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This paper is concerned with the interplay between statistical asymmetry
and spectral methods. Suppose we are interested in estimating a rank-1 and
symmetric matrix M� ∈ Rn×n, yet only a randomly perturbed version M

is observed. The noise matrix M − M� is composed of independent (but
not necessarily homoscedastic) entries and is, therefore, not symmetric in
general. This might arise if, for example, when we have two independent
samples for each entry of M� and arrange them in an asymmetric fashion.
The aim is to estimate the leading eigenvalue and the leading eigenvector of
M�.

We demonstrate that the leading eigenvalue of the data matrix M can be
O(

√
n) times more accurate (up to some log factor) than its (unadjusted)

leading singular value of M in eigenvalue estimation. Moreover, the eigen-
decomposition approach is fully adaptive to heteroscedasticity of noise, with-
out the need of any prior knowledge about the noise distributions. In a nut-
shell, this curious phenomenon arises since the statistical asymmetry au-
tomatically mitigates the bias of the eigenvalue approach, thus eliminat-
ing the need of careful bias correction. Additionally, we develop appealing
nonasymptotic eigenvector perturbation bounds; in particular, we are able to
bound the perturbation of any linear function of the leading eigenvector of M

(e.g., entrywise eigenvector perturbation). We also provide partial theory for
the more general rank-r case. The takeaway message is this: arranging the
data samples in an asymmetric manner and performing eigendecomposition
could sometimes be quite beneficial.

1. Introduction. Consider an unknown symmetric and low-rank matrix M� ∈ R
n×n.

What we have observed is a corrupted version

M = M� + H ,(1)

with H denoting a noise matrix. A classical problem is concerned with estimating the leading
eigenvalues and eigenspace of M� given observation M .

The current paper concentrates on a scenario where the noise matrix H (and hence M)
consists of independently generated random entries and is hence asymmetric in general. This
might arise, for example, when we have available multiple (e.g., two) samples for each entry
of M� and arrange the samples in an asymmetric fashion. A natural approach that immedi-
ately comes to mind is based on singular value decomposition (SVD), which employs the
leading singular values (resp., subspace) of M to approximately estimate the eigenvalues
(resp., eigenspace) of M�. By contrast, a much less popular alternative is based on eigen-
decomposition of the asymmetric data matrix M , which attempts approximation using the
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FIG. 1. Numerical error |λ − λ�| versus the matrix dimension n, where λ is either the leading eigenvalue
(the blue line) or the leading singular value (the red line) of M . Here, (a) is the case when {Hij } are i.i.d.

N (0, σ 2) with σ = 1/
√

n logn, and (b) is the matrix completion case with sampling rate p = 3 logn/n, where
Mi,j = 1

p M�
i,j independently with probability p and 0 otherwise. The results are averaged over 100 independent

trials. The green lines are obtained by rescaling the corresponding red lines by 2.5/
√

n.

leading eigenvalues and eigenspace of M . Given that eigendecomposition of an asymmet-
ric matrix is in general not as numerically stable as SVD, conventional wisdom often favors
the SVD-based approach, unless certain symmetrization step is implemented prior to eigen-
decomposition.

When comparing these two approaches numerically, however, a curious phenomenon
arises, which largely motivates the research in this paper. Let us generate M� as a random
rank-1 matrix with leading eigenvalue λ� = 1, and let H be a Gaussian random matrix whose
entries are i.i.d. N (0, σ 2) with σ = 1/

√
n logn. Figure 1(a) compares the empirical accu-

racy of estimating the first eigenvalue of M� via the leading eigenvalue (the blue line) and
via the leading singular value of M (the red line). As it turns out, eigendecomposition sig-
nificantly outperforms vanilla SVD in estimating λ�, and the advantage seems increasingly
more remarkable as the dimensionality n grows. To facilitate comparison, we include an ad-
ditional green line in Figure 1(a), obtained by rescaling the red line by 2.5/

√
n. Interestingly,

this green line coincides almost perfectly with the blue line, thus suggesting orderwise gain
of eigendecomposition compared to SVD. What is more, this phenomenon does not merely
happen under i.i.d. noise. Similar numerical behaviors are observed in the problem of ma-
trix completion—as displayed in Figure 1(b)—even though the components of the equivalent
perturbation matrix are apparently far from identically distributed or homoscedastic.

The goal of the current paper is thus to develop a systematic understanding of this phe-
nomenon, that is, why statistical asymmetry empowers eigendecomposition and how to ex-
ploit this feature in statistical estimation. Informally, our findings suggest that: when M� is
rank-1 and H is composed of zero-mean and independent (but not necessarily identically
distributed or homoscedastic) entries,

1. the leading eigenvalue of M could be O(
√

n) times (up to some logarithmic factor)
more accurate than the (unadjusted) leading singular value of M when estimating the first
eigenvalue of M�;1

2. the perturbation of the leading eigenvector is well controlled along an arbitrary deter-
ministic direction; for example, the eigenvector perturbation is well controlled in any coordi-
nate, indicating that the eigenvector estimation error is spread out across all coordinates.

1More precisely, this gain is possible when ‖H‖ is nearly as large as ‖M�‖ (up to some logarithmic factor).
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We will further provide partial theory to accommodate the rank-r case. As an important
application, such a theory allows us to estimate the leading singular value and singular vectors
of an asymmetric rank-1 matrix via eigendecomposition of a certain dilation matrix, which
also outperforms the vanilla SVD approach.

We would like to immediately remark that: for some scenarios (e.g., the case with i.i.d.
Gaussian noise), it is possible to adjust the leading singular value of M to obtain the same
accuracy as the leading eigenvalue of M . As it turns out, the advantages of the eigen-
decomposition approach may become more evident in the presence of heteroscedasticity—
the case where the noise has location-varying and unknown variance. We shall elaborate on
this point in Section 4.1.2.

All in all, when it comes to low-rank matrix estimation, arranging the observed matrix
samples in an asymmetric manner and invoking eigendecomposition properly could some-
times be statistically beneficial.

2. Problem formulation.

2.1. Models and assumptions. In this section, we formally introduce our models and as-
sumptions. Consider a symmetric and low-rank matrix M� = [M�

ij ]1≤i,j≤n ∈ R
n×n. Suppose

we are given a random copy of M� as follows:

(2) M = M� + H ,

where H = [Hij ]1≤i,j≤n is a random noise matrix.
The current paper concentrates on independent—but not necessarily identically distributed

or homoscedastic—noise. Specifically, we impose the following assumptions on H through-
out this paper.

ASSUMPTION 1.

1. (Independent entries) The entries {Hij }1≤i,j≤n are independently generated;
2. (Zero mean) E[Hij ] = 0 for all 1 ≤ i, j ≤ n;
3. (Variance) Var(Hij ) = E[H 2

ij ] ≤ σ 2
n for all 1 ≤ i, j ≤ n;

4. (Magnitude) Each Hij (1 ≤ i, j ≤ n) satisfies either of the following conditions:
(a) |Hij | ≤ Bn;
(b) Hij has a symmetric distribution obeying P{|Hij | > Bn} ≤ cbn

−12 for some universal
constant cb > 0.

REMARK 1 (Notational convention). In what follows, the dependency of σn and Bn on
n shall often be suppressed whenever it is clear from the context, so as to simplify notation.

Note that we do not enforce the constraint Hij = Hji , and hence H and M are in general
asymmetric matrices. Also, Condition 3 does not require the Hij ’s to have equal variance
across different locations; in fact, they can be heteroscedastic. In addition, while Condition
4(a) covers the class of bounded random variables, Condition 4(b) allows us to accommodate
a large family of heavy-tailed distributions (e.g., subexponential distributions). An immediate
consequence of Assumption 1 is the following bound on the spectral norm ‖H‖ of H .

