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Scaling limit of sub-ballistic 1D random walk among
biased conductances: a story of wells and walls*
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Abstract

We consider a one-dimensional random walk among biased i.i.d. conductances, in
the case where the random walk is transient but sub-ballistic: this occurs when
the conductances have a heavy-tail at +∞ or at 0. We prove that the scaling limit
of the process is the inverse of an α-stable subordinator, which indicates an aging
phenomenon, expressed in terms of the generalized arcsine law. In analogy with
the case of an i.i.d. random environment studied in details in [ESZ09a, ESTZ13],
some “traps” are responsible for the slowdown of the random walk. However, the
phenomenology is somehow different (and richer) here. In particular, three types of
traps may occur, depending on the fine properties of the tails of the conductances:
(i) a very large conductance (a well in the potential); (ii) a very small conductance (a
wall in the potential); (iii) the combination of a large conductance followed shortly
after by a small conductance (a well-and-wall in the potential).
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1 Introduction

Random walks in random environment have been studied extensively over the past
forty years, both from a physical and a mathematical perspective. In dimension one,
they were introduced in the mathematical literature by Solomon in [Sol75], who gave
a criterion for transience/recurrence, and identified three possible regimes: recurrent,
transient with positive speed, transient with zero speed.
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Scaling limit of sub-ballistic 1D RW BiRC

The behavior of recurrent random walks in (genuine) random environment has been
further studied by Sinai in [Sin83], who showed a strong slowdown of the walk, with an
unusual scaling (log n)2. The limiting law has then been identified in [Gol86, Kes86], and
the scaling limit of the process is a Brox diffusion, see [Sei00]. The case of transient
sub-ballistic random walks in i.i.d. random environment has been considered in [KKS75],
and then in [DG12, ESZ09a, ESZ09b, ESTZ13, PS13]. In particular, the scaling limit of
the walk is the inverse of an α-stable subordinator, and the random walk is shown to
exhibit an aging phenomenon, i.e. the two-time correlation function converges when
both times tend to infinity with a fixed ratio, the limit being a non-trivial function of
the ratio (aging has been extensively studied in the physics literature, in the context of
out-of-equilibrium glassy disordered systems, see [BCKM98] for an overview).

In the present paper we consider the case of a one-dimensional random walk among
i.i.d. random conductances: in this case, the random walk is recurrent. One central
question in Physics (see e.g. [NJB+10]) is to understand the effect of an external field
of intensity λ (producing a bias in the conductances) on the behavior of the walk. In
particular, as soon as λ > 0, the walk is transient to the right. Under some integrability
condition of the conductances, the walk is ballistic; this regime has been studied for
instance in [LD16, FS19] (see also references therein). Here we investigate the regime
where the random walk among biased random conductances is sub-ballistic: we show
that its scaling limit is the inverse of an α-stable subordinator, confirming the universality
of the aging phenomenon, cf. [BAČ08, Zin09].

As mentioned above, a similar behavior is observed for sub-ballistic transient ran-
dom walks in i.i.d. environment. We show however that as soon as the independence
hypothesis on the environment is dropped (conductances introduce automatically a
strong dependence between neighbours), the trapping mechanism for the walk changes
dramatically and might become more irregular. We also point out that convergence to
the inverse of an α-stable subordinator has also been shown for walks among biased
random conductances in dimension d ≥ 2 in [FK18]. The one-dimensional case, though,
presents once more a wilder zoology of possible trapping mechanisms. In particular,
we might have three different kind of traps, given either by a very large conductance,
either by a very small conductance or by a combination of the two. The kind of traps
that contributes the most to the slowdown of the walk is given by the fine properties
of the tails of the conductances at +∞ and at 0. The distribution of the depth of such
traps (this is roughly the amount of time that the walk will spend on the trap) has to be
studied in terms of the product of random variables with regularly varying tails, which
might exhibit unexpected behaviors.

1.1 General setting of the paper

Let (Xn)n∈N be a discrete-time random walk on an environment ω given by a sequence
{cx}x∈Z of random conductances that are i.i.d. under measure P. For a fixed realization
of ω, we call Pω the law of the random walk (Xn)n∈N which starts at the origin and has
transition probabilities

Pω
(
Xn+1 = x+ 1 | Xn = x

)
=

cx
cx−1 + cx

, Pω
(
Xn+1 = x− 1 | Xn = x

)
=

cx−1

cx−1 + cx
.

It is easy to check that the walk is reversible with respect to the measure π(x) = cx−1 +cx.
In the usual language of random walks in random environment, where the probability
of jumping from x to x + 1 is called ωx, we have ωx := cx

cx−1+cx
. For x ∈ Z define

ρx := 1−ωx
ωx

= cx−1

cx
: since the {cx}x∈Z are independent, we get that E[log ρ0] = 0 (provided

that log c0 is integrable). As a consequence, Theorem 2.1.2 in [Zei04] tells us that (Xn)n≥0

is Pω-a.s. recurrent for P-a.e. ω.
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Scaling limit of sub-ballistic 1D RW BiRC

We stress that while in the seminal paper by Solomon [Sol75] (and in many other
works) the {ωx}x∈Z are taken i.i.d., this is clearly not true anymore in the case of
conductances. We refer to [Bis11] for an extensive account on the random conductance
model, which has been widely studied in the literature.

We consider now the following tilt of the conductances, which can be thought of as
an external field of intensity λ > 0:

cλx = eλxcx . (1.1)

The processon these tilted conductances, which we denote (Xn)n∈N again with slight
abuse of notation, is called random walk among Biased Random Conductances (which
we abbreviate as BiRC). Its transition probabilities read

Pω
(
Xn+1 = x+ 1 | Xn = x

)
=

cλx
cλx−1 + cλx

, Pω
(
Xn+1 = x− 1 | Xn = x

)
=

cλx−1

cλx−1 + cλx
.

In the BiRC setting, for x ∈ Z we have ρx = ρx(λ) := e−λcx−1/cx (here and in the rest of
the paper, we drop the dependence of ρx on λ). We get that E[log ρ0] = −λ < 0 (provided
that log c0 is integrable), so that (Xn)n∈N is Pω-a.s. transient to the right for P-a.e. ω, see
[Zei04, Thm. 2.1.2]. Additionally, the asymptotic velocity v(λ) = limn→+∞Xn/n exists
and is P⊗ Pω-a.s. equal to

v(λ) =
1

E[S̄]
with E[S̄] = 1 + 2E[c0]E[1/c0]

e−λ

1− e−λ
,

cf. [Zei04, Thm. 2.1.9]. Hence, for λ > 0, v(λ) > 0 if and only if E[c0] < +∞ and
E[1/c0] < +∞. The zero velocity regime can therefore occur for two different reasons:
the conductances have some heavy tail at +∞ or they have some heavy tail at 0.

In our previous work [BS19], we consider the sub-ballistic regime, where E[c0] = +∞
or E[1/c0] = +∞, and we find the correct order for the scaling of Xn. More precisely, we
assume that there are some α∞, α0 ∈ [0,+∞] with α := min(α0, α∞) ≤ 1, such that

lim
t→+∞

logP(c0 > t)

log t
= −α∞ , lim

ε→0

logP(c0 < ε)

log ε
= α0 . (1.2)

In Theorem 1.1 of [BS19] we prove that for each λ > 0

lim
n→∞

logXn

log n
= α P⊗ Pω − a.s.

The main goal of the present paper is to make this result much more precise, and
prove the convergence of Xn rescaled by nα (properly corrected by a slowly varying
function) to the inverse of an α-stable subordinator. In [ESZ09b, ESTZ13] the authors
prove this type of result for one-dimensional random walks in random environment,
where the transition probabilities {ωx}x∈Z are i.i.d. Their study is based on the analysis
of the so-called potential of the environment: the walk is slowed-down by large regions
with an atypical value of the potential. As we shall see, this is in sharp contrast with our
setting, where the trapping parts of the environment are determined by one or at most
two abnormal values of the conductances, see the discussion in Section 1.3.

1.2 Main assumption and main result

Having only (1.2) is not sufficient for describing a functional limit theorem for the
BiRC. In the present paper we will make the following stronger assumption.

For two functions f and g, we write that f(t) ∼ g(t) if limt→∞ f(t)/g(t) = 1.
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Scaling limit of sub-ballistic 1D RW BiRC

Assumption “Traps”. There exist some slowly varying functions L∞(·), L0(·) and some
α∞, α0 > 0 such that, for t > 1 and ε < 1,

P(c0 > t) = L∞(t) t−α∞ and P(c0 < ε) = L0(1/ε) εα0 , (1.3)

with α := min{α0, α∞} < 1. If α0 = α∞, we additionally assume that v 7→ L∞(ev), v 7→
L0(ev) are regularly varying with respective indices γ∞, γ0, i.e. there are slowly varying
functions ϕ0, ϕ∞ such that L∞(x) = ϕ∞(log x)(log x)γ∞ , L0(x) = ϕ0(log x)(log x)γ0 . We
suppose that γ∞ 6= −1, γ0 6= −1.

As it will be clear below, large values of ρx will be associated to “traps” responsible
for the slowdown of the random walk (Xn)n∈N: it is therefore crucial to obtain the tail
behavior of ρx, in order to be able to quantify the depth of the traps. Assumption “Traps”
serves that purpose, and is the condition that enables one to obtain the behavior of
P(ρ0 > t) as t→ +∞. Indeed, Corollary 5 in [Cli86] gives the the following proposition:

Proposition 1.1. Assume that Assumption “Traps” holds. Then, there is a slowly varying
function ψ(·) such that

P(ρ0 > t) = P
(
e−λc−1/c0 > t

)
∼ ψ(t)t−α as t→ +∞ . (1.4)

The function ψ(t) is asymptotic to eλα times (we use the convention 0 · ∞ = 0):

E[cα0 ]L0(t)1{E[cα0 ]<+∞} + E[1/cα0 ]L∞(t)1{E[1/cα0 ]<+∞} if E[cα0 ] < +∞ or E[1/cα0 ] < +∞ ;

αΓ(1+γ0)Γ(1+γ∞)
Γ(2+γ0+γ∞) (log t)L0(t)L∞(t) if E[cα0 ] = +∞ and E[1/cα0 ] = +∞ .

In view of Assumption “Traps”, we have that v 7→ ψ(ev) is regularly varying if α0 = α∞.

We stress that, in the case α0 = α∞ = α, the fact that L∞(et), L0(et) are regularly
varying is crucial to obtain Proposition 1.1. Unfortunately, this condition excludes
for example the cases of slowly varying functions of the form L(t) = exp(±(log t)a)

with a ∈ (0, 1). Notice also that if γ0 < −1 (resp. γ∞ < −1) then E[cα0 ] < +∞ (resp.
E[1/cα0 ] < +∞): in the case E[cα0 ] = +∞ and E[1/cα0 ] = +∞, we necessarily have
γ0, γ∞ > −1 (recall we excluded the value −1), so Γ(1 + γ0)Γ(1 + γ∞) is well defined.
Some more comments on the tail of ρ0 are made in Appendix B.

We are now ready to state our main theorem:

Theorem 1.2. Suppose that Assumption “Traps” holds, and recall (1.4). Then, on the
space D([0, 1]) of càdlàg functions [0, 1] → R with the uniform topology, we have the
following convergence in distribution, as n→ +∞: under P⊗ Pω( Xbunc

nα/ψ(n)

)
u∈[0,1]

=⇒ sin(πα)

παE[ζα]

(
(Sα)−1(u)

)
u∈[0,1]

.

Here (Sα(u))u≥0 is an α-stable subordinator satisfying E[e−tSα(u)] = e−ut
α

, (Sα)−1 in-
dicates its inverse function, and ζ = ζλ(ω) is the random variable defined in (7.1) (if
E[cα0 ],E[1/cα0 ] = +∞, we get that ζ = 2).

This scaling limit is similar to that found in [ESTZ13] (and [Zin09]), but we stress
that the trapping mechanism is different. Note also that the inverse of an α-stable
subordinator is easily shown to exhibit an aging phenomenon expressed in terms of
generalized arcsine laws: for any fixed h > 1, we have

lim
t→+∞

P
(

(Sα)−1(th) = (Sα)−1(t)
)

=
sin(πα)

π

∫ 1/h

0

y−(1−α)(1− y)−α dy , (1.5)

see e.g. [Ber96, Sec. III.3] (arcsine laws are shown for last-passage times, but the proofs
easily adapt to the above statement). An analogous aging result for the random walk
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Scaling limit of sub-ballistic 1D RW BiRC

(Xn)n∈N should hold: using the same techniques as in [ESZ09a], one could prove that,
for any sequence jn → +∞ and any h > 1, P(|Xbhnc −Xn| ≤ jn) converges as n→ +∞
to the right-hand side of (1.5). Our proof actually shows some localization property of
the walk, which is typically “stuck” at a trap, with a value of ρx of order dn (see (2.2))
which is regularly varying with index 1/α; this is the key idea to prove aging result.

Remark 1.3. In [BS19], we also considered the biased range-one Mott random walk in
the sub-diffusive regime. This process is the simplified version of the Variable–Range
Hopping model used in Physics (cf. [FGS18, FGS19]), and essentially corresponds to
a random walk among random conductances with a different type of bias. In [BS19]
we identify the correct scaling exponent for the walk as a specific function of the field
intensity λ (in contrast with the BiRC where the scaling α does not depend on λ). The
techniques developed in the present work would allow us to push this result further
and obtain the scaling limit of the range-one Mott walk, but the result would be less
interesting since in that model the conductances are bounded from above and hence
only one kind of trap is present.

In dimension d ≥ 2, the rescaled sub-ballistic BiRC also converges to the inverse of a
stable subordinator, as proven in [FK18]. In that case, the sub-ballistic behavior is due to
very large conductances, the walk being trapped between the two endpoints of the edge.
On the other hand, small conductances do not represent a problem for the walk, which
will typically go around them. In dimension d = 1 however, the lattice geometry forces
the walk to pass through each edge of the positive half line, so the walk can be slowed
down both by large conductances (as in the higher dimensional case) and by very small,
hard-to-overjump, conductances. Furthermore, in a particular range of the parameters,
a new kind of trap arises, as the combination of a small conductance followed shortly
after by a large conductance. The fine properties of the tails of c0 at +∞ and at 0 dictate
which kind of traps represent the biggest contribution to the slow-down.

1.3 The different types of traps

In his seminal work, Sinai [Sin83] described the notion of traps in the environment via
“valleys” in the potential function V , defined by V (x) =

∑x
i=1 log ρi for x ∈ Z+ (V (0) = 0

and a minus sign is added for x ∈ Z−). In the case of i.i.d. ωi, the potential V is itself a
random walk, and valleys in the potential V are due to large regions where the sum of
log ρi’s is abnormally large, cf. [KKS75] (see also [ESTZ13]). In that setting, if H denotes
the height of a valley in the potential (for a precise definition, see [ESTZ13, Sec. 3]),
then a key result by Iglehart [Igl72] gives that P(H > v) ∼ CIe−κv, for some specific κ
and some explicit constant CI .

This is in sharp contrast with what happens in the BiRC setting: as already noticed in
[BS19, § 1.3], we have here V (x) = log c0− λx− log cx (for x ≥ 1), and valleys are caused
by isolated large values of V (x) − V (x − 1) = log ρx. Hence, Proposition 1.1 is crucial
in the understanding of the depth of traps, and the tail behavior of c0 and 1/c0 plays a
key role in the deviations for log ρx, and it gives rise to a much richer phenomenology
than in the case of i.i.d. ωi’s. In particular, the probability of observing a large valley in
the potential behaves as P(log ρ0 > v) ∼ ψ(ev)e−αv. The extra slowly varying function
ψ(·) depends on the fine asymptotics of the tails (1.3) of c0 and 1/c0, cf. Proposition 1.1,
and may be ruled by different types of mechanisms that need to be treated separately.
Propositions 1.4–1.6 below consider the distribution of c−1, c0 conditionally on having
ρ0 = e−λc−1/c0 > t, as t → +∞: this enables us to understand whether large values
of ρx are typically due to large values of cx−1 (wells), small values of cx (walls), or a
combination of a large value of cx−1 and of a small value of cx (well-and-walls), see
Figure 1 for an illustration.

EJP 25 (2020), paper 30.
Page 5/43

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP427
http://www.imstat.org/ejp/


Scaling limit of sub-ballistic 1D RW BiRC

We will distinguish two cases.

Assumption “Simple Traps”. The distribution of the conductances satisfy Assumption
“Traps”, and E[cα0 ] <∞ or E[1/cα0 ] <∞.

Assumption “Well-and-walls”. The distribution of the conductances satisfy Assump-
tion “Traps”, and E[cα0 ] =∞ and E[1/cα0 ] =∞.

We point out that the case α0 6= α∞ falls into Assumption “Simple Traps”, so that
well-and-walls are only possible if α = α0 = α∞.

We state here some results that will be proven in Appendix B. Let us introduce some
notation. If E[cα0 ] < +∞, then c̄−1 is a r.v. with c.d.f. Fc̄−1

(u) = 1
E[cα−1]E[cα−11{c−1≤u}]. If

E[1/cα0 ] < +∞, then 1/c̄0 is a r.v. with c.d.f. F1/c̄0(u) = 1
E[1/cα0 ]E[1/cα0 1{1/c0≤u}].

Proposition 1.4. Suppose that Assumption “Simple Traps” holds. Then (c−1, 1/c0),
conditionally on ρ0 > t, converges as t→ +∞ to the r.v.

(1−B) · (c̄−1,+∞) +B · (+∞, 1/c̄0) , (1.6)

where B is a Bernoulli r.v. independent of c̄−1, 1/c̄0, with parameter q ∈ [0, 1] given by

q =


0 if E[1/cα0 ] = +∞
1 if E[cα0 ] = +∞

lim
t→+∞

E[cα0 ]L0(t)
E[cα0 ]L0(t)+E[1/cα0 ]L∞(t) if E[cα0 ], E[1/cα0 ] < +∞ and the limit exists.

