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Hyperbolic scaling limit of non-equilibrium
fluctuations for a weakly anharmonic chain*
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Abstract

We consider a chain of n coupled oscillators placed on a one-dimensional lattice with
periodic boundary conditions. The interaction between particles is determined by
a weakly anharmonic potential Vn = r2/2 + σnU(r), where U has bounded second
derivative and σn vanishes as n → ∞. The dynamics is perturbed by noises acting
only on the positions, such that the total momentum and length are the only conserved
quantities. With relative entropy technique, we prove for dynamics out of equilibrium
that, if σn decays sufficiently fast, the fluctuation field of the conserved quantities
converges in law to a linear p-system in the hyperbolic space-time scaling limit. The
transition speed is spatially homogeneous due to the vanishing anharmonicity. We
also present a quantitative bound for the speed of convergence to the corresponding
hydrodynamic limit.
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1 Introduction

One of the central topics in statistical physics is to derive macroscopic equations in
scaling limits of microscopic dynamics. For Hamiltonian lattice field, Euler equations
can be formally obtained in the limit, under a generic assumption of local equilibrium.
However, to prove this for deterministic dynamics is known as a difficult task. In
particular when nonlinear interaction exists, the appearance of shock waves in the Euler
equations complicates further the problem. In that case, the convergence to the entropy
solution is expected.

The situation is better understood when the microscopic dynamics is perturbed
stochastically. Proper noises can provide the dynamics with enough ergodicity, in
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Hyperbolic non-equilibrium fluctuations

the sense that the only conserved quantities are those evolving with the macroscopic
equations [13]. The deduction of partial differential equations from the limit of properly
rescaled conserved quantities in these dynamics is called hydrodynamic limit. For
Hamiltonian dynamics with noises conserving volume, momentum and energy, Euler
equations are obtained under the hyperbolic space-time scale [23, 4]. They are proved
by relative entropy technique and restricted to the smooth regime of Euler equations.

As hydrodynamic limit can be viewed as the law of large numbers in functional
spaces, we can go one step further towards the corresponding central limit theorem.
More precisely, we can investigate the macroscopic time evolution of the fluctuations
of the conserved quantities around its hydrodynamic centre. If the dynamics is in its
equilibrium, these fluctuations are Gaussian and evolve following linearized equations,
known as equilibrium fluctuation. To prove it requires to approximate the space-time
variance of the currents associated to the conserved quantities by their linear functions.
This step is usually called the Boltzmann–Gibbs principle [5, 18]. For gradient, reversible
systems, a general proof of the Boltzmann–Gibbs principle is established in [6] using
entropy method. In other cases, such as anharmonic Hamiltonian dynamics, the proof
usually relies on model-dependent arguments, such as the spectral gap [22, 24].

Our main interest is non-equilibrium fluctuation, namely the central limit theorem
associated to the corresponding hydrodynamic limit for dynamics out of equilibrium.
Compared to the equilibrium case, the non-equilibrium fluctuation field exhibits long-
range space-time correlations, which turns out to be the main difficulty. For some
dynamics such as symmetric exclusion process (SSEP) and reaction-diffusion model,
duality method can be used to control the correlations and obtain the non-equilibrium
version of the Boltzmann–Gibbs principle [21, 10, 3, 25]. For one-dimensional weakly
asymmetric exclusion process (WASEP), a microscopic Cole–Hopf transformation [14] can
be applied, instead of the Boltzmann–Gibbs principle, to linearize the currents [8, 26, 2].
While most works deal with the diffusive space-time scale, the totally asymmetric
exclusion process (TASEP) is the only model in which non-equilibrium fluctuation is
proved under the hyperbolic scale [27]. Note that all these works are restricted to
models with stochastic integrability and single conservation law.

In the absence of stochastic integrability, non-equilibrium fluctuations are understood
for only few models. In [7], an Ornstein–Uhlenbeck process is obtained from non-
equilibrium fluctuations for one-dimensional Ginzburg–Landau model using logarithmic
Sobolev inequality. A general derivation of non-equilibrium fluctuations for conservative
systems has been largely open for a long period of time since then. Recently in [16, 17], a
new approach is developed and applied to spatially inhomogeneous WASEP in dimensions
d < 4. Their main tool is relative entropy technique. Briefly speaking, Yau’s relative
entropy inequality [30] says that the derivative of the relative entropy with respect to a
given local Gibbs measure is bounded by a dissipative term and an entropy production
term. In [16, 17], the authors obtain an estimate allowing them to control the entropy
production term by the dissipative term, which they called the key lemma. An entropy
estimate then follows directly from this lemma. Using both the lemma and the entropy
estimate as input, Boltzmann–Gibbs principle can be proved by a generalized Feyman–
Kac inequality [16, Lemma 3.5].

In the present article we study non-equilibrium fluctuations for a Hamiltonian lattice
field under the hyperbolic scale. Observe that part of the ideas in [16, 17] is robust
enough to be applied to our model, cf. Section 5. Meanwhile, the proof of the key lemma
relies heavily on the particular basis of the local functions on the configuration space of
WASEP. In Section 3 we establish a similar estimate for Hamiltonian dynamics. The main
tools we used are the Poisson equation and the equivalence of ensembles, see Section 8
and 9 for details.
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Hyperbolic non-equilibrium fluctuations

The microscopic model we study is a noisy Hamiltonian system on one-dimensional
lattice space with vanishing anharmonicity and two conservation laws. Precisely speak-
ing, consider a chain of n coupled oscillators, each of them has mass 1. For i = 0, 1, . . . , n,
denote by (pi, qi) ∈ R2 the momentum and position of the particle i. The periodic
boundary condition (p0, q0) = (pn, qn) is applied to the chain.

Figure 1: Chain of oscillators with periodic boundary

Each pair of consecutive particles i − 1 and i is connected by a spring with potential
defined by V (qi − qi−1), where V is a nice function on R. With ri = qi − qi−1 being the
relative position, the energy of the chain is given by the Hamiltonian

Hn(p, r) =
n∑
i=1

p2
i

2
+ V (ri).

When V is quadratic, the corresponding Hamiltonian dynamics is harmonic, and the
macroscopic behaviour is known to be purely ballistic. We add an anharmonic perturba-
tion to the quadratic potential and define

Vσ(r) =
r2

2
+ σU(r), ∀r ∈ R,

where U is a smooth function with good properties, and σ > 0 is a small parameter
which regulates the nonlinearity. When σ > 0 is fixed we say the potential is anharmonic,
whereas σ → 0 is the weakly anharmonic case.

The deterministic Hamiltonian dynamics is perturbed by random, continuous ex-
change of volume stretch (ri, ri+1) for each i, such that ri + ri+1 is conserved. The
corresponding micro canonical surface is a line, where we add a Wiener process. This
stochastic perturbation is generated by a symmetric second order differential operator
Sn,σ defined later in (2.1). The noise does not conserve V (ri) + V (ri+1), thus breaks
the conservation law of energy. Notice that the total momentum is naturally another
conserved quantity, which is untouched by the noise. Similar noise that destroys the
energy conservation is also adopted in [12]. Note that the noise in [12] includes also
the exchange of momentum between the nearest neighbour particles. In our case the
noise on momentum can be dropped, thanks to the linear construction of the momentum
fluctuation in the microscopic level. We choose the noise in such way that the momentum
and volume are the only conserved quantities, hence the equilibrium states are given by
canonical Gibbs measures at a fixed temperature β−1 > 0.

For the anharmonic case, the hydrodynamic equation is

∂tp(t, x) = ∂xτσ(r(t, x)), ∂tr(t, x) = ∂xp(t, x),

where τσ is the equilibrium tension defined later in (2.4). It is proved in [23] in smooth
regime. Denote by (pσ, rσ) the solution of the equation above. Consider the fluctuation
field of the conserved quantities along the hydrodynamic equation, given by

1√
n

n∑
i=1

(
pi(t)− pσ(t, i/n)

ri(t)− rσ(t, i/n)

)
δ

(
x− i

n

)
.
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Hyperbolic non-equilibrium fluctuations

Formally, it is expected to converge to a solution of the linearized system

∂tp̃σ(t, x) = τ ′σ(rσ)∂xr̃σ(t, x), ∂tr̃σ(t, x) = ∂xp̃σ(t, x).

Particularly for the equilibrium system, (pσ, rσ) degenerates to constants and the fluc-
tuation equation is proved in [24], even with the energy conservation and boundary
conditions. Non-equilibrium fluctuations for anharmonic dynamics remain an open
problem.

We work with the weakly anharmonic case that σ = σn depends on the scaling
parameter n in such way that σn = o(1). Similar model with vanishing anharmonicity is
also considered in [1], where the authors take the FPU-type perturbation U = r4 and
the flip-type noise conserving the total energy as well as the sum of the total volume
and momentum. Although the main interest of [1] lies in the anomalous diffusion of
energy fluctuation, they also prove that under the hyperbolic scale, the time evolution of
the fluctuation field of the equilibrium dynamics is governed by a p-system. Our main
result, Theorem 2.4, shows that non-equilibrium fluctuations evolve following a linear
p-system with spatially homogeneous sound speed, provided that U has bounded second
order derivative and σn decays fast enough. This is the first rigorous result obtained
for non-equilibrium fluctuations for a Hamiltonian dynamics presenting some level of
nonlinearity. We also prove a quantitative version of the corresponding hydrodynamic
limit in Corollary 2.3.

We believe that the macroscopic fluctuation equation proved in this work should be
valid with noises acting only on momentum, but the answer is unclear even when the
dynamics is in equilibrium. Another interesting problem concerns the presentation of
boundary conditions in the fluctuation. Boundary driven non-equilibrium fluctuations
are studied for one-dimensional SSEP in [19, 11] and for WASEP in [15]. However for
Hamiltonian dynamics, it is only studied for equilibrium dynamics [24].

The article is organized as follows. In Section 2 we present the precise definition of
the microscopic dynamics and state our main results. In Section 3 we prove the tech-
nical lemma, relying on the equivalence of ensembles under inhomogeneous canonical
measures and a gradient estimate for the solution of the Poisson equation. In Section 4
we prove the relative entropy estimate Theorem 2.2, based on the technical lemma.
We also prove the quantitative hydrodynamics limit Corollary 2.3 as an application of
Theorem 2.2. In Section 5 we prove the Boltzmann–Gibbs principle out of equilibrium,
along the approach introduced in [16, 17]. In Section 6 and 7 we prove the two aspects
of the weak convergence of non-equilibrium fluctuations in Theorem 2.4, namely the
finite-dimensional convergence and the tightness. In Section 8 and 9 we establish the
equivalence of ensembles and the gradient estimate for the Poisson equation, respec-
tively. Both of them play an important role in the proof of the technical lemma. Finally,
some auxiliary estimates are collected in the appendix.

We close this section with some notations used through the article. Let T ∼ [0, 1) be
the one-dimensional torus. For a bounded function f : T→ Rd, define

|f |T = sup
T

|f(x)|Rd , ‖f‖2 =

∫
T

|f(x)|2Rddx.

Let {ϕm,m ∈ Z} be the Fourier basis on T given by ϕm(x) = e2mxπi. For a smooth
function f ∈ C∞(T;R2) and k ∈ R, define

‖f‖2k =
∑
m∈Z

∣∣f̂(m)
∣∣2
C2

(1 +m2)k
, f̂(m) =

∫
T

f(x)ϕm(x)dx.

Define the Sobolev spaceHk(T) as the closure of C∞(T;R2) with respect to the norm ‖·‖k.
By a standard dual argument, we can identifyH−k(T) with the space of linear functionals
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on C∞(T;R2) which is continuous with respect to ‖·‖k. For T > 0, C([0, T ];H−k) denotes
the set of all continuous trajectories on [0, T ] taking values in H−k, equipped with the
uniform topology. Also let Cα([0, T ];H−k) be the subset of C([0, T ];H−k), consisting of
Hölder continuous trajectories with order α > 0.

2 Microscopic model and main results

For n ∈ N+, denote by Tn = Z/nZ the one-dimensional discrete n-torus, and let
Ωn = (R2)Tn be the configuration space. Elements in Ωn are denoted by ~η = {ηi; i ∈ Tn},
where ηi = (pi, ri) ∈ R2. Let U be a smooth function on R with bounded second order
derivative. To simplify the arguments, we assume that

U(0) = U ′(0) = 0, U ′′(r) ∈ [−1, 1], ∀r ∈ R.

For σ ∈ [0, 1), which is supposed to be small eventually, define

Vσ(r) =
r2

2
+ σU(r), ∀r ∈ R.

Note that Vσ is a smooth function with quadratic growth:

inf V ′′σ ≥ 1− σ > 0, supV ′′σ ≤ 1 + σ <∞.

Define the Hamiltonian Hn,σ =
∑
i∈Tn p

2
i /2 + Vσ(ri). The corresponding Hamiltonian

system is generated by the following Liouville operator

An,σ =
∑
i∈Tn

(pi − pi−1)
∂

∂ri
+
(
V ′σ(ri+1)− V ′σ(ri)

) ∂
∂pi

=
∑
i∈Tn

(pi − pi−1)
∂

∂ri
+ (ri+1 − ri)

∂

∂pi
+ σ(U ′(ri+1)− U ′(ri)

) ∂
∂pi

At each bond (i, i+ 1), the deterministic system is contact with a thermal bath at fixed
temperature. More precisely, fix some β > 0 and define

Yi =
∂

∂ri+1
− ∂

∂ri
, Y∗i,σ = β

(
V ′σ(ri+1)− V ′σ(ri)

)
− Yi.

