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We introduce one-sided versions of Huber’s contamination model, in
which corrupted samples tend to take larger values than uncorrupted ones.
Two intertwined problems are addressed: estimation of the mean of the un-
corrupted samples (minimum effect) and selection of the corrupted samples
(outliers). Regarding estimation of the minimum effect, we derive the mini-
max risks and introduce estimators that are adaptive with respect to the un-
known number of contaminations. The optimal convergence rates differ from
the ones in the classical Huber contamination model. This fact uncovers the
effect of the one-sided structural assumption of the contaminations. As for
the problem of selecting the outliers, we formulate the problem in a multiple
testing framework for which the location and scaling of the null hypotheses
are unknown. We rigorously prove that estimating the null hypothesis while
maintaining a theoretical guarantee on the amount of the falsely selected out-
liers is possible, both through false discovery rate (FDR) and through post
hoc bounds. As a by-product, we address a long-standing open issue on FDR
control under equi-correlation, which reinforces the interest of removing de-
pendency in such a setting.

1. Introduction. We are considering statistical problems for which some of the available
data have been corrupted. Such issues have been addressed by different fields in statistics, de-
pending on how one defines and considers the corruption. Two examples are robust estimation
and sparse modeling. In the former, Huber’s contamination model [41, 42] is the prototypical
setting for handling this problem. It assumes that among n observations Y1, . . . , Yn, most of
them follow some normal distribution N (θ, σ 2) whereas the corrupted data are arbitrarily
distributed. In sparse modeling, one typically assumes that the data Y1, . . . , Yn are normally
distributed with mean γi , where γi = θ for uncorrupted samples and γi �= θ is arbitrary for
corrupted samples (see [8] for a related model).

However, in some practical problems, corrupted samples do not take arbitrary values and
instead satisfy a structural assumption. Consider for instance the situation where the Yi’s are
concentration measurements of a pollutant, coming from n sensors spread out at n locations
of a city. This pollutant has a background concentration value θ in the city, but due to local
pollution effects, the sensors may record larger values at some locations. Health authorities
are then interested in evaluating the degree of background pollution and in finding the most
affected regions in the city.

In this work, we introduce one-sided contamination models to account for the structural
assumption that corrupted samples tend to take larger values than uncorrupted ones. Then we
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consider the twin problems of estimating the distribution of the uncorrupted samples and of
identifying the corrupted samples.

1.1. Models and objectives.

1.1.1. One-Sided Contamination model (OSC). We first introduce a one-sided counter-
part of Huber’s contamination model for which some of the Yi’s follow a N (θ, σ 2) dis-
tribution, whereas the remaining samples are positively contaminated, that is, they have a
distribution that stochastically dominates a N (θ, σ 2) distribution, but is otherwise arbitrary.

More formally, we assume that

(1) Yi = θ + σεi, 1 ≤ i ≤ n,

where σ > 0 is a standard deviation parameter (either equal to 1 or unknown), θ ∈ R is a
fixed minimum effect and the εi ’s are independent noise random variables. Denoting by πi the
unknown distribution of the noise, we assume that, for some k, the distribution π = ⊗n

i=1 πi

of ε belongs to the set

(2) Mk =
{
π =

n⊗
i=1

πi : πi � N (0,1), 1 ≤ i ≤ n,

n∑
i=1

1{πi�N (0,1)} ≤ k

}
,

where � (resp., �) denotes the stochastic domination (resp., strict stochastic domination);
see Section 1.4 below for a definition. In Mk , at most k of the distributions πi are allowed
to strictly dominate the Gaussian measure. Model (1) satisfies the heuristic explanation de-
scribed above: if π ∈ Mk , then at least n − k samples are noncontaminated and follow a
N (θ, σ 2) distribution, whereas the remaining contaminated samples stochastically dominate
this distribution.

In this model, henceforth referred to as the One-Sided Contamination (OSC) model, the
parameter θ corresponds to the expectation of the non-contaminated samples. If k ≤ n − 1, it
also satisfies

(3) θ = min
1≤i≤n

E(Yi),

and can therefore be interpreted as a minimum theoretical effect. In particular, θ is identifiable
for k ∈ [n/2, n − 1], whereas this is not the case in the classical Huber’s model.

