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Abstract

We consider two related linear PDE’s perturbed by a fractional Brownian motion. We
allow the drift to be discontinuous, in which case the corresponding deterministic
equation is ill-posed. However, the noise will be shown to have a regularizing effect
on the equations in the sense that we can prove existence of solutions for almost all
paths of the fractional Brownian motion.
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1 Introduction

In this paper we study examples of the so called regularization by noise phenomenon
for a class of linear equations perturbed by fractional Brownian motion. In short, this is
the name given to the phenomenon that occurs when ill-posed deterministic equations
becomes well-posed by adding stochastic terms.

More specifically, assume b ∈ L1(Rd;L∞([0, T ];Rd)) ∩ L∞([0, T ]×Rd;Rd) is a given
function and let BH be a d-dimensional fractional Brownian motion (fBm). In this paper
we will study two different but related linear stochastic PDE’s where b acts as a drift
term. The stochastic transport equation reads

∂tu(t, x) + b(t, x) · ∇u(t, x) + c(t, x)u(t, x) +∇u(t, x) · ḂHt = 0, u(0, x) = u0(x) (1.1)
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Rough PDE’s with discontinuous coefficients

where u0 ∈ C1
b (R), and we allow c to be a distribution in the sense that c is the distri-

butional derivative of a bounded function. In the case that c = div b this is called the
continuity equation which we also may define as the measure valued equation

∂tµt + div(bµt) + div(µtḂ
H
t ) = 0, µ|t=0 = µ0 (1.2)

where µ0 is a given measure. We see that u(t, x) is equal to the Radon-Nykodim derivative
of µt w.r.t. Lebesgue measure.

Both equations are related to the stochastic ordinary equation

φt(x) = x+

∫ t

0

b(r, φr(x))dr +BHt , (1.3)

in the sense that the push-forward µt := (φt)]µ0 solves the continuity equation (1.2) and

the composition u(t, x) := u0(φ−1
t (x)) exp{−

∫ t
0
c(r, φr(φ

−1
t (x))dr} solves the transport

equation (1.1). This means that if we can show the regularization effect of the fBm on
(1.3) there is hope to solve the corresponding stochastic PDE’s (1.1) and (1.2).

Both equations involves terms of the form YtḂ
H
t , but we know that the fBm is P -a.s.

not differentiable so one should integrate the equations in time to produce terms on
the form

∫ t
0
YsdB

H
s . But even at this stage there is ambiguity. Indeed, since for H 6= 1

2

the fBm is not a semi-martingale there is no Itô-theory to make sense of this integral.
Moreover, to enjoy the regularization effect of fBm on (1.3) we need to have H < 1

2 .
Since the trajectories of BH are P -a.s. Hölder continuous with exponent strictly smaller
than H, and the solutions themselves cannot be expected to have higher regularity, also
the integration theory by Young is out of reach for these equations.

As the title of the paper suggest, we shall interpret the integrals in the rough path
setting, meaning we will use the iterated integrals of BH and the theory of controlled
paths to give meaning to these integrals.

We will discuss the equations separately. For notational simplicity we write B for the
fBm.

1.1 The stochastic continuity equation

Integrating the continuity equation in time, and assuming we have the above men-
tioned integration theory, we get

µt +

∫ t

0

div(bµs)ds+

∫ t

0

div(µsdBs) = µ0 (1.4)

regarded as a measure valued equation, namely for every η ∈ C∞c (Rd)

µt(η) = µ0(η) +

∫ t

0

µs(b(s, ·) · ∇η)ds+

∫ t

0

µs(∇η · dBs)

where µt(η) :=
∫
Rd
η(x)dµt(x), µt(∇η) = (µt(∂x1η), . . . , µt(∂xdη)) and · is the dot-product

on Rd.
We will show that the solution is on the form µt = (φt)]µ0. To see this, heuristically,

take η ∈ C∞c (Rd) and suppose we have some kind of Itô-Stratonovich-formula for the
fractional Brownian motion in the rough path setting. We should have

η(φt(x)) = η(x) +

∫ t

0

∇η(φr(x)) · b(r, φr(x))dr +

∫ t

0

∇η(φr(x)) · dBHr .

Integrating w.r.t. µ0 produces the desired formula provided we can use integration by
parts.

The authors in [2] show existence of a unique solution to (1.3) and the results will be
included in Section 4.

EJP 25 (2020), paper 34.
Page 2/33

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP437
http://www.imstat.org/ejp/


Rough PDE’s with discontinuous coefficients

1.2 The stochastic transport equation

Integrating the linear transport equation in time gives

u(t, x) +

∫ t

0

b(s, x) · ∇u(s, x)ds+

∫ t

0

c(s, x)u(s, x)ds+

∫ t

0

∇u(s, x) · dBs = u0(x). (1.5)

It is well known that the corresponding deterministic equation might develop disconti-
nuities when b is irregular. Moreover, a weak formulation of the deterministic equation
is not straightforward. Integrating against a test function η ∈ C∞c (R), we see that the
term

∫
R
b(t, x) · ∇u(t, x)η(x)dx does not allow for integration by parts unless there is

some regularity on b. We will choose the noise in such a way that the solution is weakly
differentiable, thus circumventing integration by parts. Notice, however, that we will
still use a (spatially) weak formulation of the equation.

1.3 Related literature and main contributions

The linear transport equation has been studied extensively. When the noise term is
removed, Di Perna and Lions [8], showed that when b ∈ L1([0, T ];W 1,1

loc (Rd)) with linear
growth and div b ∈ L1([0, T ]×Rd), the equation is well posed. Notice that the regularity
restrictions on b is needed in order to make a definition of a solution as indicated above.
These results were later generalized to the setting of bounded variation vector fields by
Ambrosio in [1].

The stochastic version driven by Brownian motion with Stratonovich formulation,
i.e.

∫ t
0
∇u(s, x) ◦ dBs, has also received some attention. We mention the results in [9]

and [17], developed simultaneously and independently, using two somewhat different
techniques.

An approach of using rough paths for regularization by noise was used in [4], building
on [5]. The techniques of [4] and [5] are similar in spirit to the present paper in the
sense that they both use calculation on the occupation measures. The main advantage
of [4] and [5] is that they offer a more defined separation between the probabilistic
considerations and the analysis of the involved ODE and PDE’s, thus making the approach
suitable for different types of driving noise. In the present paper one needs to carefully
keep track of P -null sets because many of the estimates are only shown to be true under
expectation. On the other hand it gives some flexibility since some of the expressions
are semi explicit via the local time.

The paper [4] consider drifts for which div b ∈ L∞([0, T ]×Rd), and allow for linear
growth. When d = 1 this is restricts to (locally) Lipschitz drift, but when d > 1 this
condition is much weaker than Lipschitz. Another difference from the current paper is
that [4] considers H ∈ ( 1

3 ,
1
2 ). For the technique in the current paper to work, we need

to have H < 1
3 which makes the rough path theory a bit more involved.

The main advantage of the technique of the present paper is that the solution can
easily be seen to be smoother in space, so that there is no need for integration by parts
on the drift term, which is the reason for restricting to bounded divergence on b in [4].

In addition, we include a part where d = 1 where the proof is much simpler. The proof
is based on a local-time technique that was introduced in [18] to study the Stochastic
Heat Equation.

The main contribution of the present paper is to introduce the notion of “local time
solutions”, see Definition 6.3. This notion is introduced to compensate for the lack of
integration by parts for the drift term in (1.5), and in fact allows to define a notion of
solution when the multiplicative term c in (1.5) is allowed to be a distribution. Section
6.3 presents examples where one can check that the local time solutions actually gives
rise to solutions that fits into the framework of the rough path integration theory.
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Rough PDE’s with discontinuous coefficients

1.4 Notation

For Banach spaces V,W we denote L(V ;W ) the set of all continuous linear mappings
from V to W . For simplicity we denote L(V ) := L(V ;R). If the spaces V and W are
finite dimensional, and we can identify L(V ⊗W ) with L(V ;L(W )). In particular, for
a sufficiently smooth function f : V → W the k’th derivative is considered as a map
∇kf : V → L(V ⊗k;W ).

For T > 0 define the simplex ∆(n)(s, t) := {(r1, . . . , rn) ∈ [0, T ]n : s < r1 < · · · < rn <

t}. For γ > 0 denote by Cγ2 ([0, T ];V ) the space of all functions f : ∆(2)(0, T ) → V such

that ‖f‖γ := sups<t
|f(s,t)|
|t−s|γ < ∞. Given a path X : [0, T ] → V its increment is denoted

Xst := Xt −Xs and we denote by Cγ([0, T ];V ) the set of all path such that its increment
belongs to Cγ2 ([0, T ];V ).

For an integer p the p-step truncated tensor algebra

T (p)(Rd) :=

p⊕
n=0

(Rd)⊗n

is equipped with the product (a⊗ b)(n) =
∑n
k=0 a

(n−k) ⊗ b(k).
We recall the following Taylor formula for a function f : V →W that is m+ 1 times

differentiable

f(x)− f(y) =

m∑
k=1

∇kf(y)

k!
(x− y)⊗k +Rfm(x, y) (1.6)

where |Rfm(x, y)| . |x− y|m+1. More specifically, we shall use the explicit formula

Rfm(x, y) =
1

m!

∫ 1

0

∇m+1f(y + u(x− y))(1− u)mdu(x− y)⊗(m+1). (1.7)

We shall frequently use the space L1(Rd;L∞([0, T ];Rd)) with norm denoted by

‖f‖∞,1 :=

∫
Rd
‖f(·, x)‖L∞([0,T ];Rd)dx.

For simplicity the norm in the space L∞([0, T ]×Rd;Rd) will be denoted ‖ · ‖∞.

2 Elements of controlled rough paths

The theory of rough paths was first introduced by Terry Lyons in the late 90’s, see
[16]. The insight of this work is that even though solutions to ODE’s driven by rough
signals are typically not continuous as a function of the signals themselves, by adding
extra information, namely the iterated integrals of the driving signals, one obtains a
topology for which there is continuity of the solutions. The theory was further developed
by Gubinelli, [12] and [13], who introduced the notion of controlled paths which defines
spaces that are well suited for constructing solutions of the rough ODE’s.

In the present paper we shall use controlled paths as one of our main tools. See
[10] for an introduction. It should be noted that the full theory of rough paths is not
necessary for the present paper since there will be cancellations of the “area” of the
rough paths due to the structure of the noise term in (1.1) and (1.2). Still, this machinery
is convenient to understand the equations as expansions in the driving noise.

Throughout this section we fix some γ ∈ (0, 1
2 ) and let p be the integer part of 1

γ .
A γ-rough path is a mapping

X : ∆(2)(0, T )→ T (p)(Rd)

(s, t) 7→ (1, X
(1)
st , . . . , X

(p)
st )
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Rough PDE’s with discontinuous coefficients

that satisfies an algebraic (Chen’s) relation

Xst = Xsu ⊗Xut, (2.1)

and an analytic relation

|X(n)
st | ≤ C|t− s|nγ n = 1, . . . , p, for some C > 0. (2.2)

We denote by C γ the set of all rough paths equipped with the metric

%γ(X, X̃) :=

p∑
n=1

sup
t 6=s

|X(n)
st − X̃

(n)
st |

|t− s|nγ
.

Given a function X ∈ C1([0, T ];Rd) we can consider its canonical lift to a rough path

Xst := (1, Xst,

∫ t

s

Xsr ⊗ Ẋrdr, . . . ,

∫
∆(p)(s,t)

Ẋr1 ⊗ · · · ⊗ Ẋrpdr1 . . . drp). (2.3)

We denote by C γ
g the closure of the canonical lift of C1([0, T ];Rd) in the rough path

topology.1 An element X ∈ C γ
g will be referred to as a geometric rough path and it

satisfies the identity

sym(X
(n)
st ) =

1

n!