Notice that β is fixed through this article, thus we omit the dependence on it in most
cases. For γ > 0, consider the operator Ln,σ,γ , given by

Ln,σ,γ = n
(
An,σ + γSn,σ

)
, Sn,σ = −1

2

∑
i∈Tn

Y∗i,σYi, (2.1)

where γ regulates the strength of the noise. With an infinite system of independent,
standard Brownian motions {Bi; i ≥ 1}, the Markov process generated by Ln,σ,γ can be
expressed by the solution of the following system of stochastic differential equations:

dpi(t) = n
(
V ′σ(ri+1)− V ′σ(ri)

)
dt,

dri(t) = n(pi+1 − pi)dt+
nβγ

2

(
V ′σ(ri+1) + V ′σ(ri−1)− 2V ′σ(ri)

)
dt

+
√
nγ
(
dBi−1

t − dBit
)
, ∀i ∈ Tn.

It can be treated as the dynamics of the chain of oscillators illustrated in Section 1,
rescaled hyperbolically and perturbed with the noise conserving the total momentum∑
pi as well as the total length

∑
ri. The total energy Hn,σ is no longer conserved.
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For τ ∈ R and 0 ≤ σ < 1, define the probability measure πτ,σ by

πτ,σ(dr) =
1

Zσ(τ)
e−β(Vσ(r)−τr)dr, (2.2)

where Zσ(τ) is the normalization constant given by

Zσ(τ) =

∫
R

e−β(Vσ(r)−τr)dr =

∫
R

exp

{
−βr

2

2
− βσU(r) + βτr

}
dr.

The Gibbs potential Gσ and the free energy Fσ are then given for each τ ∈ R, r ∈ R by
the following Legendre transform

Gσ(τ) =
1

β
logZσ(τ), Fσ(r) , sup

τ∈R

{
τr −Gσ(τ)

}
. (2.3)

Denote by r̄σ and τσ the corresponding convex conjugate variables

r̄σ(τ) = Eπτ,σ [r] = G′σ(τ), τσ(r) = F ′σ(r). (2.4)

Observe that given any finite interval [r−, r+] ∈ R,∣∣τσ(r)− r
∣∣ ≤ Cσ, ∣∣τ ′σ(r)− 1

∣∣ ≤ Cσ, ∣∣τ ′′σ(r)
∣∣ ≤ Cσ (2.5)

holds with a uniform constant C for all r ∈ [r−, r+] and sufficiently small σ ≥ 0. The
details of these asymptotic properties are discussed in Appendix A.

For n ≥ 1, the (grand) Gibbs states of the generator Ln,σ,γ are given by the family of
product measures {νnp̄,τ,σ; (p̄, τ) ∈ R2} on Ωn, defined as

νnp̄,τ,σ(d~η) =
∏
i∈Tn

√
β

2π
exp

{
−β(pi − p̄)2

2

}
dpi ⊗ πτ,σ(dri). (2.6)

It is easy to see that An,σ is anti-symmetric, while Sn,σ is symmetric with respect to the
Gibbs states, and for all smooth functions f , g on Ωn,∫

Ωn

f
(
Sn,σg

)
dνnp̄,τ,σ = −1

2

∫
Ωn

∑
i∈Tn

YifYig dνnp̄,τ,σ.

In particular, νnp̄,τ,σ is invariant with respect to Ln,σ,γ .

2.1 Weakly anharmonic oscillators

Pick two positive sequences {σn}, {γn} and consider the Markov process in Ωn
associated to the infinitesimal generator

Ln = Ln,σn,γn , ∀n ≥ 1.

Basically, we demand that σn → 0, γn ≥ 1 and γn = o(n). These conditions correspond
to a weakly anharmonic interaction and assure that the noise would not appear in the
hyperbolic scaling limit. From here on, we denote

Vn = Vσn , Sn = Sn,σn , r̄n = r̄σn , τn = τσn (2.7)

for short. For any fixed T > 0, denote by{
~η(t) = (ηi(t); i ∈ Tn) ∈ Ωn; t ∈ [0, T ]

}
the Markov process generated by Ln and initial distribution νn on Ωn. This is the main
subject treated in this article. Denote by Pn, En the corresponding distribution and
expectation on the trajectory space C([0, T ]; Ωn) of ~η(·), respectively.
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2.2 Hydrodynamic limit

We start from the anharmonic case σn ≡ σ ∈ (0, 1). Let Pn,σ denote the law of the
Markov process generated by Ln,σ,1 and νn. Assume some profile v ∈ C2(T;R2), such
that for any smooth function g on T,

lim
n→∞

νn

{∣∣∣∣∣ 1n ∑
i∈Tn

g

(
i

n

)
ηi(0)−

∫
T

g(x)v(x)dx

∣∣∣∣∣ > ε

}
= 0, ∀ε > 0.

The hydrodynamic limit is then given by the following convergence

lim
n→∞

Pn,σ

{∣∣∣∣∣ 1n ∑
i∈Tn

g

(
i

n

)
ηi(t)−

∫
T

g(x)

(
pσ
rσ

)
(t, x)dx

∣∣∣∣∣ > ε

}
= 0, (2.8)

for all ε > 0. Here (pσ, rσ) solves the quasi-linear p-system:

∂tpσ = ∂xτσ(rσ), ∂trσ = ∂xpσ, (pσ, rσ)(0, ·) = v, (2.9)

where τσ = τσ(r) is the equilibrium tension given in (2.4). Note that the Lagrangian
material coordinate is considered as the space variable. It is well known that even with
smooth initial data, (2.9) generates shock wave in finite time Tσ. With the arguments in
[4], (2.8) can be proved in its smooth regime, that is, for any t < Tσ.

Now we return to the weakly anharmonic case. To simplify the notations, denote by
(pn, rn) the solution of (2.9) with σ = σn. The next proposition allows us to consider only
the smooth regime of (pn, rn) for any T > 0.

Proposition 2.1. limσ↓0 Tσ = +∞. In particular, for any fixed time T > 0, we can choose
n0 sufficiently large, such that (pn, rn) is smooth on [0, T ] for all n ≥ n0.

Proposition 2.1 follows directly from (2.5) and Lemma B.1 in Appendix B. It is not
hard to observe that the hydrodynamic equation associated to the weakly anharmonic
chain turns out to be the linear p-system

∂tp = ∂xr, ∂tr = ∂xp, (p, r)(0, ·) = v. (2.10)

We prove a quantitative convergence in Corollary 2.3 later.

2.3 Relative entropy

For a probability measure µ on a measurable space Ω, and a density function f with
respect to µ, its relative entropy is defined by

H(f ;µ) =

∫
Ω

f log fdµ. (2.11)

Given T > 0, let (pni , r
n
i ) be the interpolation of (pn, rn) in (2.9):

(pni , r
n
i )(t) = (pn, rn)

(
t,
i

n

)
, t ∈ [0, T ], i ∈ Tn.

As discussed before, we assume without loss of generality that (pn, rn) is smooth for
t ∈ [0, T ]. Denote by µt,n the local Gibbs measure on Ωn associated to the smooth profiles
pn(t, ·) and τn(rn(t, ·)):

µt,n(d~η) =
∏
i∈Tn

ν1
pni ,τ

n
i ,σn

(dηi), τni = τn(rni ).
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Let ft,n be the density of the dynamics ~η(t) with respect to µt,n, and

Hn(t) , H(ft,n;µt,n).

Our first theorem is an estimate on Hn(t), which improves the classical upper bound
Hn(t) ≤ C(Hn(0) + n) for all t ∈ [0, T ].

Theorem 2.2. There exists a constant C = Cβ,v,T , such that

Hn(t) ≤ C(Hn(0) +Kn), ∀t ∈ [0, T ], n ≥ 1,

where Kn is the deterministic sequence given by

Kn = max
{
σ

6
5
n γ
− 1

5
n n

4
5 , γn

}
.

From Theorem 2.2, if {σn}, {γn} satisfy that

lim
n→∞

γ2
nn
−1 = 0, lim

n→∞
σ6
nγ
−1
n n

3
2 = 0, (2.12)

then Kn = o(
√
n) as n→∞. As an application of this observation, we have the following

quantitative version of hydrodynamic limit.

Corollary 2.3. Assume (2.12) and a constant C0 such that Hn(0) ≤ C0
√
n for all n. For

any 1 ≤ p < 2, t ∈ [0, T ] and smooth function h : T→ R2,

En

[∣∣∣∣ 1n ∑
i∈Tn

h

(
i

n

)
·
(
pi(t)− pni (t)

ri(t)− rni (t)

) ∣∣∣∣p
]
≤ C‖h‖p

n
p
4

holds with some constant C = C(β, v, T, C0, p).

Theorem 2.2 and Corollary 2.3 are proved in Section 4.

2.4 Fluctuation field

By non-equilibrium fluctuation, we mean the fluctuation field of the conserved quanti-
ties around its hydrodynamic limit. Define the empirical distribution of these fluctuations
as

Y nt (h) =
1√
n

∑
i∈Tn

h

(
i

n

)
·
(
pi(t)− pni (t)

ri(t)− rni (t)

)
, (2.13)

for t ∈ [0, T ], n ≥ 1 and smooth function h : T→ R2. Notice that the conserved quantities
are centred with solutions of (2.9) instead of (2.10). Observe that as n→∞,

‖pn(t, ·)− p(t, ·)‖+ ‖rn(t, ·)− r(t, ·)‖ = O(σn).

Therefore, (pn, rn) and (p, r) are indistinguishable in (2.13) only if
√
nσn = o(1). This is

not necessarily satisfied in our setting, see (2.12) and (2.14) later.
By duality, (2.13) defines a process {Y nt ∈ H−k(T); t ∈ [0, T ]} for k > 1/2. The major

goal of this article is to derive the macroscopic equation of Y nt . Suppose that there is
a random variable Y0 ∈ H−k, such that Y n0 converges weakly to Y0 as n → ∞. In the
following theorem, we prove that Y n· converges weakly to the solution of the a linear
p-system with homogeneous sound speed under some additional assumptions.

Theorem 2.4. Assume (2.12) and some ε > 0, such that

lim sup
n→∞

σ2
nK

3−2ε
n nε−1 <∞, sup

n
Hn(0) <∞, (2.14)
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where Kn is the sequence appeared in Theorem 2.2 before. For every T > 0, {(Y nt )0≤t≤T ;

n ≥ 1} converges in law to the unique solution of

∂tY (t) =

[
0 1

1 0

]
∂xY (t), Y (0) = Y0, (2.15)

with respect to the topology of C([0, T ];H−k) for k > 9/2.

Remark 2.5. The additional assumptions in (2.14) are necessary only for the proof of
tightness, see Section 7. For the convergence of finite-dimensional laws of Y nt proved in
Section 6, it is sufficient to assume that Hn(0) = o(

√
n) and (2.12).

Remark 2.6. In the particular case that σn = n−a, γn = nb with a > 0, b ≥ 0, the
conditions (2.12) and (2.14) are equivalent to

a >
1

5
, b ∈

(
f−(a), f+(a)

)
∩
[
0,

1

2

)
,

where f±(a) are respectively given by

f−(a) =
7− 28a

3
and f+(a) =

2a+ 1

3
.

Hence, if σn decays strictly faster than n−1/5, then the result in Theorem 2.4 holds with
some properly chosen sequence γn.

The proof of Theorem 2.4 is divided into two parts. In Section 6 we show the
convergence of finite-dimensional distribution, based on the Boltzmann–Gibbs principle
proved in Section 5. In Section 7 we show the tightness of the laws of Y n· . The weak
convergence in Theorem 2.4 then follows from the uniqueness of the solution of (2.15).

3 The main lemma

Fix some C1-smooth function τ = τ(·) on T. For each n ≥ 1, define a product measure
µn (dependent on τ(·), σn) on Rn by

µn(dr) =
∏
i∈Tn

πτni ,σn(dri), τni = τ

(
i

n

)
.

Note that µn is the (r1, . . . , rn)-marginal distribution of a local Gibbs measure. To simplify
the notations, let 〈 · 〉τ,σ denote the integral with respect to πτ,σ. Define

Φni (ri) = V ′n(ri)− 〈V ′n〉τni ,σn −
d

dr
〈V ′n〉τn(r),σn

∣∣∣
r=rni

(ri − rni )

= V ′n(ri)− τni − τ ′n(rni )
(
ri − rni

)
,

(3.1)

where rni = r̄n(τni ) and r̄n, τn are functions given by (2.4), (2.7). In this section, we
prove an estimate for the space variance associated to Φni .

For a probability measure µ on Rn and a density function f with respect to µ, define
the Dirichlet form associated to Sn,σ by

D(f ;µ) =
1

2

∑
i∈Tn

∫
Rn

(Yif)2dµ.

For g ∈ C1(T), define the random local functional

Wn(g) =
∑
i∈Tn

gni Φni , gni = g

(
i

n

)
. (3.2)
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Lemma 3.1. For any δ > 0 and density function f with respect to µn, there exists a
random functional Wn,δ(g) (depending on τ(·) and f ), such that∫

f
[
Wn(g)−Wn,δ(g)

]
dµn ≤ δnγnD

(√
f ;µn

)
, (3.3)

where Wn(g) is defined through (3.1) and (3.2) above, and∫
f
∣∣Wn,δ(g)

∣∣dµn ≤ C(1 +Mg)

[
H(f ;µn) +

(
1 +

1

δ

)
κn

]
, (3.4)

where C is a constant dependent on β, |τ |T and |τ ′|T, and

Mg = |g|2T + |g′|T, κn = max
{
σ

6
5
n γ
− 1

5
n n

4
5 , σn

√
n
}
.

In particular, if the second limit in (2.12) is satisfied, then κn = o(
√
n).

To prove Lemma 3.1, we make use of the sub-Gaussian property of the local func-
tion Φni . A real-valued random variable X is sub-Gaussian of order C > 0, if

logE
[
esX

]
≤ Cs2

2
, ∀s ∈ R. (3.5)

Recall that Vn = r2/2 + σnU with U ′′ bounded. We have the following lemma.

Lemma 3.2. For all n ≥ 1, i ∈ Tn, U ′(ri) − 〈U ′〉τni ,σn and ri − rni are sub-Gaussian of a
uniform order dependent only on β and |τ |T.