LEMMA 1. Under Assumption 1, there exist some universal constants c0,C0 > 0 such
that with probability exceeding 1 − C0n

−10,

(3) ‖H‖ ≤ c0σ
√

n logn + c0B logn.

PROOF. This is a standard nonasymptotic result that follows immediately from the matrix
Bernstein inequality Tropp (2015) and the union bound (for Assumption 4(b)). We omit the
details for conciseness. �
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2.2. Our goal. The aim is to develop nonasymptotic eigenvalue and eigenvector pertur-
bation bounds under this family of random and asymmetric noise matrices. Our theoretical
development is divided into two parts. Below we introduce our goal as well as some notation
used throughout.

Rank-1 symmetric case. For the rank-1 case, we assume the eigendecomposition of M� to
be

M� = λ�u�u��(4)

with λ� and u� being its leading eigenvalue and eigenvector, respectively. We also denote by
λ and u the leading eigenvalue and eigenvector of M , respectively. The following quantities
are the focal points of this paper (see Section 4):

1. Eigenvalue perturbation: |λ − λ�|;
2. Perturbation of linear forms of eigenvectors: min{|a�(u − u�)|, |a�(u + u�)|} for any

fixed unit vector a ∈ R
n;

3. Entrywise eigenvector perturbation: min{‖u − u�‖∞,‖u + u�‖∞}.
Rank-r symmetric case. For the general rank-r case, we let the eigendecomposition of M�

be

M� = U ���U ��,(5)

where the columns of U � = [u�
1, . . . ,u

�
r ] ∈ R

n×r are the eigenvectors, and �� = diag(λ�
1, . . . ,

λ�
r ) ∈ R

r×r is a diagonal matrix with the eigenvalues arranged in descending order by their
magnitude, that is, |λ�

1| ≥ · · · ≥ |λ�
r |. We let λ�

max = |λ�
1| and λ�

min = |λ�
r |. In addition, we

let the top-r eigenvalues (in magnitude) of M be λ1, . . . , λr (obeying |λ1| ≥ · · · ≥ |λr |) and
their corresponding normalized eigenvectors be u1, . . . ,ur . We will present partial eigenvalue
perturbation results for this more general case, as detailed in Section 5.

As is well known, eigendecomposition can be applied to estimate the singular values and
singular vectors of an asymmetric matrix M� via the standard dilation trick Tropp (2015). As
a consequence, our results are also applicable for singular value and singular vector estima-
tion. See Section 5.2 for details.

2.3. Incoherence conditions. Finally, we single out an incoherence parameter that plays
an important role in our theory, which captures how well the energy of the eigenvectors is
spread out across all entries.

DEFINITION 1 (Incoherence parameter). The incoherence parameter of a rank-r sym-
metric matrix M� with eigendecomposition M� = U ���U �� is defined to be the smallest
quantity μ obeying

(6)
∥∥U �
∥∥∞ ≤

√
μ

n
,

where ‖ · ‖∞ denotes the entrywise �∞ norm.

REMARK 2. An alternative definition of the incoherence parameter (Candès and Recht
(2009), Chen et al. (2019a), Chi, Lu and Chen (2019), Keshavan, Montanari and Oh (2010))
is the smallest quantity μ0 satisfying ‖U �‖2,∞ ≤ √

μ0r/n. This is a weaker assumption than
Definition 1, as it only requires the energy of U � to be spread out across all of its rows rather
than all of its entries. Note that these two incoherent parameters are consistent in the rank-1
case; in the rank-r case one has μ0 ≤ μ ≤ μ0r .
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2.4. Notation. The standard basis vectors in R
n are denoted by e1, . . . , en. For any vector

z, we let ‖z‖2 and ‖z‖∞ denote the �2 norm and the �∞ norm of z, respectively. For any
matrix M , denote by ‖M‖, ‖M‖F and ‖M‖∞ the spectral norm, the Frobenius norm and
the entrywise �∞ norm (the largest magnitude of all entries) of M , respectively. Let [n] :=
{1, . . . , n}. In addition, the notation f (n) = O(g(n)) or f (n) � g(n) means that there is a
constant c > 0 such that |f (n)| ≤ c|g(n)|, f (n) � g(n) means that there is a constant c > 0
such that |f (n)| ≥ c|g(n)|, and f (n) 	 g(n) means that there exist constants c1, c2 > 0 such
that c1|g(n)| ≤ |f (n)| ≤ c2|g(n)|.

3. Preliminaries. Before continuing, we gather several preliminary facts that will be
useful throughout. The readers familiar with matrix perturbation theory may proceed directly
to the main theoretical development in Section 4.

3.1. Perturbation of eigenvalues of asymmetric matrices. We begin with a standard result
concerning eigenvalue perturbation of a diagonalizable matrix (Bauer and Fike (1960)). Note
that the matrices under study might be asymmetric.

THEOREM 1 (Bauer–Fike theorem). Consider a diagonalizable matrix A ∈ R
n×n with

eigendecomposition A = V �V −1, where V ∈ C
n×n is a nonsingular eigenvector matrix and

� is diagonal. Let λ̃ be an eigenvalue of A + H . Then there exists an eigenvalue λ of A such
that

(7) |λ − λ̃| ≤ ‖V ‖∥∥V −1∥∥‖H‖.
In addition, if A is symmetric, then there exists an eigenvalue λ of A such that

(8) |λ − λ̃| ≤ ‖H‖.

However, caution needs to be exercised as the Bauer–Fike theorem does not specify which
eigenvalue of A is close to an eigenvalue of A + H . Encouragingly, in the low-rank case of
interest, the Bauer–Fike theorem together with certain continuity of the spectrum allows one
to localize the leading eigenvalues of the perturbed matrix.

LEMMA 2. Suppose M� is a rank-r symmetric matrix whose top-r eigenvalues obey
|λ�

1| ≥ · · · ≥ |λ�
r | > 0. If ‖H‖ < |λ�

r |/2, then the top-r eigenvalues λ1, . . . , λr of M = M� +
H , sorted by modulus, obey that: for any 1 ≤ l ≤ r ,

(9)
∣∣λl − λ�

j

∣∣≤ ‖H‖ for some 1 ≤ j ≤ r.

In addition, if r = 1, then both the leading eigenvalue and the leading eigenvector of M are
real-valued.

This result, which we establish in Appendix 1.1 deferred to Supplementary Material (Chen,
Cheng and Fan (2020)), parallels Weyl’s inequality for symmetric matrices. Note, however,
that the above bound (9) might be quite loose for specific settings. We will establish much
sharper perturbation bounds when H contains independent random entries (see, e.g., Corol-
lary 1).

3.2. The Neumann trick and eigenvector perturbation. Next, we introduce a classical
result dubbed as the “Neumann trick” (Eldridge, Belkin and Wang (2018)). This theorem,
which is derived based on the Neumann series for a matrix inverse, has been applied to
analyze eigenvectors in various settings (Eldridge, Belkin and Wang (2018), Erdős et al.
(2013), Jain and Netrapalli (2015)).
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THEOREM 2 (Neumann trick). Consider the matrices M� and M (see (5) and (2)). Sup-
pose ‖H‖ < |λl| for some 1 ≤ l ≤ n. Then

(10) ul =
r∑

j=1

λ�
j

λl

(
u��

j ul

){ ∞∑
s=0

1

λs
l

H su�
j

}
.