(
X

(1)
st

)⊗n
. (2.4)

Given a rough path X ∈ C γ , we shall say that a mapping

Y : [0, T ] −→
p⊕

n=1

L((Rd)⊗n)

t 7−→ (Y
(1)
t , . . . Y

(p)
t )

is a controlled (by X) path if the functions

Y
(k)]
st := Y

(k)
t −

p∑
n=k

Y (n)
s X

(n−k)
st k = 1, . . . , p

are such that Y (k)] ∈ C(p+1−k)γ
2 ([0, T ];L((Rd)⊗k), i.e.

|Y (k)]
st | . |t− s|(p+1−k)γ . (2.5)

We denote by Dpγ
X the set of all paths controlled by X, and we equip this linear space

with the semi-norm

‖Y‖X =

p∑
k=1

‖Y (k)]‖(p+1−k)γ .

Conditioned on (Y
(1)
0 , . . . , Y

(p)
0 ) we get a norm which controls the ‖ · ‖∞-norm of Y in the

following way. We have Y (k)
t = Y

(k)]
0t +

∑p
n=k Y

(n)
0 X

(n−k)
0t so that

‖Y (k)‖∞ ≤ T (p+1−k)γ‖Y (k)]‖(p+1−k)γ +

p∑
n=k

|Y (n)
0 |‖X‖(n−k)γT (n−k)γ

. ‖Y‖X + %γ(0,X)|Y0|. (2.6)

1Sometimes written C 0,γ
g in the literature, whereas C γg is reserved for paths satisfying (2.4). While C 0,γ

g is

strictly included in C γg one can use geodesic approximations and interpolation to show C γ
′

g ⊂ C 0,γ
g ⊂ C γg for

γ′ < γ, so that one can still approximate elements satisfying (2.4) at the expense of choosing a smaller γ.
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Rough PDE’s with discontinuous coefficients

If we consider two paths Y and Ỹ, controlled by X and X̃ respectively, we introduce
the “distance”

‖Y; Ỹ‖X,X̃ :=

p∑
k=1

‖Y (k)] − Ỹ (k)]‖(p+1−k)γ .

Similar as above have the following estimate

max
n=1,...,p

‖Y (n) − Ỹ (n)‖∞ ≤ ‖Y; Ỹ‖X,X̃ + %γ(X, 0)|Y0 − Ỹ0|+ %γ(X, X̃)|Ỹ0|.

We define the total space

C γ n Dpγ :=
⊔

X∈Cγ

{X} ×Dpγ
X

equipped with its natural topology, i.e. the weakest topology such that

C γ n Dpγ −→ C γ ×
p⊕
k=1

C
(p+1−k)γ
2 ([0, T ];L((Rd)⊗k))

(X,Y) 7−→
(
X,⊕pk=1Y

(k)]
)

is continuous.
If f is a scalar valued function with higher Hölder regularity, i.e. |fst| . |t− s|β for

some β ≥ pγ and a controlled path Y ∈ Dpγ
X we can define the product as a controlled

path fY.

Lemma 2.1. The mapping

Cβ ×Dpγ
X → Dpγ

X

(f,Y) 7→ (fY (1), . . . , fY (p))

is bilinear and continuous when β ≥ pγ.

Proof. To see that the mapping is well defined is sufficies to notice that

(fY )
(k)]
st = fstY

(k)
t + fsY

(k)]
st

satisfies the required time-regularity when β ≥ pγ. To see continuity of this map we can
similarly write

|(fY )
(k)]
st − (f̃ Ỹ )

(k)]
st | ≤ |t− s|β‖f − f̃‖β‖Y (k)‖∞

+ |t− s|(p+1−k)γ‖f − f̃‖∞‖Y (k)] − Ỹ (k)]‖(p+1−k)γ .

2.1 Integration of controlled rough paths

Following [10] we denote by Cα,β2 ([0, T ]) the space of functions Ξ : ∆(2)(0, T ) → R

such that

‖Ξ‖α := sup
s<t

|Ξst|
|t− s|α

<∞ and ‖δΞ‖β := sup
s<u<t

|δΞsut|
|t− s|β

<∞

where δΞsut := Ξst − Ξsu − Ξut. We equip the space with the semi-norm ‖Ξ‖α,β :=

‖Ξ‖α + ‖δΞ‖β . The following result is sometimes referred to as the “sewing lemma”:

Lemma 2.2. Assume 0 < α ≤ 1 < β. Then there exists a unique continuous linear map

I : Cα,β2 ([0, T ])→ Cα([0, T ])

such that (IΞ)0 = 0 and
|(IΞ)st − Ξst| . |t− s|β .
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Rough PDE’s with discontinuous coefficients

More specifically,

I(Ξ)st = lim
|P|→0

∑
[u,v]∈P

Ξuv (2.7)

where P denotes a partition of [s, t] and |P| its mesh. The limit can be taken along any
sequence of partitions and is independent of this choice.

For a proof, see [10]. It is clear from (2.7) that Cθ2 ([0, T ]) ⊂ ker(I) for θ > 1.
We are ready to define the integral of a controlled rough path. For X ∈ C γ and

Y ∈ Dpγ
X let

Ξst :=

p∑
n=1

Y (n)
s X

(n)
st .

Chen’s relation (2.1) gives X(n)
st =

∑n
k=0X

(n−k)
su ⊗X(k)

ut , so that

δΞsut =

p∑
n=1

Y (n)
s (X

(n)
st −X(n)

su )−
p∑

n=1

Y (n)
u X

(n)
ut =

p∑
n=1

Y (n)
s

n∑
k=1

X(n−k)
su ⊗X(k)

ut −
p∑

n=1

Y (n)
u X

(n)
ut

=

p∑
k=1

p∑
n=k

Y (n)
s X(n−k)

su ⊗X(k)
ut −

p∑
k=1

Y (k)
u X

(k)
ut =

p∑
k=1

(
p∑

n=k

Y (n)
s X(n−k)

su − Y (k)
u

)
X

(k)
ut

= −
p∑
k=1

Y (k)]
su X

(k)
ut .

From (2.2) and (2.5) each term can be bounded by C|t − s|(p+1)γ for an appropriate
constant C. Consequently |δΞsut| . |t − s|(p+1)γ . Since (p + 1)γ > 1 we arrive at the
following definition:

Definition 2.3. Let X ∈ C γ and let Y ∈ Dpγ
X . We define the rough path integral of Y

w.r.t. X as ∫ t

s

YrdXr := (IΞ)st (2.8)

with I and Ξ as above.

Remark 2.4. For a smooth path X with its geometric lift (2.3) the rough path integral
and the usual calculus coincide, i.e.∫ t

s

YrdXr =

∫ t

s

YrẊrdr,

for all Y ∈ Cγ([0, T ];L(Rd)). Indeed, we may define Y (n) = 0 for n = 2, . . . p. Even though
in general (2.5) is not satisfied for k = 1, if we define

Ξst := YsXst

we get δΞsut = −YsuXut so that Ξ ∈ C1,1+γ
2 ([0, T ]).

The rest of this section is devoted to obtaining a “local Lipschitz”-type estimate when
we regard the above as a mapping

C γ n Dpγ → C
γ,(p+1)γ
2 ([0, T ]).

Indeed, let X, X̃ ∈ C γ and let Y and Ỹ be controlled by X and X̃ respectively. Define Ξ

as before and

Ξ̃st :=

p∑
n=1

Ỹ (n)
s X̃

(n)
st .
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Lemma 2.5. Assume %γ(0,X), ‖Y‖X, |Y0| ≤M for some constant M , and similarly for
X̃ and Ỹ. Then there exists a constant CM such that

‖Ξ− Ξ̃‖γ,(p+1)γ ≤ CM (|Y0 − Ỹ0|+ ‖Y; Ỹ‖X;X̃ + %γ(X, X̃)).

Proof. We begin by decomposing

Ξst − Ξ̃st =

p∑
n=1

Y (n)
s X

(n)
st −

p∑
n=1

Ỹ (n)
s X̃

(n)
st

=

p∑
n=1

Y (n)
s (X

(n)
st − X̃

(n)
st ) +

p∑
n=1

(Y (n)
s − Ỹ (n)

s )X̃
(n)
st

so that

|Ξst − Ξ̃st| ≤
p∑

n=1

‖Y (n)‖∞‖X(n) − X̃(n)‖nγ |t− s|nγ +

p∑
n=1

‖Y (n) − Ỹ (n)‖∞‖X̃(n)‖nγ |t− s|nγ

≤ |t− s|γ max
n=1,...,p

‖Y (n)‖∞%γ(X, X̃) + |t− s|γ%γ(0, X̃) max
n=1,...,p

‖Y (n) − Ỹ (n)‖∞.

Using (2.6) we can find a constant C̃M such that

‖Ξ− Ξ̃‖γ ≤ C̃M (‖Y; Ỹ‖X,X̃ + |Y0 − Ỹ0|+ %γ(X, X̃)).

Similarly,

δΞsut − δΞ̃sut = −
p∑

n=1

Y (n)]
su X

(n)
ut +

p∑
n=1

Ỹ (n)]
su X̃

(n)
ut

= −
p∑

n=1

Y (n)]
su (X

(n)
ut − X̃

(n)
ut ) +

p∑
n=1

(Y (n)]
su − Ỹ (n)]

su )X̃
(n)
ut

so that

‖δ(Ξ− Ξ̃)‖(p+1)γ ≤
p∑

n=1

‖Y (n)]‖(p+1−n)γ‖X(n) − X̃(n)‖nγ

+

p∑
n=1

‖Y (n)] − Ỹ (n)]‖(p+1−n)γ‖X̃(n)‖nγ

≤M(%γ(X, X̃) + ‖Y; Ỹ‖X,X̃).

2.2 Controlling solutions of ODE’s

In this section we will show how to control solutions of ODE’s perturbed by a rough
path X ∈ C γ . Fix a function b ∈ C1

b ([0, T ]×Rd;Rd) and denote by φ·(x) the solution of
the perturbed ODE

φt(x) = x+

∫ t

0

b(r, φr(x))dr +Xt. (2.9)

When there is no chance of confusion we shall denote the solution of (2.9) by φt for
notational convenience. Notice that we shall later on be interested in φt as a function of
x, but for this section we leave it fixed. We have

φst =

∫ t

s

b(r, φr)dr +Xst =: Rφst +Xst

where |Rφst| . |t− s| by the boundedness of b. Let f ∈ Cpb (Rd;Rd), so that we can view
∇kf : Rd → L((Rd)⊗(k+1)). We shall lift the composition f(φ) to a controlled path in Dpγ

X .
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Rough PDE’s with discontinuous coefficients

Lemma 2.6. Assume X is a geometric rough path. Then the mapping

s 7→ (f(φs), . . . ,∇p−1f(φs))

belongs to Dpγ
X , i.e. if we introduce the ad-hoc notation

f(φ)
(k)]
st := ∇k−1f(φt)−

p∑
n=k

∇nf(φs)X
(n−k)
st , k = 1, . . . , p

we have f(φ)(k)] ∈ C(p+1−k)γ
2 ([0, T ];L((Rd)⊗(k+1))).

Proof. Begin by writing

φ⊗nst = (Rφst +Xst)
⊗n =

n∑
q=0

(
n

q

)
sym((Rφst)

⊗(n−q) ⊗X⊗qst ).

For a sufficiently smooth function g : Rd → L(V ) where V is a finite-dimensional Banach
space, we have from Taylor’s formula

g(φt)− g(φs) =

m∑
n=1

∇ng(φs)

n!
(φst)

⊗n +Rgm(φs, φt)

=

m∑
n=1

∇ng(φs)X
(n)
st +Rgm(φs, φt) (2.10)

+

m∑
n=1

n∑
q=1

(
n

q

)
∇ng(φs)

n!
((Rφst)

⊗(n−q) ⊗X⊗qst ).