The proof of the sub-Gaussian property is direct and is postponed to the end of
this section. Some general properties of sub-Gaussian variables used hereafter are
summarized in Appendix E. Now we state the proof of Lemma 3.1.

Proof of Lemma 3.1. Pick some ` = `(n)� n which grows with n. Let

gni,` = gni −
1

`

`−1∑
j=0

gni−j , Φni,` = Eµn

1

`

`−1∑
j=0

Φni+j

∣∣∣∣ `−1∑
j=0

ri+j

 .
For each i ∈ Tn, denote by Y∗i,n the adjoint of Yi with respect to the inhomogeneous
measure µn. It is easy to see that for smooth F ,

Y∗i,nF = β
(
V ′n(ri+1)− V ′n(ri)− τni+1 + τni

)
F − YiF. (3.6)

Let ψni,` = ψni,`(ri, . . . , ri+`−1) solve the Poisson equation

`−2∑
j=0

Y∗i+j,nYi+jψni,` = Ψn
i,`, Ψn

i,` =
1

`

`−1∑
j=0

Φni+j − Φni,`. (3.7)

By Proposition 9.1, ψni,` ∈ C1
b (R`). Define the auxiliary functionals

W
(1)
n,` (g) =

∑
i∈Tn

gni,`Φ
n
i , W

(2)
n,` (g) =

∑
i∈Tn

gni Φni,`,

W
(3)
n,` (g) =

2(`− 1)

nγn

∑
i∈Tn

(gni )2
`−2∑
j=0

(
Yi+jψni,`

)2
,

for each n ≥ 1, ` and i ∈ Tn.
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Our first step is to observe that for any δ > 0,∫
f

[
Wn(g)−W (1)

n,` (g)−W (2)
n,` (g)− 1

δ
W

(3)
n,` (g)

]
dµn

=

∫ ∑
i∈Tn

gni

`−2∑
j=0

(
Yi+jψni,`

)(
Yi+jf

)
dµn −

1

δ

∫
fW

(3)
n,` (g)dµn

≤ δnγn
8(`− 1)

∫
f−1

∑
i∈Tn

`−2∑
j=0

(Yi+jf)2dµn = δnγnD
(√

f ;µn

)
.

Hence, the strategy is to bound the integrals of the auxiliary functionals by relative
entropy together with terms of ` and n, and then optimize the order of `.

For the first functional W (1)
n,` , note that Φni = σnφ

n
i , where

φni (ri) = U ′(ri)− 〈U ′〉τni ,σn −
d

dr
〈U ′〉τn(rni ),σn

(
ri − rni

)
,

= U ′(ri)−
τni − rni
σn

− τ ′n(rni )− 1

σn

(
ri − rni

)
.

In view of (2.5), there is a constant Cβ,|τ |T , such that∣∣∣∣τ ′n(rni )− 1

σn

∣∣∣∣ ≤ Cβ,|τ |T , ∀n ≥ 1, i ∈ Tn.

As {φni ; i ∈ Tn} is an independent family, by the entropy inequality (D.5),∫
f
∣∣W (1)

n,`

∣∣dµn ≤ 1

α

(
H(f ;µn) +

∑
i∈Tn

log

∫
eασn|g

n
i,`φ

n
i |dµn

)
,

for any α > 0. By Lemma 3.2 and direct computation, φni is sub-Gaussian of a uniform
order c = cβ,|τ |T . Choosing αn,` = (2σn|gni,`|)−1 and applying Lemma E.2,∫

f
∣∣W (1)

n,`

∣∣dµn ≤ 1

αn,`

[
H(f ;µn) +

∑
i∈Tn

(
log 3 +

c

4

)]
.

As |gni,`| ≤ C|g′|T`n−1 with some universal constant C, therefore,∫
f
∣∣W (1)

n,`

∣∣dµn ≤ C|g′|Tσn`
n

(
H(f ;µn) + C1n

)
≤ C|g′|T

(
H(f ;µn) + C2σn`

)
.

(3.8)

The second functional W (2)
n,` is the variance of a canonical ensemble. Indeed, Φni,` =

σnφ
n
i,`, where φni,` is the conditional expectation on the box (ri, . . . , ri+`−1):

φni,` = Eµn

1

`

`−1∑
j=0

φni+j

∣∣∣∣ `−1∑
j=0

ri+j

 .
The definition of φni suggests that this term can be estimated by the theory of equivalence
of ensembles presented in Section 8. First notice that {φni,`, i ∈ Tn} is an `-independent
class. With (D.5) we obtain that for any α > 0,∫

f
∣∣W (2)

n,`

∣∣dµn ≤ 1

α

(
H(f ;µn) +

1

`

∑
i∈Tn

log

∫
eα`σn|g

n
i φ

n
i,`|dµn

)
.
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Since φni,` is sub-Gaussian of order c, in view of Lemma E.2,∫
es|φ

n
i |dµn ≤

1 + s

1− s
e
cs
2 ≤ e, ∀|s| ≤ A = A(c).

Hence, Proposition 8.3 yields that if ` ≤ O(n2/3),∫
es|`φ

n
i,`|dµn ≤ C1, ∀|s| ≤ A′ = A′(c),

with some universal constant C1. Choosing αn = A′(|g|Tσn)−1,∫
f
∣∣W (2)

n,`

∣∣dµn ≤ 1

αn

(
H(f ;µn) +

C1n

`

)
≤ C2|g|T

(
H(f ;µn) +

C1σnn

`

)
. (3.9)

For the third functional W (3)
n,` , recall the Poisson equation (3.6)–(3.7). Using the C1

estimate of the Poisson equation in Proposition 9.1,

`−2∑
j=0

(
Yi+jψni,`

)2 ≤ Cβ`4 sup
R`


`−2∑
j=0

(
Yi+jΨn

i,`

)2 ,

where the supremum is taken over all (ri, ri+1, . . . , ri+`−1) ∈ R`. From the definition of
Ψn
i,`, with bni = τ ′n(rni ) = τ ′n(r̄n(τni )),

Yi+jΨn
i,` =

1

`

(
V ′′n (ri+j−1)− V ′′n (ri+j)− bni+j−1 + bni+j

)
=

1

`

(
σnU

′′(ri+j−1)− σnU ′′(ri+j)− bni+j−1 + bni+j
)
.

In view of the condition |U ′′(r)| ≤ 1 and (2.5),

∣∣Yi+jΨn
i,`

∣∣ ≤ Cσn
`

(
1 +

1

n

)
,

with some constant C dependent on |τ ′|T. Therefore,∫
fW

(3)
n,`dµn ≤

2CCβ(`− 1)σ2
n

nγn

∑
i∈Tn

(gni )2`3 ≤ C1|g|2Tσ2
n`

4

γn
. (3.10)

Combining (3.8)–(3.10), we obtain that if ` ≤ O(n2/3),∫
f

∣∣∣∣W (1)
n,δ (g) +W

(2)
n,δ (g) +

1

δ
W

(3)
n,δ (g)

∣∣∣∣ dµn
≤ C

(
1 + |g|2T + |g′|T

)(
H(f ;µn) + σn`+

σnn

`
+
σ2
n`

4

δγn

)
,

holds with some constant C = C(β, |τ |T, |τ ′|T). The optimal choice of ` is

`(n) = min
{

(σ−1
n γnn)

1
5 , n

1
2

}
.

Indeed, if σ−1
n γn > n3/2, we take ` =

√
n, and

σn`+
σnn

`
+
σ2
n`

4

δγn
=

(
2 +

n
3
2

δ

σn
γn

)
σn
√
n <

(
2 +

1

δ

)
σn
√
n.
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On the other hand, if σ−1
n γn ≤ n3/2, we take ` = (σ−1

n γnn)1/5, and

σn`+
σnn

`
+
σ2
n`

4

δγn
= σ

6
5
n γ
− 1

5
n n

4
5

(
σ
− 2

5
n γ

2
5
n n
− 3

5 + 1 +
1

δ

)
≤
(

2 +
1

δ

)
σ

6
5
n γ
− 1

5
n n

4
5 .

In consequence, (3.3), (3.4) are in force by defining

Wn,δ(g) = W
(1)
n,` (g) +W

(2)
n,` (g) +

1

δ
W

(3)
n,` (g),

with ` = `(n) chosen above.

Before proceeding to the proof of Lemma 3.2, we discuss the anharmonic case
briefly. If σn ≡ σ and γn = o(n), similar argument yields the estimate with κn replaced
by κ′n = n3/5+. Apparently, it is insufficient for deriving the macroscopic fluctuation,
which demands at least κ′n = o(

√
n). By computing explicitly under Gaussian canonical

measure, the upper bounds presented for the first and second auxiliary functionals in
the proof of Lemma 3.1 turn out to be sharp. Meanwhile, (3.10) should be improvable.
Indeed, by using (D.5), the left-hand side of (3.10) is bounded from above with

2H(f ;µn) +
2

`

∑
i∈Tn

log

∫
exp

{
`2(gni )2

nγn

`−2∑
j=0

(
Yi+jψni,`

)2}
dµn,

Therefore, we guess that a nice upper bound of the exponential moment term above
could help us take the advantage of the entropy and improve (3.10).

Lemma 3.2 is a special case of the next result.

Lemma 3.3. Let V ∈ C(R) satisfy c−r2 ≤ 2V (r) ≤ c+r2 with two positive constants c±.
For τ ∈ R, let πτ be a probability measure on R given by

πτ = e−V (r)+τr−G(r)dr, G(r) = log

∫
R

e−V (r)+τ(r)dr.

If F is a measurable function on R such that |F (r)| ≤ c|r| with constant c, then F−Eπτ [F ]

is sub-Gaussian of order C = C(τ, c, c±) under πτ . Furthermore, C is uniformly bounded
for all the coefficients in any compact intervals.

Proof. Notice that for all τ ∈ R,

eG(τ) ≥
∫
R

exp

{
−c+r

2

2
+ τr

}
=

√
2π

2c+
exp

{
τ2

2c+

}
.

For any t such that 0 < t < c−/(2c
2),

Eπτ
[

exp(tF 2)
]
≤ e−G(τ)

∫
R

exp

{
− (c− − 2tc2)r2

2
+ τr

}
dr

≤ c+
c− − 2tc2

exp

{
τ2

2

(
1

c− − 2tc2
− 1

c+

)}
.

Denote F∗ = F − Eπτ [F ]. By convexity, for all t ≥ 0,

Eπτ
[

exp(tF 2
∗ )
]
≤ exp

(
2tE2

πτ [F ]
)
Eπτ

[
exp(2tF 2)

]
≤ Eπτ

[
exp(4tF 2)

]
.

Therefore, we obtain that

Eπτ

[
exp

( c−
16c2

F 2
∗

)]
≤ Eπτ

[
exp

( c−
4c2

F 2
)]
≤ 2c+

c−
exp

{
τ2

2

(
2

c−
− 1

c+

)}
.
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Using the φ2-condition (see Lemma E.1), we can conclude that F∗ is a sub-Gaussian
random variable of the order given by

C(τ, c, c±) =
64cc+
c2−

exp

{
τ2

2

(
2

c−
− 1

c+

)}
.

The lemma then follows directly.

4 Entropy estimate

In this section we prove Theorem 2.2 and Corollary 2.3. They are direct results of
Lemma 3.1 and the relative entropy inequality established in [30].

Proof of Theorem 2.2. Recall that (pni , r
n
i ) = (pn, rn)(t, i/n) and τni = τn(rni ). We start

from Yau’s entropy inequality stated in Appendix C:

H ′n(t) ≤ −2nγnD
(√

ft,n;µt,n

)
+ β

∫
ft,nJ

n
t dµt,n + Cγn, (4.1)

where C = Cβ,v,T . The remainder Jnt can be expressed by

Jnt = Wn(hn) + Ent , hn = ∂trn(t, ·), (4.2)

where the functional Wn is defined through (3.2), and

Ent =
∑
i∈Tn

εni ·
(

pi − pni
V ′n(ri)− τni

)
, εni = −∂t

(
pn
rn

)(
t,
i

n

)
+ n

(
τni+1 − τni
pni − pni−1

)
. (4.3)

For the integral of Ent , (D.5) yields that∫
ft,nE

n
t dµt,n ≤ Hn(t) +

∑
i∈Tn

log

∫
exp

{
εni ·

(
pi − pni

V ′n(ri)− τni

)}
dµt,n.

Notice that under µt,n, pi−pni is a Gaussian variable, while due to Lemma 3.2, V ′n(ri)−τni
is sub-Gaussian of order C = Cβ,v,T , so that∫

ft,nE
n
t dµt,n ≤ Hn(t) + C

∑
i∈Tn

|εni |2 ≤ Hn(t) +
C ′β,v,T
n

. (4.4)

For Wn(hn), denote by µ∗t,n the marginal distribution of µt,n on positions (r1, . . . , rn),
and by f∗t,n the density of (r1, . . . , rn)(t) with respect to µ∗t,n. Applying Lemma 3.1 with
δ = 2/β, and using the relation H(f∗t,n;µ∗t,n) ≤ H(ft,n;µt,n) (see (D.2)),∫

ft,nWn(hn)dµt,n ≤
2nγn
β

D
(√

ft,n;µt,n

)
+ C

(
H(f∗t,n;µ∗t,n) + κn

)
≤ 2nγn

β
D
(√

ft,n;µt,n

)
+ C

(
Hn(t) + κn

)
.

Hence, we obtain from (4.1) that for all t ∈ [0, T ],

H ′n(t) ≤ Cβ,v,T
(
Hn(t) + max{κn, γn}

)
= Cβ,v,T (Hn(t) +Kn).

Theorem 2.2 then follows from the Grönwall’s inequality.

