.
The last statement follows from fact that the minimizer of ‖v‖22 in ∂f(θ)

coincides with that in aff(∂f(θ)), which is given as (74). In this case, we can
choose A1, A2, . . . , Ak as the constant partition of θ that is sorted by the values
of θ. Thus, we have

v∗ =
k∑

i=1

F (Si)− F (Si−1)

|Ai|
1Ai =

k∑
i=1

1wi �=wi+1

|Ai|
1Ai (75)
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Table 1

The values of FA
B for the cut function F of one-dimensional grid graph.

Node left to A Node right to A F (B ∪A)− F (B) F (B ∪ C)− F (B)
None None 0 ≥ 0
None B 0 ≥ 0
None V \B 1 ≥ 1{C �=∅}
B None −1 ≥ 0
B B −1 ≥ 0
B V \B 0 ≥ 0

V \B None 0 ≥ 0
V \B B 0 ≥ 0
V \B V \B 1 ≥ 1{C �=∅}

which proves the desired result.

Remark D.27 (Missing part in the proof of Proposition A.1). With a slight
modification of the above argument, we can show the AC condition for the cut
function of weighted graph

F (A) =
∑

{cj : j ∈ A, j + 1 /∈ A},

where cj > 0 (j = 1, . . . , n − 1) are edge weights. As mentioned in Proposi-
tion A.1, we need this result to prove the validity of the modified PAVA algo-
rithm (Algorithm 1). Here, we prove that (31) provides a sufficient condition for
the AC condition, and hence the solution path of the weighted nearly-isotonic
regression (30) is agglomerative.

Let A ⊆ [n] be a non-empty connected subset, B be a subset of [n]\A, and C
be a proper subset of A. Recall that our goal is to check the inequality (73). For
clarity, we write A = {jL, jL + 1, . . . , jR}. As in the proof of Proposition D.26,
we consider all adjacency patterns of A, B and C. Then, we can easily check
the following case statement:

1. Suppose that either “jL = 1 and jR + 1 /∈ B” or “jL − 1 /∈ B and
jR + 1 /∈ B” holds. Then, we have F (B ∪ A) − F (B) = F (A) = cjR and
F (B ∪ C) − F (B) = F (C). Now, we will check (73) under the concavity
condition (31). First, (73) trivially holds when jR ∈ C because in this
case F (C) ≥ cjR = F (A). Next, we assume jR /∈ C. Let i be the largest
element in C. Then, we have F (C) ≥ ci, |C| ≤ i − jL + 1. Under the
assumption (31), we have

|C|
|A|F (A) ≤ i− jL + 1

jR − jL + 1
cjR

≤ i

jR
cjR (∵ jL ≤ i < jR)

≤ ci (∵ (31))

≤ F (C),

which implies (73).
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2. Suppose that jL−1 ∈ B and jR+1 /∈ B. Then, we have F (B∪A)−F (B) =
cjR − cjL−1 and F (B∪C)−F (B) ≥ F (C)− cjL−1. By a similar argument
above, (73) trivially holds when jR ∈ C. Let jR /∈ C and let i be the
largest element in C. Then, under the assumption (31), we have

|C|
|A| (F (B ∪A)− F (B)) ≤ i− jL + 1

jR − jL + 1
(cjR − cjL−1)

≤ ci − cjL−1 (∵ (31))

≤ F (C)− cjL−1

≤ F (B ∪ C)− F (B).

3. For other case, we have F (B ∪ A) − F (B) ≤ F (B ∪ C) − F (B), which
implies (73).

Appendix E: Proofs in Section 5

The goal of this section is to prove Theorem 5.1. The outline of the proof
is essentially the same as the framework of Theorem 4.18 in Massart (2007).
We explain this framework in Section E.1. To complete the proof, we have to
control the maximum value of a certain normalized Gaussian process. For this,
we provide an upper bound in Section E.2.

E.1. Proof overview

Let (Π̂, V̂) be the selected pair in (27). Fix any connected partition Π and
V ∈ V (|Π|). By the definition of the estimator, we have

‖y − θ̂Π̂,V̂‖22 + pen(Π̂, V̂) ≤ ‖y − θ̂Π′,V′‖22 + pen(Π′,V′)

≤ ‖y − θ′‖22 + pen(Π′,V′)

for any vector θ′ that belongs to K↑
Π′(V′). In particular, we can choose θ′ as

θ′ = θ∗Π′,V′ := argmin
θ′∈K↑

Π′ (V
′)

‖θ′ − θ∗‖2.