In the above we have used that X satisfies (2.4) so that ∇ng(φs)
X⊗nst
n! = ∇ng(φs)X

(n)
st

since ∇ng only acts on symmetric tensors. Furthermore, the second term . |φst|m+1 .
|t− s|(m+1)γ , and the third term . |t− s|. With g = ∇kf and m = p− k − 1 it follows that

f(φ)(k)] ∈ C(p−k)γ
2 ([0, T ];L((R)d)⊗(k+1)), thus proving the lemma.

Remark 2.7. We note that the symmetry of ∇ng in the proof of Lemma 2.6 is the reason
that the full generality of the theory of rough paths is not needed in this paper.

Corollary 2.8. For f ∈ Cpb (Rd;Rd) we may define
∫
f(φr)dXr as the rough path integral

of f(φ) w.r.t. X as in (2.8).

2.3 Stability w.r.t. the driving path

The purpose of this section is to prove local Lipschitz continuity of the mapping

C γ → C γ n Dpγ

X 7→ (X, f(φ))

where φ is the solution to (2.9), f ∈ Cpb (Rd;Rd) and f(φ) denotes the lift as described in
the previous section. We begin with some trivial bounds, namely let X̃ ∈ C γ and denote
by φ̃ the solution to (2.9) when we replace X by X̃, i.e.

φ̃st =

∫ t

s

b(r, φ̃r)dr + X̃st =: Rφ̃st + X̃st.

One can check that (see [4], Lemma A.7)

‖φ− φ̃‖γ ≤ C(T,∇b)‖X − X̃‖γ . (2.11)
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Rough PDE’s with discontinuous coefficients

Clearly this implies ‖φ− φ̃‖γ . %γ(X, X̃) and also ‖Rφ −Rφ̃‖γ . %γ(X, X̃).

It follows that ‖φ⊗n − φ̃⊗n‖nγ . %γ(X, X̃) by induction: assume this holds for n− 1.
Then

|φ⊗nst − φ̃⊗nst | ≤ |φ
⊗(n−1)
st ||φst − φ̃st|+ |φ⊗(n−1)

st − φ̃⊗(n−1)
st ||φ̃st|

≤ 2|t− s|nγ%γ(X, X̃)

by the induction hypothesis combined with (2.11).

The main result of this section is the following.

Lemma 2.9. Assume %γ(X, 0), %γ(X̃, 0) ≤ M and f ∈ Cpb (Rd;Rd). Then there exists a
constant CM such that

‖f(φ); f(φ̃)‖X,X̃ ≤ CM%γ(X, X̃).

Proof. We shall use the formula (2.10) to show that ‖f(φ)(k)] − f(φ̃)(k)]‖(p−k)γ ≤
CM%γ(X, X̃), which will prove the claim. Towards this goal, for a function g smooth
enough, the remainder term of the Taylor expansion satisfies

Rgm(φs, φt)−Rgm(φ̃s, φ̃t) =

∫ 1

0

(1− r)m+1

m!
∇m+1g(φs + rφst)dr

(
φ
⊗(m+1)
st − φ̃⊗(m+1)

st

)
+

∫ 1

0

(1− r)m+1

m!

(
∇m+1g(φs + rφst)−∇m+1g(φ̃s + rφ̃st)

)
dr
(
φ̃
⊗(m+1)
st

)
.

For the first term above we have . |t− s|(m+1)γ‖∇m+1g‖∞%γ(X, X̃). For the second term
we use, uniformly in r ∈ [0, 1]

|∇m+1g(φs + rφst)−∇m+1g(φ̃s + rφ̃st)| ≤ ‖∇m+2g‖∞(|φs − φ̃s|+ r|φst − φ̃st|)
. ‖∇m+2g‖∞%γ(X, X̃).

Together with the bound |φ̃⊗(m+1)
st | . |t− s|(m+1)γ we see that

‖Rgm(φ·, φ·)−Rgm(φ̃·, φ̃·)‖(m+1)γ . %γ(X, X̃).

Fix integers q ≥ 1 and n ≥ 0. Using the estimate |a⊗b−a′⊗b′| ≤ |a−a′||b|+ |a′||b− b′|
repeatedly, it is easy to check that

|∇g(φs)(X
⊗n
st ⊗ (Rφst)

⊗q)−∇g(φ̃s)(X̃
⊗n
st ⊗ (Rφ̃st)

⊗q| . |t− s|%γ(X, X̃).

This combined with (2.10) gives

‖f(φ)(k)] − f(φ̃)(k)]‖(p−k)γ . %γ(X, X̃)

which ends the proof of the lemma.

Combining the above Lemma, Lemma 2.5 and Remark 2.4 we get

Corollary 2.10. Let X ∈ C γ
g . Then there exists a family of smooth paths Xε such that∫ ·

0

f(φεr)Ẋ
ε
rdr →

∫ ·
0

f(φr)dXr in Cγ([0, T ]),

as ε→ 0.
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2.4 Stability w.r.t. the drift

Let us fix X ∈ C γ and we consider the ODE (2.9). Assume we have a sequence of
functions bε such that there exists a solution of for every ε > 0 to

φεt = x+

∫ t

0

bε(r, φ
ε
r)dr +Xt.

We will show stability in the sense of controlled rough paths when we assume that
φε converges in an appropriate topology. This convergence will be shown to hold in
Proposition 4.15 for our particular case.

Lemma 2.11. Assume φε converges in Cγ to the solution of (2.9). Then for any f ∈
Cpb (Rd;Rd) we have that the lift of f(φε) converges in Dpγ

X to f(φ), and as ε→ 0∫ ·
0

f(φεr)dXr →
∫ ·

0

f(φr)dXr

where the above convergence is in Cγ .

Proof. Note that the second claim follows from the first in connection with Remark 2.2.
To see the first claim, one has to show

lim
ε→0
‖f(φ)(k)] − f(φε)(k)]‖(p−k)γ = 0

for all k = 0, 1, . . . , p − 1. The proof follows the same lines as the proof of Lemma 2.9
with minor modifications, noting that X = X̃.

2.5 An Itô-Stratonovich formula

For the sake of being self-contained, we include a change-of-variable formula for our
particular case. Let η ∈ C∞c (Rd) and assume φ· solves (2.9). If X is a smooth path usual
calculus yields,

d

dt
η(φt) = ∇η(φt) · b(t, φt) +∇η(φt) · Ẋt.

We can generalize this to geometric rough paths.

Lemma 2.12. Suppose η ∈ C∞c (Rd) and X is a rough path above X. Then we have

η(φt) = η(x) +

∫ t

0

η(φr) · b(r, φr)dr +

∫ t

0

∇η(φr)dXr.

where the last term is the rough path integral.

Proof. Let 0 ≤ u ≤ v ≤ t and use Taylor’s formula to write, as in (2.10)

η(φ)uv =

p∑
n=1

∇nη(φu)

n!
(φuv)

⊗n +Rηp(φu, φv) = ∇η(φu)Rφuv +

p∑
n=1

∇nη(φu)X(n)
uv + Ξuv

where

Ξuv := Rηp(φu, φv) +

p∑
n=2

n−1∑
q=1

(
n

q

)
∇nη(φu)

n!
((Rφuv)

⊗(n−q) ⊗X⊗quv )

and notice that Ξ ∈ C1+γ
2 ([0, T ]) ⊂ ker(I). We have

lim
|P|→0

∑
[u,v]∈P

∇η(φu) ·
∫ v

u

b(r, φr)dr = lim
|P|→0

∫ t

0

∑
[u,v]∈P

∇η(φu)1[u,v](r) · b(r, φr)dr

=

∫ t

0

∇η(φr) · b(r, φr)dr
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where we used continuity of ∇η and dominated convergence in the last step. Note that
the above reasoning does not use any regularity requirements on b.

Finally, we have

η(φt)− η(x) = I(η(φ·))0,t = lim
|P|→0

∑
[u,v]∈P

η(φ)uv

= lim
|P|→0

∑
[u,v]∈P

(
∇η(φu)Rφuv +

p∑
n=1

∇nη(φu)X(n)
uv + Ξuv

)

= I(∇η(φ·)R
φ
··) + I(

p∑
n=1

∇nη(φ·)X
(n)
·· ) + I(Ξ)

=

∫ t

0

∇η(φr) · b(r, φr)dr +

∫ t

0

∇η(φr)dXt

by definition of the rough path integral.

2.6 Integrated ODE’s

To emphasize that the solution of (2.9) depends on the initial value x, we denote its
solution by φ·(x), i.e.

φt(x) = x+

∫ t

0

b(r, φr(x))dr +Xt.

Let ν be a finite signed measure on Rd, and f = (f (1), . . . , f (d)) ∈ Cpb (Rd;Rd). In later
chapters we shall be interested in expressions on the form

ν(f(φ·)) :=

(∫
R

f (1)(φ·(x))dν(x), . . . , f (d)(φ·(x))dν(x)

)
∈ L(Rd)

as a controlled path in order to define
∫ t

0
ν(f(φr))dXr in the rough path sense. Similar

results as the previous chapters holds, summarized below.

Proposition 2.13. Retain the hypotheses and notations respectively from Corollary 2.8,
Corollary 2.10, Lemma 2.11 and assume f ∈ Cpb (Rd;Rd). The following holds.

1. The rough path integral
∫ t

0
ν(f(φr))dXr is well defined.

2. Let X ∈ C γ
g . Then there exists a family of smooth paths Xε such that∫ ·

0

ν(f(φεr))Ẋ
ε
rdr →

∫ ·
0

ν(f(φr))dXr in Cγ([0, T ]),

as ε→ 0, where φε denotes the solution of (2.9) with X replaced by Xε.

3. If ν(f(φε· ))→ ν(f(φ·)) in Cγ we have∫ ·
0

ν(f(φεr))dXr →
∫ ·

0

ν(f(φr))dXr in Cγ([0, T ]),

as ε→ 0.

Proof. Begin with the first assertion. Integrating (2.10) w.r.t. ν gives∫
Rd
f(φ(x))

(k)]
st dν(x) =

p−k−1∑
n=1

n∑
q=1

∫
Rd

∇f (k+n)(φs(x))

q!
(R

φ(x)
st )⊗q ⊗X⊗(n−q)

st dν(x)

+

∫
Rd
R∇

kf
p−k−1(φs(x), φt(x))dν(x).
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Since ν is finite and b is bounded we get for each k, n and q

|
∫
Rd

∇k+nf(φs(x))

q!
(R

φ(x)
st )⊗qdν(x)| . |t− s|.

Furthermore

|
∫
Rd
R∇

kf
p−k−1(φs(x), φt(x))dν(x)| .

∫
Rd
|φst(x)|p−kdν(x) . |t− s|(p−k)γ ,

so that
∫
Rd
f(φ·(x))dν(x) is a controlled path and(∫

Rd
f(φ(x))dν(x)

)(k)]

st

=

∫
Rd
f(φ(x))

(k)]
st dν(x).

Using linearity, boundedness of b and dominated convergence the reader is invited to
complete the remaining steps of the proof.

3 Fractional Brownian motion and Girsanov’s theorem

In this section we introduce the fractional Brownian motion as well as the technical
tools we shall need in the remainder of the paper. More specifically the representation
in terms of a fractional integral operator allows us to formulate the appropriate version
of Girsanov theorem. The notion of strong local non-determinism is then used to infer
technical bounds that are useful for studying local time estimates later in the paper.
Finally we mention how one can construct a rough path lift of the fractional Brownian
motion.

A 1-dimensional centered Gaussian process, B = {Bt, t ∈ [0, T ]}, is called a fractional
Brownian motion (fBm) with Hurst parameter H ∈ (0, 1

2 ) if the covariance is given by

RH(t, s) := E[BtBs] =
1

2

(
t2H + s2H − |t− s|2H

)
.

Observe that B has stationary increments and its trajectories are Hölder continuous of
index H − ε for all ε > 0.

Denote by E the set of step functions on [0, T ] and denote by H the Hilbert space
defined as the closure of E with respect to the inner product

〈1[0,t], 1[0,s]〉H = RH(t, s).