Remark 1.5. Should the last limit in Proposition 1.6 not exist, a subsequence could
alternatively be considered. Furthermore, we notice that the condition E[cα0 ], E[1/cα0 ] <

+∞ implies in particular that α = α0 = α∞: suppose instead that α∞ > α0; then
P(cα0 > t) = P(cα0

0 > t) ∼ t−α∞/α0 , which is integrable.

Proposition 1.4 tells that under Assumption “Simple Traps”, only two types of traps
can occur: conditionally on having a large trap (we postpone the precise definition of
traps to Definitions 3.1 and 8.1, but one can just think of having ρx large), then either

(i) B = 0, cx−1 � 1, cx � 1, corresponding to a wall in the potential V ;

(ii) B = 1, cx−1 � 1, cx � 1, corresponding to a well in the potential V .

If q = 0 (e.g. if E[1/cα0 ] = +∞), then B = 0 and only walls can occur. If q = 1 (e.g.
if E[cα0 ] = +∞) then only wells can occur. If q ∈ (0, 1) (e.g. if α = α∞ = α0 with
L0(t) ∼ cL∞(t) for some constant c > 0), then both walls or wells may occur, with
respective probability 1− q and q, but not simultaneously.

Proposition 1.6. Suppose that Assumption “Well-and-walls” holds. Then the distribution
of (c−1, 1/c0), conditionally on ρ0 > t, converges as t→ +∞ to the r.v. (+∞,+∞).

Proposition 1.6 tells that under Assumption “Well-and-walls”, only one type of traps
can occur: conditionally on having a large trap (say ρx large), then we necessarily have

(iii) cx−1 � 1, cx � 1, corresponding to a well-and-wall in the potential V .

It turns out that under Assumption “Well-and-walls”, also “k-distant” well-and-walls
traps may occur, with k ≥ 1: they consist of the combination of a large conductance
cx−1 followed shortly after by a small conductance cx+k (this makes ρ(k)

x := ρx · · · ρx+k =

e−λ(k+1)cx−1/cx+k large).
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x−1 x x+1 x−1 x x+1 x−1 x x+1

�1 O(1)
↓ ↓

O(1) �1
↓ ↓

�1 �1
↓ ↓

a well a wall
a well-and-wall

Figure 1: The three types of traps are represented above, together with the shape of the
potential x 7→ V (x) associated to each type of trap (recall V (x) = log c0 − λx− log cx). A
trap, which roughly speaking is a large value of log ρx, can occur in three different ways
(from left to right): under Assumption “Simple Traps”, we have either (i) cx−1�1, cx�1

well-shaped trap, or (ii) cx−1�1, cx�1 wall-shaped trap; under Assumption “Well-and-
walls”, we have only (iii) cx−1�1, cx�1 well-and-wall-shaped trap.

1.4 Organization of the paper and overview of the proof

Let us present briefly how the rest of the paper is organized. In Section 2, we give
some preliminary results: we define first-passage times Tn, and then state the conver-
gence of the passage-time process towards an α-stable subordinator, see Theorem 2.1.
We prove then that the random walk cannot backtrack more than C log n and conclude
the section by showing how Theorem 1.2 follows from Theorem 2.1.

The rest of the paper is devoted to the proof of Theorem 2.1: in Section 3 we give the
precise definition of simple traps and list some important properties. In Section 4 to 7,
we prove Theorem 2.1 under Assumption “Simple Traps” (we detail the scheme of the
proof below). In Section 8, we define well-and-wall traps, list their properties and adapt
the proof of Theorem 2.1 to Assumption “Well-and-walls”: on the one hand we need to
additionally deal with k-distant traps, but on the other hand some simplifications occur
(due to the fact that ζ = 2 in Theorems 1.2–2.1).

Some technical results are collected in the Appendix: in Appendix A we recall useful
formulas for resistor networks1; in Appendix B we deal with the tail of ρ0 and prove some
consequences, such as Propositions 1.4–1.6; finally in Appendix C we collect the proofs
of the properties of the traps presented in Sections 3 and 8.

Let us now sketch how the proof of Theorem 2.1 works in the case of Assumption “Sim-
ple Traps”, i.e. we give a summary of Sections 4–7.

Part 1 Section 4. First, we divide the interval [0, n] into blocks of size C log n and
show that the main contribution to the first-passage time Tn comes from so-called
trapping blocks, which contain a (unique) large value of ρx (see Section 3 for
a definition). In Proposition 4.1, we show that with high P ⊗ Pω-probability,
Tn '

∑
j∈Jn T (Bj) where Jn is the set of indices of trapping blocks, and T (Bj) is

the crossing time of such a block.

Part 2 Section 5. Our second step consists in identifying the trapping mechanism on
trapping blocks. We show that, if B is a (good) trapping block, then the time to
cross the block B is dominated by the time to overcome the deep trap where ρx
is very large: we prove in Proposition 5.1 that T (B)/ρx ' τB with high probability.

1We postpone the presentation of these formulas because they require further notations that are not used in
the rest of the paper: a reader unfamiliar with the topic may want to review these important formulas first
(they are also a useful reminder for a reader familiar with the topic).
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Here, τB is a random variable associated with the environment in the block B
around x. In particular, to overcome a trap, one needs to account for

– the number of attempts to cross the edge (x, x+ 1);

– the time between two attempts at crossing the edge (x, x+ 1);

– the number of times the random walk falls anew in the trap.

This is why we write τB as θB
∑G
j=1Ej (cf. (5.1)), where θB = θB(ω) is the average

time between two attempts to cross (x, x+ 1); G is the geometric random variable
of parameter pB = pB(ω) counting the number of times we fall anew in the trap
(pB is the probability of never returning to x, starting from x+ 1); (Ej)j≥1 are i.i.d.
exponential random variables of parameter 1, which approximate the geometric
number of attempts to cross (x, x+ 1), renormalized by ρx. Let us stress here that
if cx−1 � 1 (well), then θB ≈ 2, while if cx � 1 (wall), then pB ≈ 1. In the case
“Well-and-walls” of Section 8, we will therefore show that T (B)/ρx ' 2eB, where eB
is just one exponential random variable of parameter 1.

Part 3 Section 6. We prove that the crossing time of all good blocks is dominated by
the crossing times of the blocks with values of ρx ≥ εdn, cf. Proposition 6.1, up
to an error η (that can be made arbitrarily small by taking ε small). Here dn is
roughly the order of the deepest trap between 0 and n, cf. (2.2). The main technical
difficulty is that one needs to exclude the possibility that many smaller traps with
ρx < εdn would slowdown a lot the random walk: in particular, we need to have a
(uniform) control on the tail of τB conditionally on having ρx large (cf. Lemma 6.3),
in order to be sure that the sum of τB on blocks with ρx < εdn cannot be large.

Part 4 Section 7. Finally, we prove the convergence for the first-passage time reduced
to blocks with ρx ≥ εdn. We show that the positions, depths and crossing times
τB of blocks with ρx ≥ εdn converge to a Poisson Point Process, with an explicit
intensity, cf. Proposition 7.2: this allows us to show that Tn/dn converges to a stable
distribution. We then conclude proof of Theorem 2.1 by proving the convergence
of the whole process to an α-stable subordinator.

2 Preliminaries: relation between (Xn)n∈N and first-passage times

A classical way of analyzing the properties of the random walk (Xn)n∈N is to study
its first-passage times. Let

Tn := inf{j ≥ 1, Xj = n} (2.1)

be the first-passage time to n of the walk. Recall Proposition 1.1 and define the se-
quence dn, up to asymptotic equivalence2, by

P
(
ρ0 > dn

)
∼ ψ(dn)d−αn ∼ 1

n
as n→∞, (2.2)

so that dn corresponds to the order of max1≤x≤n ρx. We see that dn is a regularly varying
function with index 1/α. The core of the paper is the proof of the following result.

Theorem 2.1. Suppose that Assumption “Traps” holds. Then, on the space D([0, 1]) of
càdlàg functions [0, 1]→ R with Skorohod M1-topology, we have the following conver-
gence in distribution, as n→ +∞: under P⊗ Pω we have(Tbunc

dn

)
u∈[0,1]

=⇒
(παE[ζα]

sin(πα)

)1/α(
Sα(u)

)
u∈[0,1]

,

2We could define dn := h(1/n), where h is the generalized inverse of x 7→ P(ρ0 > x), that is h(y) =
inf{x : P(ρ0 > x) ≤ y}, but we actually only need the asymptotic equivalence of dn, and the definition (2.2) of
dn up to asymptotic equivalence is an easier definition to work with.
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where (Sα(u))u≥0 is an α-stable subordinator which statisfies E[e−tSα(u)] = e−ut
α

, and
ζ is a r.v. defined in (7.1).

We use here Skorohod M1-topology, which is weaker than the J1-topology (roughly
speaking, it allows for intermediate jumps), since it will be sufficient for our purpose.
We refer to [Whi02] for a detailed account on the M1- and J1-topologies on D.

Before showing how to derive Theorem 1.2 from Theorem 2.1, we need the following
proposition, which slightly improves Proposition 2.1 in [BS19]: we prove that the walk
(Xj)j≥0 cannot backtrack more than C log n before reaching distance n. We will use this
property several times in the proof of the main theorem, but it already tells us that the
map n 7→ Tn is the inverse of the map j 7→ Xj , up to an error of at most a constant
times log n.

Proposition 2.2. There exists C > 0 such that the following holds: define the events
Ānx :=

⋂
j≥0{XTx+j ≥ x− C log n} that the random walk does not backtrack more than

C log n after having reached x. Then P ⊗ Pω—almost surely there exists n0 ∈ N such
that, for all n ≥ n0, Ānx holds for all 0 ≤ x ≤ n.

Proof. We have that (Ānx)c := {Xm < x− C log n , for some m ≥ Tx}, and then

Pω
(
(Ānx)c

)
≤ Pωx (Tx−C logn < +∞) = lim

M→∞

( M∑
j=x

1

cλj

)( M∑
j=x−C logn

1

cλj

)−1

(2.3)

where Pωx is the law of the random walk in random environment ω, starting from x. For
the equality we have used (A.5). Keeping only the conductance at position x− C log n in
the second sum and recalling (1.1), (2.3) can be bounded by

Pω
(
(Ānx)c

)
≤ e−λC logncx−C logn

∞∑
j=x

e−λ(j−x) 1

cj
=: e−λC lognKn

x (ω) .

Then, we may use that for any x, n, P(Kn
x > t) = t−α+o(1) (see [BS19, Lem. 2.5]), to get

that P-a.s., for n large enough, max0≤x≤nK
n
x ≤ n3/α. As a consequence, for n large

enough we have that Pω(
⋃

0≤x≤n(Ānx)c) ≤ n1+3/αe−λC logn. For C large enough this is
summable, so Borel-Cantelli lemma gives that P⊗ Pω-a.s., for n large enough, Ānx holds
for all 0 ≤ x ≤ n.

Proof of Theorem 1.2. From Theorem 2.1 and Proposition 2.2, we are able to prove
Theorem 1.2. Let us denote Yn := inf{j ≥ 0: Tj > n}, i.e. the unique integer such that
TYn−1 ≤ n < TYn or, in other words, Yn = 1 + max0≤i≤nXi. By construction, Xn ≤ Yn for
all n ∈ N, and Proposition 2.2 tells that a.s., for n large enough, Xj ≥ Yj − 1−C log n for

all 0 ≤ j ≤ n. This shows that we only have to prove the convergence of (ψ(n)
nα Ybunc)u∈[0,1]

as n→ +∞.
Now, define for any u ≥ 0

Tn(u) :=
Tbunc

dn
and T −1

n (u) := inf{s ≥ 0 : Tn(s) > u} (2.4)

the inverse map of Tn. Let fn be an inverse of dn, i.e. a sequence of real numbers such
that dfn = n (we may assume that n 7→ dn is defined on R+): note that by (2.2), we have
that nαψ(n)−1 ∼ fn as n→ +∞. Then, we can write Ybunc in terms of T −1

fn
:

Ybunc

fn
= inf{j/fn : Tj > un} = inf{s ≥ 0 : 1

nTbsfnc > u} = T −1
fn

(u)

Now, we may apply Theorem 2.1 with fn in place of n, together with Corollary 13.6.4 of
[Whi02] which says that the inverse map from non-decreasing functions of (D,M1) to
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non-decreasing continuous functions of (D, ‖ · ‖∞) is continuous at strictly increasing
functions. Since ((Sα)−1(u))u≥0 is a.s. continuous and strictly increasing, see Lemma
III.17 in [Ber96], we obtain the following convergence in distribution as n→ +∞, under
P⊗ Pω

(T −1
fn

(u))u∈[0,1] =⇒ sin(πα)

παE[ζα]

(
(Sα)−1(u)

)
u∈[0,1]

.

Note that we also used the scaling relation (cSα(u))u≥0
(d)
= (Sα(cαu))u≥0 to express in a

simpler way the inverse of (cSα(u))u≥0 with c = ( πα
sin(πα)E[ζα])1/α.

This concludes the proof since T −1
fn

(u) = Ybunc/fn, with fn ∼ nα/ψ(n) as n→ +∞.

3 Definition of simple traps and their properties

In this section (and up to Section 7), we suppose that Assumption “Simple Traps”
holds, that is E[cα0 ] < +∞ or E[(1/c−1)α] < +∞. We recall that under these hypotheses
there will be only well-traps or wall-traps, but never well-and-wall traps, cf. Proposi-
tion 1.4.

3.1 Definition of simple traps

By definition (2.2) of dn, the maximal depth of a trap between 0 and n will be of order
dn. We give here the definition of simple n-traps, that is traps with near-maximal depth
that are either well-shaped or wall-shaped. We will drop the “n-” in the name whenever
possible.

Definition 3.1. Let qn := (log n)1/4. A site x is a simple n-trap if ρx > dne−qn . It is

� of well type if cx−1 > dne−q
2
n ,

� of wall type if 1
cx
> dne−q

2
n .

We callWx := {ρx > dne−qn} the event that there is a simple trap in x.

For n ∈ N we let Cn := dC log ne, with C > 0 the constant in Proposition 2.2. We divide
Z in disjoint n-blocks, where an n-block is a box of the form {jCn, jCn+1, . . . , (j+1)Cn−1}
for some j ∈ Z. A n-triblock is a sequence of three consecutive n-blocks: we denote
Bj := {(j − 1)Cn, . . . , (j + 2)Cn − 1} the j-th triblock, and we let kn := dn/Cne be the
number of n-blocks between 0 and n.

Definition 3.2. For a given n ∈ N, we say that an environment ω is trapping if ω ∈ Γn :=⋃Cn−1
x=0 Wx, that is, if it has a simple n-trap in the first n-block. A n-triblock Bj is called

a trapping n-triblock if θjCnω ∈ Γn (with θaω := (ωx+a)x∈Z). We define Jn := {j ∈
{0, . . . , kn} : θjCnω ∈ Γn} the set of indices of the trapping triblocks.

Definition 3.3. A trapping n-triblock with a n-trap at site x is said to be good if

(i) cx ≤ e4qn , cx−1 ≥ e−4qn ;

(ii) for all y 6= x− 1, x in the n-triblock, cy ≤ e4qn and cy ≥ e−4qn .

We denote

Γ̄n :=

Cn−1⋃
x=0

(
Wx ∩ {cx, 1

cx−1
≤ e4qn}

⋂
−Cn≤y<2Cn
y 6=x−1,x

{cy ∈ [e−4qn , e4qn ]}
)

EJP 25 (2020), paper 30.
Page 10/43

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP427
http://www.imstat.org/ejp/


Scaling limit of sub-ballistic 1D RW BiRC

3.2 Properties of simple traps

In this section we collect some important properties of simple traps and of trapping
triblocks:

1. Traps are isolated, in fact distant by at least ne−5qn (Lemma 3.4);

2. Traps are not too deep: they cannot be deeper than dneqn (Lemma 3.5);

3. All trapping triblocks are good (Lemma 3.6);

4. Traps are the only annoying parts of the environment (Lemma 3.7).

We now state the lemmas corresponding to these four properties, and postpone their
proofs to Appendix C—they will be treated together with the analogous statements in
the case “Well-and-walls”.

Lemma 3.4. Let Dn be the event

Dn :=
⋃

−n≤x<y≤n
|x−y|≤ne−5qn

Wx ∩Wy .

Then P-a.s. Dn occurs for only finitely many n.

The proof of Lemma 3.4 can be found in Section C.1 of the Appendix. As a conse-
quence of Lemma 3.4, we have a.s. that |Jn| ≤ e5qn for n large enough.

Lemma 3.5. P-a.s., there is some n0 such that for all n ≥ n0

Mn := sup
−n≤x≤n

ρx ≤ dneqn .

The proof of Lemma 3.5 can be found in Section C.2 of the Appendix.

Lemma 3.6. Let Gn be the event

Gn :=
⋃

−n≤x≤n

Wx ∩
(
{cx > e4qn} ∪ { 1

cx−1
> e4qn}

x+2Cn⋃
y=x−Cn
y 6=x−1,x

{cy /∈ [e−4qn , e4qn ]}
)
.

Then P-a.s. Gn occurs only for finitely many n.

The proof of Lemma 3.6 can be found in Section C.3 of the Appendix.
The last property mentioned above may be more mysterious. Let us define a general-

ization of ρx: for all x ∈ Z and k ∈ N, set

ρ(k)
x := e−λ(k+1) cx−1

cx+k
= ρx · · · ρx+k . (3.1)

As it will be clear in the next sections, high values of ρ(k)
x are also responsible for the

trapping of the walk. What we mean by property 4 is that, under Assumption “Simple
Traps”, high values of ρ(k)

x are only observed in the presence of a well or of a wall (that
is, they cannot come from the combination of an almost-well and an almost-wall). This is
to ensure that triblocks that are not trapping triblocks (according to Definition 3.2) will
not slowdown the walk for a long time.