Corollary 2.3 is a special case of the following result.
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Corollary 4.1. Let F ∈ C(R) satisfy that |F (r)| ≤ c|r|. For all p ∈ [1, 2), there is a
constant C = C(β, v, T, c, p), such that for all h ∈ C(T), t ∈ [0, T ],

En

[∣∣∣∣ 1n ∑
i∈Tn

h

(
i

n

)(
F (ri)− Eµt,n [F (ri)]

)∣∣∣∣p
]
≤ C(1 +Hn(t))

p
2 ‖h‖p

n
p
2

,

In particular, if (2.12) holds and Hn(0) ≤ C0
√
n, then

En

[∣∣∣∣ 1n ∑
i∈Tn

h

(
i

n

)(
F (ri)− Eµt,n [F (ri)]

)∣∣∣∣p
]
≤ C‖h‖p

n
p
4

,

with some constant C = C(β, v, T, c, p, C0). Similar result holds for F (pi).

Proof. Denote by Fi = F (ri)− Eµt,n [F (ri)] for short. By (D.3),

Pn

{∣∣∣∣∣ 1n ∑
i∈Tn

hni Fi

∣∣∣∣∣ > λ

}
≤ Hn(t) + log 2

− logµt,n
{
|
∑
i h

n
i Fi| > λn

} .
In view of Lemma 3.3, {Fi, i ∈ Tn} is an independent family of sub-Gaussian variables of
a uniform order under µt,n. Then, with a constant C = Cβ,v,T,c,

Eµt,n

[
exp

{
s
∑
i∈Tn

hni Fi

}]
≤ exp

{
Cs2

2

∑
i∈Tn

(hni )2

}
, ∀s ∈ R.

Therefore,
∑
i h

n
i Fi is sub-Gaussian of order Cn‖h‖2, and

µt,n

{∣∣∣∣∣∑
i∈Tn

hni Fi

∣∣∣∣∣ > λn

}
≤ 2 exp

{
− λ2n

2C‖h‖2

}
.

From this and the estimate above, we obtain that for any λ > 0,

Pn

{∣∣∣∣∣ 1n ∑
i∈Tn

hni Fi

∣∣∣∣∣ > λ

}
≤ C(1 +Hn(t))‖h‖2

λ2n
.

By the moment estimate in Lemma D.4, for all p ∈ [1, 2),

En

[∣∣∣∣ 1n ∑
i∈Tn

hni Fi

∣∣∣∣p
]
≤ C(1 +Hn(t))

p
2 ‖h‖p

n
p
2

.

The second inequality in Corollary 4.1 follows directly from Theorem 2.2. The parallel
result for F (pi) can be proved in the same way.

5 Boltzmann–Gibbs principle

In this section, we prove the proposition which is known in the literature as the
Boltzmann–Gibbs principle, firstly established for the equilibrium dynamics of zero range
jump process in [5]. It aims at determining the space-time variance of a local observation
of conserved field by its linear approximation.

Proposition 5.1. Suppose (2.12) and in additional

lim
n→∞

Hn(0)√
n

= 0. (5.1)
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Let gn = gn(t, x) be a sequence of functions on [0, T ]×T, such that |gn|T and |∂xgn|T are
uniformly bounded for t ∈ [0, T ] and n ≥ 1. For any 0 ≤ t < t′ ≤ T ,

lim
n→∞

Pn

{∣∣∣∣∣ 1√
n

∫ t′

t

∑
i∈Tn

gni Φni ds

∣∣∣∣∣ > λ

}
= 0, ∀λ > 0, (5.2)

where gni = gn(t, i/n) and Φni is given by (3.1).

We prove it along the approach in [17, Theorem 5.1].

Proof. As we can consider −gn instead of gn, it suffices to prove that

lim
n→∞

Pn

{∫ t′

t

∑
i∈Tn

gni Φni ds > λ
√
n

}
= 0.

Recall the auxiliary functional Wn,δ defined in Lemma 3.1, and the expressions Ent ,
Wn(hn) in (4.2). Define for any α > 0 and n ≥ 1

Un,α(gn) = Wn, 1
2α

(gn) +
β

2α

[
Ent +Wn, 1β

(hn)
]
. (5.3)

Note that the parameter α is not needed here, but would be used in Section 7. Let
Pt,n and P∗t,n be the law of the dynamics generated by Ln, respectively with initial
distributions µt,n and ft,ndµt,n. By the Markov property,

H

(
dP∗t,n
dPt,n

;Pt,n

)
= Hn(ft,n;µt,n) = Hn(t).

Therefore, we can apply (D.3) to the trajectory space to get

Pn

{∫ t′

t

[
Wn(g)− Un,α(g)

]
ds > λ

√
n

}

≤ H(t) + log 2

− logPt,n{
∫ t′−t

0
[Wn(g)− Un,α(g)]ds > λ

√
n}
.

Applying [16, Lemma 3.5] (see also [17, Lemma A.2]) to the reference measures
{µt+s,n; s ∈ [0, t′ − t]},

logPt,n

{∫ t′−t

0

[
Wn(gn)− Un,α(gn)

]
ds > λ

√
n

}

≤− αλ
√
n+

∫ t′−t

0

sup
f

{
− nγnD

(√
f ;µt+s,n

)
+∫

f

[
α
(
Wn(gn)− Un,α(gn)

)
+
βJnt+s

2

]
dµt+s,n

}
ds,

where the supremum runs over all the density functions f with respect to µt+s,n. Since
Jnt = Ent +Wn(hn), (3.3) in Lemma 3.1 yields that∫

f

[
α
(
Wn(gn)− Un,α(gn)

)
+
βJnt+s

2

]
dµt+s,n ≤ nγnD

(√
f ;µt+s,n

)
.

Hence, we can conclude that for all λ > 0,

logPt,n

{∫ t′−t

0

[
Wn(gn)− Un,α(gn)

]
ds > λ

√
n

}
≤ −αλ

√
n.
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As the conditions and Theorem 2.2 assure that Hn(t) = o(
√
n),

lim
n→∞

Pn

{∫ t′

t

[
Wn(gn)− Un,α(gn)

]
ds > λ

√
n

}
≤ lim
n→∞

Hn(t) + log 2

αλ
√
n

= 0. (5.4)

For the integral of Un,α, notice that by Chebyshev’s inequality,

Pn

{∫ t′

t

Un,α(gn)ds > λ
√
n

}
≤ 1

λ
√
n
En

[∣∣∣∣∣
∫ t′

t

Un,α(gn)ds

∣∣∣∣∣
]
.

By (3.4) in Lemma 3.1 and (4.4), with a constant C = Cβ,v,T ,

En
[
|Un,α(gn)|

]
≤ C

(
α+ α−1

)(
1 + |gn(t)|2T + |∂xgn(t)|T

)(
Hn(t) +Kn

)
.

From the conditions on gn and Theorem 2.2,

lim
n→∞

Pn

{∫ t′

t

Un,α(gn)ds > λ
√
n

}

≤ C|t′ − t|(1 + Cg)

λ

(
α+

1

α

)
lim
n→∞

Hn(0) +Kn√
n

= 0,

(5.5)

where Cg = supn≥1,t∈[0,T ]{|gn(t)|2T + |∂xgn(t)|T}. By summing up (5.4) and (5.5) together
we prove the result.

6 Convergence of finite-dimensional laws

In this section we prove that every possible weak limit point of Y nt in (2.13) satis-
fies (2.15). Let H : [0, T ] × T → R2 be a smooth function, and write H = (H1, H2). By
Itô’s formula, there is a square integrable martingale Mn

t (H), such that

Y nt (H(t))− Y n0 (H(0)) =

∫ t

0

(
d

ds
+ Ln

)
Y ns (H(s))ds+Mn

t (H),

and the quadratic variation of Mn
t (H) is given by

〈
Mn
t (H)

〉
= nγn

∫ t

0

Γn
[
Y nt (H(s))

]
ds, Γnf = Sn[f2]− 2fSnf. (6.1)

Recall that un = (pn, rn) denotes the solution to (2.9) with σ = σn, (pni , r
n
i ) = un(s, i/n)

and τni = τn(rni ). We also write bni = τ ′n(rni ). Through direct computation,

d

ds
Y ns (H) =

1√
n

∑
i∈Tn

(
∂sH

n
i − Lni H

)
·
(
ηi − uni

)
− 1√

n

∑
i∈Tn

Hn
i ·
(
∂su

n
i − Λni

)
+

1√
n

∑
i∈Tn

(
∇ni−1H1

∇ni H2

)
·
(
τni + bni (ri − rni )

pi

)
,

An[Y ns (H)] = n−
3
2

∑
i∈Tn

(
∇ni−1H1

∇ni H2

)
·
(
−V ′n(ri)

−pi

)
,

Sn[Y ns (H)] = 2−1n−
5
2

∑
i∈Tn

∆n
i H2V

′
n(ri).
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Here ∇ni and ∆n
i are discrete derivatives given by

∇ni f = n

[
f

(
i+ 1

n

)
− f

(
i

n

)]
, ∆n

i f = n
(
∇ni f −∇ni−1f

)
,

while the operator Lni = Lni (s) and approximate field Λni = Λni (s) are

Lni H =

[
0 1

bni 0

](
∇ni−1H1

∇ni H2

)
, Λni = n

(
τni+1 − τni
pni − pni−1

)
.

With the notations above, Y nt (H(t)) is split into

Y nt (H(t)) = Y n0 (H(0)) + Rn
t (H) + A n

t (H) + S n
t (H) + W n

t (H) +Mn
t (H), (6.2)

where Rn
t , A n

t , S n
t and W n

t are given respectively by

Rn
t (H) =

1√
n

∫ t

0

∑
i∈Tn

[
∂sH

(
s,
i

n

)
− Lni H(s)

]
·
(
ηi − uni

)
ds,

A n
t (H) =

1√
n

∫ t

0

∑
i∈Tn

H

(
s,
i

n

)
·
[
−∂sun

(
s,
i

n

)
+ Λni

]
ds,

S n
t (H) =

γn
2
√
n

1

n

∫ t

0

∑
i∈Tn

∆n
i H2(s)V ′n(ri)ds,

W n
t (H) =

1√
n

∫ t

0

∑
i∈Tn

∇ni−1H1(s)
[
− V ′n(ri) + τni + bni (ri − rni )

]
ds.

The finite-dimensional convergence is stated below.

Proposition 6.1. Assume (2.12) and (5.1). Define hn = hn(t, x) be the solution to the
following adjoint equation on (t, x) ∈ [0, T ]×T:

∂thn −
[

0 1

τ ′n(rn) 0

]
∂xhn = 0, hn(0, ·) = H, (6.3)

with some fixed initial condition H ∈ C∞(T). For any λ > 0,

lim
n→∞

Pn

{
sup
t∈[0,T ]

|Y nt (hn(t))− Y n0 (H)| > λ

}
= 0, ∀λ > 0.

Proof. We investigate each term in (6.2) respectively. The martingale term Mn
t is the

easiest. From (6.1), for all t ∈ [0, T ],

En
[
|Mn

t (hn)|2
]

= γn

∫ t

0

∑
i∈Tn

1

n2

(
∇ni hn

)2
ds ≤ γnt

n
sup
s∈[0,t]

|∂xhn(s)|2T. (6.4)

From Doob’s inequality,

En

[
sup
t∈[0,T ]

|Mn
t (hn)|2

]
≤ 4En

[
|Mn

T (hn)|2
]
≤ Cγn

n
,

which vanishes as n→∞. For the integral Rn
t , by (6.3),∣∣∣∣∂shn(s, in

)
− Lni hn(s)

∣∣∣∣ ≤ C|∂2
xhn(s)|T
n

.
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Using this estimate and Corollary 2.3, for all p ∈ [1, 2),

En

[∣∣∣∣ 1√
n

∑
i∈Tn

[
∂shn

(
s,
i

n

)
− Lni hn(s)

]
·
(
pi − pni
ri − rni

) ∣∣∣∣p
]
≤
Cp|∂2

xhn(s)|pT
np(1+ 1

4−
1
2 )

. (6.5)

Taking p = 1 and with Cauchy–Schwarz inequality,

lim
n→∞

En

[
sup
t∈[0,T ]

∣∣Rn
t (hn)

∣∣] ≤ lim
n→∞

CTn−
3
4 = 0.

For the integral A n
t , since we assume that the quasi-linear system (2.9) has smooth

solution at least up to time T , therefore

sup
s∈[0,T ]

∣∣∣∣∂tun(s, in
)
− Λni (s)

∣∣∣∣ ≤ Cβ,v,T
n

.

This gives us the uniform estimate that∣∣∣∣∣ 1√
n

∑
i∈Tn

hn

(
s,
i

n

)[
∂sun

(
s,
i

n

)
− Λni

]∣∣∣∣∣ ≤ C|hn(s)|T√
n

. (6.6)

Hence, |A n
t | vanishes uniformly on t ∈ [0, T ] as n → ∞. For the integral S n

t , observe
that the integrand can be bounded from above by∣∣∣∣∣∑

i∈Tn

∆n
i hn,2(s)

(
V ′n(ri)− τni

)∣∣∣∣∣+ n
∣∣∂2
xhn,2(s)τn(rn)

∣∣
T
.

Again, by Corollary 2.3, for all p ∈ [1, 2),

En

[∣∣∣∣ 1n ∑
i∈Tn

∆n
i hn,2(s)V ′n(ri)

∣∣∣∣p
]
≤ Cp|∂2

xhn(s)|pT
(
n−

p
4 + 1

)
. (6.7)

Taking p = 1 and using Cauchy–Schwarz inequality,

lim
n→∞

En

[
sup
t∈[0,T ]

∣∣S n
i (hn)

∣∣] ≤ lim
n→∞

Cγn
2
√
n

= 0.

Finally, we apply Proposition 5.1 to W n
t to get that

lim
n→∞

Pn

{
sup
t∈[0,T ]

∣∣W n
t (hn)

∣∣ > λ

}
= 0, ∀λ > 0.