The mapping 1[0,t] 7→ Bt can be extended to an isometry between H and a Gaussian
subspace of L2(Ω).

For a function f ∈ L2([a, b]), we define the left fractional Riemann-Liouville integral
by

Iα0+f(x) =
1

Γ(α)

∫ x

0

(x− y)α−1f(y)dy

for α > 0. Denote by Iα0+(L2([a, b])) the image of L2([a, b]) under Iα0+ and by Dα
a+ its

inverse.
We define KH(t, s) as

KH(t, s) = cHΓ

(
H +

1

2

)
s

1
2−H

(
D

1
2−H
t− uH−

1
2

)
(s),

for some constant cH and write KH for the operator from L2([0, T ]) onto I
H+ 1

2
0+ (L2)

associated with the kernel KH(t, s). It follows that

RH(t, s) =

∫ t∧s

0

KH(t, u)KH(s, u)du.
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Moreover, if W = {Wt : t ∈ [0, T ]} is a standard Brownian motion B can be repre-
sented as

Bt =

∫ t

0

KH(t, s)dWs. (3.1)

A d-dimensional fractional Brownian motion is a d-dimensional process where the
components are independent 1-dimensional fractional Brownian motions.

Theorem 3.1 (Girsanov’s theorem for fBm). Let u = {ut, t ∈ [0, T ]} be an Rd-valued,
{Ft}t∈[0,T ]-adapted process with integrable trajectories and set B̃t = Bt +

∫ t
0
usds, t ∈

[0, T ]. Assume that

(i)
∫ ·

0
usds ∈ (I

H+ 1
2

0+ (L2([0, T ]))d, P -a.s.

(ii) E[ξT ] = 1 where

ξT := exp

{
−
∫ T

0

K−1
H

(∫ ·
0

urdr

)
(s) · dWs −

1

2

∫ T

0

∣∣∣∣K−1
H

(∫ ·
0

urdr

)
(s)

∣∣∣∣2 ds
}
.

Then the shifted process B̃ is an {Ft}t∈[0,T ]-fractional Brownian motion with Hurst

parameter H under the new probability P̃ defined by dP̃
dP = ξT .

Moreover, for every p > 1 we have E[|ξT |p] ≤ Cp(‖b‖∞), where Cp(·) is an increasing
function.

For a proof we refer to [19]. In particular, the moment-estimate is found in the proof
of Theorem 3, [19].

In the absence of the independent increments one has for H = 1
2 , we shall use the

following fact (see [22, Theorem 3.1]).

Lemma 3.2. The fractional Brownian motion is strong local non-deterministic, i.e. there
exists a constant c such that

V ar(Bt : (Bs)s:|t−s|≥r) ≥ cr2H . (3.2)

Given an m-dimensional Gaussian vector Z ∼ N (0,Σ) it is well known that

|Σ| = V ar(Zm)V ar(Zm−1|Zm) . . . V ar(Z1|Zm . . . Z2), (3.3)

and so from Cramer’s rule we get

(Σ−1)j,j = (V ar(Zj |Z1, . . . , Ẑj , . . . , Zm))−1 (3.4)

From the above we can prove the following technical estimates on the fractional
Brownian motion.

Proposition 3.3. Given a fractional Brownian motion there exists C such that

∫
Rm

m∏
j=1

|vj |k exp

−1

2
V ar

 m∑
j=1

vjBsj

 dv1 . . . dvm ≤ Cm
√

(km)!

m∏
j=1

|sj−sj−1|−H(1+2k)

(3.5)
for all (s1, . . . , sm) ∈ ∆(m)(0, T ), and we read s0 = 0.

Proof. Define the matrix Ai,j = E[BsiBsj ], let X ∼ N (0, A−1) and denote by X̃ the
km-dimensional Gaussian vector

X̃i = Xj for (j − 1)k + 1 ≤ i ≤ jk.
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Rewrite the right hand side of (3.5) as

(2π)m/2|A|−1/2E[

m∏
j=1

|Xj |k] = (2π)m/2|A|−1/2E[

km∏
i=1

|X̃i|]

≤ (2π)m/2|A|−1/2

( ∑
σ∈Skm

km∏
i=1

E[X̃iX̃σ(i)]

)1/2

≤ (2π)m/2|A|−1/2

( ∑
σ∈Skm

km∏
i=1

E[X̃2
i ]1/2E[X̃2

σ(i)]
1/2

)1/2

= (2π)m/2|A|−1/2

 ∑
σ∈Skm

m∏
j=1

E[X2
j ]k

1/2

= (2π)m/2|A|−1/2

(km)!

m∏
j=1

E[X2
j ]k

1/2

,

where we have used [15, Theorem 1] in the first inequality. Then we get from (3.4) that

(A−1)j,j ≥ c|sj+1 − sj |2H ∧ |sj − sj−1|2H ≥ c|sj − sj−1|4H

where we have used (3.2) and |sj+1 − sj | ≤ 1 in the two last steps, respectively. Using
(3.3) and (3.2) we get that

|A|−1/2 ≤ c−m
m∏
j=1

|sj − sj−1|−H

The result follows.

As noted in Remark 2.7, it turns out that the structure of the noise will not see the
full rough path lift of the fBm. Still we mention that the fractional Brownian motion
can be lifted to a rough path, as was first done in [21]. We shall, however, refer to [20]
for a different construction where the authors construct the iterated integrals using a
Stratonovich-Volterra-type representation.

Theorem 3.4 (Theorem 1.1. in [20]). Let B be a fractional Brownian motion admitting
the representation (3.1). For 1 ≤ n ≤ b 1

H c define

B(n) : ∆(2)(0, T )→ (Rd)⊗n

component wise, i.e. for any tuple {i1, . . . in} in {1, . . . , d}, as the Stratonovich iterated
integral

〈B(n)
st ,ei1 ⊗ · · · ⊗ ein〉

=

n∑
j=1

(−1)j−1

∫
Anj

j−1∏
l=1

K(s, rl)[K(t, rj)−K(s, rj)]

n∏
l=j+1

K(t, rl) ◦ dW i1
r1 · · · ◦ dW

in
rn

where

Anj := {(r1, . . . rn) ∈ [0, t]n : rj = min(r1, . . . , rn), r1 > · · · > rj−1 and rj+1 < · · · < rn}.

Then there exists a set ΩB with full measure such that

Bst := (1, Bt −Bs, B(2)
st , . . . B

(b1/Hc)
st )

satisfies (2.1) and (2.4) on ΩB. Moreover, for γ < H we have |B(n)
st | . |t− s|γn.
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Assume now that H is such that 1
H is not an integer. We can choose γ < H such that

b 1
γ c = b 1

H c, and from the above theorem we have, P -a.s., B ∈ C γ
g .

Let us remark that for H ∈ ( 1
4 ,

1
2 ) there exists a lift of B to a rough path building the

iterated integral from linear interpolation of B. For the method of the current paper to
work we need smaller H, see Section 4. When H ∈ (0, 1

4 ) the dyadic interpolation fails to
give a converging sequence of rough paths, see [6]. Nevertheless, the construction in
[20] gives a geometric rough path so that we may approximate B by a sequence of lifted
smooth paths, in the rough path topology.

4 Fractional Brownian motion SDE’s

For this section we shall study a SDE driven by an additive fractional Brownian
motion, i.e.

φt(x) = x+

∫ t

0

b(r, φr(x))dr +Bt. (4.1)

Existence and uniqueness of a solution to this equation under low regularity on b was
recently proved in [2] as demonstrated in the next Proposition. For proofs the reader is
referred to [2].

Proposition 4.1 (Theorem 4.1 and Corollary 4.8 in [2]). Assume H < 1
2(2d+1) . Let

{bn}n≥0 ⊂ C∞c ([0, T ]×Rd;Rd) be a sequence of functions such that

sup
n≥0

(‖bn‖∞,1 ∨ ‖bn‖∞) <∞.

Denote by φn(t, x) the solution to (4.1) when b is replaced by bn. Then for fixed
(t, x) ∈ [0, T ]×Rd the sequence is φn(t, x) is relatively compact in the strong topology of
L2(Ω).

Furthermore, if limn→∞ bn(t, x) = b(t, x) for almost all (t, x) ∈ [0, T ] × Rd for b ∈
L1(Rd;L∞([0, T ];Rd)) ∩ L∞([0, T ]×Rd;Rd) then φn(t, x) is converging for every (t, x) ∈
[0, T ]×Rd to the unique solution of (4.1).

The proof of this Proposition relies on a compactness criterion from [7] based on
Malliavin calculus. Without going into too much detail there is compactness in L2(Ω)

if we can bound the Malliavin derivative of φn(t, x) by a constant depending only on
‖bn‖L1(Rd;L∞([0,T ];Rd)) ∨ ‖bn‖L∞([0,T ]×Rd;Rd).

Once one has strong convergence, one can use a somewhat standard trick, see e.g.
[14] or [19], to show that

∫ t
0
bn(r, φn(r, x))dr →

∫ t
0
b(r, φr(x))dr which gives that the limit

solves (4.1).

Furthermore the following result shows how the fBm regularizes the flow of (4.1).

Lemma 4.2 (Theorem 5.1 in [2]). Assume H < 1
(d−1+2k) and let p, k be integers, p ≥ 2,

k ≥ 1. There exists an increasing function C : [0,∞)→ [0,∞) only depending on H, d, p
and k such that

sup
t∈[0,T ],x∈Rd

E
[∣∣∇kφn(t, x)

∣∣p] ≤ C(‖bn‖∞,1 ∨ ‖bn‖∞).

Using the two previous results together with weak compactness in L2(Ω;W k,p(U))

for an open and bounded U ⊂ Rd we get the following result.

Theorem 4.3 (Theorem 5.2 in [2]). Assume H <
(

1
2(2d+1) ∧

1
2(d−1+2k)

)
and

b ∈ L1(Rd;L∞([0, T ];Rd)) ∩ L∞([0, T ]×Rd;Rd).
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Rough PDE’s with discontinuous coefficients

For every open and bounded U ⊂ Rd the solution to (4.1) is k-times weakly differentiable
in the sense that

φt ∈ L2(Ω;W k,p(U))

for every p > 1. Moreover, φn(t) converges to φt in the weak topology of L2(Ω;W k,p(U)).

4.1 The one-dimensional case

In this section we include a proof of Proposition 4.1 when d = 1 and H < 1
6 . From

[19] it is already known that there exists a unique strong solution to this equation when b
is of linear growth. From [19] it also becomes clear why the proof is simpler when d = 1

– one can use comparison of SDE’s to generate the strong convergence as indicated in
Section 4.1.3.

We shall restrict our attention to when b is bounded and integrable, but we are
interested in how the solution depends on the initial value x. More specifically we will
show the following.

Theorem 4.4. Assume b ∈ L1(Rd;L∞([0, T ];R)) ∩ L∞([0, T ] × R). If H < 1
6 there ex-

ists a unique strong solution to (4.1). Moreover the mapping (x 7→ φt(x)) is weakly
differentiable in the sense that for fixed t we have

φt(·) ∈ L2(Ω;W 1,p(U))

for all open and bounded U ⊂ R.

This theorem is proved in three steps. In the first step we establish an integration by
parts formula for the fractional Brownian motion. In the second step we assume that
b is smooth and has compact support. It is then well known that φt(·) is smooth, and
we use the integration by parts formula to bound ‖φt‖L2(Ω;W 1,p(U)) independently of b′.
In the third step we approximate a general b by smooth functions. We use comparison
to generate strong convergence in L2(Ω) of the corresponding sequence of solutions.
From step one and two we can bound the sequence in L2(Ω;W 1,p(U)) and argue via
weak compactness to prove Theorem 4.4.

4.1.1 An integration by parts formula

The purpose of this section is to prove a integration by parts type formula involving a
random variable inspired by local time calculus. More specifically, we have∫ t

0

b′(s,Bs)ds = −
∫
R

Λb(t, y)dy P − a.s. (4.2)

where

Λb(t, y) = (2π)−1

∫
R

∫ t

0

b(s, y)iue−iu(Bs−y)dsdu. (4.3)

We start by defining Λb(t, z) as above, and prove that it is a well defined element of
Lp(Ω) for every p > 1.