PROOF. We supply the proof in Appendix 1.2 for self-containedness. �

REMARK 3. In particular, if M� is a rank-1 matrix and ‖H‖ < |λ1|, then

(11) u1 = λ�
1

λ1

(
u��

1 u1
){ ∞∑

s=0

1

λs
1
H su�

1

}
.

An immediate consequence of the Neumann trick is the following lemma, which asserts
that each of the top-r eigenvectors of M resides almost within the top-r eigensubspace of
M�, provided that ‖H‖ is sufficiently small. The proof is deferred to Appendix 1.3.

LEMMA 3. Suppose M� is a rank-r symmetric matrix with r nonzero eigenvalues obey-
ing 1 = λ�

max = |λ�
1| ≥ · · · ≥ |λ�

r | = λ�
min > 0 and associated eigenvectors u�

1, . . . ,u
�
r . Define

κ � λ�
max/λ

�
min. If ‖H‖ ≤ 1/(4κ), then the top-r eigenvectors u1, . . . ,ur of M = M� + H

obey

(12)
r∑

j=1

∣∣u��
j ul

∣∣2 ≥ 1 − 64κ4

9
‖H‖2, 1 ≤ l ≤ r.

In addition, if r = 1, then one further has

min
{∥∥u1 − u�

1
∥∥

2,
∥∥u1 + u�

1
∥∥

2

}≤ 8
√

2

3
‖H‖.(13)

4. Perturbation analysis for the rank-1 case.

4.1. Main results: The rank-1 case. This section presents perturbation analysis results
when the truth M� is a symmetric rank-1 matrix. We shall start by presenting a master bound
which, as we will see, immediately leads to our main findings.

4.1.1. A master bound. Our master bound is concerned with the perturbation of linear
forms of eigenvectors, as stated below.

THEOREM 3 (Perturbation of linear forms of eigenvectors (rank-1)). Consider a rank-1
symmetric matrix M� = λ�u�u�� ∈ R

n×n with incoherence parameter μ (cf. Definition 1).
Suppose the noise matrix H obeys Assumption 1, and assume the existence of some suffi-
ciently small constant c1 > 0 such that

(14) max{σ
√

n logn,B logn} ≤ c1
∣∣λ�
∣∣.

Then for any fixed vector a ∈ R
n with ‖a‖2 = 1, with probability at least 1 − O(n−10) one

has

(15)
∣∣∣∣a�
(
u − u��u

λ/λ�
u�

)∣∣∣∣� max{σ√
n logn,B logn}
|λ�|

√
μ

n
.
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REMARK 4 (The noise size). We would like to remark on the range of the noise size
covered by our theory. If the incoherence parameter of the truth M� obeys μ 	 1, then even
the magnitude of the largest entry of M� cannot exceed the order of |λ�|/n. One can thus
interpret the condition (14) in this case as

σ �
√

n

logn

∥∥M�
∥∥∞ and B � n

logn

∥∥M�
∥∥∞.

In other words, the standard deviation σ of each noise component is allowed to be substan-
tially larger (i.e.,

√
n/ logn times larger) than the magnitude of any of the true entries. In fact,

this condition (14) matches, up to some log factor, the one required for spectral methods to
perform noticeably better than random guessing.

In words, Theorem 3 tells us that: the quantity u��u
λ/λ� a�u� serves as a remarkably accu-

rate approximation of the linear form a�u. In particular, the approximation error is at most
O(1/

√
n) under the condition (14) for incoherent matrices. Encouragingly, this approxima-

tion accuracy holds true for an arbitrary deterministic direction (reflected by a). As a conse-
quence, one can roughly interpret Theorem 3 as

u ≈ λ�

λ
u�u��u = 1

λ
M�u,(16)

where such an approximation is fairly accurate along any fixed direction. Compared with the
identity u = 1

λ
Mu = 1

λ
(M� + H )u, our results imply that Hu is exceedingly small along

any fixed direction, even though H and u are highly dependent. As we shall explain in Sec-
tion 4.3, this observation usually cannot happen when H is a symmetric random matrix or
when one uses the leading singular vector instead, due to the significant bias resulting from
symmetry.

This master theorem has several interesting implications, as we shall elucidate momentar-
ily.

4.1.2. Eigenvalue perturbation. To begin with, Theorem 3 immediately yields a much
sharper nonasymptotic perturbation bound regarding the leading eigenvalue λ of M .

COROLLARY 1. Under the assumptions of Theorem 3, with probability at least 1 −
O(n−10) we have

(17)
∣∣λ − λ�

∣∣� max{σ
√

n logn,B logn}
√

μ

n
.

PROOF. Without loss of generality, assume that λ� = 1. Taking a = u� in Theorem 3, we
get

∣∣u��u
∣∣ |λ − 1|

λ
=
∣∣∣∣u��u − u��u� u��u

λ

∣∣∣∣� max{σ
√

n logn,B logn}
√

μ

n
.(18)

From Lemma 1 and the condition (14), we know ‖H‖ < 1/4, which combines with Lemma 2
and Lemma 3 yields λ 	 |u��u| 	 1. Substitution into (18) yields

|λ − 1| �
∣∣∣∣ λ

u��u

∣∣∣∣max{σ
√

n logn,B logn}
√

μ

n

� max{σ
√

n logn,B logn}
√

μ

n
. �
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For the vast majority of applications we encounter, the maximum possible noise magni-
tude B (cf. Assumption 1) obeys B � σ

√
n/ logn, in which case the bound in Corollary 1

simplifies to

(19)
∣∣λ − λ�

∣∣� σ
√

μ logn.

This means that the eigenvalue estimation error is not much larger than the variability of each
noise component. In addition, we remind the reader that for a fairly broad class of noise (see
Remark 4), the leading eigenvalue λ of M is guaranteed to be real-valued, an observation that
has been made in Lemma 2. In practice, however, one might still encounter some scenarios
where λ is complex-valued. As a result, we recommend the practitioner to use the real part
of λ as the eigenvalue estimate, which clearly enjoys the same statistical guarantee as in
Corollary 1.

Comparison to the vanilla SVD-based approach. In order to facilitate comparison, we de-
note by λsvd the largest singular value of M , and look at |λsvd − λ�|. Combining Weyl’s
inequality, Lemma 1 and the condition (14), we arrive at

(20)
∣∣λsvd − λ�

∣∣≤ ‖H‖ � max{σ
√

n logn,B logn}.
When μ 	 1, this error bound w.r.t. this (unadjusted) singular value could be

√
n times larger

than the perturbation bound (17) derived for the leading eigenvalue. This corroborates our
motivating experiments in Figure 1.

Comparison to vanilla eigendecomposition after symmetrization. The reader might natu-
rally wonder what would happen if we symmetrize the data matrix before performing eigen-

decomposition. Consider, for example, the i.i.d. Gaussian noise case where Hij
i.i.d.∼ N (0, σ 2),

and assume λ� > 0 for simplicity. The leading eigenvalue λsym of the symmetrized matrix
(M + M�)/2 has been extensively studied in the literature (Benaych-Georges and Nadaku-
diti (2011), Féral and Péché (2007), Füredi and Komlós (1981), Knowles and Yin (2013),
Péché (2006), Renfrew and Soshnikov (2013), Yin, Bai and Krishnaiah (1988)). In particu-
lar, it has been shown (e.g., Capitaine, Donati-Martin and Féral (2009)) that, with probability
approaching one,

λsym = λ� + nσ 2

2λ�
+ O(σ

√
logn).(21)

If σ = |λ�|√1/(n logn) (which is the setting in our numerical experiment), then this can be
translated into

λsym − λ�

λ�
= 1

2 logn
+ O

(
1√
n

)
.