Lemma 3.7. Let εn = q−δn with some δ > 0, and let

Hn :=
⋃

−n≤x≤n

⋃
k≥1

{ρ(k)
x > εne−λk/2dn} ∩Wc

x ∩Wc
x+k . (3.2)

Then, if δ is sufficiently small, we have that P(Hn)→ 0 as n→ +∞.

The proof of Lemma 3.7 can be found in Section C.5 of the Appendix.
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4 Reduction to large traps

For a triblock Bj , we define its crossing time:

T (Bj) := T(j+2)Cn − TjCn , (4.1)

which is the time it takes for the random walk, started at the beginning of the middle
n-block of Bj , to exit Bj from the right. In view of Proposition 2.2, provided that n is
sufficiently large, the walk Xi remains in Bj for all i between times TjCn and T(j+2)Cn .
In this section we prove that the time Tn to reach distance n is close to the crossing time
of all trapping n-triblocks, so that the other blocks can be neglected.

Proposition 4.1. Let εn := q−δn with δ small enough, as defined in Lemma 3.7: we have
that

Pω
( 1

dn

∣∣∣Tn − ∑
j∈Jn

T (Bj)
∣∣∣ > ε(1−α)/2

n

)
≤ ε(1−α)/2

n ,

with P-probability going to 1.

Before we start the proof, recall the definition (3.1) of ρ(k)
x := e−λ(k+1) cx−1

cx+k
. Recall

also Proposition 1.1: using Potter’s bound (cf. [BGT89, Thm. 1.5.6]), we easily have that
there is a constant c > 0 such that for any k ≥ 0

P(ρ(k)
x > t

)
≤ c e−λαk/2ψ(t)t−α for all t > 1 . (4.2)

Proof of Proposition 4.1. We write that a.s., for n large enough

Tn −
∑
j∈Jn

T (Bj) =

kn∑
j=0

(T(j+1)Cn − TjCn)1{j,j−1/∈Jn}1Anj . (4.3)

Here, we let Anj := {XTjCn+i > (j− 1)Cn for all i ≥ 0} be the event that the random walk
does not backtrack from the j-th n-block to position (j − 1)Cn: Proposition 2.2 tells that
P ⊗ Pω-a.s., for n large enough, 1Anj = 1 for all 0 ≤ j ≤ kn. We also used that there
cannot be two consecutive good blocks, see Lemma 3.4. Let us now remark that, using
the strong Markov property,

Eω
[
(T(j+1)Cn − TjCn)1Anj

]
= EωjCn

[
T(j+1)Cn1Anj

]
≤ Cn +

jCn−1∑
z=(j−1)Cn

(j+1)Cn−z∑
k=jCn−z

ρ(k)
z +

(j+1)Cn−1∑
z=jCn

(j+1)Cn−z∑
k=0

ρ(k)
z .

To obtain the inequality, we have done the following: first we have replaced the envi-
ronment ω with the same environment having all conductances to the left of (j − 1)Cn
equal to 0 (so that also the ρ(k)

z are equal to 0 for z < (j − 1)Cn); notice that, under the
indicator of Anj , this has no effect on the value of the expectation. Secondly, we have
dropped the indicator (making the expectation larger). Finally we have applied formula
(A.9).

Thanks to Lemma 3.7, we have that with high P-probability all the ρ(k)
z involved in the

sum (i.e. for j, j− 1 /∈ Jn) are smaller than εne−λk/2dn. Going back to (4.3), we therefore
get that on the event Hcn (recall Hn is defined in (3.2)),

Eω
[
Tn −

∑
j∈Jn

T (Bj)
]
≤ n+ 2

n∑
z=−Cn

2Cn∑
k=0

ρ(k)
z 1{ρ(k)z ≤εne−λk/2dn}

≤ n+ 2

n∑
z=−Cn

`n∑
k=0

ρ(k)
z 1{ρ(k)z ≤εne−λk/2dn}

+ 2

n∑
z=−Cn

Cn∑
k=`n

ρ(k)
z 1{ρ(k)z ≤e−λ`n/2dn}

, (4.4)
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where we set `n := (log log n)2 and take the integer part when dealing with non-integer
indices.

We first deal with the first sum in (4.4). Let us set Rnz :=
∑`n
k=0 ρ

(k)
z . We have that

`n∑
k=0

ρ(k)
z 1{ρ(k)z ≤εne−λk/2dn}

≤ Rnz1{Rnz≤`nεndn} =: R̄nz .

For any fixed 1− α < δ′ < 1, we can bound

P
( n∑
z=−Cn

R̄nz > (εn)δ
′
dn

)
≤ 3`nP

( n/3`n∑
j=−Cn/3`n

R̄n3j`n >
(εn)δ

′

3`n
dn

)
(4.5)

where we used a union bound for the last inequality, splitting the sum
∑n
z=−Cn R̄

n
z as∑3`n−1

x=0

∑n/3`n−1
j=−Cn/3`n R̄3j`n+x. Now, we notice that the R̄n3j`n for j ∈ {−Cn/3`n, . . . , n/3`n}

are independent. Also, thanks to (4.2) and a union bound, we have that P(Rn0 > t) ≤
cst. ψ(t)t−α. Then, using a Fuk-Nagaev inequality (see [Nag79, Thm. 1.1], or [Ber19,
Thm. 5.1] for a more transparent formulation), we have that there is a constant c such
that for any m ≥ 1 and any y ≤ x

P
( m∑
j=1

Rn3j`n > x , max
1≤j≤m

Rn3j`n ≤ y
)
≤
(
cm

y

x
ψ(y)y−α

)x/y
.

We therefore get that there are constants c, c′, c′′ > 0 such that

P
( n/3`n∑
j=−Cn/3`n

R̄n3j`n >
(εn)δ

′

3`n
dn

)
≤
(
c
n

`n

`nεn
(εn)δ′/`n

ψ
(
`nεndn

)(
`nεndn

)−α)(εn)δ
′−1/(3`2n)

≤
(
c′n`n(εn)(1−α−δ′)/2ψ(dn)d−αn

)(εn)−(1−δ′)/2

≤ c′′e−(εn)−(1−δ′)/2
.

For the second inequality, we used Potter’s bound to get that ψ(`nεndn) is bounded by
a constant times `αn(εn)(δ′+α−1)/2ψ(dn). We also used that (3`n)−2 ≤ (εn)−(1−δ′)/2 for n
large enough (recall εn = q−δn with qn = (log n)1/4). For the last inequality, we used the
definition (2.2) of dn to get that for n large enough the term inside the parenthesis is
smaller than a constant times `n(εn)(1−α−δ)/2, which can be made arbitrarily small by
taking n large.

Going back to (4.5), and using that `n = o(e
1
2 (εn)−(1−δ′)/2

) we get that

P
( n∑
z=−Cn

R̄nz > (εn)δ
′
dn

)
≤ c′′e− 1

2 (εn)−(1−δ′)/2
. (4.6)

We can treat the second term in (4.4) similarly. Setting V nz :=
∑Cn
k=`n

ρ
(k)
z , we get that

Cn∑
k=`n

ρ(k)
z 1{ρ(k)z ≤e−λ`n/2dn}

≤ V nz 1{V nz ≤Cne−λ`n/2dn} =: V̄ nz .

Similarly as above, with Cn playing the role of `n and e−λ`n/2 playing the role of εn (note
that Cn = o(eλ`n/2)), we obtain that for n large enough

P
( n∑
z=−Cn

V̄ nz > e−δ
′λ`n/2dn

)
≤ c′′e− 1

2 e(1−δ
′)λ`n/4 ≤ c′′e− 1

2 (εn)−(1−δ′)/2
. (4.7)
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Going back to (4.4), by a union bound we get that for any 1− α < δ′ < 1,

P
(
Eω
[
Tn −

∑
j∈Jn

T (Bj)
]
> 3(εn)δ

′
dn ;Hcn

)
≤ 2c′′e−

1
2 (εn)−(1−δ′)/2

→ 0 . (4.8)

Using Markov’s inequality, we get that on Hcn

Pω
( 1

dn

∣∣Tn − ∑
j∈Jn

T (Bj)
∣∣ > ε(1−α)/2

n

)
≤ ε−(1−α)/2

n

1

dn
Eω
[
Tn −

∑
j∈Jn

T (Bj)
]
,

which thanks to (4.8) is smaller than ε(1−α)/2
n for n large enough (recall δ′ > 1− α), with

P-probability going to 1. Since P(Hn) → 0 by Lemma 3.7, we get the conclusion of
Proposition 4.1.

5 Crossing times of trapping triblocks

Notice that Lemma 3.4 gives that to each trapping block B can be associated a unique
site xB such that xB is a n-trap. We denote ρB := ρxB the depth of the trap associated
with xB.

In this section we show that, for a trapping block, the random variable T (B)/ρB can
be well approximated by another random variable τB, given by

τB = τB(ω) := θB

G(pB)∑
j=1

Ej . (5.1)

Let us explain each term appearing in (5.1):

pB = PωxB+1(TxB > TxB+Cn) is the probability, starting from xB + 1, of never re-
turning to xB (this is also the escape probability from xB + 1, recall the non-
backtracking property of Proposition 2.2). Notice that this only depends on the
environment to the right of xB + 1 that is in B.

G(pB) is a geometric random variable of parameter pB. This will be coupled with the
random variable that counts the number of times we cross the edge (xB + 1, xB)

from the right to the left, that is, the number of times we fall anew in the trap.

θB = θB(ω) is equal to Eω̄[Θx], where Θx is 1 plus the time that it takes for Xj to
go from xB − 1 to xB, and ω̄ is ω with all conductances to the left of xB − Cn
replaced by 0 (recall again the non-backtracking property of Proposition 2.2).
Notice that θB depends only on the environment to the left of xB that is in B.

(Ej)j≥1 is a sequence of i.i.d. exponential random variables of parameter 1, independent
of G(pB) and θB.

We have written τB as (5.1) in order to make explicit where the different terms
come from, but one realizes (for instance computing the characteristic function) that a
geometric sum of independent exponential r.v.s is itself an exponential random variable.
We can therefore rewrite τB as

τB =
θB
pB

eB , (5.2)

where eB ∼ Exp(1) is independent of pB and θB.

Proposition 5.1. Let B = Bj be a good trapping n-triblock (recall the Definition 3.3
of Γ̄n). There exists a coupling between (Xj)j∈N and τB such that for any δ ∈ (0, 1)

sup
ω∈Γ̄n

Pω
(∣∣∣T (B)

ρB
− τB

∣∣∣ > δ,An

)
≤ 2e−eqn + c δ−2e50qnρ−1

B (5.3)

where An is the event that (Xj)j∈N never backtracks more than Cn.
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We proceed in three steps:
Step 1. We decompose T (B) into several pieces, see (5.4): a) the time it takes to

arrive at position xB, b) a geometric number G = G(pB) of i.i.d. times to go from xB to
xB + 1 (G− 1 corresponds to the geometric number of times we fall anew in the trap), c)
the time it takes from xB + 1 to exit the triblock to the right.

Step 2. We control easily the terms a) and c), which bring a small contribution to
T (B).

Step 3. We control the main term b), by saying that the time it takes to exit the trap
is another geometric r.v. with parameter roughly 1/ρB (the number of trials one needs to
cross the edge (xB, xB + 1) from left to right), multiplied by the time it takes between
two trials (which is roughly 1 + EωxB−1[TxB ] = θB by the law of large numbers).

5.1 Step 1

For simplicity we suppose that B = {−Cn, . . . , 2Cn − 1}, that the random walk starts
in 0 (we write Pω := Pω0 ) and we simply call x = xB. We notice that under the event An
the walk never visits points to the left of −Cn, so that we can replace each ω in (5.3) by
the environment ω̄ where all conductances cj with j < −Cn are set equal to 0 and the
other conductances stay as before. For each ω ∈ Γ̄n we therefore have

Pω
(∣∣∣T (B)

ρB
− τB

∣∣∣ > δ,An

)
≤ P ω̄

(∣∣∣T (B)

ρB
− τB

∣∣∣ > δ
)

and it will be sufficient to bound the right-hand side.
Let us introduce some further notation. We call G := 1 + #{` : X`−1 = x+ 1, X` = x}.

We notice that G is a geometric random variable of parameter pB appearing in (5.1). Let
T (1) := Tx+1 − Tx and t1 = Tx+1. When G ≥ 2, we iteratively define, for 2 ≤ i ≤ G,

ti := inf{` > ti−1 : X`−1 = x, X` = x+ 1}

T (i) := ti − ti−1 .

We interpret T (i) as the time it takes for the walk to escape from the trap for the i-th
time. We can now decompose T (B) in the following way:

T (B) = Tx +

G∑
i=1

T (i) + T̄x+1,2Cn , (5.4)

where T̄x+1,2Cn is the time it takes for (Xj)j∈N to go from x + 1 to 2Cn conditioned on
never returning to x. In light of (5.4), for any ω ∈ Γ̄n we can bound

P ω̄
(∣∣∣T (B)

ρB
− τB

∣∣∣ > δ
)
≤ D1 +D2 +D3 , (5.5)

where

D1 = P ω̄
(Tx
ρB

>
δ

3

)
, D2 = P ω̄

(∣∣∣∑G
i=1 T

(i)

ρB
− τB

∣∣∣ > δ

3

)
, D3 = P ω̄

( T̄x+1,2Cn

ρB
>
δ

3

)
.

5.2 Step 2

The first and last term are fairly easy and are treated in the same way. For D1, we
use Markov’s inequality to get that

D1 ≤ 3δ−1ρ−1
B Eω̄[Tx].
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Scaling limit of sub-ballistic 1D RW BiRC

Formula (A.8) and (A.4) gives an explicit expression for Eω̄[Tx]. In particular, by Def-
inition 3.3 of a good block (in particular since cy ∈ [e−4qn , e4qn ] for all y < x − 1 and
cx−1 > e4qn), we get that Eω̄[Tx] ≤ c′Cne8qn . Hence, for n large enough,

D1 ≤ c δ−1e10qnρ−1
B .

For the term D3, we use the same idea:

D3 ≤ 3δ−1ρ−1
B Eω̄[T̄x+1,2Cn ] = 3δ−1ρ−1

B
1

pB
Eω̄x+1[T2Cn1{T2Cn<Tx}] (5.6)

Here we have used that Eω̄x+1[T2Cn1{T2Cn<Tx}] ≤ Eω̃x+1[T2Cn ], where thanks to the indi-
cator function we have replaced ω̄ by ω̃ (in which the conductances to the left of x+ 1

have been replaced by 0), and then dropped the indicator function. Then, formula (A.8)
together with Definition 3.3 of a good block gives that Eω̃x+1[T2Cn ] ≤ c′Cne8qn . We finally
get that

D3 ≤ cδ−1ρ−1
B Cne8qn/pB ≤ cδ−1ρ−1

B e20qn . (5.7)

For the last inequality, we used the formula (A.6) for pB, together with the definition of a
good block to get that pB ≥ ce−8qn (and took n large enrough so that Cn ≤ e4qn).

5.3 Step 3

It remains to deal with the term D2 in (5.5), which is the most technical part of this
section. For i = 1, . . . , G, we decompose T (i) as follows

T (i) = Υi +
( Gi−1∑
j=1

Θx(j, i)
)

+ 1 , (5.8)

where Υ1 = 0 and Υi := inf{` > ti−1 : X` = x} − ti−1 for i ≥ 2; Gi is a geometric random
variable with parameter 1/(1 + ρx) and {Θx(j, i)}j,i∈N are i.i.d. copies of Θx. In fact, we
can describe T (i), with i = 2, . . . , G, as follows (the discussion is similar for i = 1): at
time ti−1 the random walk is in x+ 1 and in a time Υi it reaches x for the first time after
ti−1. Then it jumps to the right with probability 1/(1 + ρx) (in which case we either go
to iteration i+ 1 or never return to x) or to the left with probability ρx/(1 + ρx). In this
second case, Θx(1, i) represents this one step plus the time it takes for (X`) to go from
x− 1 back to x. Then (X`) “tries” again to jump to x+ 1 with probability 1/(1 + ρx) (in
which case we either go to iteration i+ 1 or never return to x) or goes back to x− 1 with
probability ρx/(1 + ρx), etc... This continues until the random walk manages to reach
x+ 1. Since each attempt of jumping from x to x+ 1 is independent from the others, the
number of attempts is geometric. The Θx(j, i) are i.i.d. by the Markov property.

Thanks to the representation (5.8), and using i.i.d. exponential r.v. (Ei)i≥1 of parame-
ter 1 coupled with Gi (by Gi = dE1 log ρB

1+ρB
e), we can bound

D2 ≤ P ω̄
( G∑
i=1

∣∣∣Υi +
∑Gi−1
j=1 Θx(j, i) + 1

ρB
− θBEi

∣∣∣ > δ

3

)
≤ P ω̄

( G∑
i=1

∣∣∣Υi +
∑Gi−1
j=1 Θx(j, i) + 1

ρB
− θBEi

∣∣∣ > δ

3
, G ≤ e10qn

)
+ P ω̄(G > e10qn) . (5.9)

For the second summand of (5.9), recall that 1 + G is a geometric variable with
parameter pB: we have that P ω̄(G > e10qn) ≤ exp(−pBe10qn). Now, we have already seen
that pB ≥ ce8qn , so that for n large enough we get

P ω̄(G > e10qn) ≤ exp
(
− eqn

)
. (5.10)
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We control now the first term in (5.9) via the triangular inequality and a union bound
(recall that Υ1 = 0 by definition): we get that it is bounded by

e10qnP ω̄
(Υ2 + 1

ρB
>
δ

6
e−10qn

)
+ e10qnP ω̄

(∣∣∣ 1

ρB

G1−1∑
j=1

Θx(j, 1)− θB E1

∣∣∣ > δ

6
e−10qn

)
. (5.11)

We deal with the two summands of (5.11) in the following claims.