The proof is then completed.

7 Tightness

In this section, we prove that the laws of {Y nt ; t ∈ [0, T ]} forms a tight sequence
in proper trajectory space. We start with two lemmas. Suppose that for n ≥ 1 and
f ∈ C2(T), {Xn

t = Xn
t (f); t ∈ [0, T ]} is a random field on Ωn. Define

X n
t (f) =

∫ t

0

Xn
s (f)ds, ∀t ∈ [0, T ].
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By Kolmogorov–Prokhorov’s tightness criterion, to show the tightness of X n
· on the

α-Hölder continuous path space Cα([0, T ];H−k), one need to estimate∥∥X n
t′ −X n

t

∥∥2

−k =
∑
m∈Z

1

(1 +m2)k
∣∣X n

t′ (ϕm)−X n
t (ϕm)

∣∣2,
with the Fourier basis ϕm defined in Section 1. Since Corollary 2.3 and 4.1 only hold
with powers p < 2, the next result is helpful here.

Lemma 7.1. Assume some p > 1 and a > 0, such that

En
[
|Xn

t (ϕm)|p
]
≤ C|m|ap, ∀m ∈ Z, t ∈ [0, T ].

Then there exists a constant Cp, such that for k > a+ 3/2,

Pn

{∥∥X n
t′ −X n

t

∥∥
−k > λ

}
≤ Cp|t′ − t|p

λp
, ∀0 ≤ t < t′ ≤ T.

In particular, X n
· is tight in Cα([0, T ];H−k) for α < 1− 1/p.

The proof of Lemma 7.1 is direct and we postpone it to the end of this section. In
order to use Lemma 7.1, we need the following priori moment estimate.

Lemma 7.2. Assume (2.12) and (2.14) with some ε ∈ R. For all 1 ≤ p < pε = (4 −
2ε)/(3− 2ε) ∨ 2 and f ∈ C2(T),

En
[
|Y nt (f)|p

]
≤ C

(
1 + |f |pT + |f ′|δpT + |f ′′|pT

)
,

where δ = δε = (3− 2ε)/(2− ε) ∧ 1 and C = Cβ,v,T,ε,p.

Note that if we apply Corollary 2.3 to the left-hand side above, the upper bound could
diverse. The additional condition (2.14) helps to avoid this.

Proof of Lemma 7.2. Fix some t ∈ [0, T ], and define fn = fn(s, x) to be the solution of
the following backward equation on (s, x) ∈ [0, t]×T:

∂sfn −
[

0 1

τ ′n(rn) 0

]
∂xfn = 0, fn(t, ·) = f.

Apply (6.2) with H = fn and estimate each term in the right-hand side.
For Y n0 (fn(0)), use (D.3) to get that for all λ > 0,

Pn
{
|Y n0 (fn(0))| > λ

}
≤ Hn(0) + log 2

− logµ0,n{|Y n0 (fn(0))| > λ}
.

By Lemma 3.3 and the independence, with some C = Cβ,v,

µ0,n

{
|Y n0 (fn(0))| > λ

}
≤ 2 exp

{
− λ2

2C‖fn(0)‖2

}
.

As Hn(0) is assumed to be bounded,

Pn
{
|Y n0 (fn(0))| > λ

}
≤ C‖fn(0)‖2(Hn(0) + 1)

λ2
≤ C ′‖fn(0)‖2

λ2
.

Using Lemma D.4, for all p ∈ [1, 2),

En
[
|Y n0 (fn(0))|p

]
≤ Cp‖fn(0)‖p ≤ C ′p|f |

p
T.

For Mn
t , apply an interpolation of (6.4) with p ∈ [1, 2]:

En
[
|Mn

t (fn)|p
]
≤
(
γntn

−1
) p

2 sup
s∈[0,t]

|∂xfn(s)|pT ≤ CT,p|f
′|pT.
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For Rn
t , it is easy to obtain from (6.5) that, for p ∈ [1, 2),

En
[∣∣Rn

t (fn)
∣∣p] ≤ tp−1

∫ t

0

Cn−
3p
4 ‖∂2

xfn(s)‖pTds ≤ C
′|f ′′|pT.

For A n
t , the upper bound of p-moment follows directly from the uniform estimate in (6.6).

For S n
t , the estimate can be obtained from (6.7) similarly to Rn

t .
The only term needs extra effort is W n

t . Rewrite this term as

W n
t (f) =

σn√
n

∫ t

0

∑
i∈Tn

(
−U ′(ri) +

τni − rni
σn

)
∇ni−1fds

+
bni − 1√

n

∫ t

0

∑
i∈Tn

(ri − rni )∇ni−1fds.

By (2.5), |bni − 1| = O(σn), so we obtain from Theorem 2.2 and Corollary 4.1 that

En
[∣∣W n

t (f)
∣∣q] ≤ C(q)tqσqn(Hn(0) +Kn + 1)

q
2 |f ′|qT,

for all q ∈ [1, 2) with some C(q) = Cβ,v,T (q). Thus, for all λ > 0,

Pn
{∣∣W n

t (f)
∣∣ > λ

}
≤
Ctqσqn(Hn(0) +Kn + 1)

q
2 |f ′|qT

λq
.

In view of Lemma D.4, if σ2
nKn is bounded, or equivalently ε ≥ 1,

En
[∣∣W n

t (f)
∣∣p] ≤ Cβ,v,T,ptp|f ′|pT

for all p ∈ [1, 2) and we obtain the desired estimate. On the other hand, using (5.4)
and (5.5) with α = t−1/2, we get the same probability bounded by

Pn
{∣∣W n

t (f)
∣∣ > λ

}
≤ C
√
t(Hn(0) +Kn + 1)

λ
√
n

(
1 + |f ′|2T + |f ′′(s)|T

)
.

Note that the expression above vanishes for large n. Therefore, in case that 0 < ε < 1,
we can apply the following interpolation for θ ∈ (0, 1) that

Pn
{∣∣W n

t (f)
∣∣ > λ

}
≤ C(q, θ)Mf (q, θ)

λqθ+1−θ tqθ+
1−θ
2 ×

σqθn
(
Hn(0) +Kn + 1

) qθ
2 +1−θ

n
θ−1
2 ,

where C(q, θ) = Cβ,v,T (q, θ) and

Mf (q, θ) = |f ′|qθT
(
1 + |f ′|2T + |f ′′|T

)1−θ ≤ C ′(q, θ)(1 + |f ′|qθ+2(1−θ)
T + |f ′′|T

)
.

To assure that the second line above is bounded in n, choose

θ = θ(ε, q) =
1

1 + (1− ε)q
.

The estimate above becomes

Pn
{∣∣W n

t (f)
∣∣ > λ

}
≤ C(ε, q)λ−q

′(
1 + |f ′|q∗T + |f ′′|T

)
tq∗∗ , (7.1)

where

q′ =
(2− ε)q

1 + (1− ε)q
, q∗ =

(3− 2ε)q

1 + (1− ε)q
, q∗∗ =

(3− ε)q
2 + 2(1− ε)q

.
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The dependence on t is not important here. Notice that 1 < q′ ≤ 2 for q ∈ [1, 2) and ε < 1,
thus we get from Lemma D.4 that for all p ∈ [1, q′),

En
[∣∣W n

t (f)
∣∣p] ≤ Cβ,v,T (p, q′)

(
1 + |f ′|δpT + |f ′′|p/q

′

T

)
,

where δ = q∗/q
′ = (3− 2ε)/(2− ε) is independent of q. Since q can be taken arbitrarily

close to 2, the inequality above holds for all 1 < p < pε. Finally, the lemma is proved by
collecting all the moment estimate together.

With these lemmas, we can prove the tightness of Y n· stated below.

Proposition 7.3. Assume (2.12) and (2.14) with some ε > 0. The laws of {Y nt ; t ∈ [0, T ]}
is tight with respect to the topology of C([0, T ];H−k) for k > 9/2.

Proof. We need to investigate the tightness for each term in (6.2). Similar with (6.4), it
is easy to observe that Mn

t is tight on C([0, T ];H−k) for k > 3/2:

En
[
‖Mn

t′ −Mn
t ‖2−k

]
≤ γn|t′ − t|

n

∑
m∈Z

|ϕ′m|2T
(1 +m2)k

→ 0.

The computations for Rn
· , A n

· and S n
· are also direct. For Rn

t , note that

Rn
t (ϕm) = −

∫ t

0

Y ns (Lni ϕm)ds.

From Lemma 7.2, for 1 ≤ p < pε,

E
[
|Y nt (Lni ϕm)|p

]
≤ C|m|3p.

By Lemma 7.1, Rn
· is tight on Cα([0, T ];H−k) for k > 9/2, α < αε = 1 − 1/pε. For A n

t ,
observe that from (6.6), for k > 1/2,

∥∥A n
t′ −A n

t

∥∥2

−k ≤
C|t′ − t|2

n

∑
m∈Z

|ϕm|2T
(1 +m2)k

→ 0.

Therefore, it is tight in C1([0, T ];H−k(T)) for k > 1/2. For S n
t , notice that ϕ′′m = Cm2ϕm.

Substituting this into (6.7), we obtain that

En

[∣∣∣∣ 1n ∑
i∈Tn

∆n
i ϕmV

′
n(ri)

∣∣∣∣p
]
≤ C|m|2p, ∀p ∈ [1, 2).

By Lemma 7.1, it is tight on Cα([0, T ];H−k(T)) for k > 7/2, α < 1/2.
We are left with W n

t . In order to prove its tightness, we need to track the power of t
in (7.1). Repeat the computation, we obtain that for 1 ≤ p < pε,

En
[∣∣W n

t′ (f)−W n
t (f)

∣∣p] ≤ C(1 + |f ′|δpT + |f ′′|T
)
|t′ − t|q∗∗p/pε .

As ε > 0, q∗∗ > 1 when 2/(1 + ε) < q < 2. Therefore, there exists some p > 1, smaller
than but close to pε, such that

En
[∣∣W n

t′ (f)−W n
t (f)

∣∣p] ≤ C(1 + |f ′|δpT + |f ′′|T
)
|t′ − t|p

′
,

where p′ > 1. Applying the estimate to f = ϕm and noticing that δ < 3/2, by Lemma 7.1
we know that W n

t is tight in Cα([0, T ],H−k) for α < 1− 1/p and k > 9/2. In conclusion,
the laws of Y n· is tight with respect to the topology of C([0, T ];H−k) with k > 9/2.
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Proof of Lemma 7.1. For any t, t′ ∈ [0, T ],

En
[∣∣X n

t′ (ϕm)−X n
t (ϕm)

∣∣p] ≤ C|t′ − t|p|m|ap.
For any ε > 0, with C(ε) =

∑
m∈Z(1 +m2)−

1
2−ε,

Pn

{∥∥X n
t′ −X n

t

∥∥
−k > λ

}
≤
∑
m∈Z

Pn

{∣∣X n
t′ (ϕm)−X n

t (ϕm)
∣∣ ≥ λ√

C(ε)
(1 +m2)

1
2 (k− 1

2−ε)

}

≤ C(p, ε)

λp

∑
m∈Z

(1 +m2)−
p
2 (k− 1

2−ε)C|t′ − t|p|m|ap.

Hence, for any k > a+ 3/2, the probability is bounded from above by

C ′(p, ε)|t′ − t|p

λp

∑
m∈Z

1

(1 +m2)
p
2 (1−ε) .

By fixing some ε such that p(1− ε) > 1, we obtain the desired estimate. For the tightness,
only note that by Lemma D.4,

En

[∥∥X n
t′ −X n

t

∥∥q
−k

]
≤ Cp,q|t′ − t|q, ∀q ∈ (1, p),

and invoke Kolmogorov–Prokhorov’s tightness criterion.

8 Equivalence of ensembles

In this section we prove the equivalence of ensembles for inhomogeneous canonical
measure, which is used in Section 3. Our main result, Proposition 8.3, is valid not only
for the weakly anharmonic case, but also for the general anharmonic case.

Recall that for τ ∈ R, σ ∈ [0, 1), we have the probability measure

πτ,σ(dr) = exp

{
−βr

2

2
− βσU(r) + βτr − βGσ(τ)

}
dr.

For simplicity, we fix β = 1 in this section, but the arguments apply to any fixed β

naturally. For ~τ = (τ1, . . . , τn), define µ~τ,σ as the product measure ⊗nj=1πτj ,σ(drj) on Rn.
For bounded continuous function F on Rn, define

〈F |u〉~τ,σ = Eµ~τ,σ
[
F |r(n) = u

]
, r(n) =

1

n

n∑
j=1

rj .

The conditioned probability distribution 〈 · |u〉~τ,σ is called the micro canonical ensemble,
while µ~τ,σ is called the canonical ensemble.

First of all, we present a basic property of the micro canonical ensemble, which
would be frequently used hereafter in this section. Note that as U is smooth, we can
define the regular conditional expectation 〈F |u〉~τ,σ point-wisely for all u ∈ R.

Proposition 8.1. For all u ∈ R, ~τ ∈ Rn and τ ∈ R,

〈F |u〉~τ,σ = 〈F |u〉~τ−τ,σ, (8.1)

where ~τ − τ , (τ1 − τ, . . . , τn − τ). Moreover, there is ~ν = ~ν(u;~τ , σ), such that

Eµ~ν,σ [r(n)] = u, 〈 · |u〉~ν,σ = 〈 · |u〉~τ,σ. (8.2)

In particular when n = 1, ν(u; τ, σ) = τσ(u).
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Proof. By direct computation, for F = F (r1, . . . , rk) and n ≥ k,

〈F |u〉~τ,σ =
n

n− k

∫
Rk

1

f~τ,σ(u)
f~τ∗,σ

(
nu− kr(k)

n− k

)
F (r1, . . . , rk)

k∏
j=1

πn,j(drj), (8.3)

where f~τ,σ denotes the density of r(n) under µ~τ,σ and ~τ∗ = (τk+1, . . . , τn). Observe that
for bounded continuous function h on R and τ ∈ R,

Eµ~τ,σ
[
h ◦ r(n)

]
=

∫
h

 1

n

n∑
j=1

rj

 exp


n∑
j=1

τjrj −
r2
j

2
− σU(rj)−Gσ(τj)

 dr

= exp


n∑
j=1

Gσ(τj − τ)−Gσ(τj)

Eµ~τ−τ,σ
[
enτr(n)h ◦ r(n)

]
.