This implies that λsym suffers from a substantially larger bias than the leading eigenvalue λ

obtained without symmetrization, since in this case we have (cf. Corollary 1)∣∣∣∣λ − λ�

λ�

∣∣∣∣� 1√
n
.(22)

Comparison to properly adjusted eigendecomposition and SVD-based methods. Armed
with the approximation (21) in the i.i.d. Gaussian noise case, the careful reader might natu-
rally suggest a properly corrected estimate λsym,c as follows (again assuming λ > 0)

(23) λsym,c = 1

2

(
λsym +

√
λ2

sym − 2nσ 2
)
,
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which is a shrinkage-type estimate chosen to satisfy λsym = λsym,c + nσ 2

2λsym,c
. A little algebra

reveals that: if σ = 1/
√

n logn, then∣∣∣∣λsym,c − λ�

λ�

∣∣∣∣� 1√
n
,

thus matching the estimation accuracy of λ (cf. (22)). In addition, some sort of universal-
ity results has been established as well in the literature (Capitaine, Donati-Martin and Féral
(2009)), implying that the same approximation and correction are applicable to a broad family
of zero-mean noise with identical variance. As we shall illustrate numerically in Section 4.2,
this approach (i.e., λsym,c) performs almost identically to the one using vanilla eigendecom-
position without symmetrization. In addition, very similar observations have been made for
the SVD-based approach (Benaych-Georges and Nadakuditi (2012), Bryc and Silverstein
(2018), Féral and Péché (2007), Péché (2006), Silverstein (1994), Yin, Bai and Krishnaiah
(1988)); for the sake of brevity, we do not repeat the arguments here.

We would nevertheless like to single out a few statistical advantages of the eigen-
decomposition approach without symmetrization. To begin with, λ is obtained via vanilla
eigendecomposition, and computing it does not rely on any kind of noise statistics. This is in
stark contrast to the bias correction (23) in the presence of symmetric data, which requires
prior knowledge about (or a very precise estimate of) the noise variance σ 2. Leaving out
this prior knowledge matter, a more important issue is that the approximation formula (21)
assumes identical variance of noise components across all entries (i.e., homoscedasticity).
While an approximation of this kind has been found for more general cases beyond ho-
moscedastic noise (e.g., Bryc and Silverstein (2018)), the approximation formula (e.g., Bryc
and Silverstein (2018), Theorem 1.1) becomes fairly complicated, requires prior knowledge
about all variance parameters and is thus difficult to implement in practice. In comparison,
the vanilla eigendecomposition approach analyzed in Corollary 1 imposes no restriction on
the noise statistics and is fully adaptive to heteroscedastic noise.

Lower bounds. To complete the picture, we provide a simple information-theoretic lower
bound for the i.i.d. Gaussian noise case, which will be established in Appendix 2.

LEMMA 4. Fix any small constant ε > 0. Suppose that Hij
i.i.d.∼ N (0, σ 2). Consider three

matrices

M = λ�u�u�� + H , M̃ = (λ� + �
)
u�u�� + H , M̂ = (λ� − �

)
u�u�� + H

with ‖u�‖2 = 1. If � ≤ σ
√

(log2 1.5 − ε) log 2, then no algorithm can distinguish M , M̃ and
M̂ with pe ≤ ε, where pe is the minimax probability of error for testing three hypotheses
(namely, the ones claiming that the true eigenvalues are λ�, λ� + �, and λ� − �, resp.).

In short, Lemma 4 asserts that one cannot possibly locate an eigenvalue to within a pre-
cision of � much better than σ , which reveals a fundamental limit that cannot be broken by
any algorithm. In comparison, the vanilla eigendecomposition method based on asymmetric
data achieves an accuracy of |λ−λ�| � σ

√
logn (cf. Corollary 1 and (19)) for the incoherent

case, thus matching the information-theoretic lower bound up to some log factor. In fact, the
extra

√
logn factor arises simply because we are aiming for a high-probability guarantee.

4.1.3. Perturbation of linear forms of eigenvectors. The master bound in Theorem 3 ad-
mits a more convenient form when controlling linear functions of the eigenvectors. The result
is this.
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COROLLARY 2. Under the same setting of Theorem 3, with probability at least 1 −
O(n−10) we have

(24) min
{∣∣a�(u − u�)∣∣, ∣∣a�(u + u�)∣∣}� (∣∣a�u�

∣∣+√μ

n

)
max{σ√

n logn,B logn}
|λ�| .

PROOF. Without loss of generality, assume that u��u ≥ 0 and that λ� = 1. Then one has

∣∣a�(u − u�)∣∣≤ ∣∣∣∣a�u − a�u� u��u

λ

∣∣∣∣+ ∣∣a�u�
∣∣∣∣∣∣u��u

λ
− 1
∣∣∣∣

≤ max{σ
√

n logn,B logn}
√

μ

n
+ ∣∣a�u�

∣∣∣∣∣∣u��u

λ
− 1
∣∣∣∣,

where the last inequality arises from Theorem 3 as well as the definition of μ. In addition,
apply Lemma 2 and Lemma 3 to obtain∣∣∣∣u��u

λ
− 1
∣∣∣∣≤ u��u

λ
|1 − λ| + ∣∣u��u − 1

∣∣� ‖H‖ � max{σ
√

n logn,B logn}.
Putting the above bounds together concludes the proof. �

The perturbation of linear forms of eigenvectors (or singular vectors) has not yet been well
explored even for the symmetric case. One scenario that has been studied is linear forms of
singular vectors under i.i.d. Gaussian noise (Koltchinskii and Xia (2016), Xia (2016)). Our
analysis—which is certainly different from Koltchinskii and Xia (2016) as our emphasis is
eigendecomposition—does not rely on the Gaussianality assumption, and accommodates a
much broader class of random noise. Another work that has looked at linear forms of the
leading singular vector is Ma et al. (2020) for phase retrieval and blind deconvolution, al-
though the vector a therein is specific to the problems (i.e., the design vectors) and cannot be
made general.

REMARK 5. The perturbation theory for linear forms of eigenvectors has been substan-
tially extended in our follow-up work; the interested reader is referred to Cheng, Wei and
Chen (2020) for details.

4.1.4. Entrywise eigenvector perturbation. A straightforward consequence of Corol-
lary 2 that is worth emphasizing is sharp entrywise control of the leading eigenvector as
follows.

COROLLARY 3. Under the same setting of Theorem 3, with probability at least 1 −
O(n−9) we have

(25) min
{∥∥u − u�

∥∥∞,
∥∥u + u�

∥∥∞}� max{σ√
n logn,B logn}
|λ�|

√
μ

n
.