Claim 5.2. There is a constant c > 0 such that, for all ω ∈ Γ̄n, for all v > 0, we have

P ω̄
(Υ2 + 1

ρB
> v
)
< c v−1ρ−1

B e10qn . (5.12)

Claim 5.3. There is a constant c > 0 such that, for all ω ∈ Γ̄n, for all v > 0, we have

P ω̄
(∣∣∣ 1

ρB

G1−1∑
j=1

Θx(j, 1)− θBE1

∣∣∣ > v
)
≤ e−eqn + c e20qnv−2ρ−1

B . (5.13)

We prove these two claims just below. Thanks to Claims 5.2 and 5.3, we obtain,
together with estimates (5.9) and (5.10)–(5.11), that (using also that δ−1 ≤ δ−2)

D2 ≤ 2e−eqn + c′ δ−2e50qnρ−1
B ,

for some constant c′ > 0. This concludes the proof of Proposition 5.1.

Proof of Claim 5.2. We will use Markov inequality, and therefore proceed to the cal-
culation of the expectation of Υ2. By definition, Eω̄[Υ2] = Eω̄x+1[Tx |Tx < T2Cn ] =

Eω̄x+1[Tx1{Tx<T2Cn}]/P
ω̄
x+1(Tx < T2Cn). We use formulas (A.11) and (A.1), which yield

Eω̄[Υ2] =
1

cλx

2Cn−1∑
y=x+1

π(y)Py(Tx+1 < T2Cn)Py(Tx < T2Cn) ≤
2Cn−1∑
y=x+1

cλy
cλx
Py(Tx < T2Cn)

For all y = x+ 1, . . . , 2Cn − 1, we can use again (A.1) and bound

cλy
cλx
Py(Tx < T2Cn) =

cy
cx

eλ(y−x)

∑2Cn−1
j=y c−1

j e−λj∑2Cn−1
j=x c−1

j e−λj
≤ 1

cx
e8qn

∑2Cn−1−y
j=0 e−λj

c−1
x

= c′ e8qn ,

for some c′ > 0, where for the first inequality we have used the fact that in good blocks
e−4qn < cj < e4qn for all x < j < 2Cn and in the denominator we simply kept the term
j = x. We therefore obtain

Eω[Υ2 + 1] ≤ 2c′Cne8qn ≤ e10qn

for n large enough. This gives the claim by Markov inequality.

Proof of Claim 5.3. We abbreviate Θ
(j)
x := Θx(j, 1), and recall that θB = Eω̄[Θ

(1)
x ]. By the

triangular inequality, we bound the left hand side of (5.13) by

P ω̄
(∣∣∣ G1−1∑

j=1

(
Θ(j)
x ρ−1
B − θBρ

−1
B

)∣∣∣ > v

2

)
+ P ω̄

(
θB

∣∣∣E1 − (G1 − 1)ρ−1
B

∣∣∣ > v

2

)
. (5.14)

For the second term in (5.14), recall that we coupled E1 with G1 by G1 = dE1 log ρB
1+ρB

e:
this gives that |E1 − (G1 − 1)/ρB| ≤ (2 + E1)/ρB, so that the second term in (5.14) is
bounded by P ω̄(E1 > cvρBθ

−1
B ) for some constant c > 0. Thanks to Lemma 5.4 below,

this is smaller than exp(−c′′vρBe−8qn) ≤ c′′′v−1ρ−1
B e8qn .

We are left with the first term in (5.14). We study the mean and variance of the
i.i.d. random variables Θ

(j)
x , which by definition are distributed as the random variable

Θx, in the following lemma.
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Lemma 5.4. We have, for all ω ∈ Γ̄n

θB = Eω̄[Θx] ≤ c′e8qn , (5.15)

Var ω̄(Θx) ≤ c′C2
ne16qn . (5.16)

Let us first conclude the proof of Claim 5.3 before we turn to the proof of Lemma 5.4.
We have that the first term in (5.14) is

P ω̄
(∣∣∣ G1−1∑

j=1

(
Θ(j)
x − θB

)∣∣∣ > v

2
ρB

)
≤ P ω̄

(
G1 > e2qnρB

)
+ e2qnρB

Var ω̄(Θx)

v2ρ2
B/4

≤ e−eqn + c′′e20qnv−2ρ−1
B . (5.17)

In the first line we have used Chebychev inequality and the independence of the Θ
(j)
x ,

while in the second line we used the fact that G1 is a geometric of parameter 1/(1 + ρB)

for the first term and the bound (5.16) for the second term.

Proof of Lemma 5.4. Recall that Θx is 1 plus the time it takes for the random walk,
starting in x− 1, to reach x. By formula (A.10) and by the definition of a good triblock
we easily obtain bound (5.15).

For studying the second moment of Θx, we call Nj , with j ∈ {−Cn, . . . , x − 1}, the
random variable counting the number of visits to point j before touching x, so that
Θx = 1 +

∑x−1
j=−Cn Nj and

(Θx)2 ≤ 2Cn

x−1∑
j=−Cn

N2
j . (5.18)

Let us describe the distribution of the random variables Nj: (i) Nj is equal to 0 with
probability P ω̄x−1(Tx < Tj) (when the random walk reaches x before ever visiting j); (ii)
Nj is equal to a random variable Y (j) with the remaining probability, where Y (j) is a
geometric random variable with parameter q(j) = P ω̄j (Tx < Tj) (once j is reached for
the first time, the random walk returns to j before touching x with probability 1− q(j)).
Hence, we get that Eω̄[N2

j ] ≤ Eω̄[Y (j)2] ≤ 1/q(j)2.
We notice that, on good blocks, because of formula (A.5), q(j) ≥ ce−8qn for any

j ≤ x− 1. Therefore the second moment of Nj is bounded by 1/q(j)2 ≤ c′e16qn , so that
taking the expectation in (5.18) we get Var ω̄(Θx) ≤ c′′C2

ne16qn as desired.

6 Reduction to a finite number of traps

First of all, by a union bound and then Proposition 5.1 with δ = dne−qn

|Jn|ρBj
≤ |Jn|−1 < 1,

we get that for a.e. ω, for n large enough (so that all trapping blocks are good, by
Lemma 3.6)

Pω
(∣∣∣ ∑

j∈Jn

T (Bj)−
∑
j∈Jn

ρBjτBj

∣∣∣ ≥ dne−qn
)
≤
∑
j∈Jn

Pω
(∣∣T (Bj)− ρBjτBj

∣∣ ≥ dne−qn

|Jn|

)
≤ 2|Jn|e−e−qn + c|Jn|e50qn

(dne−qn

|Jn|

)−2

max
j∈Jn

ρBj .

Then, by Lemmas 3.4 and 3.5, we get that |Jn| ≤ e5qn and maxj∈Jn ρBj ≤ dneqn for n
large enough, so that

Pω
(∣∣∣ ∑

j∈Jn

T (Bj)−
∑
j∈Jn

ρBjτBj

∣∣∣ ≥ dne−qn
)
≤ c′d−1

n e70qn . (6.1)
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Together with Proposition 4.1, we conclude that with P⊗ Pω-probability going to 1,

1

dn

∣∣Tn − ∑
j∈Jn

ρBjτBj
∣∣ ≤ ε(1−α)/2

n
n→∞−−−−→ 0 , (6.2)

where we recall that εn = q−δn for some (small) fixed δ > 0.

Now, we show that the main contribution to
∑
j∈Jn ρBjτBj comes from the blocks

with the largest ρB’s (of order dn).

Proposition 6.1. For any η, η′ > 0, there exists ε = ε(η, η′) > 0 such that for n sufficiently
large

P⊗ Pω
( 1

dn

∑
j∈Jn

ρBjτBj1{ρBj≤εdn} > η
)
≤ η′ . (6.3)

This proposition, together with (6.2), shows that for any fixed η, η′ > 0, we have for n
large enough (recall kn := n/Cn)

1

dn

∣∣∣Tn − kn∑
i=1

ρBiτBi1{ρBi>εdn}

∣∣∣ ≤ 2η (6.4)

with P⊗Pω-probability at least 1− η′. We dropped the condition j ∈ Jn in the sum since
the condition ρBi > εdn ensures that i ∈ Jn.

The difficulty here is that we are not able to obtain directly the tail of ρBτB (they both
have heavy-tail and are not independent). Proposition 6.1 is proved in two steps:

Step 1: We decompose the sum according to some ranges of values for ρB, and
dominate each term by a sum of a constant number N` of i.i.d. random variables.

Step 2: By a union bound, we reduce the proof to controlling each term separately. In
particular, an important estimate is Lemma 7.1, which controls the tail of τB conditionally
on having ρB large (uniformly on the large value of ρB).

6.1 Step 1

We divide the contribution according to ranges of value of ρBj :

P⊗ Pω
( ∑
j∈Jn

ρBjτBj1{ρBj<εdn} > η dn

)
≤ P⊗ Pω

( 2qn∑
`=log2(1/ε)

2−`+1
∑
j∈J (`)

n

τBj > η
)

(6.5)

where we set J (`)
n = {j ∈ Jn, 2−` ≤ ρBj/dn ≤ 2−`+1} (we also used that qn/ log 2 ≤ 2qn).

Then, we control the number of terms in each sum, i.e. we show that |J (`)
n | ≤ N`, for

some well chosen N`. This is essentially due to the following lemma.

Lemma 6.2. For any δ′ > 0, there is a constant Cδ′ such that, for all n ∈ N and all
u ∈ (0, 1), setting iu := du−α(1+δ′)e,

P
(∣∣{1 ≤ j ≤ n : ρj ≥ udn}

∣∣ ≥ iu) ≤ (Cδu)−δ′iuα/4 ≤ 2−iu ,

the last inequality being valid for u small enough. In the case α0 = α∞ (recall Assump-
tion “Traps”), we have that there is some A > 0 such that for any u ∈ (d

−1/2
n , 1)

P
(∣∣{1 ≤ j ≤ n : ρj ≥ udn}

∣∣ ≥ Au−α) ≤ 2−u
−α
.
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Proof. The probability we need to control is

P
(
∃x1, . . . , xiu ∈ {1, . . . , n} : ρxj ≥ udn for all j ≤ iu

)
≤ P

(
∃x1, . . . , xiu/2 ≤ n all odd or all even, s.t. ρxj ≥ udn for all j ≤ iu/2

)
≤
(

n

iu/2

)
P
(
ρ0 ≥ udn

)iu/2
.

The second inequality comes from a union bound, and from the fact that the ρxj are
independent. Then we can use that P(ρ0 > t) is regularly varying with exponent α, so
that by Potter’s bound (cf. [BGT89]) we have a constant C ′δ such that for any u ∈ (0, 1),
P
(
ρ0 ≥ udn

)
≤ C ′δu−α(1+δ′/2)P(ρ0 ≥ dn). Then, using that dn has been chosen such that

P(ρ0 ≥ dn) ∼ 1/n, together with the fact that u−α(1+δ′/2) ≤ iuuδ
′α/2, we obtain

P
(∣∣{1 ≤ j ≤ n : ρj ≥ udn}

∣∣ ≥ iu) ≤ niu/2

(iu/2)!

(C ′δiuuδ′α/2
n

)iu/2
≤
(
C ′′δ u

)−δ′iuα/4
. (6.6)

The last inequality comes from the fact that there is a constant c such that (i/2)! ≥ (ci)i/2

for all i ≥ 1.

In the case where α0 = α∞, we have that g(u) := ψ(eu) is regularly varying, recall
Assumption “Traps”. Then we use the same union bound, setting iu = dAu−αe: using
that P

(
ρ0 ≥ udn

)
≤ cu−αψ(udn)d−αn , and that ψ(dn)d−αn ≤ c/n, we get that

P
(∣∣{1 ≤ j ≤ n : ρj ≥ udn}

∣∣ ≥ iu) ≤ niu/2

(iu/2)!

( iu/A
n

ψ(udn)

ψ(dn)

)iu/2
≤
(
c′A−1

)iu/2
.

For the last inequality, we use that log dn ≥ log(udn) ≥ 1
2 log dn for any u ∈ (d

−1/2
n , 1), so

that ψ(udn) ≤ cψ(dn) since t 7→ ψ(et) is regularly varying. Having fixed A sufficiently
large in the above display gives the conclusion of the Lemma.

Now, let N` := 2α`(1+δ′) if α0 6= α∞ and N` := A2α` if α0 = α∞ (in any case N` ≥ 2α`):
thanks to Lemma 6.2, we have that for ` large

P
(
|J (`)
n | ≥ N`

)
≤ P

(∣∣{j : ρBj ≥ 2−`dn}
∣∣ ≥ N`) ≤ 2−N` .

Hence, we get that

P⊗ Pω
( ∑
j∈J (`)

n

τBj > H`
)
≤ 2−2α` with H` :=

N∑̀
i=1

τ̃B,i , (6.7)

where τ̃B,i := τ̃
(`)
B,i are i.i.d. random variables, distributed as τBj conditioned on j ∈ J (`)

n .

Going back to (6.5), we therefore get that

P⊗ Pω
( 2qn∑
`=log2(1/ε)

2−`+1
∑
j∈J (`)

n

τBj > η
)

≤ P⊗ Pω
( 2qn∑
`=log2(1/ε)

2−`+1H` > η
)

+
∑

`≥log2(1/ε)

2−2α` , (6.8)

the last sum being bounded by a constant time 2−1/εα , which goes to 0 as ε→ 0.
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6.2 Step 2

Using a union bound and Markov’s inequality, we have

P⊗ Pω
( 2qn∑
`=log2(1/ε)

2−`+1H` > η
)
≤

2qn∑
`=log2(1/ε)

P⊗ Pω
(
H` > 2`

)
+

2

η

2qn∑
`=log2(1/ε)

2−`E⊗ Eω
[
H`1{H`≤2`}

]
. (6.9)

We treat the two terms separately.
First term in (6.9). We need to bound the probability P ⊗ Pω

(
H` > 2`

)
, with

H` =
∑N`
i=1 τ̃B,i. We can use that P(j ∈ J (`)

n ) is bounded below by a constant times
P(ρBj > 2−`dn), so that we get that P⊗ Pω

(
τ̃B > t

)
≤ cP⊗ Pω

(
τB > t | ρB > 2−`dn

)
. We

now need the following lemma (that we prove in Appendix B.3), to control the distribution
of τB conditionally on having ρB large.

Lemma 6.3. Define ξB := θB
pB

, so that τB = ξB eB. For any δ̃, δ̄ > 0 fixed small enough,

there is some n0 such that for any n ≥ n0 and uniformly for 1 ≤ t ≤ n2δ̄, An ≥ n
1
α−δ̄,

P
(
ξB > t | ρB ≥ An

)
≤ ct−2α+δ̃ + cL0(t)t−α0f∞(An) + cL∞(t)t−α∞f0(An) , (6.10)

with f∞(An) := P
(
c−1 > An

)
/P(ρ0 > An) and f0(An) := P

(
1/c0 > An

)
/P(ρ0 > An). We

also have that

P⊗ Pω
(
τB > t | ρB ≥ An

)
≤ ct−2α+δ̃ + cL0(t)t−α0f∞(An) + cL∞(t)t−α∞f0(An) . (6.11)

Let us stress that, in view of Proposition 1.1, if E[1/cα0 ] < +∞ (resp. E[cα−1] <

+∞), then f∞(An) (resp. f0(An)) is bounded by a constant, whereas if E[1/cα0 ] = +∞
(resp. E[cα−1] = +∞), then f∞(An)→ 0 (resp. f0(An)→ 0). Therefore, as a corollary, we
get that for any fixed t > 1,

lim sup
n→+∞

P
(
ξB > t | ρB ≥ An

)
≤ ct−2α+δ̃ + cL0(t)t−α01{E[1/cα0 ]<+∞} + cL∞(t)t−α∞1{E[cα−1]<+∞} . (6.12)

With Lemma 6.3 at hand, we decompose the probability P ⊗ Pω(H` > z) for some
z > 1, according to whether there is some 1 ≤ i ≤ N` with τ̃B,i > z (we will choose z = 2`,
but the general bound will be useful). With a union bound and Markov’s inequality, we
get

P⊗ Pω
( N∑̀
i=1

τ̃B,i > z
)
≤ N`P⊗ Pω

(
τ̃B > z

)
+ z−1N`E⊗ Eω

[
τ̃B1{τ̃B≤z}

]
. (6.13)

For the second term, we write

E⊗ Eω
[
τ̃B1{τ̃B≤z}

]
≤ 1 +

∫ z

1

P⊗ Pω(τ̃B > t) dt

≤ cz1−(α+δ̃) + cL0(z)z(1−α0)f∞(2−`dn) + cL∞(z)z1−α∞f0(2−`dn)

where for the second inequality we used Lemma 6.3 and integrated over t using Kara-
mata’s Theorem [BGT89, Prop. 1.5.8]. We have exploited the fact that α0, α∞ < 1 and,
for the integral

∫ z
1
t−2α+δ̃, we have used that −2α + δ̃ ≤ −(α + δ̃) with α + δ̃ < 1, for δ̃

small enough. Using Lemma 6.3 for the first part of (6.13), we get that for any z > 1

P⊗ Pω
(
H` > z

)
≤ c′N`

(
z−(α+δ̃) + L0(z)z−α0f∞(2−`dn) + L∞(z)z−α∞f0(2−`dn)

)
.