Since h is arbitrary,

f~τ,σ(u) = exp

nτu+
n∑
j=1

Gσ(τj − τ)−Gσ(τj)

 f~τ−τ,σ(u). (8.4)

The relation (8.1) then follows from (8.3) and (8.4). In order to define ~ν that fulfils (8.2),
observe that as Gσ is strictly convex, there is a unique τ ∈ R such that

Eµ~τ−τ,σ [r(n)] =
1

n

n∑
j=1

G′σ(τj − τ) = u.

It suffices to define ~ν(u;~τ , σ) = ~τ − τ .

Recall the functions Fσ, τσ and r̄σ defined in (2.3)–(2.4). For each pair of (τ, r) ∈ R2,
the rate function Iσ(τ, r) is defined as

Iσ(τ, r) = Gσ(τ) + Fσ(r)− rτ
= Gσ(τ)−Gσ(τσ(r))−G′σ(τσ(r))(τ − τσ(r)).

(8.5)

Taking advantage of (8.2) and (8.4), we can rewrite the density as

f~τ,σ(u) = exp

−
n∑
j=1

Iσ
(
τj , r̄σ(νj)

) f~ν,σ(u), ∀u ∈ R, (8.6)

where ~ν = (ν1, . . . , νn) = ~ν(u;~τ , σ) is defined through (8.2).

The classical equivalence of ensembles (cf. [18, Appendix 2]) can be extended to the
case that canonical measure is inhomogeneous. In order to cover the weakly anharmonic
setting in Section 2, for each n ≥ 1, pick σn ∈ [0, 1), ~τn = (τn,1, . . . , τn,n) ∈ Rn and fix
them. For sake of readability, in the following we write

πn,j = πτn,j ,σn , µn = µ~τn,σn , En = Eµn , 〈 · |u〉n = 〈 · |u〉~τn,σn .

Also denote that

un = En[r(n)], un,2 =
√
En
[
(r(n) − un)2

]
.

We have the following result (cf. [18, Corollary A2.1.4, pp. 353]).
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Proposition 8.2. Assume some ε > 0 and K > 0, such that

sup{σn;n ≥ 1} < 1− ε, sup{|τn,j |;n ≥ 1, 1 ≤ j ≤ n} ≤ K. (8.7)

For any F = F (r1, . . . , rk) such that En[F 2] <∞, we have∣∣〈F |un〉n − En[F ]
∣∣ ≤ Ck

n

√
En
[
(F − En[F ])2

]
,

with some constant C = Cε,K for each n ≥ k.

Proof. In view of (8.3), the key point is to understand the asymptotic behaviour of the
density of r(n). To this end, we first check the conditions of the local central limit theorem
in Appendix F. Similarly to Appendix A, for 0 ≤ ` ≤ 4, the `-derivative of Gσ satisfies that∣∣G(`)

σ (τ)−G(`)
0 (τ)

∣∣ ≤ C1σ, ∀σ ∈ [0, 1− ε), τ ∈ [−K,K],

with a uniform constant C1 = C1(ε,K). Let Φτ,σ be the characteristic function

Φτ,σ(ξ) =

∫
R

exp
{
iξ(r − Eπτ,σ [r])

}
πτ,σ(dr).

By the integration by parts formula,

iξΦτ,σ(ξ) =

∫
R

exp
{
iξ(r − Eπτ,σ [r])

}
(r + σU ′(r)− τ)πτ,σ(dr).

It is not hard to obtain with some C2 = C2(ε,K) that

|Φτ,σ(ξ)| ≤ C2(1 + |ξ|)−1, ∀σ ∈ [0, 1− ε), τ ∈ [−K,K].

Moreover, using the inequality |ex − 1| ≤ e|x||x|, for 0 ≤ ` ≤ 4,∣∣Φ(`)
τ,σ(ξ)− Φ

(`)
τ,0(ξ)

∣∣ ≤ C3σ, ∀σ ∈ [0, 1− ε), τ ∈ [−K,K],

with some C3 = C3(ε,K). By the arguments above, the conditions (i), (ii), (iii) in
Appendix F are fulfilled by π0,σ uniformly for σ < 1 − ε. Hence, (8.7) assures that
Lemma F.1 is applicable to µn, even when the reference measure π0,σn is changing
with n.

Fix some k ≥ 1 and a function F = F (r1, . . . , rk). Denote by fn the density of r(n)

under µn. According to Lemma F.1, with a bounded sequence Cn,0,

1√
n
fn(un) =

1

un,2
√

2π

(
1 +

Cn,0
n

)
+ o

(
1

n

)
.

Similarly, denote by f∗n the density of r(n−k) under µ~τ∗n,σn , ~τ∗n = (τn,k+1, . . . τn,n), then
there are bounded sequences C∗n,0, C∗n,1, such that

1√
n− k

f∗n

(
nun − kr(k)

n− k

)
=

1

u∗n,2
√

2π
exp

{
−

y2
(k)

2(n− k)

}(
1 +

C∗n,0 + C∗n,1y(k)

n− k

)
+ o

(
1

n

)
,

where

u∗n,2 =

√√√√ 1

n

n−k∑
j=1

G′′σn(τn,j+k), y(k) =

k∑
j=1

rj − En[rj ]

u∗n,2
.
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Therefore, the density in (8.3) satisfies the estimate

n

n− k
1

fn(un)
f∗n

(
nun − kr(k)

n− k

)
≤ un,2

√
n

u∗n,2
√
n− k

[
1 +

C

n

(
1 + y(k) + y2

(k)

)]
+ o

(
1

n

)
,

where C = Cε,K is a uniform constant. Furthermore,

un,2
√
n

u∗n,2
√
n− k

=

√
1 +

G′′σn(τn,1) + . . .+G′′σn(τn,k)

G′′σn(τn,k+1) + . . .+G′′σn(τn,n)
≤ 1 +

Ck

2n
+ o

(
1

n

)
.

Therefore, with some constant C ′ = C ′ε,K ,∣∣∣∣ n

n− k
1

fn(un)
f∗n

(
nun − kr(k)

n− k

)
− 1

∣∣∣∣ ≤ C ′

n

(
k + y(k) + y2

(k)

)
+ o

(
1

n

)
.

Proposition 8.2 then follows from (8.3) and Schwarz inequality.

Proposition 8.2 is valid only for cylinder functions F = F (r1, . . . , rk). In Section 3, it
is required to control the exponential moment of the micro canonical expectation of a
particular extensive observation. Next, we give the corresponding result.

Recall that r̄n(τ) = r̄σn(τ), τn(r) = τσn(r). Given F : R→ R, let

Fn,j(r) = F (r)− Eπn,j [F ]− d

dr
Eπτn(r),σn

[F ]
∣∣∣
r=r̄n(τn,j)

(
r − r̄n(τn,j)

)
,

for j = 1, . . . , n, and define F =
∑n
j=1 Fn,j(rj).

Proposition 8.3. Assume (8.7), and a constant M such that

|τn,j − τn,j+1| ≤Mn−
3
2 , ∀n ≥ 1, 1 ≤ j ≤ n. (8.8)

Suppose that for each n, τ 7→
∫
Fdπτ,σn is twice continuously differentiable, and there is

some constant A > 0, such that for all (n, j),

En
[

exp(s|Fn,j |)
]
≤ e, ∀|s| ≤ A.

Then, we can find A1 <∞ and A2 > 0, such that for all n ≥ 1,

En
[

exp(s|〈F| · 〉n|)
]
≤ A1, ∀|s| ≤ A2.

Remark 8.4. Proposition 8.3 is stated for function F on R, but the parallel result for F
on Rk for each k ≥ 1 can be proved without additional efforts. Furthermore, the Euler’s
constant e in the condition is not sensible.

Proof of Proposition 8.3. Fix an F fulfilling the conditions. Recall that un = En[r(n)], and
let An,δ = {r ∈ Rn; r(n) ∈ (un − δ, un + δ)} for δ > 0. Note that

En
[
es|〈F|u〉n|

]
= En

[
es|〈F|u〉n|1Acn,δ

]
+ En

[
ec|〈F|u〉n|1An,δ

]
.

We estimate the two terms respectively.
For the integral on Acn,δ, recall the rate function Iσ in (8.5). As Gσn is strictly convex

and τn,j , σn are bounded, for δ sufficiently small we have that

Iσn(τn,j , r) ≥ Cδ2, ∀|r − r̄n(τn,j)| ≥ δ, (8.9)
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with some C = C(δ). By (8.6), (8.9) and Lemma F.1, for δ small but fixed,

fn(u) ≤ exp

{
−Mδ2n+

log n

2

}
, ∀|u− un| ≥ δ.

Hence, by Hölder’s inequality, for p, q > 1 such that 1/p+ 1/q = 1,

En
[
es|〈F|u〉n|1Acn,δ

]
≤
(
µn{|r(n) − un| ≥ δ}

) 1
p

(
En
[
esq|〈F|u〉n|

]) 1
q

≤ exp

{
−Mδ2n

p
+

log n

2p

} n∏
j=1

En
[
esq|Fn,j |

]
.

Choose some p < Mδ2 + 1, we have that for any |s| < q−1A that

En
[
ec|〈F|u〉n|1Acn,δ

]
≤ exp

{
−Mδ2n

p
+
n

q
+

log n

2p

}
→ 0.

To deal with the integral on An,δ, divide 〈Fn,j(rj)|u〉n into two parts:

Kn,j = 〈F (rj)|u〉n − Eπνn,j,σn [F ]

− d

dr
Eπτn(r),σn

[F ]
∣∣∣
r=r̄n(τn,j)

(
〈rj |u〉n − r̄n(νn,j)

)
;

K ′n,j = Eπνn,j,σn [F ]− Eπτn,j,σn [F ]

− d

dr
Eπτn(r),σn

[F ]
∣∣∣
r=r̄n(τn,j)

(
r̄n(νn,j)− r̄n(τn,j)

)
,

where (νn,1, . . . νn,n) = ~νn = ~ν(u;~τn, σn) is the vector defined through (8.2). The definition
of ~νn together with Proposition 8.2 yields that

〈F (rj)|u〉n = Eνn,j [F ] +O

(
1

n

)
, 〈rj |u〉n = r̄n(νn,j) +O

(
1

n

)
,

uniformly in An,δ. Therefore,
∑
j |Kn,j | is uniformly bounded. Meanwhile,

|K ′n,j | ≤
1

2
sup

|u−un|<δ

∣∣∣∣ d2

du2
Eπτn(r),σn

[F ]
∣∣∣
r=r̄n(τn,j)

∣∣∣∣ (r̄n(νn,j)− r̄n(τn,j)
)2
.

Hence, it suffices to prove that

En

exp

s
n∑
j=1

(
r̄n(νn,j)− r̄n(τn,j)

)2
 ≤ A1, ∀|s| ≤ A2,

with some A1 <∞ and A2 > 0. To this end, note that(
r̄n(νn,j)− r̄n(τn,j)

)2 ≤ 3(r(n) − un)2 + 3(un − r̄n(τn,j))
2 + 3(r̄n(νn,j)− r(n))

2.

We estimate the three terms in the right-hand side respectively. For the first term, it is
easy to see from central limit theorem that, for |s| < un,2/2,

lim
n→∞

En
[

exp
{
cn(r(n) − En[r(n)])

2
}]

=
1

un,2
√

2π

∫
R

ecx
2

e
− x2

2un,2 dx <∞

For the second term, taking advantage of (8.8), we obtain that

n∑
j=1

(
un − r̄n(τn,j)

)2
=

n∑
j=1

 1

n

n∑
j′=1

r̄n(τn,j′)− u(τn,j)

2

≤ 1

n

∑
j,j′

(
r̄n(τn,j′)− r̄n(τn,j)

)2 ≤ O(1).
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For the third term, observe that by the definition of ~νn,

1

n

n∑
j=1

r̄n(νn,j) = r(n), νn,j′ − νn,j = τn,j′ − τn,j ,

so, it can be estimated similarly to the second term.

9 Gradient estimate for the Poisson equation

In this section, we present a gradient-type estimate for the solution to the Poisson
equation (3.7), which is used in the proof of Lemma 3.1.

We work under the following case with general anharmonic potential function. Let V
be a given C2-smooth, uniformly convex function:

V ′′(x) ≥ c > 0, ∀x ∈ R.

With a given vector a = (a1, . . . , an), define U : Rn → R by

U(x) =

n∑
j=1

V (xj)− a · x, ∀x ∈ Rn.

Then, DjU = V ′(xj+1)− V ′(xj)− aj+1 + aj , where the operator Dj is

Dj =
∂

∂xj+1
− ∂

∂xj
, ∀j = 1, . . . , n− 1.

For x ∈ R, let Σx = {x ∈ Rn;x1 + . . .+ xn = x} be the (n− 1)-dimensional hyperplane.
Suppose a differentiable function Ψ to satisfy the following conditions:

sup
Rn

n−1∑
j=1

|DjΨ| <∞,
∫

Σx

e−U(x)Ψ(x) = 0,

for all x ∈ Σx. Consider the following partial differential equation:

−eU
n−1∑
j=1

Dj

(
e−UDjψ

)
= Ψ.

Note that the Poisson equation (3.7) discussed in the proof of Lemma 3.1 can be obtained
by taking n = `, V = βVn and a = β(τi, . . . , τi+`−1). A sharp gradient-type estimate for
the solution ψ is obtained in [29, Theorem 1.1]. By investigating the constant in their
estimate, we get the following result.