Lemma 4.5. Assume b is bounded. Then Λb(t, y) exists and all moments are integrable
provided H < 1

3 . More precisely if m is an even integer

E[|Λb(t, y)|m] ≤ Cm‖b(·, y)‖m∞m!
√
m!

Γ(m(1− 3H) + 1)
.
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Rough PDE’s with discontinuous coefficients

Proof. Since we assume m is an even integer, we may write

E[|Λb(t, y)|m = (2π)−mE|
∫
R

∫ t

0

b(s, y)iu exp{−iu(Bs − y)}dsdu|m

= (2π)−mm!

∫
∆m(0,t)

∫
Rm

b⊗m(s, y)

m∏
j=1

iujE[exp{−iuj(Bsj − y)}]duds

≤ (2π)−mm!

∫
∆m(0,t)

∫
Rm
|b⊗m(s, y)|

m∏
j=1

|uj | exp{−1

2
V ar(

m∑
j=1

ujBsj )}]duds

where for notational convenience we have used Bs0 = y and vm+1 = 0, ds = ds1 . . . dsm,
du = du1 . . . dum and b⊗m(s, y) :=

∏m
j=1 b(sj , y). Using (3.5) the above is bounded by

Cmm!
√
m!‖b(·, y)‖m∞

∫
∆(m)(0,t)

m∏
j=1

|sj − sj−1|−3Hds ≤ Cmm!
√
m!‖b(·, y)‖m∞

Γ((1− 3H)m+ 1)
.

From (4.3) we see that supp Λb(t, ·) ⊂
⋃
s≤t supp b(s, ·). In particular, if the latter set

is bounded, Λb(t, ·) is integrable P -a.s.
It remains to show that Λb satisfies the integration by parts formula (4.2). Notice that

one has to be careful interchanging the order of integration in (4.3). Indeed, if b = 1, one
should think of

∫
R
iue−iu(Bs−y)du = −∂yδBs(y) where δBs(y) is the Donsker-Delta of Bs,

which is not a random variable in the usual sense (one could introduce the Donsker-Delta
as a generalized random variable in the sense of White Noise theory, but we shall avoid
this).

To circumvent this difficulty we define an approximating sequence

ΛbK(t, y) := (2π)−1

∫ K

−K

∫ t

0

b(s, y)iue−iu·(Bs−y)dsdu.

It is immediate that

|ΛbK(t, y)| ≤ CK
∫ t

0

|b(s, y)|ds,

for an appropriate constant, so that ΛbK(t, ·) is integrable if
∫
R

∫ t
0
|b(s, y)|dsdy <∞. One

can show that ΛbK(t, y)→ Λb(t, y) in, say, L2(Ω) for all t and y. To see this the reader is
invited to modify the above proof to see that

E[|ΛbK(t, y)− Λb(t, y)|2]

≤ C‖b(·, y)‖2∞
∫

∆2(0,t)

∫
R2

1{|u1|>K}1{|u2|>K}|u1||u2|e−
1
2V ar(u1Bs1+u2Bs2 )duds

which converges to zero as K →∞. In the above C is a constant that is independent of
K. Now we have∫

R

ΛbK(t, y)dy = (2π)−1/2

∫ K

−K

∫ t

0

(F−1b)(s, u)iue−iu·Xsdsdu

=

∫ t

0

(2π)−1/2

∫ K

−K
(F−1b)(s, u)iue−iu·Xsduds.

Provided b(s, ·) ∈ S(R) we have

lim
K→∞

(2π)−1/2

∫ K

−K
(F−1b)(s, u)iue−iuXsdu = (2π)−1/2

∫
R

(F−1b)(s, u)iue−iuXsdu

= F(iu(F−1b)(s, u))(Xs) = −b′(s,Xs)

thus proving (4.2).
We summarize these considerations.
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Lemma 4.6. Let b : [0, T ] × R → R be such that b(s, ·) is smooth for every s and⋃
s≤T supp b(s, ·) is a bounded set. Then (4.2) holds on a set of measure 1.

We can however extend (4.2) to bounded and differentiable b.

Lemma 4.7. Assume b ∈ L∞([0, T ];C1
b (R)). Then (4.2) holds for b and we have P -a.s.

supp Λb(t, ·) ⊂ [−B∗t , B∗t ]

where B∗t := sup0≤s≤t |Bs|.

Proof. Assume first that b satisfies the assumptions of Lemma 4.6, and let φ ∈ C1
c (R).

From (4.3) we have Λφb(t, y) = φ(y)Λb(t, y). Consequently, using (4.2)∫
R

φ(y)Λb(t, y)dy =

∫
R

Λφb(t, y)dy = −
∫ t

0

(φ(Bs)b(s,Bs))
′ds

= −
∫ t

0

φ′(Bs)b(s,Bs)ds−
∫ t

0

φ(Bs)b
′(s,Bs)ds,

so that for all φ ∈ C1
c (R) such that suppφ ∩ [−B∗t , B∗t ] = ∅, we have

∫
R
φ(y)Λb(t, y)dy = 0.

In particular, Λb(t, ·) has compact support independent of b P -a.s.
From linearity of b 7→ Λb and Lemma 4.5 we may approximate a general b by smooth,

compactly supported functions. The result follows by elementary calculations.

Using Λφb(t, y) = φ(y)Λb(t, y) as in the above proof we get that if b is time homoge-
neous, Λb(t, y) = b(y)∂yL

B(t, y) where LB(t, y) denotes the local time of the fractional
Brownian motion (which is well known to be differentiable when H < 1

3 , see [11]).

Proposition 4.8. There exists a constant C > 0 such that for all even integers m

E

[(∫
R

|Λb(t, y)|dy
)m]

≤
Cm‖b‖m∞,1mm/2

√
(2m)!√

Γ(m(1− 3H) + 1)
.

Proof. We write

E

[(∫
R

|Λb(t, y)|dy
)m]

=

∫
Rm

E[

m∏
j=1

|Λb(t, yj)|]dy1 . . . dym

≤
∫
Rm

m∏
j=1

E[|Λb(t, yj)|m]1/mdy1 . . . dym

≤ Cmm!
√
m!

Γ((1− 3H)m+ 1)

∫
Rm

m∏
j=1

‖b(·, yj)‖∞dy1 . . . dym

=
Cmm!

√
m!

Γ((1− 3H)m+ 1)
‖b‖m1,∞

for an appropriate constant C, where we have used Lemma 4.5.

4.1.2 Derivative free estimates

In this section we assume that b ∈ L∞([0, T ];C1
c (R)) and denote by φ·(x) the solution to

(4.1). It is well known that φt(·) continuously differentiable, and we have

∂xφt(x) = 1 +

∫ t

0

b′(r, φr(x))∂xφr(x)dr (4.4)

= exp

{∫ t

0

b′(r, φr(x))dr

}
. (4.5)

We are ready to prove our main estimate on SDE’s.
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Theorem 4.9. There exists an increasing continuous function C : [0,∞)→ [0,∞) such
that for all b ∈ L∞([0, T ];C1

b (R))

sup
t∈[0,T ],x∈R

E
[
(∂xφt(x))

2
]
≤ C(‖b‖∞ ∧ ‖b‖∞,1),

where φ·(x) is the unique solution of (4.1) driven by b.

Proof. Set θt :=
(
K−1
H

(∫ ·
0
b(r, φr(x))dr

))
(t) and consider the Doléans-Dade exponential

Z := exp

{∫ T

0

θsdWs −
1

2

∫ T

0

θ2
sds

}
.

Define the measure P̃ by

dP̃ := ZdP.

Then P̃ is a probability measure and under P̃ the solution {φt(x)}t is a fractional Brown-
ian motion starting in x. From (4.5) we get

E[(∂xφt(x))2] = E

[
exp

{
2

∫ t

0

b′(r, φr(x))dr

}]
= Ẽ

[
exp

{
2

∫ t

0

b′(r, φr(x))dr

}
Z−1

]
≤
(
Ẽ

[
exp

{
4

∫ t

0

b′(r, φr(x))dr

}])1/2 (
Ẽ[Z−2]

)1/2

.

Now we write

Ẽ

[
exp

{
4

∫ t

0

b′(r, φr(x))dr

}]
= E

[
exp

{
4

∫ t

0

b′(r, x+Br)dr

}]
= E

[
exp

(
{4
∫
R

Λb(t, y)dy

}]
=
∑
m≥0

4mE
[(∫

R
Λb(t, y)dy

)m]
m!

≤
∑
m≥0

(4‖b‖1,∞)mCm(2m!)1/4
√

(2m)!

m!
√

Γ((1− 3H)2m+ 1)

=: C̃(‖b‖∞,1)

which converges by Stirling’s formula.
From Theorem 3.1 we know that we can bound Ẽ[Z−2] by a function depending on

‖b‖∞. The result follows.

4.1.3 Singular SDE’s

For this section we shall consider a bounded and measurable b : [0, T ] × R → R and
the corresponding SDE (4.1). As indicated above we shall use an approximation bn of b
and comparison to generate strong convergence in L2(Ω). The technique is somewhat
classical, and we refer to [19] for a proof, but let us briefly explain the idea:

Let b be bounded and measurable and define for n ∈ N

bn(t, x) := n

∫
R

ρ(n(x− y))b(t, y)dy
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where ρ is a non-negative smooth function with compact support in R such that∫
R
ρ(y)dy = 1. We let

b̃n,k :=

k∧
j=n

bj , n ≤ k, and Bn =

∞∧
j=n

bj ,

so that b̃n,k is Lipschitz. Denote by φ̃n,k(t, x) the unique solution to (4.1) when we replace
b by b̃n,k. Then one can use comparison to show that

lim
k→∞

φ̃n,k(t, x) = φn(t, x), in L2(Ω)

where φn(t, x) solves (4.1) when we replace b by Bn. Furthermore,

lim
n→∞

φn(t, x) = φt(x), in L2(Ω)

where φt(x) is a solution to (4.1). For details see [19].
We are ready to prove the main result of the section.

Proof of 4.4. Let U ⊂ R be open and bounded. We know from the discussion above that
φn(t, x)→ φt(x) in L2(Ω). From Theorem 4.9 plus elementary bounds we see that φn(t, ·)
is bounded in L2(Ω;W 1,2(U)). Consequently we may extract a subsequence {φnk(t, ·)}k≥1

converging to an element ft in the weak topology of L2(Ω;W 1,2(U)). Let A ∈ F and
η ∈ C∞(U). Using strong convergence coupled with weak convergence we get

E[1A

∫
U

φt(x)η′(x)dx] = lim
k→∞

E[1A

∫
U

φnk(t, x)η′(x)dx] = − lim
k→∞

E[1A

∫
U

∂xφnk(t, x)η(x)dx]

= −E[1A

∫
U

∂xft(x)η(x)dx].

Consequently we have
∫
U
φt(x)η′(x)dx = −

∫
U
∂xft(x)η(x)dx on some Ωη ∈ F such that

P (Ωη) = 1. Let now Ω∗ be the intersection of a countable, dense in W 1,2(U), set of η
such that the above integration by parts formula holds. It is clear that P (Ω∗) = 1 and
that φt is weakly differentiable on this set. The result follows.

Remark 4.10. For fixed t0 > 0, consider the equation

ψt0t (y) = y −
∫ t

0

b(t0 − r, ψt0r (y))dr − (Bt0 −Bt0−t).

Since the fractional Brownian motion has stationary increments the above equation is on
the same form as (4.1) and we may apply the same machinery to obtain a sequence ψt0,nt

of corresponding smooth flows that converges in the weak topology of L2(Ω;W 1,p(U))

and ψt0,nt (x) converges in the strong topology of L2(Ω) to the solution of the above
equation.