(6.14)
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Now, we set z = 2`, and we treat the first term in (6.8) separately the different cases.
• If α0 > α∞, then α = α∞ (the case where α∞ > α0 is symmetric) and P(ρ0 > t) ∼

cL∞(t)t−α∞ since E[1/cα0 ] < +∞ (cf. Proposition 1.1). We therefore get that f∞(An) is

bounded by a constant (uniformly for An ≥ 1), and that f0(An) ≤ cAα∞−α0+δ̃
n (using

Potter’s bound). Recalling that N` = 2α`(1+δ′), and setting z = 2`, the left-hand side in
(6.14) is therefore bounded by a constant times

2`(α(1+δ′)−(α+δ̃)) + 2`(α(1+δ′)−α0+δ̃) + 2`(δ
′+δ̃)(2−`dn)α∞−α0+δ̃ ≤ 2−δ̃α`/2 + 2`d−(α0−α∞)/2

n ,

where the last bound holds provided that δ̃ then δ′ have been fixed sufficiently small.
Going back to the first term in (6.9), we have that in the case α0 > α∞,

2qn∑
`=log2(1/ε)

P⊗ Pω
(
H` > 2`

)
≤ c

+∞∑
`=log2(1/ε)

2−δ̃α`/2 + cd−(α0−α∞)/2
n

2qn∑
`=1

2`

≤ c′εδ̃α/2 + c′4qnd−(α0−α∞)/2
n . (6.15)

This can be made arbitrarily small by taking ε small enough and n large.
• In the case α0 = α∞ = α we have P(ρ0 > t) ∼ ψ(t)t−α (see Proposition 1.1), so

that f0(t) ∼ L0(t)/ψ(t) and f∞(t) ∼ L∞(t)/ψ(t). Now we can use that L0(et), L∞(et) are
regularly varying by Assumption “Traps”, so that ψ(et) is regularly varying, and therefore

so are f0(et), f∞(et). Then, using that dn2−` ≥ d1/2
n for all 0 ≤ ` ≤ qn, we get that there

is a constant c such that f0(2−`dn) ≤ cf0(dn) and f∞(2−`dn) ≤ cf∞(dn). Recalling that
N` = A2α`, we therefore get from (6.14) (setting z = 2`) that there is a constant cA
depending on A such that

P⊗ Pω
(
H` > 2`

)
≤ cA

(
2−δ̃` + L0(2`)f∞(dn) + L∞(2`)f0(dn)

)
.

Going back to the first term in (6.9), we get that

2qn∑
`=log2(1/ε)

P⊗ Pω
(
H` > 2`

)
≤ cA

+∞∑
`=log2(1/ε)

2−δ̃`

+ cAf∞(dn)

2qn∑
`=log2(1/ε)

L0(2`) + cAf0(dn)

2qn∑
`=log2(1/ε)

L∞(2`) . (6.16)

The first term is bounded by a constant times εδ̃, and goes to 0 as ε ↓ 0. The second and
third term can be treated in an analogous way, so we focus on the second one.

a) If E[1/cα0 ] < +∞, then we already mentioned that f∞(dn) is bounded by a constant
(thanks to Proposition 1.1). We also have that∑

`≥log2(1/ε)

L0(2`) ≤ c
∑

`≥log2(1/ε)

(2`)αP(1/c0 > 2`) ≤ c′E
[
(1/c0)α1{1/c0>1/ε}

]
, (6.17)

and hence it goes to 0 as ε→ 0.
b) If E[1/cα0 ] = +∞ but E

[
cα−1

]
< +∞, then we get from Proposition 1.1 that f∞(dn)

is bounded by a constant times L∞(dn)/L0(dn) ≤ c(log n)γ∞−γ0ϕ∞(log n)/ϕ0(log n) with
γ0 > −1 > γ∞ (recall Assumption “Traps”), so

f∞(dn)

qn∑
`=log2(1/ε)

L0(2`) ≤ cϕ∞(log n)

ϕ0(log n)
(log n)γ∞−γ0

2qn∑
`=1

ϕ0(`)`γ0 . (6.18)

Using that 2qn ≤ log n, the last sum is bounded by a constant times ϕ0(log n)(log n)1+γ0 ,
so that the second term in (6.16) goes to 0 as n→∞, since γ∞ < −1.
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Altogether, we have obtained that, provided n is large enough and ε is small enough
(how small depends on η, η′), (6.16) is bounded by η′/4.

Second term in (6.9). We just adapt the previous argument. Using the bound (6.14)
and integrating it over z (recall α+ δ̃, α0, α∞ < 1), we have that

E⊗ Eω
[
H`1{H`≤2`}

]
≤ 1 +

∫ 2`

1

P⊗ Pω
(
H` > z

)
dz

≤ 1 + cN`

(
2`(1−α−δ̃) + L0(2`)2`(1−α0)f∞(2−`dn) + L∞(2`)2`(1−α∞)f0(2−`dn)

)
.

Hence we get that

2−`E⊗ Eω
[
H`1{H`≤2`}

]
≤ c′N`

(
2−`(α+δ̃) +N`L0(2`)2−α0`f∞(2−`dn) + L∞(2`)2−α∞`f0(2−`dn)

)
.

This is the analogous of (6.14), and the proof concludes identically to what is done above.
All in all, going back to (6.9), we have shown that there is a constant C such that

P⊗ Pω
( 2qn∑
`=log2(1/ε)

2−`H` > η
)
≤ C

η

(
ε′ + εn

)
,

with ε′ → 0 as ε→ 0, and εn → 0 as n→ +∞. This concludes the proof of Proposition 6.1.

7 Conclusion of the proof of Theorem 2.1

7.1 Convergence of the depths, positions and block-crossing times

Recall we defined ξB := θB
pB

, so τB = ξB eB with eB an exponential r.v. independent of
the environment. In Lemma 7.1 below, we state that under Assumption “Simple Traps”,
conditionally on having ρB → +∞, ξB converges in distribution to a r.v. ζ, that we define
as

ζ := 2
(

1 +B c̄0V + (1−B) 1
c̄−1

W
)
, (7.1)

where:

∗ B is a Bernoulli r.v. with parameter q = 1 if E[cα−1] = +∞; q = 0 if E[1/cα0 ] = +∞;

and q = limt→+∞
E[cα−1]L0(t)

E[cα−1]L0(t)+E[1/cα0 ]L∞(t) if E[cα−1] < +∞, E[1/cα0 ] < +∞.

∗ V,W are defined by (see the analogous quantities for n fixed in (B.3)–(B.4))

V = V λ :=
∑
j≥1

1

cj
e−λ(j+1) , W = Wλ :=

∑
j≥2

c−je
−λ(j+1) . (7.2)

∗ If E[cα−1] < +∞, c̄−1 is a r.v. whose c.d.f. is given by Fc̄−1
(u) := 1

E[cα−1]E[cα−11{c−1≤u}].

If E[1/cα0 ] < +∞, then 1/c̄0 is a r.v. with c.d.f. F1/c̄0(u) := 1
E[1/cα0 ]E[1/cα01{1/c0≤u}].

In particular, if B = 1 it means that the trap is a well (roughly, θB → 2), while if B = 0

it means that the trap is a wall (roughly, pB → 1). Hence, if q = 1 only wells can occur,
while if q = 0 only walls can occur.

Lemma 7.1. Under Assumption “Simple Traps”, conditionally on having ρB > εdn,
ξB := θB

pB
converges in distribution as n→ +∞ to the random variable ζ defined above in

(7.1). More precisely, we have

lim
n→+∞

P
(
ξB ∈ · | ρB > εdn

)
= P(ζ ∈ ·) .

Additionally, we have that E[ζα] < +∞.
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We point out that Lemma 7.1 also tells us that, under the event ρB > εdn, the random
variables ρB and ξB become asymptotically independent. The proof of Lemma 7.1 is
provided in Appendix B.3.

We rely on Lemma 7.1 to show the following (recall kn = bn/Cnc).
Proposition 7.2. For any ε > 0, we have the following convergence in distribution:{( i

kn
,
ρBi
dn

, ξBi

)
: 1 ≤ i ≤ kn, ρBi > εdn

}
=⇒ Pε ,

where Pε is a PPP on [0, 1]×R+ ×R+ with intensity dxαw−(1+α)1{w>ε} dwµ( dz), and µ
is the law of the random variable ζ defined in (7.1).

Proof. The first remark we make is that the (ρBi , ξBi)1≤i≤kn are not independent: how-
ever (ρBi , ξBi) and (ρBj , ξBj ) are independent as soon as |j − i| > 2. But because of
Lemma 3.4, the indices i such that ρBi > εdn are a.s. well separated, so we can consider
the ρBi , ξBi appearing in {( i

kn
,
ρBi
dn
, ξBi) : 1 ≤ i ≤ kn, ρBi > εdn} as independent.

We therefore only have to consider the joint distribution of (ρB, ξB) on the event
ρB > εdn. Thanks to Lemma 7.1 we know that, conditionally on ρB > εdn, ξB converges
in distribution to ζ defined in (7.1), which does not depend on ε. It remains to see that,
for any t > 0, as n→ +∞

P(ρB ≥ tdn) = P
(
∃ x ∈ {1, . . . , Cn}, ρx > tdn

)
∼ CnP(ρ0 > tdn)

∼ Cnψ(tdn)(tdn)−α ∼ 1

kn
t−α .

Here, we used that there is at most one trap larger than dne−qn in a block B, and then
that ψ(dn)d−αn ∼ 1/n by definition of dn (recall also that kn = n/Cn is the number of
blocks).

Altogether, for any t > ε, v > 0, and for any i ≥ 1, P(
ρBi
dn

> t, ξBi > v) is asymptotically

equivalent to 1
kn
t−αP(ζ > v). By the Poisson approximation, this is enough to conclude.

7.2 Convergence in distribution of (Tn/dn)n≥1

With Proposition 7.2 at hand, and recalling that τB = ξBeB where eB is an exponential
random variable independent of ω, we easily have the convergence in distribution, under
P⊗ Pω,

1

dn

kn∑
i=1

ρBiτBi1{ρBi>εdn} =⇒
∑

(x,w,z,r)∈P̃

w z r 1{x≤1}1{w>ε} , (7.3)

where P̃ is a PPP on (R+)4 with intensity dxαw−(1+α) dwµ( dz) e−r dr.
Altogether, thanks to (6.2) and Proposition 6.1, and letting ε ↓ 0 (the right-hand-side

of (7.3) is monotone in ε), we obtain the following convergence in distribution

1

dn
Tn =⇒

∑
(x,w,z,r)∈P̃

w z r 1{x≤1}
(d)
=
( πα

sin(πα)
E[ζα]

)1/α ∑
(x,v)∈P

v1{x≤1} , (7.4)

with P a PPP on (R+)2 of intensity dx α
Γ(1−α)v

−(1+α) dv. Note that a crucial point, shown

in Lemma 7.1, is that E[ζα] < +∞.
For the last identity in distribution in (7.4), we have used that {(x,wzr)}(x,w,z,r)∈P̃ is a

PPP on (R+)2 with intensity dxαcα,µu−(1+α) du, where cα,µ =
∫∞

0
zαµ( dz)

∫∞
0
rαe−r dr =

E[ζα]Γ(1 + α). In turn, we get that {(x, (cα,µΓ(1 − α))−1/αwzr)}(x,w,z,r)∈P̃ is a PPP on
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(R+)2 with intensity dx α
Γ(1−α)v

−(1+α) dv (i.e. with the same law as P): this gives (7.4),

using also that Γ(1 + α)Γ(1− α) = πα/ sin(πα).
Now, the term

∑
(x,v)∈P v1{x≤1} on the right-hand-side of (7.4) is a standard α-stable

subordinator at time 1, with Laplace exponent tα (by straighforward calculation, recall
tα = α

Γ(1−α)

∫∞
0

(1− e−ts)s−(1+α) ds, see [Ber96, Sec. III.1, p. 73]).
As a matter of fact, our proof shows that for any fixed u > 0, we have the convergence

in distribution, as n→ +∞: under P⊗ Pω

Tn(u) :=
1

dn
Tbunc =⇒

( πα

sin(πα)
E[ζα]

)1/α

Sα(u) , (7.5)

where (Sα(u))u≥0 is the α-stable subordinator with Laplace exponent logE[e−tSα(u)] =

utα; note that Sα(u) can be written, analogously to (7.4), as
∑

(x,w)∈P w1{x≤u}.

Remark 7.3. We believe that one could also obtain a quenched version of Theorem 2.1,
in analogy with Corollary 1 in [ESTZ13]. More precisely, in view of (7.3), we expect
that with high P-probability, the law of Tn/dn conditionally on ω is close (for instance in
Wasserstein distance) to the law of

∑∞
p=1$p ep conditionally on ($p)p≥1, where ($p)p≥1

is a Poisson Point Process of intensity αE[ζα]$−(1+α) coupled with the environment
ω, and (ep)p≥1 are i.i.d. exponential r.v. of parameter 1, independent of ($p)p≥0. We
think, though, that the convergence in distribution of Theorem 1.2 already describes
the essence of the limiting behavior of the walk. We prefer not to develop the technical
details for the quenched result, avoiding to make the paper heavier.

7.3 Process convergence, conclusion of the proof of Theorem 2.1

First of all, we reduce ourselves to the study of

T̃n(u) :=
1

dn

buknc∑
j=1

ρBjτBj1{θjCnω∈Γ̄n} , (7.6)

the coarse version of T (n)
u (where we only keep the crossing times of good trapping

blocks). Thanks to Propositions 4.1 and 5.1 we know that, with probability going to 1,
the M1-distance between (T (n)

u )u∈[0,1] and (T̃ (n)
u )u∈[0,1] goes to 0 as n→ +∞. In view of

Lemma 3.4, P ⊗ Pω-a.s., for n large enough the trapping blocks are disjoint, and the
non-zero terms ρBjτBj1{θjCnω∈Γ̄n} are independent. Hence, we may reduce to studying

T̂n(u) :=
1

dn

buknc∑
i=1

Y
(n)
i , (7.7)

with (Y
(n)
i )i≥1 i.i.d. copies of ρBτB1{θjCnω∈Γ̄n}. It is then clear that the proof of (7.5)

shows that all finite-dimensional marginals of (T̂n(u))u∈[0,1] converge to those of the

α-stable subordinator (Sα(u))u∈[0,1], since for v > u, (T̂n(v) − T̂n(u)) is independent of

T̂n(u) for all n.
We can easily upgrade this to a process convergence: thanks to Prohorov’s theo-

rem, and since we already have the convergence of the finite-dimensional distributions,
we only need to show that {T̂n, n ∈ N} is tight, see e.g. [Bil68, Thm. 15.1]. Showing
the tightness is relatively standard, since we are working here with increasing pro-
cesses T̂n (and actually follows from the finite-dimensional convergence): the proof
is identical to that in [BABČ08, Sec. 5] (or to that of [FK18, Sec. 11]). Tightness can
also be seen as a consequence of Proposition 6.1, which says that with high proba-
bility (uniform in n) the main contribution to T̂n comes from jumps larger than ε, i.e.
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T̂n(u) − 1
dn

∑buknc
i=1 Y

(n)
i 1{Y (n)

i >εdn}
is uniformly smaller than η with probability at leat

1− η′ (this correspond to the (15.11) tightness criterion of [Bil68, Thm. 15.4], the part
(15.10) following from finite-dimensional convergence). This concludes the proof of
Theorem 2.1.

8 Case of well-and-wall traps

Throughout this section we will assume Assumption “Well-and-walls”.

8.1 Definition of k-distant traps and their properties

Recall that the maximal depth of a trap between 0 and n will be of order dn, see
the definition (2.2) of dn. We introduce here the definition of k-traps, or well-and-wall
traps, that is, traps formed by a very big conductance cx−1 followed by a very small

conductance cx+k, making ρ
(k)
x := e−λ(k+1)cx−1/cx+k large (we include the case k = 0).

As we shall see, the only k-traps that will appear are such that neither cx−1 nor 1/cx+k

are big enough to give rise to a simple-trap (in the sense of Definition 3.1). Recall that
we let qn := (log n)1/4.

Definition 8.1. For k ≥ 0, a site x is called a k-distant (well-and-wall) n-trap if

ρ(k)
x > dne−qn , cx−1 > eq

2
n and

1

cx+k
> eq

2
n .

We callW(k)
x := {ρ(k)

x > dne−qn} ∩ {cx−1,
1

cx+k
> eq

2
n} the event that x is a k-distant trap.

We now extend Definitions 3.2–3.3 to the case of k-distant traps. We use the same
notations as in the case of simple traps for simplicity.

Definition 8.2. For a given n ∈ N, we say that an environment ω is trapping if

ω ∈ Γn :=

Cn−1⋃
x=0

Cn−1⋃
k=0

W(k)
x ,

that is, if it has a k-distant n-trap in the first n-block. A n-triblock Bj is called a trapping
n-triblock if θjCnω ∈ Γn. Let Jn := {j ∈ {0, . . . , kn} : θjCnω ∈ Γn} be the set of indices of
the trapping triblocks.

Definition 8.3. A trapping n-triblock with a k-distant n-trap at site x is said to be good
if for all y 6= x− 1, x+ k in the n-triblock, cy ≤ e4qn and 1/cy ≤ e4qn . We denote

Γ̄n :=

Cn−1⋃
x=0

Cn−1⋃
k=0

(
W(k)
x

⋂
−Cn≤y<2Cn
y 6=x−1,x+k

{cy ∈ [e−4qn , e4qn ]}
)
.

Note that in the definition W(k)
x , we have that cx+k < e−q

2
n ≤ e4qn and cx−1 > eq

2
n >

e−4qn .

8.2 Properties of k-distant traps

In this section we collect some important properties of k-distant traps and of the new
trapping blocks. Besides updating to k-distant traps some of the properties of simple
traps, we add one new feature (property 4).

1. k-distant traps are isolated, in fact distant by at least ne−5qn (Lemma 8.4);

2. k-distant traps are not too deep, they cannot be deeper than dneqn (Lemma 8.5);
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3. All trapping triblocks are good (Lemma 8.6);

4. k-distant traps cannot have k too large, in fact, k < 6
λqn (Lemma 8.7);

5. k-distant traps are the only annoying parts of the environment (Lemma 8.8).

Lemma 8.4. Let Dn be the event

Dn :=
⋃

−n≤x<y≤n
|x−y|≤ne−5qn

⋃
k≥0

⋃
k′≥0

W(k)
x ∩W(k′)

y .

Then, P-a.s. Dn occurs for only finitely many n.

The proof of Lemma 8.4 can be found in Section C.1 of the Appendix. As a conse-
quence of Lemma 8.4, we have that |Jn| ≤ e5qn also in the case of k-distant traps.

Lemma 8.5. P-a.s., there is some n0 such that for all n ≥ n0

Mn := sup
−n≤x≤n

sup
k≥0

ρ(k)
x ≤ dneqn .