Substituting y = θ∗ + ξ, we can deduce that

‖θ∗ − θ̂Π̂,V̂‖22 ≤ ‖θ∗ − θ∗Π′,V′‖22 − pen(Π̂, V̂) + pen(Π′,V′) + 2〈θ̂Π̂,V̂ − θ∗Π′,V′ , ξ〉.
(76)

Here, recall that ξ is a random variable drawn from N(0, σ2In).
Let z > 0 be a positive number and c ∈ (0, 1). Suppose that an inequality

max
Π

sup
V∈V (|Π|)

sup
θ∈K↑

Π(V)

〈θ − θ∗Π′,V′ , ξ〉
(‖θ − θ∗‖2 + ‖θ′ − θ∗‖2)2 + η(Π,V, z)

≤ c

4
(77)
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holds on some event Ωz that occurs with probability at least 1 − e−z. Here,
η(Π,V, z) > 0 is a positive constant that can depend on Π,V, z. Combining
this inequality with (76), we have on the same event

(1−c)‖θ∗−θ̂Π̂,V̂‖22 ≤ (1+c)‖θ∗−θ∗Π′,V′‖22−pen(Π̂, V̂)+pen(Π′,V′)+cη(Π̂, V̂, z),

(78)
where we used the elementary inequality (a+ b)2 ≤ 2(a2 + b2).

E.2. Controlling the normalized process

Now, our goal is to provide an inequality of the form (77). Below, we fix θ′ :=
θ∗Π′,V′ .

First, we fix a partition Π and V ∈ V (|Π|). For any θ ∈ K↑
Π(V), we define

ω(θ) = ωΠ,V(θ) := (‖θ − θ∗‖2 + ‖θ′ − θ∗‖2)2 + η,

where η > 0 is a positive constant which will be specified later. Define a random
variable ZΠ,V as

ZΠ,V := sup
θ∈K↑

Π(V)

〈θ − θ′, ξ〉
ω(θ)

.

Note that ZΠ,V is the supremum of a sample-continuous Gaussian process. By
the concentration inequality for Gaussian processes (Lemma F.1), we have

Pr
{
ZΠ,V − E[ZΠ,V] ≥

√
2v(x+ z)

}
≤ exp(−(x+ z)) (79)

for any x > 0 and z > 0. Here, the variance v is bounded as

v := sup
θ∈K↑

Π(V)

[Z2
Π,V] ≤ σ2

4η

because ω(θ) ≥ ‖θ−θ′‖22+η ≥ 2η1/2‖θ−θ′‖2, and 〈u, ξ〉 is distributed according
to N(0, σ2‖u‖22) for any u ∈ R

n.
We will provide an upper bound for E[ZΠ,V]. Let θ∗Π,V be the orthogonal

projection of θ∗ onto K↑
Π(V). Note that

E[ZΠ,V] ≤ E

[
sup

θ∈K↑
Π(V)

〈θ − θ∗Π,V, ξ〉
ω(θ)

]
︸ ︷︷ ︸

(a)

+E

[
|〈θ∗Π,V − θ′, ξ〉|
infθ∈K↑

Π(V) ω(θ)

]
︸ ︷︷ ︸

(b)

. (80)

The second term (b) in the right-hand side of (80) is bounded from above by
ση−1/2. Indeed, since

inf
θ∈K↑

Π(V)
ω(θ) = (‖θ∗Π,V − θ∗‖2 + ‖θ′ − θ∗‖2)2 + η ≥ 2η1/2‖θ∗Π,V − θ′‖2,
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we have

(b) ≤ 1

2
√
η
Eu∼N(0,σ2)[|u|] =

σ√
2πη

.

To bound the term (a) in (80), we use the following lemma:

Lemma E.1. Let Π = (A1, A2, . . . , Am) be any partition and V = (V1,V2, . . . ,

Vm). Fix any θ̄ ∈ K↑
Π(V). For any t > 0, we have

E

[
sup

θ∈K↑
Π(V):‖θ−θ̄‖2≤t

〈ξ, θ − θ̄〉
]

≤ Cσt1/2

(
m∑
i=1

|Ai|1/3V2/3
i

)3/4

+ Cσt

√
m log

en

m
,

(81)

where C > 0 is a universal constant. Futhermore, for any η > 0, we have

E

[
sup

θ∈K↑
Π(V)

〈θ − θ̄, ξ〉
‖θ − θ̄‖2 + η

]

≤ 4Cσ

⎧⎨
⎩η−3/4

(
m∑
i=1

|Ai|1/3V2/3
i

)3/4

+ η−1/2

√
m log

en

m

⎫⎬
⎭ ,

(82)

where C is the same constant as in (81).