We have ψt0t0 = φ−1
t0 , so that φt0 is invertible with a Sobolev-differentiable inverse.

Let now f ∈ C1
b (R). For every n ∈ N we have

∂xf(ψt,nt (x)) = f ′(ψt,nt (x))∂xψ
t,n
t (x)

which is bounded in any Lp(U) for p > 1, U open and bounded. Consequently, there is a
weakly converging subsequence which by uniqueness must converge weakly in Lp(U)

and we have

∂xf(ψtt(x)) = f ′(ψtt(x))∂xψ
t
t(x), for almost all x ∈ R.

since ψt,nt (x) → ψtt(x) strongly in L2(Ω). When b is time-homogenuous we have the
following representation

φ−1
t (y) = y −

∫ t

0

b(φ−1
r (y))dr −Bt.
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4.2 Local time of the flow

We now return to the general case of d ≥ 1.
In this section we develop a local time theory for the solutions φt(x) of (4.1). Assuming

we have a solution to φt(x), the results here will rely only on Girsanov’s theorem 3.1
meaning we only use boundedness of b. Let now Q : [0, T ]×Rd → R be given and define
q = DαQ for some multiindex, α = (α(1), . . . α(d)). The main objective of this section is to

prove that there exists a random field Λ
φ(x),Q
α on [0, T ]×Rd such that∫ t

0

q(s, φs(x))ds = (−1)|α|
∫
Rd

Λφ(x),Q
α (t, y)dy,

and that the right hand side above can be bounded in terms of Q. Motivated by the
previous subsection, we define

Λφ(x),Q
α (t, y) = (2π)−d

∫
Rd

∫ t

0

(iu)αQ(s, y) exp{−iu · (φs(x)− y)}dsdu.

We denote by ΛQα (t, y) the random field obtained by choosing B instead of φ(x) in the
above definition. Note that from Girsanov’s theorem we have

E[f(Λφ(x),Q
α (t, y))] = E[f(ΛQα (t, y))ξT ]

for any f such that the above expressions exists and ξT was defined in Theorem 3.1 and
we have E[|ξT |2] ≤ C(‖b‖∞). We get a similar result as Lemma 4.5.

Lemma 4.11. Assume Q is bounded and H < 1
d+2|α| . We have the following moments

estimates on ΛQα

E[|ΛQα (t, y)|m] ≤
Cmm!

∏d
k=1

√
(mα(k))!

Γ(m(1−H(d+ 2|α|)) + 1
(4.6)

where C = C(α,H) does not depend on m or Q.

Proof. The proof follows the same lines as in the proof of Lemma 4.5. Begin by writing

E
[
|ΛQα (t, y)|m

]
=

m!

(2π)dm

∫
(Rd)m

∫
∆(m)(0,t)

m∏
j=1

(iuj)
αQ(sj , y) exp{−1

2
V ar(uj · (Bsj − y)}dsdu

≤ m!

(2π)dm

∫
(Rd)m

∫
∆(m)(0,t)

m∏
j=1

d∏
k=1

|u(k)
j |

α(k)

|Q(sj , y)| exp{−
d∑
k=1

1

2
V ar(

m∑
j=1

u
(k)
j B(1)

sj )}dsdu

≤ m!‖Q(·, y)‖m∞
(2π)dm

∫
∆(m)(0,t)

d∏
k=1

∫
Rm

m∏
j=1

|u(k)
j |

α(k)

exp{−1

2
V ar(

m∑
j=1

u
(k)
j B(1)

sj )}dsdu(k)
1 . . . du(k)

m

where we have used the independence of the components of B in the second line. Using
(3.5), the above is bounded by

Cmm!‖Q(·, y)‖m∞
d∏
k=1

√
(mα(k))!

∫
∆(m)(0,t)

d∏
k=1

|sj − sj−1|−H(1+2α(k))ds

≤
Cmm!

∏d
k=1

√
(mα(k))!‖Q(·, y)‖m∞

Γ(m(1−H(d+ 2|α|)) + 1

provided H < 1
d+2|α| .
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Using Theorem 3.1 we get

Corollary 4.12. Let Q, H and α be as in the previous lemma. There exists a constant
C = C(‖b‖∞, H, d, α) such that

E[|Λφ(x),Q
α (t, y)|m] ≤

Cm
√

(2m)!
∏d
k=1

√
(2mα(k))!‖Q(·, y)‖m∞√

Γ(2m(1−H(d+ 2|α|)) + 1
.

If we assume integrability of Q in the spatial variable we see that we can define the
stochastic process

∫
Rd

Λ
φ(x),Q
α (t, z)dz.

Lemma 4.13. If we assume Q ∈ L1(Rd;L∞([0, T ])), |α| ≤ 1 and H < 1
d+2 we have

E[exp{
∫
Rd
|Λφ(x),Q
α (t, z)|dz}] ≤ C(‖Q‖∞,1 ∧ ‖b‖∞)

where C is an increasing function.

Proof. Begin by writing

E

[(∫
Rd
|Λφ(x),Q
α (t, z)|dz

)m]
=

∫
(Rd)m

E

 m∏
j=1

|Λφ(x),Q
α (t, zj)|

 dz1 . . . dzm

≤
∫

(Rd)m

m∏
j=1

E
[
|Λφ(x),Q
α (t, zj)|m

]1/m
dz1 . . . dzm

≤
Cm
√

(2m)!
∏d
k=1

√
(2mα(k))!√

Γ(2m(1−H(d+ 2|α|)) + 1

∫
(Rd)m

m∏
j=1

‖Q(·, zj)‖∞dz

≤
Cm
√

(2m)!
√

(2m)!√
Γ(2m(1−H(d+ 2)) + 1

‖Q‖m∞,1

where C is as in Corollary 4.12. We get

E[exp{
∫
Rd
|Λφ(x),Q
α (t, z)|dz}] =

∑
m≥0

(m!)−1E

[(∫
Rd
|Λφ(x),Q
α (t, z)|dz

)m]
∑
m≥0

Cm
√

(2m)!
√

(2m)!√
Γ(2m(1−H(d+ 2)) + 1)m!

‖Q‖m∞,1

which converges as long as H < 1
d+2 by Stirling’s formula.

We now proceed to prove stability of the vector field Λ
φ(x),Q
α in both Q and φ in the

following way.

Remark 4.14. We shall need stability of the mapping (φ(x), Q) 7→
∫
Rd

Λφ(x),Q(t, z)dz, but
we only need continuity in each variable separately. If φε· (x) converges to φ·(x) in, say,
Lebesgue measure over [0, T ] and Q is smooth, we immediately get

lim
ε→0

∫
Rd

Λφ
ε(x),Q(t, z)dz = lim

ε→0
(−1)|α|

∫ t

0

q(s, φεs(x))ds = (−1)|α|
∫ t

0

q(s, φs(x))ds

=

∫
Rd

Λφ(x),Q(t, z)dz

by dominated convergence.
Stability in Q as a mapping L1(Rd;L∞([0, T ];Rd))→ Lm(Ω) follows from the linearity

of the mapping Q→
∫
Rd

Λφ(x),Q(t, z)dz as well as the bounds from Lemma 4.13.
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Rough PDE’s with discontinuous coefficients

4.3 Convergence in Hölder spaces

With the notation of Proposition 2.13 we shall need a result to ensure convergence of
ν(f(φn· )) is uniform on a set of full measure.

Proposition 4.15. Let γ ∈ (0, H), f ∈ C1
b (Rd;Rd) and ν be a finite signed measure on

Rd. Then there exists a set Ωγ,ν of full measure such that on this set we have

lim
n→∞

ν(f(φn· ) = ν(f(φ·))

in Cγ([0, T ];Rd).

Proof. We begin by showing that ν(f(φnt )) → ν(f(φt)) in L2(Ω) for every t. To see this,
consider

E[|ν(f(φnt ))− ν(f(φt))|2] = E[|ν(f(φnt )− f(φt))|2]

≤ |ν|(Rd)‖∇f‖∞
∫
Rd
E[|φnt (x)− φt(x)|2]dν(x)→ 0

as n→∞ by dominated convergence, which proves the first claim.
Next we find a set universal in t for which we have pointwise in ω convergence. For

the rest of the proof we will abuse notation and write φ(ω), φn(ω) etc, thus supressing
the dependence on x. Denote by {qj}∞j=1 an enumeration of [0, T ] ∩Q. We may extract a

subsequence {ν(f(φ
n(k,1)
q1 ))}k≥1 ⊂ {ν(f(φnq1))}n≥1 such that

lim
k→∞

ν(f(φn(k,1)
q1 (ω))) = ν(f(φq1(ω)))

for ω ∈ Ω1 with full measure. Furthermore, we define inductively a subsequence
{ν(f(φ

n(k,j+1)
qj+1 ))}k≥1 ⊂ {ν(f(φ

n(k,j)
qj+1 ))}k≥1 such that

lim
k→∞

ν(f(φn(k,j+1)
qj+1

(ω))) = ν(f(φqj+1
(ω)))

for ω ∈ Ωj+1 with full measure. Let Ω0 = ∩∞j=1Ωj , so that we have

lim
j→∞

ν(f(φn(j,j)
q (ω))) = ν(f(φq(ω)))

for all ω ∈ Ω0 and q rational.
Now, we construct a set where {ν(f(φn· ))}n≥1 is relatively compact in C([0, T ];Rd).

Let ε > 0 be such that γ < H − ε and choose a subset ΩH−ε with full measure such φ·
satisfies (1.3) and for every ω ∈ ΩH−ε we have

(t 7→ Bt(ω)) ∈ CH−ε([0, T ];Rd).

Note that ν(f(φ·)) is continuous on this set.
From (1.3) we see

|ν(f(φnt (ω)))− ν(f(φns (ω)))| ≤ |ν (f(φnt (ω))− f(φns (ω))) |
≤ |ν|(Rd)‖∇f‖∞ (‖bn‖∞|t− s|+ |Bst(ω)|)
≤ |ν|(Rd)‖∇f‖∞

(
‖bn‖∞|t− s|+ ‖B(ω)‖H−ε|t− s|H−ε

)
so that the uniform boundedness of bn implies that {ν(f(φn· (ω)))}n≥1 is equicontinuous.
Moreover, the sequence is bounded in C([0, T ];Rd) and from Arzela-Ascoli’s theorem

there exists a converging subsequence {ν(f(φ
j(k,ω)
· (ω)))}k≥1 ⊂ {ν(f(φ

n(j,j)
· (ω)))}j≥1. For

ω ∈ Ω0∩ΩH−ε – which has full measure – we see that the limit coincides with ν(f(φ·(ω))).
Applying the above reasoning to any subsequence of {ν(f(φn· (ω)))}n≥1 we get a further
subsequence that converges to ν(f(φ·(ω))) in C([0, T ];Rd). Since C([0, T ];Rd) is a Banach
space this implies that the full sequence converges. By interpolation of Hölder spaces
we see that the claim is true if we let Ωγ,ν := Ω0 ∩ ΩH−ε.
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Rough PDE’s with discontinuous coefficients

5 Continuity equation

In this section we study the measure valued rough linear continuity equation

∂tµt + div(bµt) + div(µtdXt) = 0 (5.1)

with given initial condition µ0. The notion of solution is as follows.

Definition 5.1. Let µ0 be a finite signed measure on Rd. A measure valued function
µ : [0, T ]→M(Rd) is called a measure solution to (5.1) if

µt +

∫ t

0

div(b(r, ·)µr)dr +

∫ t

0

div(µrdXr) = µ0

holds weakly inM(Rd) meaning for every η ∈ C∞c (Rd) we have µ·(∇η) ∈ Dpγ
X and

µt(η) = µ0(η) +

∫ t

0

µr(b(r, ·)∇η)dr +

∫ t

0

µr(∇η)dXr.

If we know that there exists a solution to

φt(x) = x+

∫ t

0

b(r, φr(x))dr +Xt,

then for any test function η ∈ C∞c (Rd) we have from Lemma 2.12

η(φt(x)) = η(x) +

∫ t

0

∇η(φr(x))b(r, φr(x))dr +

∫ t

0

∇η(φr(x))dXr.