The proof of Lemma 8.5 can be found in Section C.2 of the Appendix.

Lemma 8.6. Let Gn be the event

Gn :=
⋃

−n≤x≤n

⋃
k≥0

{
ρ(k)
x > dn e−qn

}
∩
( x+2Cn⋃

y=x−2Cn
y 6=x−1,x+k

{cy /∈ [e−4qn , e4qn ]}
)
.

Then P-a.s. Gn occurs only for finitely many n.

The proof of Lemma 8.6 can be found in Section C.3 of the Appendix.

Lemma 8.7. Let Kn be the event that there exists a k-distant trap with k ≥ 6
λqn, i.e.

Kn :=
⋃

−n≤x≤n

⋃
k≥ 6

λ qn

W(k)
x .

Then P-a.s., Kn occurs for only finitely many n.

The proof of Lemma 8.7 can be found in Section C.4 of the Appendix.
The last lemma shows that, with high probability, there are no ways to have ρ(k)

x close
to dn without having both cx−1,

1
cx+k

> eq
2
n : it tells that the traps of depth of order dn can

only be of well-and-wall type.

Lemma 8.8. Let εn = q−δn for some δ > 0, and let

Hn :=
⋃

−n≤x≤n

⋃
k≥0

{ρ(k)
x > εne−λk/2dn} ∩ (W(k)

x )c .

Then, if δ is sufficiently small, we have that P(Hn)→ 0 as n→ +∞.

The proof of Lemma 8.8 can be found in Section C.6 of the Appendix.

8.3 Reduction to large traps

Also under Assumption “Well-and-walls” the result of Proposition 4.1 is valid: with
εn = q−δn defined in Lemma 8.8, we have that

Pω
( 1

dn

∣∣Tn − ∑
j∈Jn

T (Bj)
∣∣ > ε(1−α)/2

n

)
≤ ε(1−α)/2

n , (8.1)

with P-probability going to 1. The proof is identical to the one of Proposition 4.1, and
relies on Lemma 8.8 in place of Lemma 3.7, in order to say that with high probability, all
ρ

(k)
z outside trapping blocks are smaller than εne−λk/2dn (so that one gets (4.4)).
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8.4 Crossing of large traps

As in the case of simple traps, Lemma 8.4 guarantees that to each trapping block
B can be associated a unique site xB and a unique kB ∈ {0, . . . , 6

λqn} such that xB is a

kB-distant n-trap (Lemma 8.7 ensures that kB <
6
λqn). As before we denote by ρB := ρ

(kB)
xB

the depth of the trap associated with xB. We approximate again T (B)/ρB by τB, which in
the case of well-and-wall traps becomes extremely simple:

τB = 2 eB , (8.2)

where eB ∼ Exp(1). Analogously to the case of simple traps define

pB := PωxB+kB+1(TxB > TxB+kB+Cn) the probability of escaping to the right of xB+kB+1;

θB := Eω̄[ΘxB+kB ], where ΘxB+kB equal to 1 plus the time that it takes for Xj to go
from xB + kB − 1 to xB + kB.

Since we have c−1
xB+kB

> eq
2
n , we get that pB → 1 as n → +∞. On the other hand, also

cxB−1 > eq
2
n , so that the main contribution to θB comes from the time spent on the edge

(xB− 1, xB), which is approximately 2 if kB = 0 and 2cxB−1 if kB > 0. In (5.1), this roughly
corresponds to having pB = 1 and θB = 2, and this gives a heuristic reason why (8.2)
holds.

In analogy with Proposition 5.1, we claim that there is a constant c > 0 such that for
any δ ∈ (0, 1),

sup
ω∈Γ̄n

Pω
(∣∣∣T (B)

ρB
− τB

∣∣∣ > δ,An

)
≤ ce−q

2
n/2 + cδ−2e−q

2
n/2e2λkB ≤ δ−2e−q

2
n/4 , (8.3)

the last inequality holding P-a.s., for n large enough, since λkB ≤ 6qn thanks to
Lemma 8.7. We follow the three steps of the proof of Proposition 5.1. We use the
same notations as in Section 5.1, re-adapted to the case of k-traps. We call x = xB and
k = kB.

Step 1. We let T (1) := Tx+k+1 − Tx+k and t1 = Tx+k+1. The random variable
G := 1 + #{` : X`−1 = x + k + 1, X` = x + k} is a geometric r.v. of parameter pB,
representing the number of attempts to run away from x+ k + 1 and never come back
into x+ k. When G ≥ 2, we iteratively define, for 2 ≤ i ≤ G,

ti := inf{` > ti−1 : X`−1 = x+ k, X` = x+ k + 1} and T (i) := ti − ti−1 .

As in (5.4) we rewrite T (B) as T (B) = Tx+k +
∑G
i=1 T

(i) + T̄ (x + k + 1, 2Cn), where
T̄ (x+ k + 1, 2Cn) is the time it takes for (X`)`∈N to go from x+ k + 1 to 2Cn conditioned
on never returning to x+ k. By the triangular inequality

P ω̄
(∣∣∣T (B)

ρB
− τB

∣∣∣ > δ
)
≤ D1 +D2 +D3 , (8.4)

with D1, D2 and D3 that are the obvious homologous of the quantities appearing in (5.5).

Step 2. For D1 we use Markov inequality. We notice that in the case k = 0 we have
Eω̄[Tx+k] ≤ c′C2

ne8qn , while for k > 0 we get Eω̄[Tx+k] ≤ c′cx−1Cne8qn (cf. (A.8), together
with Definition 8.3). Hence

D1 ≤

{
c δ−1e11qnρ−1

x if k = 0 ;

c δ−1e11qn(cx−1)−1eλk ≤ cδ−1e−q
2
n/2eλk if k > 0 .
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For the term D3, we use the same idea as (5.7). For well-and-wall traps we even have,
as can be seen from (8.5) below, pB > c > 0, so

D3 ≤ c′δ−1ρ−1
B Eω̄[T̄x+k+1,2Cn ] ≤ c′′ δ−1ρ−1

B Cne8qn .

Step 3. It remains to deal with the term D2. Remembering that An happens a.s. for
n large enough, we see that for well-and-wall traps, using (A.6), since cx+k < e−q

2
n and

all other conductances are in [e−4qn , e4qn ],

pB = Pωx+k+1(Tx+k+Cn < Tx+k) ≥
(

1 + c′e−q
2
n/2
)−1

. (8.5)

In light of (8.5), it is sufficient to replace the bound (5.9) by

D2 ≤ P ω̄
(∣∣∣T (1)

ρB
− 2 eB

∣∣∣ > δ

3

)
+ P ω̄(G > 1) . (8.6)

Note that the second term is equal to 1− pB ≤ c′e−q
2
n/2.

In order to control the first term in (8.6), we use decomposition (5.8) with Υ1 = 0, G1

a geometric of parameter 1/(1 + ρx+k) (with eB coupled with G1, G1 = deB log ρx+k
1+ρx+k

e)
and {Θx+k(j)}j∈N a collection of i.i.d. copies of Θx+k. We end up with

P ω̄
(∣∣∣T (1)

ρB
− 2eB

∣∣∣ > δ

3

)
= P ω̄

(∣∣∣ 1

ρB

G1−1∑
j=1

Θx+k(j)− 2 eB

∣∣∣ > δ

3

)
. (8.7)

Then, the triangular inequality gives the following upper bound, analogously to (5.14),

P ω̄
(∣∣∣ G1−1∑

j=1

(
Θx+k(j)ρ−1

B − 2ρ−1
x+k

)∣∣∣ > δ

6

)
+ P ω̄

(
2
∣∣∣eB − (G1 − 1)ρ−1

x+k

∣∣∣ > δ

6

)
. (8.8)

For the second term in (8.8), we use that |eB − (G1 − 1)/ρx+k| ≤ (2 + eB)/ρx+k, so that
the second term is bounded by P ω̄(eB > c′δρx+k) ≤ exp{−c′δeq2n/2} for some constant
c > 0, since ρx+k > eq

2
n/2 (either k = 0 and this is obvious, or k > 1 and cx+k−1 > e−4qn ,

1/cx+k > eq
2
n by definition of a good block).

We finally deal with the first term in (8.8). We first split it with the triangular
inequality into (recall θB := Eω̄[Θx+k])

P ω̄
(∣∣∣ G1−1∑

j=1

(
Θx+k(j)− θB

)∣∣∣ > δ

12
ρB

)
+ P ω̄

(
G1

∣∣∣θBρ−1
B − 2ρ−1

x+k

∣∣∣ > δ

12

)
. (8.9)

These two terms can be controlled thanks to the estimates on the mean and the variance
of Θx+k given by the following lemma.

Lemma 8.9. There exists a constant c′ > 0 such that, for ω ∈ Γ̄n:

∗ if k = 0,

θB := Eω̄[Θx+k] ∈
[
2 , 2 + c′e−q

2
n/2
]

(8.10)

Var ω̄(Θx) ≤ c′C2
ne16qn . (8.11)

∗ if k ≥ 1,

θB := Eω̄[Θx+k] ∈
[
2
cx−1

cx+k−1
e−λk , 2

cx−1

cx+k−1
e−λk + c′e4qn

]
(8.12)

Var ω̄(Θx+k) ≤ c′C2
ne16qnc2x−1 . (8.13)
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Let us first bound (8.9) with the help of this lemma. In the case k = 0, we have that
ρB = ρx+k. Since |θB − 2| ≤ c′e−q

2
n/2, we get that the second term in (8.9) is bounded

by Pω
(
G1ρ
−1
B > c′δeq

2
n/2
)
≤ exp{−c′′δeq2n/2} ≤ cδ−1e−q

2
n/2 (using that G1 is a geometric r.v.

with parameter 1/(1 + ρx+k) > (2ρB)−1). For the first term in (8.9), we get thanks to
Chebychev inequality and the variance bound (8.11), as in (5.17):

P ω̄
(∣∣∣ G1−1∑

j=1

(
Θx+k(j)− θB

)∣∣∣ > δ

12
ρB

)
≤ P ω̄

(
G1 > eqnρB

)
+ eqnρB

V ar(Θx)

ρ2
B(δ/12)2

≤ e−ce
qn

+ c′δ−2e20qnρ−1
B .

Altogether, this gives that D2 ≤ c′e−q
2
n/2 + c′′δ−2e−q

2
n/2.

In the case k ≥ 1, recall that ρB := cx−1

ck+1
e−λ(k+1): by (8.12), we see that |θBρ−1

B −
2ρ−1
x+k| ≤ c′e4qnρ−1

B . Hence, since G1 is a geometric r.v. with parameter 1/(1 + ρx+k),

the second term in (8.9) is bounded by exp{−cδe−4qnρB/ρx+k} ≤ exp{−c′δeq2n/2e−λk} ≤
c′′δ−1e−q

2
n/2eλk, where we used that ρB/ρx+k = e−λkcx−1/cx+k−1, with cx−1 > eq

2
n and

cx+k−1 ≤ e4qn . It remains to bound the first term of (8.9), again thanks to Chebychev
inequality and (8.13) as above:

P ω̄
(∣∣∣ G1−1∑

j=1

(
Θx+k(j)− θB

)∣∣∣ > δ

12
ρB

)
≤ P ω̄

(
G1 > eqnρx+k

)
+ eqnρx+k

V ar(Θx+k)

ρ2
B(δ/12)2

≤ e−eqn/2 + c′δ−2e−q
2
n/2e2λk,

where we used that ρx+kV ar(Θx+k)/ρ2
B ≤ c′e20qne2λkcx+kcx+k−1, with cx+k < e−q

2
n and

cx+k−1 ≤ e4qn . Collecting all the previous estimates, we get that D2 ≤ ce−q
2
n/2 +

c′′δ−2e−q
2
n/2e2λk, which concludes the proof of (8.3).

Proof of Lemma 8.9. We follow the proof of Lemma 5.4. We have, see (A.10)

Eω̄[Θx+k] = 1 + Eω̄x+k−1[Tx+k] = 2 +
2

cx+k−1

x+k−2∑
`=x+k−Cn

c`e
−λ(x+k−1−`) .

In the case k = 0, all c` in the sum are smaller than e4qn ≤ eq
2
n/2, and cx−1 > eq

2
n , which

gives (8.10). In the case k ≥ 1, then we separate the term ` = x− 1 in the sum, and we
use that all c` < e4qn for ` 6= x− 1 to obtain (8.12) (we also use that Cn ≤ eqn).

For the second moment, we bound, analogously to (5.18)

(Θx+k)2 ≤ 2Cn
∑

j 6=x−1,x

N2
j (8.14)

with Nj the random variable counting the number of visits to point j before touching
x + k, for j ∈ {−Cn, . . . , x + k − 1}. As above, Nj ≤ Y (j), where Y (j) is a geometric
random variable with parameter q(j) = P ω̄j (Tx+k < Tj). Thanks to (A.5), we get that if
k = 0 then q(j) ≥ ce−8qn for all j < x, by definition of a good block; on the other hand,
if k > 0, we get that q(j) ≥ ce−8qn/cx−1 for all j < x + k (one could get a better bound
in the case j 6= x− 1, x, but we do not need it). Then, using that Eωx+k−1[N2

j ] ≤ 1/q(j)2,
equations (8.11) and (8.13) follow by taking the expectation in (8.14) (and using that
Cn ≤ eqn).
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8.5 Reduction to a finite number of traps

First of all, using a union bound and then (8.3) (with δ = dne−qn

|Jn|ρBj
≤ |Jn|−1 < 1), we

get that for all a.e. ω, for n large enough

Pω
(∣∣∣ ∑

j∈Jn

T (Bj)−
∑
j∈Jn

2ρBjeBj

∣∣∣ ≥ dne−qn
)
≤
∑
j∈Jn

Pω
(∣∣T (Bj)− 2ρBjeBj

∣∣ ≥ dne−qn

|Jn|

)
≤ c|Jn|3e−q

2
n/4 .

Then, by Lemma 8.4, a.s. |Jn| ≤ e5qn for n large, so this goes to 0. Hence, together

with (8.1), and using that ε(1−α)/2
n ≥ e−qn for n large, we have that with P⊗Pω-probability

going to 1, as n→ +∞,

1

dn

∣∣Tn − 2
∑
j∈Jn

ρBjeBj
∣∣ ≤ 2ε(1−α)/2

n → 0 . (8.15)

Now, the analogous of Proposition 6.1 holds: for any η, η′ > 0, there exists ε = ε(η, η′)

such that (6.3) holds also in the present case, i.e. the main contribution to
∑
j∈Jn ρBjeBj

comes from the blocks with ρB > εdn. The proof follows the same scheme as that of
Proposition 6.1, with fewer technicalities since τBj is simply replaced by 2eBj (we do not
need Lemma 7.1). In particular, Step 1 of the proof is the same (up to (6.8)), but Step 2
is much easier, since H` is now the sum of N` independent exponential random variables.
We do not provide the details here, since they are straighforward.

In the end, (6.3) combined with (8.15) shows that for any fixed η, η′ > 0, we can
choose ε so that (6.4) holds with P⊗ Pω-probability at least 1− η′.

8.6 Convergence

The analogous of Proposition 7.2 holds and is in fact much simpler, since ξB = 2 under
Assumption “Well-and-walls”. We simply need to use that for any ε > 0, {( i

kn
, 1
dn
ρBi); 1 ≤

i ≤ kn, ρBi > εdn} converges in distribution to a Poisson Point Process Pε on [0, 1]×R+

with intensity dxαw−(1+α)1{w>ε} dw—this is due to the tail behavior of ρ0 and to the
definition (2.2) of dn, see the proof of Proposition 7.2. This easily gives that, analogously
to (7.3), we have the following under P⊗ Pω

2

kn∑
i=1

ρBieBi1{ρBi>εdn} =⇒ 2
∑

(x,w,r)∈P̄

w r 1{x≤1}1{w>ε} ,

where P̄ is a PPP on (R+)3 with intensity dxαw−(1+α) dwe−r dr. Altogether, with (8.15),
letting ε ↓ 0, we get as in (7.4) that

1

dn
Tn =⇒ 2

( πα

sin(πα)

)1/α ∑
(x,w)∈P

w1{x≤1} , (8.16)

with P a PPP on (R+)2 of intensity dx α
Γ(1−α)w

−(1+α) dw. The conclusion of the proof of
Theorem 2.1, i.e. the convergence of the process, is identical to Section 7.3 from that
point on.