PROOF. Recognizing that ‖u−u�‖∞ = maxi |e�
i u−e�

i u�| and recalling our assumption
|e�

i u| ≤ √
μ/n, we can invoke Corollary 2 and the union bound to establish this entrywise

bound. �

We note that: while the �2 perturbation (or sin� distance) of eigenvectors or singular vec-
tors has been extensively studied (Cai and Zhang (2018), Davis and Kahan (1970), O’Rourke,
Vu and Wang (2018), Vu (2011), Wang (2015), Wedin (1972)), the entrywise eigenvector
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FIG. 2. Numerical simulation for rank-1 matrix estimation under i.i.d. Gaussian noise N (0, σ 2), where the
rank-1 truth M� is generated randomly with leading eigenvalue 1. (a): |λ − λ�| versus σ when n = 1000; (b) and
(c): �∞ and �2 eigenvector estimation errors versus n with σ = 1/

√
n logn, respectively. The blue (resp., red)

lines represent the average errors over 100 independent trials using the vanilla eigendecomposition (resp., SVD)
approach applied to M . The orange line in (a) represents the average errors over 100 independent trials using
the corrected leading eigenvalue λsym,c of the symmetrized matrix (M + M�)/2 (cf. (23)).

behavior was much less explored. The prior literature contains only a few entrywise eigen-
vector perturbation analysis results for settings very different from ours, for example, the
i.i.d. random matrix case (O’Rourke, Vu and Wang (2016), Vu and Wang (2015)), the sym-
metric low-rank case (Abbe et al. (2020), Eldridge, Belkin and Wang (2018), Fan, Wang
and Zhong (2017)) and the case with transition matrices for reversible Markov chains (Chen
et al. (2019b)). Our results add another instance to this body of works in providing entrywise
eigenvector perturbation bounds.

4.2. Applications. We apply our main results to two concrete matrix estimation prob-
lems and examine the effectiveness of these bounds. As before, M� is a rank-1 matrix with
incoherence parameter μ and leading eigenvalue λ�.

Low-rank matrix estimation from Gaussian noise. Suppose that H is composed of i.i.d.
Gaussian random variables N (0, σ 2).2 If σ � 1√

n logn
, applying Corollaries 1–3 reveals that

with high probability,

∣∣λ − λ�
∣∣� σ

√
μ logn,(26a)

min
{∥∥u − u�

∥∥∞,
∥∥u + u�

∥∥∞}� σ
√

μ logn

|λ�| ,(26b)

min
{∣∣a�(u − u�)∣∣, ∣∣a�(u + u�)∣∣}� (∣∣a�u�

∣∣+√μ

n

)
σ
√

n logn

|λ�|(26c)

for any fixed unit vector a ∈ R
n. We have conducted additional numerical experiments

in Figure 2, which confirm our findings. It is also worth noting that empirically, eigen-
decomposition and SVD applied to M achieve nearly identical �2 and �∞ errors when esti-
mating the leading eigenvector of M�. In addition, we also include the numerical estimation
error of the corrected eigenvalue λsym,c (cf. (23)) of the symmetrized matrix (M + M�)/2.
As can be seen from Figure 2, vanilla eigendecomposition without symmetrization performs
nearly identically to the one with symmetrization and proper correction.

2In this case, one can take B 	 σ
√

logn, which clearly satisfies B logn �
√

nσ 2 logn.
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FIG. 3. Numerical simulation for rank-1 matrix completion, where the rank-1 truth M� is randomly generated
with leading eigenvalue 1 and sampling rate is p = 3 logn/n. (a) |λ − λ�| versus p when n = 1000; (b) and (c):
�∞ and �2 eigenvector estimation errors versus n, respectively. The blue (resp., red) lines represent the average
errors over 100 independent trials using the eigendecomposition (resp., SVD) approach.

Low-rank matrix completion. Suppose that M is generated using random partial entries of
M� as follows:

(27) Mij =
⎧⎪⎨⎪⎩

1

p
M�

ij with probability p,

0 else,

where p denotes the fraction of the entries of M� being revealed. It is straightforward to

verify that H = M − M� is zero-mean and obeys |Hij | ≤ μ
np

:= B and Var(Hij ) ≤ μ2

pn2 .

Consequently, if p � μ2 logn
n

, then invoking Corollaries 1–3 yields

|λ − λ�|
|λ�| � 1√

n

√
μ3 logn

pn
,(28a)

min
{∥∥u − u�

∥∥∞,
∥∥u + u�

∥∥∞}� 1√
n

√
μ3 logn

pn
,(28b)

min
{∣∣a�(u − u�)∣∣, ∣∣a�(u + u�)∣∣}� (∣∣a�u�

∣∣+√μ

n

)√
μ2 logn

pn
(28c)

with high probability, where a ∈ R
n is any fixed unit vector. Additional numerical simulations

have been carried out in Figure 3 to verify these findings. Empirically, eigen-decomposition
outperforms SVD in estimating both the leading eigenvalue and eigenvector of M�.

Finally, we remark that all the above applications assume the availability of an asymmetric
data matrix M . One might naturally wonder whether there is anything useful we can say if
only a symmetric matrix M is available. While this is in general difficult, our theory does
have direct implications for both matrix completion and the case with i.i.d. Gaussian noise in
the presence of symmetric data matrices; that is, it is possible to first asymmetrize the data
matrix followed by eigendecomposition. The interested reader is referred to Appendix 10 for
details.

4.3. Why asymmetry helps? We take a moment to develop some intuition underlying
Theorem 3, focusing on the case with λ� = 1 for simplicity. The key ingredient is the Neu-
mann trick stated in Theorem 2. Specifically, in the rank-1 case we can expand

u = 1

λ

(
u��u

) ∞∑
s=0

1

λs
H su�.
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A little algebra yields∣∣∣∣a�
(
u − u��u

λ
u�

)∣∣∣∣=
∣∣∣∣∣u��u

λ

∞∑
s=1

a�H su�

λs

∣∣∣∣∣�
∞∑

s=1

∣∣∣∣a�H su�

λs

∣∣∣∣,(29)

where the last inequality holds since (i) |u��u| ≤ 1, and (ii) λ is real-valued and obeys λ ≈ 1
if ‖H‖ � 1 (in view of Lemma 2). As a result, the perturbation can be well controlled as
long as |a�H su�| is small for every s ≥ 1.

As it turns out, a�H su� might be much better controlled when H is random and asym-
metric, in comparison to the case where H is random and symmetric. To illustrate this point,
it is perhaps the easiest to inspect the second-order term.

• Asymmetric case: when H is composed of independent zero-mean entries each with vari-
ance σ 2

n , one has

E
[
a�H 2u�]= a�

E
[
H 2]u� = a�(σ 2I

)
u� = σ 2a�u�.

• Symmetric case: when H is symmetric and its upper triangular part consists of independent
zero-mean entries with variance σ 2

n , it holds that

E
[
a�H 2u�]= a�

E
[
H 2]u� = a�(nσ 2I

)
u� = nσ 2a�u�.

In words, the term a�H 2u� in the symmetric case might have a significantly larger bias
compared to the asymmetric case. This bias effect is substantial when a�u� is large (e.g.,
when a = u�), which plays a crucial role in determining the size of eigenvalue perturbation.

The vanilla SVD-based approach can be interpreted in a similar manner. Specifically, we
recognize that the leading singular value (resp., left singular vector) can be computed via the
leading eigenvalue (resp., eigenvector) of the symmetric matrix MM�. Given that MM� −
M�M�� is also symmetric, the aforementioned bias issue arises as well. This explains why
vanilla eigendecomposition might have an advantage over vanilla SVD when dealing with
asymmetric matrices.