Proposition 9.1. There is a constant C dependent on c = inf V ′′, such that∣∣Dψ(x)
∣∣2 ≤ Cn4 sup

Rn

∣∣DΨ
∣∣2, ∀x ∈ Rn,

where D = (D1, . . . , Dn−1).

Proof. Rewrite the equation with the new coordinates:

yj = −
j∑
i=1

xi, ∀j = 1, . . . , n− 1, y∗ = −
n∑
j=1

xj .

Notice that for 1 ≤ j ≤ n− 1, Dj = ∂yj . The new equation is

∇yŨ(y; y∗) · ∇yψ̃ −∆yψ̃ = Ψ̃(y; y∗),
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where y∗ is viewed as a parameter, y = (y1, . . . , yn−1), and

ψ̃(y; y∗) = ψ(x), Ψ̃(y; y∗) = Ψ(x),

Ũ = V (−y1) +

n−2∑
j=1

V (yj − yj+1) + V (yn−1 − y∗) +

n−1∑
j=1

(aj − aj+1)yj .

Denote by λn = λmin(Hn) the smallest eigenvalue of

Hn = hessy Ũ(·, y∗) =


b1 + b2 −b2 0 . . . 0

−b2 b2 + b3 −b3 . . . 0

0 −b3 b3 + b4 . . . 0
...

...
...

...
0 0 0 . . . bn−1 + bn

 , (9.1)

where we write bj = V ′′(xj) for 1 ≤ j ≤ n. As each bj > 0, it is easy to observe that
λn > 0. Applying [29, Theorem 1.1] for each fixed y∗,∣∣∣∇yψ̃(y; y∗)

∣∣∣ ≤ λ−1
n sup

y

∣∣∣∇yΨ̃(y; y∗)
∣∣∣ , ∀(y, y∗) ∈ Rn.

In Lemma 9.2, we show that λn ≥ Cn−2 with some constant C = C(c). By returning to
the original variables x, we get the desired estimate.

The proof of Proposition 9.1 is completed by the following lower bound of λn.

Lemma 9.2. In (9.1), suppose that bj ≥ c > 0 for all j, then

λn = λmin(Hn) ≥ 6c

(n− 1)(n+ 1)
, ∀n ≥ 2. (9.2)

Proof. Let In be the n× n identity matrix, and define Q1(λ) = −b−1
1 ,

Qn(λ) = (−1)n det
(
λIn−1 −Hn

) n∏
j=1

1

bn
, ∀n ≥ 2. (9.3)

Notice that Q2(0) = −(b−1
1 + b−1

2 ), and

Qn(0)−Qn−1(0)

Qn−1(0)−Qn−2(0)
=
bn−1

bn
, ∀n ≥ 3.

By a simple inductive argument, we obtain that

Qn(0) = −
n∑
j=1

1

bj
, ∀n ≥ 1.

Similarly, we have Q′1(0) = 0, Q′2(0) = (b1b2)−1, and

bn
(
Q′n(0)−Q′n−1(0)

)
− bn−1

(
Q′n−1(0)−Q′n−2(0)

)
= −Qn−1(0) > 0, ∀n ≥ 3.

By using this relation recurrently, we have the expression

Q′n(0) = −
n∑

j′=2

1

bj′

j′−1∑
j=1

Qj(0) =

n−1∑
j′=1

 j′∑
j=1

1

bj

 n∑
j=j′+1

1

bj

 .
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Observing that for each 1 ≤ j′ ≤ n− 1, j′∑
j=1

1

bj
− j′

n

n∑
j=1

1

bj

 n∑
j=j′+1

1

bj
− n− j′

n

n∑
j=1

1

bj

 ≤ 0.

Therefore, with the condition bj ≥ c > 0 for each j, we get j′∑
j=1

1

bj

 n∑
j=j′+1

1

bj

 ≤
 (j′)2

n2

n∑
j=j′+1

1

bj
+

(n− j′)2

n2

j′∑
j=1

1

bj

 n∑
j=1

1

bj

≤ (j′)2(n− j′) + (n− j′)2j′

cn2

n∑
j=1

1

bj

=
j′(n− j′)

cn

n∑
j=1

1

bj
.

Summing up the estimate above for j′ = 1 to n− 1,

0 < Q′n(0) ≤
n−1∑
j′=1

j′(n− j′)
nc

n∑
j=1

1

bj
=

(n− 1)(n+ 1)

6c

n∑
j=1

1

bj
. (9.4)

Note that all the roots of Qn are real and positive, so λmin is the first root to the right of
the origin. With this observation, (9.3) and (9.4) assure that

λmin(Hn) ≥ −Qn(0)

Q′n(0)
≥ 6c

(n− 1)(n+ 1)
.

The lower bound for λmin then follows.

A Equilibrium tension

Recall the probability measure πτ,σ defined in (2.2), and the normalization constant
Zσ(τ) appeared in it. Note that for β > 0 and σ = 0,

Z0(τ) =

√
2π

β
exp

{
βτ2

2

}
, ∀τ ∈ R.

Denote by 〈 · 〉τ,σ the integral with respect to πτ,σ. For any ε > 0 and σ ∈ [0, 1− ε], with
the elementary inequality |ex − 1− x| ≤ e|x|x2/2 we can get that∣∣Zσ(τ)− Z0(τ)

(
1− σβ〈U〉τ,0

)∣∣ ≤ Cσ2,∣∣β−1Z ′σ(τ)− Z0(τ)
(
τ − σβ〈rU〉τ,0

)∣∣ ≤ Cσ2,∣∣β−1Z ′′σ (τ)− Z0(τ)
(
βτ2 + 1− σβ2〈r2U〉τ,0

)∣∣ ≤ Cσ2,∣∣β−2Z ′′′σ (τ)− Z0(τ)
(
βτ3 + 3τ − σβ2〈r3U〉τ,0

)∣∣ ≤ Cσ2,

with some constant C = Cβ,τ,ε. Furthermore, the constant C can be taken uniformly for
τ in any compact intervals in R.

Recall the functions r̄σ and τσ defined through (2.3)–(2.4). From the definition and
the estimate above, we obtain that as σ → 0+,

r̄σ(τ) = τ − σβ
〈
(r − τ)U

〉
τ,0

+ oβ,τ (σ),

r̄′σ(τ) = 1− σβ2
〈
[(r − τ)2 − β−1]U

〉
τ,0

+ oβ,τ (σ),

r̄′′σ(τ) = −σβ3
〈
[(r − τ)3 − 3β−1(r − τ)]U

〉
τ,0

+ oβ,τ (σ),
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uniformly for τ in any compact interval. As the macroscopic tension function τσ is the
inverse of r̄σ, we can conclude the following asymptotic behaviours

τσ(r) = r + C0(β, r)σ + oβ,r(σ),

τ ′σ(r) = 1 + C1(β, r)σ + oβ,r(σ),

τ ′′σ(r) = C2(β, r)σ + oβ,r(σ),

holds uniformly for r in any compact intervals in R. Moreover, the constants C0, C1 and
C2 are continuously dependent on β and r.

B Quasi-linear p-system

In this appendix we present a lower bound for the life span of the classical solution
of a quasi-linear p-system with smooth initial data. The result is necessary for the proof
of Proposition 2.1.

Suppose that f is a positive function in C1(R). Consider the following partial differ-
ential equations for t ≥ 0 and x ∈ T:

∂tp(t, x) = f(r)∂xr(t, x), ∂tr(t, x) = ∂xp(t, x), (B.1)

with some given smooth initial data

p(0, ·) = p0 ∈ C1(T), r(0, ·) = r0 ∈ C1(T).

Note that by taking f = τ ′σ, (B.1) coincides the hydrodynamic equation (2.9) for anhar-
monic potential. It is well-known that if f 6= const, (B.1) would produce shocks in finite
time. Recall that | · |T represents the uniform norm on T, and define

K = |p0|T + |r0|T sup
{√

f(r); |r| ≤ |r0|T
}
.

The next lemma is a special case of the classical result in [20].

Lemma B.1. Smooth solution of (B.1) exists on t ∈ [0, T ] for any

T < T∗ = 4
∣∣∣p′0√f(r0) + r′0f(r0)

∣∣∣−1

T

(
sup
|r|≤K

∣∣∣f− 5
4 (r)f ′(r)

∣∣∣)−1

.

Remark B.2. For the readers not familiar to the hyperbolic systems, it is worth mention-
ing that the bound we obtained above is not as sharp as the case of scalar equation, for
instance the inviscid Burger’s equation.

Proof. We briefly state the proof. Define an antiderivative of
√
f :

F (s) =

∫ s

0

√
f(r)dr, ∀s ∈ R.

The equation can be rewritten in Riemann invariants as

∂tu = λ(u, v)∂xu, ∂tv = −λ(u, v)∂xv, (u, v)(0, ·) = (u0, v0),

where u = p+ F (r), v = p− F (r) and λ(u, v) =
√
f(r).

Consider the characteristic lines (t, x±,t), given by the ODEs

dxt
dt

= ±λ
(
u(t, xt), v(t, xt)

)
, x0 = x ∈ T.
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Within the life span of the smooth solution, u is constant along (t, x+,t), thus

sup
x∈T
|u(t, x)| ≤ sup

x∈T
|u0(x)| ≤ K. (B.2)

Similarly, we have a priori bound for v(t, x).
Suppose that the smooth solution of (B.1) exists on time interval [0, T ] for some T > 0.

Taking spatial derivative on the equation of u,

∂txu− λ∂xxu = ∂uλ(∂xu)2 + ∂vλ∂xu∂xv, t ∈ [0, T ].

In order to investigating the continuity, let z(t, x) =
√
λ(u, v)∂xu. From the equation

above, for t ∈ [0, T ], z solves the Riemann problem given by{
∂tz − λ∂xz = Λz2, Λ = 2∂u

√
λ,

z(0, ·) =
√
λ(u0, v0)u′0.

By (B.2), before the generation of shocks, |Λ| is bounded from above by

K ′ , 2 sup
{
∂u
√
λ(u, v); |u|, |v| ≤ K

}
.

Via a comparison argument, one obtains that |z(t, x)| <∞ for

(t, x) ∈
[
0,

1

K ′ supx∈T |z(0, x)|

)
×T,

which guarantees that |∂xu| <∞, so shock cannot form. Since

2∂u
√
λ =

∂r
√
λ

F ′(r)
= 4−1f−

5
4 (r)f ′(r),

the estimate in Lemma B.1 then follows.

C Yau’s entropy method

In this appendix, we apply Yau’s relative entropy method to obtain the formulas (4.1)–
(4.3) in the proof of Theorem 2.2.

Fix n ≥ 1 and σ ∈ (0, 1). Take a smooth function (p, r) = (p, r)(t, x) on [0, T ] × T,
and define pni = p(t, i/n), rni = r(t, i/n), τni = τσ(rni ) for each i ∈ Tn, where τσ is given
by (2.4). Recall the Gibbs states defined in (2.6) and choose ν = νn0,0,σ as the reference
measure on Ωn. Consider the local Gibbs measure dµt = exp(βϕt)dν, where

ϕt(~η) =
∑
i∈Tn

(
pni pi + τni ri

)
+
∑
i∈Tn

[
− (pni )2

2
+Gσ(0)−Gσ(τni )

]
.

Let ~η(t) be the Markov process generated by Ln,σ,γ in (2.1) with some fixed γ > 0, and
denote by ft the density of ~η(t) with respect to µt.

From the definition of the relative entropy in (2.11),

d

dt
H(ft;µt) = −4nγD

(√
ft, µt

)
+

∫ (
Ln,σ,γft − βft

d

dt
ϕt

)
dµt,

where the Dirichlet form D(f, µ) is defined as

D(f, µ) =

∫
Γnfdµ, Γnf =

1

2

∑
i∈Tn

(Yif)2,
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for probability measure µ and density function f on Ωn. Since∫
An,σftdµt = −

∫
ftAn,σ

[
eβϕt

]
dν = −β

∫
ftAn,σϕtdµt,∫

Sn,σftdµt = −1

2

∑
i∈Tn

∫
Yift · Yi

[
eβϕt

]
dν

≤ 1

4

∑
i∈Tn

∫
1

ft
(Yift)2dµt +

β2

4

∑
i∈Tn

∫
ft(Yiϕt)2dµt,

we obtain that with Jnt = −(nAn,σ + d/dt)ϕt,

d

dt
H(ft;µt) ≤ −2nγD

(√
ft;µt

)
+ β

∫
ftJ

n
t dµt +

β2nγ

2

∫
ft(Γnϕt)dµt. (C.1)

Using the explicit formula of ϕt,

Γnϕt =
1

2

∑
i∈Tn

(
τni+1(t)− τni (t)

)2 ≤ 1

n

∫
T

|∂xτ(r(t, x))|2dx,

so that Γnϕt ≤ CT /n. Also, by the formula of ϕt,

An,σϕt =
∑

τni (pi − pi−1) + pni
(
V ′σ(ri+1)− V ′σ(ri)

)
= −

∑
i∈Tn

(
τni+1 − τni
pni − pni−1

)
·
(

pi − pni
V ′σ(ri)− τni

)
,

d

dt
ϕt =

∑
i∈Tn

dpni
dt

(pi − pni ) +
∑
i∈Tn

dτni
dt

(ri − rni )

=
∑
i∈Tn

d

dt

(
pni
rni

)
·
(

pi − pni
τ ′σ(rni )(ri − rni )

)
.

Therefore, we obtain the explicit form of Jnt as

Jnt =
∑
i∈Tn

[
− d

dt

(
pni
rni

)
+ n

(
τni+1 − τni
pni − pni−1

)]
·
(

pi − pni
V ′σ(ri)− τni

)
+
∑
i∈Tn

drni
dt
·
[
V ′σ(ri)− τni − τ ′σ(rni )(ri − rni )

]
.