A Some formulas for resistor networks

In this section, we recall some classical formulas for resistor networks, which trans-
late into properties for the hitting times of random walks among random conductances.
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The first important identity is the following: for i < x < j, we have

Pωx (Ti < Tj) =
Ceff({x} ↔ {i})
Ceff({x} ↔ {i, j})

. (A.1)

The effective conductance Ceff is here (see [LP16] for the general definition)

Ceff({x} ↔ {i}) = S(i, x− 1)−1 (A.2)

Ceff({x} ↔ {i, j}) = S(i, x− 1)−1 + S(x, j − 1)−1 , (A.3)

with (recall the definition (3.1) of ρ(k)
x := e−λ(k+1)cx−1/cx+k)

S(i, j) :=

j∑
`=i

1

cλ`
=

1

cλi−1

j−i∑
k=0

ρ
(k)
i . (A.4)

For the first formula we have used that we have conductances in series, while for the
second formula we have two sequences of conductances-in-series that are in parallel.
Then, (A.2) and (A.3) together with (A.1) give

Pωx (Ti < Tj) =
S(x, j − 1)

S(i, j − 1)
. (A.5)

This apply for instance to the probability pB appearing in Section 5: we have that

px := Pωx+1(Tx+Cn > Tx) =
(

1 + cx

Cn∑
j=1

1

cx+j
e−λ(j+1)

)−1

. (A.6)

Another important identity we use throughout the paper deals with the expectation
of the hitting times. We use the following representation, cf. [Bov06, Eq. (3.22)]:

Eωx [Ty] =
1

Ceff({x} ↔ {y})
∑
z<y

π(z)Pωz (Tx < Ty) (A.7)

where π(z) := cλz−1 + cλz is a reversible measure for (Xn)n∈N. We notice that in (A.7) the
quantity Pωz (Tx < Ty) is equal to 1 for z ≤ x, while for x < z < y we can use (A.5). We
therefore get that, after calculation, see [BS19, Eq. (2.10)], for y > x

Eωx [Ty] =
∑
z≤x

(cλz + cλz−1)S(x, y − 1) +
∑

x<z<y

(cλz + cλz−1)S(z, y − 1)

= 2
∑

z≤x−1

cλzS(x, y − 1) +
∑

x≤z<y

cλzS(z, y − 1) +
∑

x<z<y

cλz−1S(z, y − 1)

= (y − x) + 2
∑
z≤x

cλz−1S(x, y − 1) + 2
∑

x<z<y

cλz−1S(z, y − 1) (A.8)

(we used that czS(z, y − 1) = 1 + czS(z + 1, y), and that S(y, y − 1) = 0). We can finally
rewrite this as follows:

Eωx [Ty] = (y − x) + 2
∑
z<x

y−z∑
k=x−z

ρ(k)
z + 2

y∑
z=x

y−z∑
k=0

ρ(k)
z . (A.9)

This applies for instance to quantity θx = 1 + Eωx−1[Tx] defined in Section 5:

θx = 1 + Eω̄x−1[Tx] = 2 +
2

cx−1

x−2∑
`=x−Cn

c`e
−λ(x−1−`) . (A.10)
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We also need a formula for the expectation of hitting times for a random walk killed at
some site z. It is not explicitly stated in [Bov06], but can be obtained in the same way as
(A.7) (as mentioned in the sentence before [Bov06, eq. (3.21)]): for y < x < v, we have

Eωx [Ty1{Ty<Tv}] =
1

Ceff({x} ↔ {y, v})
∑

y<z<v

π(z)Pωz
(
Tx < Ty ∧ Tv

)
Pωz (Ty < Tv) . (A.11)

B Estimates conditionally on having a large trap

Let us recall Proposition 1.1, which derives from [Cli86, Corollary 5]. It gives the
following sharp asymptotics: under Assumption “Simple Traps” we have as t→ +∞

P(ρ0 > t)eλα ∼ E[cα0 ]L0(t)t−α01{E[cα0 ]<+∞} + E[1/cα0 ]L∞(t)t−α∞1{E[1/cα0 ]<+∞}; (B.1)

under Assumption “Well-and-walls” we have as t→ +∞

P(ρ0 > t)eλα ∼ αΓ(1 + γ0)Γ(1 + γ∞)

Γ(1 + γ0 + γ∞)
(log t)L0(t)L∞(t)t−α . (B.2)

B.1 Proof of Propositions 1.4

Recall that when E[cα0 ] < +∞, we define c̄−1 a random variable with c.d.f. Fc̄−1
(u) =

1
E[cα−1]E[cα−11c−1≤u], and similarly for 1/c̄0. We consider two cases separately: 1) E[cα0 ] <

+∞, E[1/cα0 ] = +∞ (the case E[cα0 ] = +∞, E[1/cα0 ] < +∞ is symmetric); 2) the case
E[cα0 ],E[1/cα0 ] = +∞.

1) Suppose that E[cα0 ] < +∞, E[1/cα0 ] = +∞, so the second term in (B.1) is equal to 0.
Then for any fixed 0 < a < b and v > 0 we have as t→ +∞

P(c−1 ∈ (a, b], 1/c0 > v, ρ0 > t) = E
[
P(c−1/c0 > eλt | c−1)1{c−1∈(a,b]}

]
= (1 + o(1))L0(t)e−λα0t−α0E[cα−11{c−1∈(a,b]}] .

Here we used that P(c−1/c0 > eλt/x) = (1 + o(1))L0(t)e−λα0(t/x)−α0 as t → ∞, uni-
formly for x ∈ (a, b]. Letting b → ∞, we get that P(c−1 > a, 1/c0 > v, ρ0 > t) =

(1 + o(1))L0(t)e−λα0t−α0E[cα−11{c−1>a}].
As a consequence, in view of (B.1), we have that

P
(
c−1 > a, 1/c0 > v | ρ0 > t

) t→+∞−−−−→ 1

E[cα−1]
E[cα−11{c−1>a}] = 1− Fc̄−1

(a) ,

giving that (c−1, 1/c0), conditionally on ρ0 > t, converges in distribution to (c̄−1,+∞) (i.e.
B = 0 in (1.6)).

2) If E[cα0 ] < +∞, E[1/cα0 ] < +∞ (necessarily α = α0 = α∞), then both c̄−1 and 1/c̄0
are well defined, and both terms in (B.1) are non-null. The same reasoning as above is
still valid: for any fixed 0 < a < b and v > 0, and any fixed 0 < c < d and v′ > 0, we get
as t→ +∞

P
(
c−1 ∈ (a, b], 1/c0 > v, ρ0 > t

)
= (1 + o(1))L0(t)e−λα0t−α0E[cα−11{c−1∈(a,b]}] ;

P
(
c−1 > v′, 1/c0 ∈ (c, d], ρ0 > t

)
= (1 + o(1))L∞(t)e−λα∞t−α∞E[1/cα01{1/c0∈(c,d]}] .

As a consequence, we get that for any a, c > 0, as t→ +∞

P
(
c−1 > a, 1/c0 > c, ρ0 > t

)
∼ L0(t)e−λαt−αE[cα−11{c−1>a}] + L∞(t)e−λαt−αE[1/cα01{1/c0>c}] .

In view of (B.1), we get that

P
(
c−1 > a, 1/c0 > c | ρ0 > t

) t→+∞−−−−→ q (1− Fc̄−1
(a)) + (1− q) (1− F1/c̄0(c)) ,

where q = limt→+∞
E[cα0 ]L0(t)

E[cα0 ]L0(t)+E[1/cα0 ]L∞(t) = limc→+∞ limt→+∞P(1/c0 > c | ρ0 > t). This
concludes the proof.
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B.2 Proof of Propositions 1.6

Under Assumption “Well-and-walls”, as above, we get that for any fixed b, d > 0, as
t→ +∞

P
(
c−1 ≤ a, ρ0 > t

)
= (1 + o(1))L0(t)e−λα0t−α0E[cα0

−11{c−1≤b}] ;

P
(
1/c0 ≤ d, ρ0 > t

)
= (1 + o(1))L∞(t)e−λα∞t−α∞E[1/cα∞0 1{1/c0≤d}] .

Since L0(t) = ϕ0(log t)(log t)γ0 , L∞(t) = ϕ∞(log t)(log t)γ∞ with γ∞, γ0 > −1, we have
that L0(t), L∞(t) are both negligible compared to (log t)L0(t)L∞(t). In view of (B.2), for
any fixed b, d > 0, we get P

(
c−1 ≤ b or 1/c0 ≤ d | ρ0 > t

)
→ 0, which concludes the proof.

B.3 Distribution of τB conditionally on having ρB large

In this section, we prove Lemma 6.3 and 7.1: we consider the case of “Simple Traps”.
For simplicity, we assume that ρB = ρ0 (i.e. xB = 0). We recall from (5.2) that τB is equal
to τB := ξB eB = θB

pB
eB with eB ∼ Exp(1), and with

pB = p0 = Pω1 (τ0 > τCn) =
(

1 + c0V
(n)
)−1

with V (n) :=

Cn∑
j=1

1

cj
e−λ(j+1) , (B.3)

θB = θ0 = 1 + Eω̄0 [T1] = 2
(

1 +
1

c−1
W (n)

)
with W (n) :=

Cn∑
j=2

c−je
−λ(j+1) . (B.4)

We refer to (A.6), (A.10) for the formulas.
Let us stress right away that P(V (n) > t) is bounded by a constant times P(1/c0 > t).

Indeed, denoting Cλ :=
∑
j≥1 e−λ(j+1), a union bound gives that P(V (n) > t) is bounded

by

∑
j≥1

P
( 1

cj
≥ eλ(j+1)t

Cλ

)
≤
∑
j≥1

c′λe−
α
2 λ(j+1)P(1/cj > t) = cP(1/c0 > t) , (B.5)

where we also used Potter’s bound. Similarly, P(W (n) > t) ≤ cP(c−1 > t).
Before we prove Lemma 6.3, we prove the following result, which deals with the tail

distribution of p0, θ0 conditionally on having ρ0 large.

Lemma B.1. For any δ̃, δ̄ > 0 fixed small enough, there is a constant c > 0 such that for
any 1 ≤ t ≤ n2δ̄ and any An ≥ n

1
α−δ̄,

P
(
1/p0 > t | ρ0 ≥ An

)
≤ ct−2α∞+δ̃ + cP

(
1/c0 > t

)
f∞(An) , (B.6)

P
(
θ0 > t | ρ0 ≥ An

)
≤ ct−2α0+δ̃ + cP

(
c−1 > t

)
f0(An) , (B.7)

with f∞(An) := P
(
c−1 > An

)
/P(ρ0 > An) and f0(An) := P

(
1/c0 > An

)
/P(ρ0 > An).

Notice that, as a function of t, these bounds are regularly varying.

Proof. We only treat (B.6), the other bound (B.7) being similar. Using (B.3), we write

P
(
1/p0 > t | ρ0 > An

)
= P

(
c0V

(n) > t/2, ρ0 > An
)
/P(ρ0 > An) .

We split P(c0V
(n) > t/2, ρ0 > An) into four parts (recall that ρ0 = e−λc−1/c0)

P
(
c0V

(n) > t/2, ρ0 > An, c0 < 1/An
)

+ P
(
c0V

(n) > t/2, ρ0 > An, c0 ∈ [A−1
n , 1]

)
+ P

(
c0V

(n) > t/2, ρ0 > An, c0 ∈ [1, t]
)

+ P
(
c0V

(n) > t/2, ρ0 > An, c0 > t
)

(B.8)

EJP 25 (2020), paper 30.
Page 34/43

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP427
http://www.imstat.org/ejp/


Scaling limit of sub-ballistic 1D RW BiRC

• The first term is bounded by P(V (n) > tAn/2)P(1/c0 > An), so that, recalling (B.5),

it is bounded by a constant times A−2α0+δ̃
n , which is itself bounded by a constant times

A−α0+2δ̃
n P(ρ0 > An) (we have α0 ≥ α).

• The last term in (B.8) is bounded by P(c−1 > tAn)P(c0 > t) ≤ ct−2α∞+δ̃P(c−1 > An),
the inequality coming from Potter’s bound. Note also that P(ρ0 > An) ≥ cP(c−1 > An).

• Using (B.5) and Potter’s bound, we get that the second term in (B.8) is bounded by

log2(An)−1∑
l=0

P
(
V (n) > 2l−1t

)
P(c−1 > 2−(l+1)An)P

(
c0 ∈ [2−(l+1), 2−l]

)
≤ c

log2(An)∑
l=0

(2l)−2α0+α∞+δ̃P
(
1/c0 > t

)
P(c−1 > An) . (B.9)

• Finally, the third term in (B.8) is bounded by

log2(t)−1∑
l=0

P
(
V (n) > 2−l−2t

)
P(c−1 > 2lAn)P

(
c0 ∈ [2l, 2l+1]

)
≤ c

log2(t)∑
k=0

(2l)α0−2α∞+δ̃P
(
1/c0 > t

)
P(c−1 > An) .

Now, if α∞ < 2α0− δ̃ and α0 < 2α∞− δ̃ (which is the case for instance if α0 = α∞ = α

and δ̃ small), then both sums over k are finite: we get that the second and third term in
(B.8) are bounded by P

(
1/c0 > t

)
P(c−1 > An). If on the other hand α∞ ≥ 2α0 − δ̃ > α0

(in which case α0 < 2α∞ − δ̃), then we get that
∑log2(An)
l=0 (2l)−2α0+α∞+δ̃ ≤ cAα∞−2α0+δ̃

n ,

and (B.9) is bounded by a constant times A−2α0+2δ̃
n ≤ cA−α0+3δ̃

n P(ρ0 > An) (recall that
if α0 < α∞ then P(ρ0 > An) ∼ c′P(1/c0 > An)). Finally, if α0 ≥ 2α∞ − δ̃, we have that∑log2(t)
l=0 (2l)α0−2α∞+δ̃ ≤ ctα0−2α∞+δ̃, and then the third term in (B.8) is bounded by a

constant times t−2α∞+2δ̃P(c−1 > An), with P(c−1 > An) ∼ cP(ρ0 > An), since α0 > α∞.
Altogether, we have bounded the four terms in (B.8), so that

P
(
1/p0 > t | ρ0 > An

)
≤ cA−α0+3δ̃

n + ct−2α∞+2δ̃ + P
(
1/c0 > t

)P(c−1 > An)

P(ρ0 > An)
. (B.10)

We then get (B.6) by bounding A−α0+3δ̃
n by n−1+4δ̃ (recall An ≥ n

1
α−δ̄), and using that

t ≤ n2δ̄: we get that the first term in (B.10) is negligible.

Proof of Lemma 6.3. Let us write PAn(·) for P(· | ρ0 > An) for simplicity, and ξ0 = θ0/p0.
Recall (5.2). We decompose the probability according to whether θ0 ≤ 4 or 1/p0 ≤ 4 (or
neither), and we write

PAn

(
ξ0 > t

)
≤ PAn

(
1
p0
> t/4

)
+ PAn

(
θ0 > t/4

)
+ PAn

(
θ0 > 4, 1

p0
> 4
)
.

For the last term, recalling formulas (B.3)–(B.4), we get that

PAn
(
θ0 > 4, 1/p0 < 4

)
= PAn

( 1

c−1
W (n) > 1, c0V > 3

)
≤ PAn

(
V (n)W (n) > 3ρ0

)
≤ P

(
V (n)W (n) > An

)
.

Now, one can easily get that P(V (n) > t) = t−α0+o(1) and P(W (n) > t) = t−α∞+o(1) as
t → +∞ (uniformly in n, see (B.5)), and hence that P(V (n)W (n) > t) = t−α+o(1) (see
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[BS19, Lemma 1.3]). Therefore, we get that P(V (n)W (n) > An) ≤ n−1+2δ̄, for n large

enough and δ̄ small enough (recall α < 1 and An ≥ n
1
α−δ̃). Hence

PAn
(
ξ0 > t

)
≤ PAn(1/p0 > t/4) + PAn(θ0 > t/4) + n−1+2δ̄ ,

which together with Lemma B.1 concludes the proof of the first part of the lemma (note
that n−1+2δ̄ is negligible compared to t−2α+δ̃, uniformly over t ≤ nδ̄, provided δ̄ is small).

For the second part of the lemma, recall that τB := ξB eB, with eB ∼ Exp(1) indepen-
dent of ξB: we therefore get, conditioning first on ξB

P⊗ Pω(ξB eB > t | ρB > An) = E
[
e−t/ξB | ρB > An

]
≤ e−t + PAn

(
ξ0 > t

)
,

which concludes the proof.

Proof of Lemma 7.1. The proof follows essentially from Proposition 1.4. Again, for
simplicity of notations, we reduce to the case where ρB = ρ0, i.e. xB = 0. Recall the
definition of ξB, and the formulas (B.3)–(B.4) for pB, θB,

ξB :=
θB
pB

= 2
(

1 + c0V
(n)
)(

1 +
1

c−1
W (n)

)
. (B.11)

Notice that V (n),W (n) are independent of c−1, c0, hence of ρ0. We clearly have that
V (n),W (n) → V,W as n → +∞, by monotone convergence. We now simply use Propo-
sition 1.4: it gives that conditionally on ρ0 > t, ( 1

c−1
, c0) converges in distribution as

t→ +∞ to

1. ( 1
c̄−1

, 0) if E[cα−1] < +∞, E[1/cα0 ] = +∞;

2. (0, c̄0) if E[cα−1] = +∞, E[1/cα0 ] < +∞;

3. ((1−B) 1
c̄−1

, B c̄0) if E[cα−1] < +∞, E[1/cα0 ] < +∞.

The distributions of c̄−1, c̄0 and B ∼ Bern(q) are those given in the statement of
Lemma 7.1. Hence, in view of (B.11), we get that conditionally on ρ0 > n, ξB con-
verges in distribution as n→ +∞ to

ζ := 2
(

1 +B c̄0V
)(

1 + (1−B) 1
c̄−1

W
)

= 2
(

1 +B c̄0V + (1−B) 1
c̄−1

W
)
,

with B = 1 if E[cα−1] < +∞, E[1/cα0 ] = +∞ and B = 0 if E[cα−1] = +∞, E[1/cα0 ] < +∞.

Moreover, in view of Lemma 6.3 (see in particular (6.12)), we get that there is a
constant c > 0 such that for any t > 1,

P(ζ > t) ≤ cL0(t)t−α01{E[1/cα0 ]<+∞} + cL∞(y)t−α∞1{E[cα−1]<+∞} .

This implies in particular that E[(ζ)α] < +∞.

C Trap properties: proofs of the lemmas

In this section we collect the proofs of some technical properties of both simple
and k-distant traps. Often the proofs deal with both cases at once. We recall that
ρ

(k)
x = e−λ(k+1) cx−1

cx+k
= ρx · · · ρx+k, and ρx = ρ

(0)
x .
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C.1 Traps are isolated: Proof of Lemmas 3.4 and 8.4

The case k, k′ = 0 will include both the case of simple traps of Lemma 3.4 and the
case of 0-distant well-and-wall traps of Lemma 8.4. We start by estimating the probability

P(W(k)
x ∩W(k′)

y ), for all −n ≤ x < y ≤ n and k, k′ ≥ 0. Note thatW(k)
x ⊂ {ρ(k)

x > dne−qn}.
• First, if y− 1 6= x+ k and y+ k′ 6= x+ k, then ρ(k)

x and ρ(k′)
y are independent, so that

by (4.2) (recall also the definition (2.2) of dn)

P
(
ρ(k)
x , ρ(k′)

y > dne−qn
)
≤ P(ρ(k)

x > dne−qn)P(ρ(k′)
y > dne−qn)

≤ c e−λαk/2e−λαk
′/2ψ(dn)2d−2α

n e4αqn ≤ c′

n2
e4qne−λα(k+k′)/2 .