Finally, we remark that the aforementioned bias issue becomes less severe as ‖H‖ de-
creases. For example, when ‖H‖ is exceedingly small, the only dominant term on the right-
hand side of (29) is a�Hu�, with all higher-order terms being vanishingly small. In this
case, E[a�Hu�] = 0 for both symmetric and asymmetric zero-mean noise matrices. As a
consequence, the advantage of eigendecomposition becomes negligible when dealing with
nearly-zero noise. This observation is also confirmed in the numerical experiments reported
in Figure 2(a) and Figure 3(a), where the two approaches achieve similar eigenvalue estima-
tion accuracy when σ → 0 (resp., p → 1) in matrix estimation under Gaussian noise (resp.,
matrix completion). In fact, the case with very small ‖H‖ has been studied in the literature
(Eldridge, Belkin and Wang (2018), O’Rourke, Vu and Wang (2018), Vu (2011)). For exam-
ple, it was shown in O’Rourke, Vu and Wang (2018) that when ‖H‖ � 1√

n
‖M�‖, the singular

value perturbation is also
√

n times smaller than the bound predicted by Weyl’s theorem; sim-
ilar improvement can be observed w.r.t. eigenvalue perturbation when H is symmetric (cf.
Eldridge, Belkin and Wang (2018), Theorem 6). By contrast, our eigenvalue perturbation re-
sults achieve this gain even when ‖H‖ is nearly as large as ‖M�‖ (up to some logarithmic
factor).

4.4. Proof outline of Theorem 3. This subsection outlines the main steps for establishing
Theorem 3. To simplify presentation, we shall assume without loss of generality that

(30) λ� = 1.
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Throughout this paper, all the proofs are provided for the case when Conditions 1–3, 4(a) in
Assumption 1 are valid. Otherwise, if Condition 4(b) is valid, then we can invoke the union
bound to show that

(31) M = M� + H̃

with probability exceeding 1−O(n−10), where H̃ij � Hij1{|Hij |≤B} is the truncated noise and

has magnitude bounded by B . Since Hij has symmetric distribution, it is seen that E[H̃ij ] = 0
and Var(H̃ij ) ≤ σ 2, which coincides with the case obeying Conditions 1–3, 4(a) in Assump-
tion 1.

As already mentioned in Section 4.3, everything boils down to controlling |a�H su�| for
s ≥ 1. This is accomplished via the following lemma.

LEMMA 5 (Bounding higher-order terms). Consider any fixed unit vector a ∈R
n and any

positive integers s, k satisfying Bsk ≤ 2 and nσ 2sk ≤ 2. Under the assumptions of Theorem 3,

(32)
∣∣E[(a�H su�)k]∣∣≤ sk

2
max
{
(Bsk)sk,

(
2nσ 2sk

)sk/2}(√μ

n

)k

.

PROOF. The proof of Lemma 5 is combinatorial in nature, which we defer to Appendix 3.
�

REMARK 6. A similar result in Tao (2013), Lemma 2.3, has studied the bilinear forms of
the high order terms of an i.i.d. random matrix, with a few distinctions. First of all, Tao (2013)
assumes that each entry of the noise matrix is i.i.d. and has finite fourth moment (if the noise
variance is rescaled to be (1); these assumptions break in examples like matrix completion.
Moreover, Tao (2013) focuses on the case with k = 2, and does not lead to high-probability
bounds (which are crucial for, e.g., entrywise error control).

Using Markov’s inequality and the union bound, we can translate Lemma 5 into a high
probability bound as follows.

COROLLARY 4. Under the assumptions of Lemma 5, there exists some universal constant
c2 > 0 such that∣∣a�H su�

∣∣≤ (c2 max
{
B logn,

√
nσ 2 logn

})s√μ

n
∀s ≤ 20 logn

with probability 1 − O(n−10).

PROOF. See Appendix 6. �

In addition, in view of Lemma 1 and the condition (14), one has

(33) ‖H‖ � max
{
B logn,

√
nσ 2 logn

}
< 1/10

with probability 1 −O(n−10), which together with Lemma 2 implies λ ≥ 3‖H‖. This further
leads to ∑

s:s≥20 logn

(‖H‖
λ

)s

≤ ‖H‖
λ

∑
s:s≥20 logn−1

(‖H‖
λ

)s

≤ ‖H‖
λ

∑
s:s≥20 logn−1

1

3s

� max
{
B logn,

√
nσ 2 logn

} · n−10.
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Putting the above bounds together and using the fact that λ is real-valued and λ ≥ 1/2 (cf.
Lemma 2), we have∣∣∣∣a�

(
u − u��u

λ
u�

)∣∣∣∣
=
∣∣∣∣∣u��u

λ

+∞∑
s=1

a�H su�

λs

∣∣∣∣∣
�

20 logn∑
s=1

1

λs

∣∣a�H su�
∣∣+ +∞∑

s=20 logn

(‖H‖
λ

)s

≤
√

μ

n

20 logn∑
s=1

(
2c2 max

{
B logn,

√
nσ 2 logn

})s + max{B logn,
√

nσ 2 logn}
n10

� max
{
B logn,

√
nσ 2 logn

}√μ

n
,

as long as max{B logn,
√

nσ 2 logn} is sufficiently small. Here, the last line also uses the fact

that μ ≥ 1 (and hence
√

μ/n � n−10). This concludes the proof.

5. Extension: Perturbation analysis for the rank-r case.

5.1. Eigenvalue perturbation for the rank-r case. The eigenvalue perturbation analysis
in Section 4 can be extended to accommodate the case where M� is symmetric and rank-r ,
as detailed in this section. As before, assume that the r nonzero eigenvalues of M� obey
λ�

max = |λ�
1| ≥ · · · ≥ |λ�

r | = λ�
min. Once again, we start with a master bound.

THEOREM 4 (Perturbation of linear forms of eigenvectors (rank-r)). Consider a rank-r
symmetric matrix M� ∈ R

n×n with incoherence parameter μ. Define κ � λ�
max/λ

�
min. Suppose

that

(34)
max{σ√

n logn,B logn}
λ�

max
≤ c1

κ

for some sufficiently small constants c1 > 0. Then for any fixed unit vector a ∈ R
n and any

1 ≤ l ≤ r , with probability at least 1 − O(n−10) one has∣∣∣∣∣a�
(
ul −

r∑
j=1

λ�
ju

��
j ul

λl

u�
j

)∣∣∣∣∣� max{σ
√

n logn,B logn} κ

|λl|
√

μr

n
(35)

� max{σ√
n logn,B logn}
λ�

max
κ2
√

μr

n
.(36)

This result allows us to control the perturbation of the linear form of eigenvectors. The
perturbation upper bound grows as either the rank r or the condition number κ increases.

One of the most important consequences of Theorem 4 is a refinement of the Bauer–Fike
theorem concerning eigenvalue perturbations as follows.

COROLLARY 5. Consider the lth (1 ≤ l ≤ r) eigenvalue λl of M . Under the assumptions
of Theorem 4, with probability at least 1 − O(n−10), there exists 1 ≤ j ≤ r such that

(37)
∣∣λl − λ�

j

∣∣� max{σ
√

n logn,B logn}κr

√
μ

n
,
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provided that

(38)
max{σ√

n logn,B logn}
λ�

max
≤ c1/κ

2

for some sufficiently small constant c1 > 0.

PROOF. See Appendix 7. �

In comparison, the Bauer–Fike theorem (Lemma 2) together with Lemma 1 gives a pertur-
bation bound

(39)
∣∣λl − λ�

j

∣∣≤ ‖H‖ � max{σ
√

n logn,B logn} for some 1 ≤ j ≤ r.

For the low-rank case where r � √
n, the eigenvalue perturbation bound derived in Corol-

lary 5 can be much sharper than the Bauer–Fike theorem.
Another result that comes from Theorem 4 is the following bound that concerns linear

forms of the eigensubspace.

COROLLARY 6. Under the same setting of Theorem 4, with probability 1 − O(n−9) we
have

(40)
∥∥a�U

∥∥
2 � κ

√
r
∥∥a�U �

∥∥
2 + max{σ√

n logn,B logn}
λ�

max
κ2r

√
μ

n
.