We integrate the equation w.r.t. µ0 to see that µt := (φt)]µ0 solves (5.1) if we can use
integration by parts for the rough path integral, namely∫

Rd

∫ t

0

∇η(φr(x))dXrdµ0(x) =

∫ t

0

µ0(∇η(φr))dXr.

Suppose now that b ∈ C1
b ([0, T ] × Rd;Rd) and X ∈ C γ

g . Let Xε ∈ C1([0, T ];Rd) be such
that Xε → X in C γ . Using Section 2 we get∫ t

0

µ0(∇η(φr))dXr = lim
ε→0

∫ t

0

µ0(∇η(φεr))Ẋ
ε
rdr = lim

ε→0

∫
Rd

∫ t

0

∇η(φεr(x))Ẋε
rdrdµ0(x)

=

∫
Rd

∫ t

0

∇η(φr(x))dXrdµ0(x).

We summarize the above in a lemma.

Lemma 5.2. Suppose b ∈ C1
b ([0, T ]×Rd;Rd) and X ∈ C γ

g . Then there exists a solution
to (5.1) and the solution is given by µt := (φt)]µ0.

Given the previous sections the reader will not be surprised that we can extend this
to when the drift is discontinuous provided we choose the rough path to be the lift of a
fractional Brownian motion with low Hurst index.

Lemma 5.3. Assume H < 1
2(2d+1) , b ∈ L∞([0, T ] × Rd;Rd) ∩ L1(Rd;L∞([0, T ];Rd)) and

µ0 a finite signed measure on Rd. There exists a subset Ω∗ ⊂ Ω with full measure such
that for every ω ∈ Ω∗ we have

• The fractional Brownian motion lifts to a geometric rough path B(ω) ∈ C γ
g , γ < H.

• There exists a solution µ·(ω) to

µt(ω) +

∫ t

0

div(b(r, ·)µr(ω))dr +

∫ t

0

div(µr(ω)dBr(ω)) = µ0.
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Proof. Denote by ΩB the set of ω ∈ Ω such that B(ω) lifts to a rough path, B(ω) ∈ C γ
g .

Let η ∈ C∞c (Rd). Consider the approximation from Section 4, i.e. we have Ωγ,η,µ0

such that limn→∞ µ0(∇η(φn· (ω))) = µ0(∇η(φ·(ω))) in Cγ([0, T ];Rd). From Propositions
2.13 and 4.15 we get that∫ ·

0

µ0(∇η(φnr (ω)))dBr(ω)→
∫ ·

0

µ0(∇η(φr(ω)))dBr(ω)

on Ωγ,η,µ0 ∩ ΩB.
For every n we have that µnt := (φnt )]µ0 satisfies

µnt (η) = µ0(η) +

∫ t

0

µnr (bn(r, ·)∇η)dr +

∫ t

0

µnr (∇η)dBr

on ΩB. Denote by Ωη,µ0 the set of ω ∈ Ω such that µnt (η)→ µt(η), so that we must have
that all the above terms converges on Ωη,µ0 ∩ Ωγ,η,µ0 ∩ ΩB, to

µt(η) = µ0(η) +

∫ t

0

µr(b(r, ·)∇η)dr +

∫ t

0

µr(∇η)dBr.

Let now
Ω∗ := ΩB ∩

⋂
k≥1

Ωηk,µ0
∩ Ωγ,ηk,µ0

where {ηk}k≥1 ⊂ C∞c (Rd) is dense in C∞c (Rd) equipped with the ususal test function
topology. Then Ω∗ is the desired set.

6 Transport equation

In this section we want to study (1.5). Morally, the solution to this equation should be
given by

u(t, x) = u0(φ−1
t (x)) exp{−

∫ t

0

c(s, φr(y))dr|y=φ−1
t (x)}.

When c is a distribution this expression does not make sense, but using Section 4.12 we
can however define the solution to be

u(t, x) = u0(φ−1
t (x)) exp{(−1)|α|+1

∫
Rd

Λφ(y),C
α (t, z)dz|y=φ−1

t (x)}.

where c = DαC, i.e. the distributional derivative of a function C.
A question that arise in this setting is in what way does this function defined above

satisfy (1.5). To answer this we should look for a spatially weak formulation of the
equation, namely for every η ∈ C∞c (Rd) the function should satisfy

〈u(t), η〉+

∫ t

0

〈b(r)∇u(r), η〉+

∫ t

0

〈u(r)c(r), η〉+

∫ t

0

〈∇u(r), η〉dBr = 〈u0, η〉.

In order to make sense of the stochastic integral term we need to guarantee that
〈∇u(r), η〉 is a path controlled by B as described in Section 2. Using integration by parts
we get

〈∇u(r), η〉 = −
∫
Rd
u0(φ−1

r (x)) exp{(−1)|α|+1

∫
Rd

Λφ(y),C
α (r, z)dz|y=φ−1

r (x)}∇η(x)dx

= −
∫
Rd
u0(y) exp{(−1)|α|+1

∫
Rd

Λφ(y),C
α (r, z)dz}∇η(φr(y))|∇φr(y)|dy
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Rough PDE’s with discontinuous coefficients

where we have used the change of variables φr(y) = x. It is clear from Section 2.2 that
∇η(φ·(y)) can be regarded as a controlled path. However, the terms∫

Rd
Λφ(y),C
α (·, z)dz and |∇φ·(y)| = exp{−

d∑
j=1

∫
Rd

Λφ(y),bj
ej (·, z)dz}

are not expected to be more than 1−H(2 + d) regular in time (at least at the current
level of knowledge) so we can not invoke Lemma 2.1 and it is not clear how to define
the product as a controlled path. In fact this seems to require that also e.g. |∇φ·(y)| is
controlled by B and we do not yet know how do this construction.

In its full generality we still cannot show that u defined as above solves the equation,
but we provide some examples (d = 1, div b bounded, c = div b and time-homogenuous
drift) where we can.

First, let us study the equation when the coefficients and the noise are regular.

6.1 Regular case

Assume for a moment that the drift b ∈ L∞([0, T ];C1
b (Rd)) and we want to study the

rough linear transport equation

∂tu+ b∇u+ cu+∇udXt = 0 (6.1)

with given initial condition u|t=0 = u0. If we assume that X is the geometric lift of a
smooth path X ∈ C1, we may read (6.2) in a classical way:

∂tu(t, x) + b(t, x) · ∇u(t, x) + c(t, x)u(t, x) +∇u(t, x) · Ẋt = 0 (6.2)

with initial condition u(0, x) = u0(x). To solve this equation, let us define

u(t, x) := u0(φ−1
t (x)) exp

{
−
∫ t

0

c(r, φr(y))dr|y=φ−1
t (x)

}
where φt(x) is the solution to (2.9). Immediately, u(t, φt(x))=u0(x) exp{−

∫ t
0
c(r, φr(x))dr}

and so

−c(t, φt(x))u0(x) exp

{
−
∫ t

0

c(r, φr(x))dr

}
=

d

dt
u(t, φt(x))

= ∂tu(t, φt(x)) +∇u(t, φt(x)) · φ̇t(x)

= ∂tu(t, φt(x)) +∇u(t, φt(x)) · b(t, φt(x)) +∇u(t, φt(x)) · Ẋt.

Making a change of variables we see that u(t, x) is indeed a solution of (6.2).
Integrating the above w.r.t. t and approximating a rough path X by smooth paths and

taking the limit, it is reasonable that we should get

u(t, x) +

∫ t

0

b(r, x) · ∇u(r, x)dr +

∫ t

0

c(r, x)u(r, x)dr +

∫ t

0

∇u(r, x)dXr = u0(x)

provided the solution is such that ∇u(·, x) is controlled by X. Unfortunately, to guarantee
that ∇u(t, x) is a controlled path we need higher order differentiability of the solution
than the regularization of the fractional noise can provide. To circumvent this we use a
spatially weak notion of solution.

Definition 6.1. Let u0, c : [0, T ] × Rd → R and b : [0, T ] × Rd → Rd be given locally
integrable functions. Let u : [0, T ] × Rd → R be such that for all t ∈ [0, T ] we have
u(t, ·) ∈W 1,2(U) for all open and bounded U ⊂ Rd. We call u a weak controlled solution
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to (6.1) if for all η ∈ C∞c (Rd) the path
∫
Rd
∇u(·, x)η(x)dx is controlled by X and the

following equality holds∫
Rd
u(t, x)η(x)dx+

∫ t

0

∫
Rd
∇u(r, x) · b(r, x)η(x)dxdr +

∫ t

0

∫
Rd
u(r, x)c(r, x)η(x)dxdr

(6.3)

+

∫ t

0

∫
Rd
∇u(s, x)η(x)dxdXr =

∫
Rd
u0(x)η(x)dx.

Existence of such a solution when the drift is nice is relatively straightforward.
The proof is a consequence of the discussion in Section 2.3 together with the above
computations.

Lemma 6.2. Assume b, c ∈ L∞([0, T ];C1
b (Rd)), and X ∈ C γ

g . Then there exists a weak
solution to (6.1).

Proof. Consider a smooth approximation Xε of X and let

uε(t, x) := u0(φε,−1
t (x)) exp

{
−
∫ t

0

c(r, φεr(y))dr|y=φε,−1
t (x)

}
so that uε satisfies∫

Rd
uε(t, x)η(x)dx+

∫ t

0

∫
Rd
∇uε(r, x) · b(r, x)η(x)dxdr +

∫ t

0

∫
Rd
c(r, x)uε(r, x)η(x)dxdr

+

∫ t

0

∫
Rd
∇uε(r, x)η(x)dxẊε

rdr =

∫
Rd
u0(x)η(x)dx.

Consider now
∫
R
∇uε(r, x)η(x)dx as above. Using integration by parts we get∫

Rd
∇uε(r, x)η(x)dx = −

∫
Rd
u0(φε,−1

r (x)) exp

{
−
∫ r

0

c(r, φεs(y))ds|y=φε,−1
r (x)

}
∇η(x)dx

= −
∫
Rd
u0(y) exp

{
−
∫ r

0

c(s, φεs(y))ds

}
|∇φεr(y)|η(φεr(y))dy

where we have used a change of variable y = φε,−1
r (x) in the last equality. From Liouville’s

formula we get |∇φεr(y)| = exp
{∫ r

0
div b(s, φεs(y))ds

}
From Section 2.2, if we can show that exp{

∫ r
0

div b(s, φεs(y)) − c(s, φεs(y))ds}η(φεr(y))

converges in Dpγ
X to exp{

∫ r
0

div b(s, φs(y))− c(s, φs(y))ds}η(φr(y)), then it follows imme-
diately that ∫ t

0

∫
Rd
∇uε(r, x)η(x)dxẊε

rdr →
∫ t

0

∫
Rd
∇u(r, x)η(x)dxdXr.

Towards this goal, we notice that from Lemma 2.1 it is enough to prove that∫ ·
0

div b(s, φεs(y))− c(s, φεs(y))ds converges in Cβ to
∫ ·

0
div b(s, φs(y))− c(s, φs(y))ds. From

Hölder’s inequality we get∣∣∣∣∫ t

r

div b(s, φεs(y))− c(s, φεs(y))− div b(s, φs(y)) + c(s, φs(y))ds

∣∣∣∣
≤ |t− r|β‖ div b(φε(y))− c(φε(y))− div b(φ(y)) + c(φ(y))‖L1/β([0,T ]).

The result follows by dominated convergence and continuity (of c and div b) as long as
we choose β = pγ < 1.

Convergence of the remaining terms follows by similar considerations.
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6.2 Singular case

Motivated by the previous section we define our solution via the flow transformation.