(C.2)

In particular, the formulas (4.1)–(4.3) follow from (C.1), (C.2) by taking σ = σn, γ = γn
and (p, r) to be the solution (pn, rn) of the hydrodynamic equation (2.9) for σ = σn.

D Entropy and moment inequalities

Recall the relative entropy H(f ;µ) in (2.11) for probability measure µ and density
function f on some measurable space Ω. In this appendix we give some classical
inequalities related to H(f ;µ). We begin from a variational formula of H(f ;µ):

H(f ;µ) = sup
g∈Bb(Ω)

{∫
Ω

fgdµ− log

∫
Ω

egdµ

}
, (D.1)

where Bb(Ω) stands for the class of all bounded measurable functions on Ω. The proof
of (D.1) can be found in [28, Theorem 4.1]. From (D.1) we immediately get the first
lemma.
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Lemma D.1. Let (Ω1,F1, µ1), (Ω2,F2, µ2) be two probability spaces. Suppose f to be a
density function on Ω = Ω1 × Ω2 with respect to µ = µ1 ⊗ µ2, then

H(f1;µ1) ≤ H(f ;µ), (D.2)

where f1 is the density of the marginal distribution of fdµ on Ω1.

Next we give two inequalities frequently used in this article.

Lemma D.2. For any measurable subset A ⊆ Ω,∫
A

fdµ ≤ H(f ;µ) + log 2

− logµ(A)
. (D.3)

If X : Ω→ R is integrable under fdµ, then for any α > 0,∫
Ω

fXdµ ≤ 1

α

[
H(f ;µ) + log

∫
Ω

eαXdµ

]
. (D.4)

Proof. Taking g = − log(µ(A))1A in (D.1), we obtain that

H(f ;µ) ≥ − log
(
µ(A)

) ∫
A

fdµ− log
(
2− µ(A)

)
,

and (D.3) follows. For (D.4), if X is bounded, take g = αX to get

H(f ;µ) ≥ α
∫

Ω

fXdµ− log

∫
Ω

eαXdµ.

We can obtain (D.4) via a standard approximating argument.

A family of random variables {Xi; i = 1, . . . ,m} is said to be `-independent for some
1 ≤ ` ≤ m, if for any subset Γ ⊆ {1, . . . ,m} such that |i − j| ≥ ` for each i 6= j ∈ Γ, the
sub family {Xi; i ∈ Γ} is independent. From (D.4) we easily get the next lemma.

Lemma D.3. If {X1, X2, . . . , Xm} is `-independent, then for any α > 0,∣∣∣∣∣
∫
f

m∑
i=1

Xidµ

∣∣∣∣∣ ≤ 1

α

[
H(f ;µ) +

1

`

m∑
i=1

max

{
log

∫
e±α`Xidµ

}]
.

Proof. For k = 0, 1, . . . , ` − 1, let Γk = {k + i`; 1 ≤ i ≤ (m − k)/`}. Since {Xi, i ∈ Γk} is
independent, (D.4) yields that∫

f
∑
i∈Γk

Xidµ ≤
1

α`

[
H(f ;µ) +

∑
i∈Γk

log

∫
eα`Xidµ

]
.

Taking summation over k ∈ {0, 1, . . . , `− 1}, we get that∫
f

m∑
i=1

Xidµ ≤
1

α

[
H(f ;µ) +

1

`

m∑
i=1

log

∫
eα`Xidµ

]
. (D.5)

The proof is completed by repeating the argument with −Xi instead of Xi.

Taking A = {|X| > λ} in (D.3) gives us tail estimates of X. The following result makes
it possible to get moment bounds of X from tail estimates. It has been used in the proof
of Corollary 4.1 and the tightness of the fluctuation field.
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Lemma D.4. Suppose a constant C > 0, some q > 1 such that

P (|X| > λ) ≤ Cλ−q, ∀λ > 0.

Then, for any q ∈ [1, p), there exists a constant Kp,q > 1, such that

E
[
|X|p

]
≤ Kp,qC

p
q .

Proof. Using the integration-by-parts formula, for all 1 ≤ p < q,

E
[
|X|p

]
≤
∫ ∞

0

d

dλ

(
λp
)
P (|X| ≥ λ)dλ

≤
∫

0≤λ<C
1
q

pλp−1dλ+ C

∫
λ≥C

1
q

pλp−1−qdλ ≤ q

q − p
C
p
q .

Thus, the lemma holds with Kp,q = q/(q − p) > 1.

E Sub-Gaussian random variable

Recall that a real random variable X, is called sub-Gaussian of order σ2, if

logE
[
esX

]
≤ σ2s2

2
, ∀s ∈ R.

There is an elementary but useful condition for sub-Gaussian property.

Lemma E.1 (φ2 condition). If E[X] = 0, and

E
[
ecX

2]
≤ C, (E.1)

for some c > 0 and C ≥ 1, then X is sub-Gaussian of order 2Cc−1.

Proof. Since E[X] = 0, we have for any s ∈ R that

E
[
esX

]
= 1 +

∞∑
k=2

E[(sX)k]

k!
≤ 1 +

s2

2

∞∑
k=0

|s|kE[|X|k+2]

k!
.

The summation in the right-hand side is bounded by

s2

2
E
[
X2e|sX|

]
≤ s2

2
E

[
X2 exp

{
cX2

2
+
s2

2c

}]
for any c > 0. With the elementary inequality yey ≤ e2y,

s2

2
E

[
X2 exp

{
cX2

2
+
s2

2c

}]
≤ s2

c
exp

{
s2

2c

}
E
[
ecX

2]
.

Hence, by the condition (E.1),

E
[
esX

]
≤ 1 +

Cs2

c
exp

{
s2

2c

}
≤ exp

{
Cs2

c

}
.

As s is arbitrary, the proof is completed.

Recall that in Lemma 3.1 we need to bound the exponential integral of the absolute
value of a sub-Gaussian variable. The general estimate is as follows.

Lemma E.2. If X is sub-Gaussian of order σ2, then

E
[
es|X|

]
≤ 1 + |s|

1− |s|
exp

{
σ2|s|

2

}
, ∀s ∈ (−1, 1).
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Proof. By Chernoff’s method, for any λ > 0,

P (X ≥ λ) ≤ E
[
exp

{
λ(X − λ)

σ2

}]
≤ exp

{
λ2

2σ2
− λ2

σ2

}
= exp

{
− λ2

2σ2

}
.

Since similar estimate holds for P (X ≤ −λ),

P (|X| ≥ λ) ≤ 2 exp

{
− λ2

2σ2

}
.

For 0 ≤ t < 1/(2σ2), the integration-by-parts formula yields that

E
[
etX

2]
≤ 1 +

∫ ∞
0

d

dλ

(
etλ

2)
P (|X| ≥ λ)dλ ≤ 1 + 2tσ2

1− 2tσ2
.

Hence, for any s ∈ [0, 1),

E
[
es|X|

]
≤ E

[
exp

{
sX2

2σ2
+
σ2s

2

}]
≤ 1 + s

1− s
exp

{
σ2s

2

}
.

The case s ∈ (−1, 0) holds similarly.

F Local central limit theorem

In this appendix, we state a local central limit theorem with expansions for the sum
of independent, non-identically distributed random variables. It is used in the proof of
equivalence of ensembles in Section 8.

We work under the following setting. Suppose that π is some Borel measure on R,
and f : R→ R is an integrable function. Assume for all τ ∈ R that

G(τ) , log

∫
R

eτf(r)π(dr) <∞.

Denote by πτ the tilted probability measure on R, given by

πτ (dr) = exp{τf −G(τ)}π(dr).

Let Φτ (ξ) =
∫

exp{iξ(f−
∫
fdπτ )}πτ (dr) be the characteristic function of f . For all K > 0,

we assume the following conditions with a constant MK :

(i) G is four times differentiable on R, and

G′′(τ) > M−1
K ,

∣∣G(`)(τ)
∣∣ < MK , ∀τ ∈ [−K,K], ` = 0, 1, 2, 3, 4.

(ii) |Φτ (ξ)| < MK(1 + |ξ|)−1 for all ξ ∈ R and τ ∈ [−K,K];

(iii) Φτ is four times differentiable on R for all τ ∈ R, and

∀ε > 0, ∃δ = δ(ε,K) > 0, s.t.
∣∣Φ(`)
τ (ξ)− Φ(`)

τ (0)
∣∣ < ε,

for all |ξ| < δ, τ ∈ [−K,K] and ` = 0, 1, 2, 3, 4.

Given ~τ = (τ1, . . . , τn), define the inhomogeneous product measure

µn(dr) = µn(~τ ; dr) =

n∏
j=1

πτj (dri), r = (r1, . . . , rn) ∈ Rn.
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Define u` = u`(~τ) > 0 for ` = 1, 2, 3, 4 via the formula

|u`|` =
1

n

n∑
j=1

G(`)(τj).

Observe that u1 = Eµn [r̄] and u2
2 = Eµn [(r̄ − u1)2], where r̄ = n−1

∑
rj .

The local central limit theorem is stated as follows. Let φ be the standard Gaussian
density, and {Hj ; j ≥ 0} be the group of Hermite polynomials:

φ(x) =
1√
2π
e−

x2

2 , Hj(x) = (−1)je
x2

2
dj

dxj

[
e−

x2

2

]
.

In particular, H3 = x3 − 3x, H4 = x4 − 6x2 + 3 and H6 = x6 − 15x4 + 45x2 − 15.

Lemma F.1. Assume that τj ∈ [−K,K] for all 1 ≤ j ≤ n. Let gn(~τ ; ·) be the density
function with respect of µn of the random variable

1

u2(~τ)
√
n

n∑
j=1

(
rj − u1(~τ)

)
.

For any ε > 0, there exists N = N(ε,K,MK) sufficiently large, such that if n ≥ N , then
the following estimate holds uniformly for x ∈ R:∣∣∣∣gn(~τ ;x)− φ(x)

[
1 +

1√
n
Qn,1(x) +

1

n
Qn,2(x)

]∣∣∣∣ < C

n

(
ε+

1√
n

)
where C = C(MK) is a constant and Qn,1, Qn,2 are given by

Qn,1 =
1

3!

(
u3

u2

)3

H3, Qn,2 =
1

4!

(
u4

u2

)4

H4 +
1

2(3!)2

(
u3

u2

)6

H6.

Lemma F.1 can be proved following [9, Theorem XVI.2.2, pp. 535]. Here we briefly
sketch the proof to emphasize the dependence of (N,C) on ε, K and MK .

Proof. By the definition of characteristic function Φτ ,

gn(~τ ;x) =
1

2π

∫
R

e−ixξ
n∏
j=1

Φτj

(
ξ

u2
√
n

)
dξ.

Let us define ∆n = ∆n(~τ ; ξ) for each ξ ∈ R by

∆n(~τ ; ξ) =

n∏
j=1

Φτj

(
ξ

u2
√
n

)
− exp

{
−ξ

2

2

}[
1 + Pn(iξ) +

1

2
P 2
n(iξ)

]
,

where Pn = Pn(~τ ; ·) is the polynomial given by

Pn =
1

3!
√
n

(
u3

u2

)3

x3 +
1

4!n

(
u4

u2

)4

x4.

From the definition of Hermite polynomials, it suffices to prove that∫
R

∣∣∆n(~τ ; ξ)
∣∣dξ ≤ C

n

(
ε+

1√
n

)
.

For any ε > 0, Taylor’s theorem yields that there is δ = δ(ε,K) > 0, such that∣∣∣∣∣log Φτ (ξ) +
G′′(τ)

2
ξ2 −

4∑
`=3

1

`!
G(`)(τ)(iξ)`

∣∣∣∣∣ < εξ4,
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for all |ξ| < δ and τ ∈ [−K,K]. Therefore, when |ξ| < δu2
√
n,∣∣∣∣∣∣

n∑
j=1

log Φτj

(
ξ

u2
√
n

)
+
ξ2

2
− Pn(iξ)

∣∣∣∣∣∣ < εξ4

u4
2n
.

Without loss of generality we can choose δ < 1, so that

|Pn(iξ)| <
(
u3

3

3!u3
2

+
δu4

4

4!u3
2

)
|ξ|3√
n
<
C1|ξ|3√

n
,

with some C1 = C1(MK). Using the elementary inequality∣∣∣∣ex − 1− x′ − (x′)2

2

∣∣∣∣ ≤ emax{|x|,|x′|}(|x− x′|+ |x′|3), ∀x, x′ ∈ R,
we obtain that when |ξ| < δu2

√
n,

∣∣∆n(~τ , ξ)
∣∣ < exp

{
εξ4

u4
2n

+
C1|ξ|3√

n
− ξ2

2

}
1

n

(
εξ4

u4
2

+
C3

1 |ξ|9√
n

)
.

By furthermore choosing δ = δ(ε,K,MK) sufficiently small, we get

∣∣∆n(~τ , ξ)
∣∣ < C2

n
exp

{
−ξ

2

4

}(
εξ4 +

|ξ|9√
n

)
,

with some C2 = C2(MK) on the set {|ξ| < δu2
√
n}. From the estimate above, we have

some constant C = C(MK), such that for all n ≥ 1,∫
|ξ|<δu2

√
n

∣∣∆n(~τ , ξ)
∣∣dξ ≤ C

n

(
ε+

1√
n

)
.

On the remaining set {|ξ| ≥ δu2
√
n}, by (ii) we have that

∣∣∆n(~τ , ξ)
∣∣ < Mn

K

(1 + |ξ|)n
+ exp

{
−ξ

2

2

}[
1 + Pn +

1

2
P 2
n

]
.

Hence, we can choose N = N(δ,MK), such that for all n ≥ N ,∫
|ξ|≥δu2

√
n

∣∣∆n(~τ , ξ)
∣∣dξ < 1

n3/2
.

The proof is then completed.
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