PROOF. See Appendix 8. �

Consequently, by taking a = ei (1 ≤ i ≤ n) in Corollary 6, we arrive at the following
statement regarding the alternative definition of the incoherence of the eigenvector matrix U
(see Remark 2).

COROLLARY 7. Under the same setting of Theorem 4, with probability 1 − O(n−8) we
have

(41) ‖U‖2,∞ � κr

√
μ

n
.

PROOF. Given that ‖U‖2,∞ = max1≤i≤n ‖e�
i U‖2 and recalling our assumption implies

‖U �‖2,∞ ≤ √
μr/n, we can invoke Corollary 6 and the union bound to derive the advertised

entrywise bounds. �

REMARK 7. The eigenvector matrix is often employed to form a reasonably good ini-
tial guess for several nonconvex statistical estimation problems Keshavan, Montanari and Oh
(2010), and the above kind of incoherence property is crucial in guaranteeing fast conver-
gence of the subsequent nonconvex iterative refinement procedures Ma et al. (2020).

Unfortunately, these results fall short of providing simple perturbation bounds for the
eigenvectors; in other words, the above mentioned bounds do not imply the size of the dif-
ference between U and U �. The challenge arises in part due to the lack of orthonormality of
the eigenvectors when dealing with asymmetric matrices. Analyzing the eigenspace pertur-
bation for the general rank-r case will likely require new analysis techniques, which we leave
for future work. There is, however, some special case in which we can develop eigenvector
perturbation theory, as detailed in the next subsection.

REMARK 8. The theory for the rank-r case has recently been significantly improved; see
our follow-up work (Cheng, Wei and Chen (2020)) for details.
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5.2. Application: Spectral estimation when M� is asymmetric and rank-1. In some sce-
narios, the above general rank results allow us to improve spectral estimation when M� is
asymmetric. Consider the case where M� = λ�u�v�� ∈ R

n1×n2 is an asymmetric rank-1 ma-
trix with leading singular value λ�. Suppose that we observe two independent noisy copies of
M�, namely,

(42) M1 = M� + H 1, M2 = M� + H 2,

where H 1 and H 2 are independent noise matrices. The goal is to estimate the singular value
and singular vectors of M� from M1 and M2.

We attempt estimation via the standard dilation trick (e.g., Tao (2012)). This consists of
embedding the matrices of interest within a larger block matrix

(43) M�
d �
[

0 M�

M�� 0

]
, Md �

[
0 M1

M�
2 0

]
.

Here, we place M1 and M2 in two different subblocks, in order to “asymmetrize” the dilation
matrix. The rationale is that M�

d is a rank-2 symmetric matrix with exactly two nonzero
eigenvalues

λ1
(
M�

d

)= λ� and λ2
(
M�

d

)= −λ�,

whose corresponding eigenvectors are given by

1√
2

(
u�

v�

)
and

1√
2

(
u�

−v�

)
,

respectively. This motivates us to perform eigendecomposition of Md, and use the top-2
eigenvalues and eigenvectors to estimate λ�, u� and v�, respectively.

Eigenvalue perturbation analysis. As an immediate consequence of Corollary 5, the two
leading eigenvalues of Md provide fairly accurate estimates of the leading singular value λ�

of M�, as stated below.

COROLLARY 8. Assume M� ∈ R
n1×n2 is a rank-1 matrix with leading singular value λ�

and incoherence parameter μ. Define n � n1 + n2. Suppose that λd
1 ≥ λd

2 are the two leading
eigenvalues of Md (cf. (43)), and that H 1 and H 2 are independent and satisfy Assumption 1.
Then with probability at least 1 − O(n−10),

(44) max
{∣∣λd

1 − λ�
∣∣, ∣∣λd

2 + λ�
∣∣}� max{σ

√
n logn,B logn}

√
μ

n
,

provided that

(45)
max{σ√

n logn,B logn}
λ�

≤ c1

for some sufficiently small constant c1 > 0.

PROOF. To begin with, it follows from Corollary 5 that both λd
1 and λd

2 are close to either
λ� or −λ�. Repeating similar arguments as in the proof of Lemma 2 (which we omit here),
we can immediately show the separation between these two eigenvalues, namely, λd

1 (resp.,
λd

2) is close to λ� (resp., −λ�). �

Eigenvector perturbation analysis. We then move on to studying the eigenvector pertur-
bation bounds. Specifically, denote by ud

1 and ud
2 the eigenvectors of Md associated with its
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two leading eigenvalues λd
1 and λd

2, respectively. Without loss of generality, we assume that
λd

1 ≥ λd
2. If we write

udilation
1 =

(
ud

1,1
ud

1,2

)
with ud

1,1 ∈ R
n1,ud

1,2 ∈ R
n2,

then we can employ ud
1,1 and ud

1,2 to estimate u� and v� after proper normalization, namely,

(46) u �
ud

1,1

‖ud
1,1‖2

, v �
ud

1,2

‖ud
1,2‖2

.

The following theorem develops error bounds for both u and v, which we establish in Ap-
pendix 9. Here, we denote min‖x ± y‖2 = min{‖x − y‖2,‖x + y‖2} and min‖x ± y‖∞ =
min{‖x − y‖∞,‖x + y‖∞}.

THEOREM 5. Suppose M� = λ�u�v�� ∈ R
n1×n2 is a rank-1 matrix with leading singular

value λ� and incoherence parameter μ, where ‖u�‖2 = ‖v�‖2 = 1. Define n � n1 + n2, and
fix any unit vectors a ∈ R

n1 and b ∈ R
n2 . Then with probability at least 1 − O(n−10), the

estimates u and v (cf. (46)) obey

max
{
min
∥∥u ± u�

∥∥
2,min

∥∥v ± v�
∥∥

2

}
� max{σ√

n logn,B logn}
λ�

,(47a)

max
{
min
∥∥u ± u�

∥∥∞,min
∥∥v ± v�

∥∥∞}� max{σ√
n logn,B logn}

λ�

√
μ

n
,(47b)

min
∣∣a�(u ± u�)∣∣� (∣∣a�u�

∣∣+√μ

n

)
max{σ√

n logn,B logn}
λ�

,(47c)

min
∣∣b�(v ± v�)∣∣� (∣∣b�v�

∣∣+√μ

n

)
max{σ√

n logn,B logn}
λ�

,(47d)

provided that there exists some some sufficiently small constant c1 > 0 such that

(48)
max{σ√

n logn,B logn}
λ�

≤ c1.

Similar to the symmetric rank-1 case, the estimation errors of the estimates u and v are
well controlled in any deterministic direction (e.g., the entrywise errors are well controlled).
This allows us to complete the theory for the case when M� is a real-valued and rank-1
matrix.

Further, we conduct numerical experiments for matrix completion when M� is a rank-1
and asymmetric matrix in Figure 4. Here, we suppose that at most 1 sample is observed for
each entry, and we estimate the singular value and singular vectors of M� via the above-
mentioned dilation trick, coupled with the asymmetrization procedure discussed in Sec-
tion 10. The numerical performance confirms that the proposed technique outperforms vanilla
SVD in spectral estimation.