Proof. We will prove the first inequality (81). Let W := W (Π,V) denote the
left-hand side of (81). We consider a collection of finitely many sets S(q) as
follows: Let Q := Q(m) be a collection of vectors q = (q1, q2, . . . , qm) that can
be written as q = t2a/m for some integer vector a = (a1, a2, . . . , am) such that
1 ≤ ai ≤ m and

∑m
i=1 ai ≤ 2m. Note that, by Proposition D.10, the cardinality

of Q is bounded by (2e)m. For any q ∈ Q, define the set

S(q) :=
{
θ ∈ R

n : ‖θAi‖22 ≤ qi, VAi(θAi) ≤ 2Vi for all Ai ∈ Π
}
.

Then, we can easily check that

K↑
Π(V) ∩ {θ ∈ R

n : ‖θ − θ̄‖2 ≤ t} ⊆
⋃
q∈Q

S(q).

From Lemma F.3 below, there exists a universal constant C > 0 such that

E

[
sup

θ∈S(q)

〈θ, ξ〉
]
≤ Cσ

m∑
i=1

{√
2q

1/4
i |Ai|1/4V1/2

i + q
1/2
i

√
log e|Ai|

}
. (83)

Here, by Hölder’s inequality, we have

m∑
i=1

q
1/4
i |Ai|1/4V1/2

i ≤
(

m∑
i=1

qi

)1/4( m∑
i=1

(|Ai|1/4V1/2
i )4/3

)3/4

≤ 21/4t1/2

(
m∑
i=1

|Ai|1/3V2/3
i

)3/4

,
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and by the Cauchy–Schwarz inequality, we also have

m∑
i=1

2q
1/2
i

√
log e|Ai| ≤ 2

√
2t

(∑
i=1

log e|Ai|
)1/2

≤ 2
√
2t

√
m log

en

m
.

Then, by Lemma F.4 below, we have

W ≤ max
q∈Q

E

[
sup

v∈S(q)

〈ξ, v〉
]
+ 2tσ

(√
2 log |Q|+

√
π

2

)

≤ Cσ

⎧⎨
⎩23/4t1/2

(
m∑
i=1

|Ai|1/3V2/3
i

)3/4

+ 2
√
2t

√
m log

en

m

⎫⎬
⎭

+ 2tσ

(√
4m log 2e +

√
π

2

)

≤ C ′σ

⎧⎨
⎩t1/2

(
m∑
i=1

|Ai|1/3V2/3
i

)3/4

+ t

√
m log

en

m

⎫⎬
⎭

for some C ′ > 0. Thus, (81) has been proved.
The second inequality (82) is a consequence of the peeling lemma (Lemma F.2

below).

Combining (79), (80) and (82), we conclude that

ZΠ,V ≤ 4Cση−3/4

(
m∑
i=1

|Ai|1/3V2/3
i

)3/4

+ ση−1/2

{
4C

√
m log

en

m
+ (2π)−1/2 + 2−1/2

√
x+ z

}
(84)

holds with probability at least 1−exp(−(x+z)), where C is the constant in (82).
Now, we choose the two constant η := η(Π,V , z) and x := x(Π,V) as

η(Π,V , z) := 28(4C+1)4/3
m∑
i=1

σ4/3|Ai|1/3V2/3
i +28(4C+2)2σ2m log

en

m
+28σ2z

and

x(Π,V) :=
m∑
i=1

σ−2/3|Ai|1/3V2/3
i + 2m log

en

m
,

respectively. Then, it is elementary to check that the right-hand side of (84) is
not larger than 1/8.