Here, we used Potter’s bound to get that ψ(dne−qn) ≤ cψ(dn)eαqn (and the fact that
α ≤ 1).

• If y = x+ k + 1, then we have that ρ(k)
x ρ

(k′)
y = ρ

(k+k′+1)
x , and

P
(
ρ(k)
x , ρ(k′)

y > dne
−qn
)
≤ P

(
ρ(k+k′+1)
x > d2

ne−2qn
)

≤ c e−λα(k+k′+1)/2ψ(d2
ne−2qn)d−2α

n e2αqn ≤ c′ e−λα(k+k′)/2n−3/2 .

The last inequality uses once again Potter’s bound (the expression is regularly varying in
n, with index −2).

• If y + k′ = x+ k, then necessarily k > 0. Note that cy−1 is independent of ρ(k)
x , so

recalling Definition 8.1, P(W(k)
x ∩W(k′)

y ) is bounded by

P
(
ρ(k)
x > dne

−qn ; cy−1 > eq
2
n
)
≤ ce−λk/2ψ(dne−qn)d−αn eαqne−α∞q

2
n/2

≤ c

n
e−α∞q

2
n/4e−λk/2 .

For the last inequality, we used Potter’s bound and the definition (2.2) of dn, and then
took n large enough.

Therefore, by a union bound, we have that

P(Dn) ≤ Cn2e−5qn
∑
k,k′≥0

1

n2
e4qne−λα(k+k′)/2

+ c′n
+∞∑
k,k′=0

e−λα(k+k′)/2n−3/2 + cn
+∞∑
k=1

c

n
e−α∞q

2
n/4e−λk/2 .

Altogether, we obtain that P(Dn) is bounded by a constant times e−qn and therefore goes
to 0 as n → +∞. To upgrade this to an almost sure statement, we use a monotonicity
trick. We need to introduce

D̃` :=
⋃

−2`≤x<y≤2`
|x−y|≤2`e−5q`

⋃
k≥0

⋃
k′≥0

W̃(k)
x ∩ W̃(k′)

y , (C.1)

with W̃(k)
x := {ρx > c̃ d`e

−5q`} ∩ {cx−1,
1

cx+k
> c̃eq

2
` } for k ≥ 0 (for simple traps the second

condition is absent). The constant c̃ is chosen large enough so that for all n ∈ {`, . . . , 2`}
we have c̃ d`e−5q` ≤ dne−qn , c̃ eq

2
` ≤ dne−q

2
n . With this definition, we have that Dn ⊂ D̃` for

all ` ≤ n ≤ 2`. Then, as above, we obtain that P(D̃`) ≤ c e−5q` . Setting n` = exp((2 log `)4)

so that qn` = 2 log `, we therefore have that
∑
`P(D̃n`) < +∞, and by Borel-Cantelli

lemma there is some `0 such that D̃n` does not occur for ` ≥ `0. Then, we realize that
n`+1 ∼ n` as ` → +∞, so n`+1 ≤ 2n` for all ` large enough, say ` ≥ `1. Therefore,
for any ` ≥ ˜̀ := max(`0, `1), Dn` does not occur, and additionally Dn ⊂ D̃n` for any
n` ≤ n ≤ 2n` ≤ n`+1: we conclude that Dn does not occur for any n ≥ n˜̀.
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C.2 Traps are not too deep: Proof of Lemmas 3.5 and 8.5

The case k = 0 will include both the case of simple traps of Lemma 3.5 and the case
of 0-distant well-and-wall traps of Lemma 8.5. First of all, by (4.2) (and using Potter’s
bound), we have that

P
(
ρ(k)
x > dneqn/2

)
≤ c e−αλk/2ψ(dn)d−αn e−

α
4 qn ≤ c′

n
e−λαk/2e−αqn/4 .

We therefore get thanks to a union bound that P(Mn > dneqn) ≤ c′′e−αqn/4. Hence,
setting n` := exp{( 8

α log `)4} (so that qn` = 8
α log n), we get by Borel-Cantelli lemma that

if ` is large enough, Mn` ≤ dn`e
qn`/2. Then, since Mn is increasing, we get that for all

n` ≤ n ≤ n`+1 we have Mn ≤ Mn`+1
≤ 2dneqn/2 for ` large enough, since n`+1 ∼ n` as

`→ +∞. We get Lemma 8.5 by using that 2 ≤ eqn/2 for n large enough.

C.3 All triblocks are good: Proof of Lemmas 3.6 and 8.6

The case k = 0 will include both the case of simple traps of Lemma 3.5 and the case
of 0-distant well-and-wall traps of Lemma 8.5. Let us estimate the probability, for any x,
k ≥ 0 and y 6= x− 1, x+ k,

P
(
ρ(k)
x > dn e−qn , cy /∈ [e−4qn , e4qn ]

)
≤ P

(
ρ(k)
x > dn e−qn

)(
P(cy > e4qn) + P( 1

cy
> e4qn)

)
≤ ce−λαk/2ψ(dn)d−αn e2αqne−3αqn .

Here, we used that cy and ρ(k)
x are independent, and Potter’s bound to get that ψ(dneqn) ≤

cψ(dn)eαqn and that P(cy > e4qn) ≤ ce−3αqn (and similarly for P( 1
cy

> e4qn)). For
Lemma 3.6, we additionally have to bound

P
(
ρx > dn e−qn , cx > e4qn

)
≤ P

(
cx−1 > dne3qn , cx > e4qn

)
≤ cL∞(dn)d−α∞n e−αqn ≤ cψ(dn)d−αn e−αqn .

A similar bound holds for P
(
ρx > dn e−qn , cx−1 < e−4qn

)
.

Therefore, since by definition of dn we have ψ(dn)d−αn ≤ c′/n, we get by a union
bound

P(Gn) ≤ c′Cn
∑
k≥0

e−λαk/2e−αqn ≤ c′′e−αqn/2 ,

so P(Gn)→ 0 as n→ +∞.
We can easily upgrade this to an a.s. statement, in the same manner as in Section C.1,

by introducing some appropriate event G̃` (analogously to (C.1), by using the events
{ρ(k)
x > c̃dne−qn} and {cy /∈ [c̃e−4qn , c̃e4qn ]} for some appropriate constant c̃), in such a

way that Gn ⊂ G̃` for all ` ≤ n ≤ 2`. Then, P-a.s., G̃` occurs finitely many times along
the subsequence n` = exp(( 4

α log `)4) (so qn` = 4
α log n), and we get the conclusion of the

lemma since n`+1 ≤ 2n` for ` large enough).

C.4 k is small: Proof of Lemma 8.7

Let us notice that for any x, and any k ≥ 0, recalling (4.2)

P
(
W(k)
x

)
≤ P

(
ρ(k)
x > dne−qn

)
≤ ce−λαk/2ψ(dn)d−αn e2αqn ,

where we used Potter’s bound to get that ψ(dne−qn) ≤ cψ(dn)eαqn . Since ψ(dn)d−αn ≤ c/n
by definition of dn, we get by a union bound that

P
(
Kn
)
≤ c′e2αqn

∑
k≥ 6

λqn

e−λαk/2 ≤ c′′e2αqne−3αqn = c′′e−αqn ,

so P(Kn)→ 0 as n→ +∞. This is easily upgraded to an a.s. statement, as in Section C.1.
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C.5 Traps are the only annoying parts of the environment (“Simple Traps”):
Proof of Lemma 3.7

In this subsection, we work with Assumption “Simple Traps”. Let us estimate, for any
x ∈ Z and k ≥ 1, the probability

P
(
ρ(k)
x > εne−λαk/2dn ; ρx, ρx+k ≤ dne−qn

)
.

We assume that we are in the case where P(ρ0 > dn) ∼ cL0(dn)d−α0
n : in particular

α∞ ≥ α0 = α (and γ∞ ≤ γ0 if α∞ = α0), and we have E[cα0 ] < +∞. The case P(ρ0 > t) ∼
cL∞(t)t−α∞ is symmetric.

Since {ρx < dne−qn} ⊂
{
{cx > e

qn
2 −λ} ∪ {cx−1 < dne−qn/2}

}
, it is enough to control

two contributions. The first contribution is

P
(
ρ(k)
x > εne−λk/2dn; cx >e

qn
2 −λ or 1

cx+k−1
> e

qn
2 −λ

)
≤ 2P

( cx−1

cx+k
> εneλk/2dn

)
e−αqn/4

≤ ce−λαk/4ψ(dn)d−αn ε−2α
n e−αqn/4 ≤ c′

n
e−λαk/4e−αqn/5 . (C.2)

Here, we used that cx, cx+k−1 are independent of ρ(k)
x , together with Potter’s bound and

the definition of dn. We also used the fact that ε−2α
n = eo(qn) from our choice of εn.

The second contribution we need to control is, using cx−1 ≤ ρxcx and 1
cx+k

≤
ρx+k

1
cx+k−1

(recall that in Hn we have that ρx, ρx+k ≤ dne−qn),

P
(
ρ(k)
x ≥ εne−λk/2dn ; cx−1,

1
cx+k

≤ dne−
1
2 qn
)

≤ P
(

1
cx+k

> 1
cx−1

eλk/2εndn; e
1
4 qn ≤ cx−1 ≤ dne−

1
2 qn
)
. (C.3)

Indeed, we used that cx−1 = cx+keλ(k+1)ρ
(k)
x , so that cx−1 ≥ eλk/2εneqn/2 ≥ eqn/4 (for n

large enough). Then, the idea is similar to the proof of Proposition 1.4, but here we
need a more quantitative estimate, which bring several technicalities. Conditioning with
respect to cx−1, we get that (C.3) is bounded by a constant times

E
[
L0

(
eλk/2dnεn/cx−1

)
e−λαk/2d−αn ε−αn cαx−11{eqn/4≤cx−1≤dne−qn/2}

]
≤ c′e−λαk/4ε−2α

n d−αn E
[
L0

(
dn/cx−1

)
cαx−11{eqn/4≤cx−1≤dne−qn/2}

]
, (C.4)

where we used Potter’s bound.
• If α = α0 < α∞, we get by Potter’s bound that for any η > 0 (small enough)

E
[
L0

(
dn/c0

)
cα01{eqn/4≤c0≤dne−qn/2}

]
≤ cL0(dn)E

[
(c0)α+η1{c0≥eqn/4}

]
≤ cL0(dn)e−η

′qn ,

with η′ = (α−α∞+2η)/4 > 0 (in particular α+η < α∞). Plugged into (C.4), we therefore
get that

P
(
ρ(k)
x ≥ εndn ; cx−1,

1
cx+k

≤ dne−qn/2
)
≤ c

n
ε−2α
n e−λαk/4e−η

′qn , (C.5)

where we used that L0(dn)d−αn ≤ c/n (recall that P(ρ0 > dn) ∼ cL0(dn)d−α0
n ).

• If α0 = α∞, then we split

E
[
L0

(
dn/c0

)
cα01{eqn/4≤c0≤dne−qn/2}

]
=E

[
L0

(
dn/c0

)
cα01{eqn/4≤c0≤

√
dn}

]
+ E

[
L0

(
dn/c0

)
cα01{

√
dn≤c0≤dne−qn/2}

]
. (C.6)
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For the first term, we use that L0(et) is regularly varying to get that L0(dn/c0) ≤ cL0(dn)

for eqn/4 ≤ c0 ≤
√
dn (since 1

2 log dn ≤ log(dn/c0) ≤ log dn). Therefore, the first term in

(C.6) is bounded by a constant times L0(dn)E
[
cα01{c0>eqn/4}

]
, with

E
[
cα01{c0>eqn/4}

]
= eαqn/4P(cα0 > eαqn/4) +

∫ +∞

eαqn/4
P(cα0 > t) dt

∼ L∞(eqn/4) + α

∫ +∞

qn/4

L∞(eu) du , (C.7)

where for the second line we used that P(cα0 > t) ∼ L0(t1/α)t−1 and then a change of
variable t = eαu. Now, we use that L∞(eu) = ϕ∞(u)uγ∞ with γ∞ > −1 to get that the
last integral is bounded by a constant times ϕ∞(qn)q1+γ∞

n (and so is the first term).
For the second term in (C.6), we write

E
[
L0

(
dn/c0

)
cα01{

√
dn≤c0≤dne−qn}

]
≤

1
2 log dn∑
j=qn

L0(ej)(e−jdn)αP(c0 ∈ [e−(j+1)dn, e
−jdn])

≤ cL∞(dn)

1
2 log dn∑
j=qn

L0(ej) . (C.8)

For the last inequality, we used that P(c0 ∈ [e−(j+1)dn, e
−jdn]) ≤ cL∞(e−jdn)(e−jdn)−α,

together with the fact that L∞(e−jdn) ≤ cL∞(dn) for the range of j considered (since
L∞(et) is regularly varying). Then, since L0(ej) ∼ ϕ0(j)jγ0 with γ0 6= 1, we get that∑ 1

2 log dn
j=qn

L0(ej) is bounded by a constant times ϕ0(log dn)(log dn)1+γ0 ≤ c(log n)L0(dn) if
γ0 > −1; by ϕ0(qn)q1+γ0

n if γ0 < −1.
Altogether, we get that (C.6) is bounded by a constant times

L0(dn)ϕ∞(qn)q1+γ∞
n +

{
L0(dn)∞× (log n)L∞(dn) if γ0 > −1 ;

L∞(dn)× ϕ0(qn)q1+γ0
n if γ0 < −1 .

In the case γ0 > − (E[1/c∞0 ] = +∞), then necessarily γ∞ < −1 (we need to have E[c∞0 ] <

+∞): we may bound (log n)L∞(dn) ≤ cϕ∞(log n)(log n)1+γ∞ ≤ c′gp∞(qn)q1+γ∞
n (recall

qn = (log n)1/4). In the case γ0 < −1, since we assume that P(ρ0 > dn) ∼ cL0(dn)d−αn it
means in particular that L∞(dn) ≤ L0(dn). Overall, using again that L0(dn)d−αn ≤ c/n,
we get from (C.4) that

P
(
ρ(k)
x ≥ εndn ; cx−1,

1
cx+k

≤ dne−qn/2
)
≤ c

n
ε−2α
n e−λαk/4q−cn , (C.9)

for some constant c > 0; c = −(1+γ∞)/2 if γ0 > −1 and c = −(1+γ0)/2 if γ0 < −1 (recall
γ∞ ≤ γ0).

Finally, by a union bound we get that, thanks to (C.2) and (C.5)–(C.9)

P
(
Hn
)
≤ cε−2α

n e−η
′qn if α0 < α∞ ; P

(
Hn
)
≤ cε−2α

n q−cn if α0 = α∞ .

This concludes the proof if we had chosen εn = q−δn with δ > 0 small enough.

C.6 Traps are the only annoying parts of the environment (“Well-and-walls”):
Proof of Lemma 8.8

We work under Assumption “Well-and-walls”. In this case, because of (B.2) and of
the definition (2.2) of dn, we have that (recall Assumption “Traps”)

ϕ0(log n)ϕ∞(log n) (log n)1+γ0+γ∞d−αn ∼ c n−1 , (C.10)
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with γ0, γ∞ > −1. We want to estimate P
(
ρ

(k)
x > εne−λk/2dn ; cx−1 < eq

2
n or c−1

x+k < eq
2
n

)
.

We will deal with P(ρ
(k)
x > εne−λk/2dn ; c−1

x+k < eq
2
n), the remaining part being similar.

First of all, using (C.10), we see that, using Potter’s bound

P( cx−1

cx+k
> εneλk/2dn ; c−1

x+k < 1) ≤ P(cx−1 > εneλk/2dn)

≤ c

n
ϕ0(log n)−1(log n)−(1+γ0)ε−2α

n e−αλk/4 .

Provided that δ has been fixed small enough, summing this quantity over x ∈ [−n, n] and
over k ≥ 0 we obtain something that goes to 0 as n→∞ (recall εn = q−δn = (log n)−δ/4).
We can therefore restrict to the event c−1

x+k > 1. We bound

P( cx−1

cx+k
> εneλk/2dn; 1 < c−1

x+k < eq
2
n) = E

[
P
( cx−1

cx+k
> εneλk/2dn

∣∣ cx+k

)
1{1<c−1

x+k<eq
2
n}

]
≤ d−αn ε−2α

n e−αλk/4E
[
L∞(dncx+k)c−αx+k1{1<c−1

x+k<eq
2
n}

]
. (C.11)

Since L∞(dncx+k) = ϕ∞
(

log(dncx+k)
)(

log(dncx+k)
)γ∞ ≤ c′ϕ∞(log n)(log n)γ∞ under the

condition that 1 < c−1
x+k < eq

2
n , we are left to control the last expectation in (C.11).

Analogously to (C.7):

E
[
c−αx+k1{1<c−1

x+k<eq
2
n}

]
≤ 1 +

∫ eαq
2
n

1

P(c−αx+k > t) dt

≤ 1 + c

∫ q2n

0

L0(eu) du ≤ c′ϕ0(q2
n)q2(1+γ0)

n .

Putting this back into (C.11) (and using Potter’s bound), we obtain

P( cx−1

cx+k
> εneλk/2dn ; 1 < c−1

x+k < eq
2
n) ≤ c′′d−αn ε−2α

n e−αλk/4ϕ∞(log n)(log n)γ∞q2(1+γ0)
n ϕ0(q2

n)

≤ c′′′

n
e−αλk/4(log n)−

1
2 (1+γ0) ϕ0(q2

n)

ϕ0(log n)
ε−2α
n ,

where we have used (C.10) and the fact that qn = (log n)1/4. Provided that δ has been
fixed small enough (recall εn = q−δn ), summing the last quantity over x ∈ [−n, n] and over
k ≥ 0 we obtain again something that goes to 0 as n→∞, concluding the proof.
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