Finally, we remark that the asymptotic behavior of the eigenvalues of asymmetric random
matrices has been extensively explored in the physics literature (e.g., (Brézin and Zee (1998),
Feinberg and Zee (1997), Khoruzhenko (1996), Lytova and Tikhomirov (2018), Mehlig and
Chalker (1998), Sommers et al. (1988))). Their focus, however, has largely been to pin down
the asymptotic density of the eigenvalues, similar to the semicircle law in the symmetric case.
Nevertheless, a sharp perturbation bound for the leading eigenvalue—particularly for the
low-rank case—is beyond their reach. A few recent papers began to explore the locations of
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FIG. 4. Numerical experiments for rank-1 matrix completion, where M� = u�v�� ∈R
n1×n2 is randomly gener-

ated with leading singular value λ� = 1. Let n = n1 = 2n2. Each entry is observed independently with probability
p. (a) |λ − λ�| versus n with p = 3 logn/n; (b) |λ − λ�| versus p with n = 1000; (c) �∞ eigenvector estimation
error versus n with p = 3 logn/n. The blue (resp., red) lines represent the average errors over 100 independent
trials using using the eigendecomposition (resp., SVD) approach applied to Mdilation (resp., M).

eigenvalue outliers that fall outside the bulk predicted by the circular law (Benaych-Georges
and Rochet (2016), Bordenave and Capitaine (2016), Rajagopalan (2015), Tao (2013)). The
results reported therein either do not focus on obtaining the right convergence rate (e.g.,
providing only a bound like |λ − λ�| = o(|λ�|)) or are restricted to a special family of ground
truth (e.g., the one with a diagonal block equal to identity) or i.i.d. noise. As a result, these
prior results are insufficient to demonstrate the power and benefits of the eigen-decomposition
method in the presence of data asymmetry.

5.3. Proof of Theorem 4. Without loss of generality, we shall assume λ�
max = λ�

1 = 1
throughout the proof. To begin with, Lemma 2 implies that for all 1 ≤ l ≤ r ,

(49) |λl| ≥
∣∣λ�

min
∣∣− ‖H‖ > 1/(2κ) > ‖H‖

as long as ‖H‖ < 1/(2κ). In view of the Neumann trick (Theorem 2), we can derive∣∣∣∣∣a�ul −
r∑

j=1

λ�
ju

��
j ul

λl

a�u�
j

∣∣∣∣∣(50)

=
∣∣∣∣∣
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j=1

λ�
j

λl
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u��
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1
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l

a�H su�
j

}∣∣∣∣∣
≤
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j |
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1

|λl|s
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j

∣∣}

≤
√√√√r

r∑
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|λ�
j |
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}{
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1
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≤ √
r · 1

|λl| ·
{

max
1≤j≤r
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1
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∣∣a�H su�

j

∣∣},(51)

where the third line follows since
∑r

j=1 |u��
j ul|2 ≤ ‖ul‖2

2 = 1, and the last inequality makes
use of (49). Apply Corollary 4 to reach

(51) ≤
√

r

|λl|
∞∑

s=1

(
2c2κ max

{
B logn,

√
nσ 2 logn

})s√μ

n
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� κ

|λl| max
{
B logn,

√
nσ 2 logn

}√μr

n

� κ2 max
{
B logn,

√
nσ 2 logn

}√μr

n
,

with the proviso that |λl| > 1/(2κ) and max{B logn,
√

nσ 2 logn} ≤ c1/κ for some suffi-
ciently small constant c1 > 0. The condition |λl| > 1/(2κ) follows immediately by combin-
ing Lemma 2, Lemma 1 and the condition (34).

6. Discussions. In this paper, we demonstrate the remarkable advantage of eigen-
decomposition over SVD in the presence of asymmetric noise matrices. This is in stark
contrast to conventional wisdom, which is generally not in favor of eigendecomposition for
asymmetric matrices. Our results only reflect the tip of an iceberg, and there are many out-
standing issues left answered. We conclude the paper with a few future directions.

Sharper eigenvalue perturbation bounds for the rank-r case. Our current results in Sec-
tion 5 provide an eigenvalue perturbation bound on the order of r/

√
n, assuming the truth

is rank-r . However, numerical experiments suggest that the dependency on r might be im-
provable. It would be interesting to see whether further theoretical refinement is possible, for
example, whether it is possible to improve it to O(

√
r/n).

Eigenvector perturbation bounds for the rank-r case. As mentioned before, the current
theory falls short of providing eigenvector perturbation bounds for the general rank-r case.
The main difficulty lies in the lack of orthogonality of the eigenvectors of the observed ma-
trix M . Nevertheless, when the size of the noise is not too large, it is possible to establish
certain near-orthogonality of the eigenvectors, which might in turn lead to sharp control of
eigenvector perturbation.

A challenging signal-to-noise ratio regime. Take the rank-1 case for example: the present
work focuses on the regime where ‖H‖ � ‖M�‖/√logn, and it is known that spectral meth-
ods fail to yield reliable estimation if ‖H‖ � ‖M�‖. There is, however, a “gray” region
(which includes, e.g., the case with ‖H‖ ≈ ‖M�‖) that has not been addressed. Developing
nonasymptotic yet informative perturbation bounds for this regime is likely very challenging
and requires new analysis techniques, which we leave for future investigation.

Correlated noise. The current theoretical development relies heavily on the assumption
that the noise matrix H contains independent random entries. There is no shortage of exam-
ples where the noise matrix is asymmetric but is not composed of independent entries. For
instance, in blind deconvolution Li et al. (2019), the noise matrix is a sum of independent
asymmetric matrices. Can we develop eigenvalue perturbation theory for this class of noise?

Statistical inference of eigenvalues and eigenvectors. In various applications like network
analysis and inference, one might be interested in determining the (asymptotic) eigenvalue
and eigenvector distributions of a random data matrix, in order to produce valid confidence
intervals (Bai and Yao (2008), Bao, Ding and Wang (2018), Cai, Han and Pan (2017), Cape,
Tang and Priebe (2019), Chen et al. (2019c), Johnstone (2001), Xia (2019)). Can we use
the current framework to characterize the distributions of the leading eigenvalues as well as
certain linear forms of the eigenvectors of M when the noise matrix is nonsymmetric?

Asymmetrization for other applications. Given the abundant applications of spectral esti-
mation, our findings are likely to be useful for other matrix eigenvalue problems and might
extend to the tensor case (Cai et al. (2019), Zhang and Xia (2018)). Here, we conclude the
paper with an example in covariance estimation (Baik and Silverstein (2006), Fan, Wang
and Zhong (2017)). Imagine that we observe a collection of n independent Gaussian vectors
X1, . . . ,Xn ∈ R

d , which have mean zero and covariance matrix

(52) �� = vv� + I d
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FIG. 5. Numerical experiments for the spiked covariance model, where the sample vectors are zero-mean Gaus-
sian vectors with covariance matrix �� (cf. (52)). We plot |λ − λ�| versus n with d = n/10. The blue (resp., red)
lines represent the average errors over 100 independent trials when λ is the leading eigenvalue of �̂asym (resp.,
�̂).

with v being a unit vector. This falls under the category of the spiked covariance model
(Johnstone and Lu (2009)). One strategy to estimate the spectral norm λ� = 2 of �� is to look
at the spectrum of the sample covariance matrix �̂ = 1

n

∑n
i=1 XiX

�
i . Motivated by the results

of this paper, we propose an alternative strategy by looking at the following asymmetrized
sample covariance matrix:

(53) �̂asym = 2

n

(n/2∑
i=1

Upper
(
XiX

�
i

)+ n∑
i=n/2+1

Lower
(
XiX

�
i

))
,

where Upper(·) (resp., Lower(·)) extracts out the upper (resp., lower) triangular part of the
matrix, including (resp., excluding) the diagonal entries. As can be seen from Figure 5, the
largest eigenvalue of the asymmetrized �̂asym is much closer to the true spectral norm of
��, compared to the largest singular value of the sample covariance matrix �̂. We leave the
theoretical understanding of such findings to future investigation.
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