Applying the union bound over all pairs (Π,V), we have

Pr

{
max
Π

sup
V∈V (|Π|)

ZΠ,V >
1

8

}
≤ exp(−z)

∑
Π

∑
V

exp(−x(Π,V)).
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Here, we can show that ∑
Π

∑
V

exp(−x(Π,V)) ≤ 1, (85)

and hence we conclude that (77) holds with c = 1/2. Indeed, (85) follows from
the fact that, for any Π,

∑
V∈V (Π)

exp

(
−

m∑
i=1

σ−2/3|Ai|1/3V2/3
i

)
=

m∏
i=1

exp
(
−σ−2/3|Ai|1/3

)⎛⎝ ∞∑
ji=1

e−ji

⎞
⎠

≤ exp

(
−

m∑
i=1

σ−2/3|Ai|1/3
)

≤ 1

and

∑
Π

exp

(
−2|Π| log en

|Π|

)
=

n∑
m=1

∑
Π:|Π|=m

exp
(
−2m log

en

m

)

≤
n∑

m=1

∑
Π:|Π|=m

exp

(
−m− log

(
n− 1

m− 1

))

=

n∑
m=1

e−m ≤ 1.

E.3. Proof of Theorem 5.1

Now, we are ready to complete the proof of Theorem 5.1. Define pen(Π,V) as

27(4C + 1)4/3
m∑
i=1

σ4/3|Ai|1/3V2/3
i + 27(4C + 2)2σ2m log

en

m
,

where C is the constant in (82). Let (Π′,V′) be the pair that minimizes

(Π,V) �→ 3

2
‖θ∗ − θ∗Π,V‖22 + pen(Π,V)

among all possible pairs. Applying (78) and (77) for this choice of (Π′,V′), we
conclude that

‖θ̂Π̂,V̂ − θ∗‖22 ≤ min
Π

min
V∈V (|Π|)

{
3dist2(θ∗,K↑

Π(V)) + 2pen(Π,V)
}
+ 28σ2z

holds with probability at least 1− exp(−z). Moreover, by integrating both sides
with respect to z, we have

Eθ∗‖θ̂Π̂,V̂ − θ∗‖22 ≤ min
Π

min
V∈V (|Π|)

{
3dist2(θ∗,K↑

Π(V)) + 2pen(Π,V)
}
+ 28σ2.
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Appendix F: Auxiliary lemmas

Here, we present several auxiliary lemmas that are used in the proofs in the
previous sections.

Lemma F.1 (Borel–Tsirelson–Ibragimov–Sudakov inequality; see Proposition
3.19 in Massart (2007)). Suppose that (Xt)t∈T is a Gaussian process on a totally
bounded metric space (T, d) such that E[Xt] = 0 for any t ∈ T and the sample
path t �→ Xt is almost surely continuous. Let v := supt∈T E[X2

t ]. Then, for any
z > 0, we have

Pr

{
sup
t∈T

Xt − E

[
sup
t∈T

Xt

]
≥

√
2vz

}
≤ exp(−z).

Lemma F.2 (Peeling lemma; see e.g. Lemma 4.23 in Massart (2007)). Let K
be a set in R

n and θ̄ ∈ K. Assume that there is a function ψ : [0,∞) → R such
that ψ(t)/t is non-increasing and

Eξ∼N(0,In)

[
sup

θ∈K:‖θ−θ̄‖2≤t

〈ξ, θ − θ̄〉
]
≤ ψ(t)

for any t ≥ t̄ ≥ 0. Then, for any x ≥ t̄, we have

Eξ∼N(0,In)

[
sup

θ∈K:‖θ−θ̄‖2≤t

〈ξ, θ − θ̄〉
‖θ − θ̄‖22 + x2

]
≤ 4ψ(x)

x2
.

Lemma F.3 (Guntuboyina et al. (2020), Lemma B.1). For any t > 0 and
V > 0, let

S(V, t) := {θ ∈ R
n : V(θ) ≤ V and ‖θ‖2 ≤ t}.

There exists a universal constant C > 0 such that

Eξ∼N(0,σ2In)

[
sup

θ∈S(V,t)

〈θ, ξ〉
]
≤ Cσt1/2n1/4V1/2 + Cσt

√
log en.

Lemma F.4 (Guntuboyina et al. (2020), Lemma D.1). Suppose p, n ≥ 1 and let
Θ1, . . . ,Θp be subset of Rn each containing the origin and each contained in the
closed Euclidean ball of radiusD centered at the origin. Then, for ξ ∼ N(0, σ2I),
we have

E

[
max
1≤i≤p

sup
θ∈Θi

〈ξ, θ〉
]
≤ max

1≤i≤p
E

[
sup
θ∈Θi

〈ξ, θ〉
]
+Dσ

(√
2 log p+

√
π

2

)
. (86)
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