Definition 6.3. Let b : [0, T ] × Rd → Rd be a given function and c : [0, T ] → D′(Rd) be
a distribution such that there exists functions Cj : [0, T ] × Rd → Rd for j = 1, . . . , J

and multiindices α1, . . . , αJ satisfying c(t) =
∑J
j=1D

αjCj(t) where Dαj denotes spatial
differentiation in the weak sense. We call the function

u(t, x) = u0(φ−1
t (x)) exp


J∑
j=1

(−1)|αj |+1

∫
Rd

Λφ(y),Cj
αj (t, z)dz|y=φ−1

t (x)

 .

a local time solution of (6.1) with initial condition u0 provided all the terms exists as in
Section 4.2

We go on to prove existence of such a solution for almost all sample paths of the fBm.

Theorem 6.4. Assume we have

• b ∈ L∞([0, T ]×Rd;Rd) ∩ L1(Rd;L∞([0, T ];Rd))

• There exists smooth functions Ckj such that
∫
Rd

supt∈[0,T ] |Cj(t, y)− Ckj (t, y)|dy → 0

as k →∞ for all j,

• u0 is continuous,

• |αj | ≤ 1

• B is a fBm with Hurst parameter H < 1
d+2 .

Then there exists a set of full measure, Ω0 such that for every ω ∈ Ω0 there exists a
local time solution of (6.1).

Proof. The proof is done by approximation of b and then c as in the above assumptions.
For notational simplicity we assume J = 1. Let Ωγ,δx be as in Proposition 4.15 where
δx is the Dirac centered at x, so that we have u0(φn(t, x, ω)−1)→ u0(φ(t, x, ω)−1). For a
fixed k we have

lim
n→∞

(−1)|α|
∫
Rd

ΛC
k,φn(x)

α (t, y)dy = lim
n→∞

∫ t

0

ck(s, φn(s, x))ds

=

∫ t

0

ck(s, φs(x))ds = (−1)|α|
∫
Rd

ΛC
k,φ(x)

α (t, y)dy

on a set Ωk of full measure. Finally, we notice that

E

[(∫
Rd

ΛC
k,φ(x)

α (t, y)dy −
∫
Rd

ΛC,φ(x)
α (t, y)dy

)m]
= E

[(∫
Rd

ΛC
k−C,φ(x)

α (t, y)dy

)m]
≤ Cm

∫
Rd
‖Ck(·, y)− C(·, y)‖∞dy → 0

by assumption, and thus there exists a subsequence and a set of full measure, Ω̃ such

that we have limk→∞
∫
Rd

Λ
Ck,φ(x)
α (t, y)dy =

∫
Rd

Λ
C,φ(x)
α (t, y)dy on Ω̃. The result follows

when we choose Ω0 = Ωγ,δx ∩ Ω̃ ∩ ∩k≥1Ωk.

Example 6.5 (The continuity equation revisited). Let c = div b =
∑d
j=1

∂bj
∂xj

where b is as
before. We get from Theorem 6.4 that the solution to∫

Rd
u(t, x)η(x)dx+

∫ t

0

∫
Rd
∇u(r, x)b(r, x)η(x)dxdr +

∫ t

0

∫
Rd

div b(r, x)u(r, x)η(x)dxdr

+

∫ t

0

∫
Rd
∇u(s, x)η(x)dxdBr =

∫
Rd
u0(x)η(x)dx.

EJP 25 (2020), paper 34.
Page 29/33

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP437
http://www.imstat.org/ejp/


Rough PDE’s with discontinuous coefficients

is given by (actually by definition of the solution)

u(t, x) = u0(φ−1
t (x)) exp


d∑
j=1

∫
Rd

Λφ(y),bj
ej (t, z)dz|y=φ−1

t (x)

 .

Rewriting the above equation∫
Rd
u(t, x)η(x)dx+

∫ t

0

∫
Rd

div(u(r, x)b(r, x))η(x)dxdr

+

∫ t

0

∫
Rd
∇u(s, x)η(x)dxdBr =

∫
Rd
u0(x)η(x)dx

this should give us the same solution as the continuity equation if dµ0

dx = u0(x), i.e. u0 is
the Radon-Nikodym of the measure µ0 w.r.t. Lebesgue measure.

To see that this is indeed the case we consider again the approximation from Section
4. The solution of the continuity equation µnt = (φn(t, ·))]µ0 so that for any η ∈ C∞c (Rd)

we have

µnt (η) =

∫
Rd
η(φn(t, y))u0(y)dy

=

∫
Rd
η(x)u0(φ−1

n (t, x)) exp

{
−
∫ t

0

div(bn(r, φn(r, y)))dr|y=φ−1
n (t,x)

}
dx

where we have used the change of variable y = φ−1
n (t, x). As in the proof of Theorem 6.4

we can let n→∞ and find a set of full measure for which

µt(η) =

∫
Rd
η(x)u0(φ−1

t (x)) exp


d∑
j=1

∫
Rd

Λφ(y),bj
ej (t, z)dz|y=φ−1

t (x)

 dx =

∫
Rd
η(φt(y))u0(y)dy

since |∇φt(y)| = exp
{∑d

j=1

∫
Rd

Λ
φ(y),bj
ej (t, z)dz

}
. The latter expression is obviously a

controlled path. We conclude that our definitions 6.1 and 6.3 coincides in this case,
justifying definition 6.3 as more than just a limit object, but something that actually
satisfies the equation in a reasonable sense.

6.3 Local time solutions that are weak controlled solutions

In this section we look at examples of b and c for which we can show that the local
time solutions in Definition 6.3 are also solutions in the sense of Definition 6.1.

We recall that we have to make sense of

〈u(t), η〉 = −
∫
Rd
u0(y)η(φt(y))|∇φt(y)| exp


J∑
j=1

(−1)|αj |+1

∫
Rd

Λφ(y),Cj
αj (t, z)dz

 dy

as a controlled rough path.
When c is a bounded function, the exponential term does not pose any problems:

writing
J∑
j=1

(−1)|αj |+1

∫
Rd

Λφ(y),Cj
αj (t, z)dz =

∫ t

0

c(r, φr(y))dr

shows that this term Lipschitz in t, and so using Lemma 2.1 it is clear that this term can
always be considered a controlled path. For this reason, we shall for the rest of this
section assume for simplicity that c = 0. The extension to bounded c is straightforward.
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6.3.1 One spatial dimension

Consider the approximation φn(t, x) from section 4.1.3, i.e. we have φn(t, x) → φt(x)

in L2(Ω) and φn(t, ·) → φt weakly in L2(Ω;W 1,2(U)) (for simplicity we omit the subse-
quence).

Theorem 6.6. Assume b ∈ L∞([0, T ] × R) ∩ L1(Rd;L∞([0, T ])), u0 ∈ C1(R) such that
u′0 ∈ L1(R) and H < 1

6 . There exists a subset with full measure Ω∗ ⊂ Ω, such that there
exists a weak controlled solution to (6.1) w.r.t. every B·(ω) for ω ∈ Ω∗.

Proof. Define u(t, x) := u0(φ−1
t (x)) and fix Ωγ as in Proposition 4.15. We begin by

showing that
∫
R
u(·, x, ω)η′(x)dx is controlled by B·(ω) for every ω ∈ Ωγ . It is enough to

show ∫
R

u(·, x, ω)η′(x)dx = −
∫
R

u′0(y)η(φ·(y, ω))dy.

To this end, note that for every n we have∫
R

un(t, x, ω)η′(x)dx =−
∫
R

∇un(t, x, ω)η(x)dx = −
∫
R

u′0(φ−1
n (t, x, ω))∇φ−1

n (t, x, ω)η(x)dx

= −
∫
R

u′0(y)η(φn(t, y, ω))dy.

where we have used the change of variables y = φ−1
n (t, x, ω). Letting n → ∞ we get

η(φn(t, x, ω)) → η(φt(x, ω)) and un(t, x, ω) → u(t, x, ω) from Remark 4.10. The desired
equality holds from dominated convergence.

For every n we have∫
R

un(t, x, ω)η(x)dx+

∫ t

0

∫
R

∇un(r, x, ω)bn(r, x)η(x)dxdr

−
∫ t

0

∫
R

un(t, x)η(φn(r, x, ω))dxdBr(ω) =

∫
R

u0(x)η(x)dx

where Bst(ω) is the geometric lift of the fractional Brownian motion. We see that

lim
n→∞

∫
R

un(t, x, ω)η(x)dx =

∫
R

u(t, x, ω)η(x)dx

and

lim
n→∞

∫ t

0

∫
R

u′0(x)η(φn(r, x, ω))dxdBr(ω) =

∫ t

0

∫
R

u′0(x)η(φr(x, ω))dxdBr(ω).

where we have used Proposition 2.13 since u′0 ∈ L1(R). Consequently, we must have
that ∫ t

0

∫
R

∇un(r, x, ω)bn(r, x)η(x)dxdr

is converging. Now we get∫
R

∇un(r, x, ω)bn(r, x)η(x)dx =

∫
R

∇un(r, x, ω)(bn(r, x)− b(r, x))η(x)dx

+

∫
R

∇un(r, x, ω)b(r, x)η(x)dx.

For the first term, from Remark 4.10 we see that∫
R

∇un(r, x, ω)b(r, x)η(x)dx→
∫
R

∇u(r, x, ω)b(r, x)η(x)dx,

for all r ∈ [0, T ].
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For the second term we take the expectation

E[|
∫
R

∇un(r, x)(bn(r, x)− b(r, x))η(x)dx|] ≤
∫
R

E[|∇un(r, x)|]|bn(r, x)− b(r, x)||η(x)|dx

≤ sup
y∈supp η

(
E[|∇un(r, y)|2]

)1/2 ∫
R

|bn(r, x)− b(r, x)||η(x)|dx

→ 0.

which shows that there exists a subsequence∫ t

0

∫
R

∇unk(r, x)bnk(r, x)η(x)dxdr →
∫ t

0

∫
R

∇u(r, x)b(r, x)η(x)dxdr

as k → ∞ on some set Ω1 which has full measure. The statement holds on Ω∗ =

Ωγ ∩ Ω1.

6.3.2 Divergence of b bounded

When the divergence of b is bounded, we can write

|∇φt(x)| = exp

{∫ t

0

div b(r, φr(x))dr

}
,

and so the mapping t 7→ |∇φt(x)| is of bounded variation. Using Lemma 2.1 we can show
the following result.

Theorem 6.7. Assume b : [0, T ]×Rd → Rd satisfies the assumptions of Proposition 4.1
and has bounded divergence. Assume moreover that u0 : [0, T ]×Rd → R is a bounded
function. Then, if u is a local time solution it is also a weak controlled solution.

Proof. We need to show that u(t, x) = u0(φ−1
t (x)) is a weak controlled solution. Using

Lemma 2.1 and Lemma 2.6 it is clear that

〈u(t),∇η〉 =

∫
Rd
u0(y)∇η(φt(y)) exp

{∫ t

0

div b(r, φr(y))dr

(
}dy

is controlled by B. The proof follows the same lines as the proof of 6.6, using Proposition
4.1 to obtain strong L2(Ω) convergence of un(t, x) locally in x.

6.3.3 Time-homogenuous drift and smooth initial data

When b is time-homogenuous, we can write (see Remark 4.10)

φ−1
t (x) = x−

∫ t

0

b(φ−1
r (x))dr −Bt.

If now the initial condition is sufficiently regular, it is clear from Lemma 2.6 that
u0(φ−1

· (x)) is controlled by B.

Theorem 6.8. Assume b : [0, T ]×Rd → Rd satisfies the assumptions of Proposition 4.1
and assume that u0 ∈ Ckb (Rd;R) for some k ≥ b 1

H c. Then, if u is a local time solution it is
also a weak controlled solution.

Proof. Since D
p(H−)
−B = D

p(H−)
B , it is clear that

〈u(t),∇η〉 =

∫
u0(φ−1

t (x))∇η(x)dx

is controlled by B. The proof follows the same lines as the proof of 6.6, using Proposition
4.1 to obtain strong L2(Ω) convergence of un(t, x) locally in x.
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