Throughout the paper, probabilities (resp., expectations) in model (1) are denoted by Pθ,π,σ

(resp., Eθ,π,σ ). The parameter σ is dropped in the notation whenever σ = 1.

1.1.2. One-Sided Gaussian Contamination model (gOSC). As in the sparse Gaussian
vector model, we also consider a specific case of the OSC model for which the contaminated
samples are still assumed to be normally distributed, that is, the πi ’s are Gaussian distribu-
tions with unit variance and positive mean μi/σ where μ ∈ R

n+ is a contamination effect. In
that case, the model can be rewritten as

(4) Yi = θ + μi + σξi, 1 ≤ i ≤ n,

where the ξi ’s are i.i.d. N (0,1) distributed and μ ∈ R
n+ is unknown. Defining the mean vector

(5) γ = (θ + μi)1≤i≤n,

we deduce that Y follows a normal distribution with unknown mean γ and variance σ 2In ,
while θ corresponds to min1≤i≤n{γi}, that is, the minimum component of the mean vector.

To formalize the connection with the OSC model, let εi = μi/σ + ξi and πi = N (μi/σ,1)

for all i ∈ {1, . . . , n}. Then (4) is a particular case of (1) because N (μi/σ,1) � N (0,1). As



274 CARPENTIER, DELATTRE, ROQUAIN AND VERZELEN

in the OSC model, we prescribe the number of contaminated samples to be less or equal to k,
by defining

(6) Mk =
{
μ ∈ R

n+ :
n∑

i=1

1{μi �=0} ≤ k

}
.

In what follows, we refer to model (4) as the One-Sided Gaussian Contamination (gOSC)
model. The probabilities (resp., expectations) in this model are denoted by Pθ,μ,σ (resp.,
Eθ,μ,σ ). Whenever we assume that the variance parameter σ is known and is equal to 1, the
subscript σ is dropped in the above notation.

1.1.3. Objectives. We are interested in the two following intertwined problems:

– Objective 1: optimal estimation of the minimum effect. We aim at establishing the min-
imax estimation rates of θ , both in the OSC (1) and in the gOSC (4) models. In particular,
we explore the role of the one-sided contamination assumption for the computation of such
estimation rates. As explained below, this problem is at the crossroads of several lines of
research, including robust estimation and nonsmooth linear functional estimation.

– Objective 2: controlled selection of the outliers. Here, we are interested in finding the
contaminated samples. In the Gaussian case (gOSC), this is equivalent to selecting the posi-
tive entries of μ in (5). Adopting a multiple testing framework, we aim at building a selection
procedure with suitable false discovery rate (FDR) control [4] and providing a valid post hoc
bound [36, 37]. The difficulty stems from the fact the minimum effect θ is unknown. In con-
trast to objective 1 where the contaminated samples were considered as nuisance quantities,
for this second objective the contaminated samples are now interpreted as the signal whereas
θ is a nuisance parameter.

Objective 2 is intrinsically connected to the problem of removing the correlation when mak-
ing (one-sided) multiple tests from Gaussian equicorrelated test statistics: when the equicor-
relation is carried by the latent factor θ , we can remove this correlation by subtracting an
estimator of θ from the test statistics. Although this simple strategy is quite common (see,
e.g., [33] and references therein), assessing whether the theoretical performance of the result-
ing procedure remains suitable is a longstanding issue in multiple testing literature. In this
work, we provide positive results for this problem, by showing that it is possible to (asymp-
totically) control the FDR while having (at least) the same power as if the test statistics had
been independent.

In the remainder of the Introduction, we first describe our contribution for minimum effect
estimation and then turn to outlier selection.

1.2. Optimal estimation of the minimum effect. Given σ 2 = 1 and a sparsity parameter
k ∈ {1, . . . , n − 1}, we define the L1 minimax estimation risk of θ in both gOSC (4) and
OSC (1) models:

(7) R[k,n] = inf
θ̂

sup
(θ,μ)∈R×Mk

Eθ,μ

[|θ̂ − θ |]; R[k,n] = inf
θ̂

sup
θ∈R,π∈Mk

Eθ,π

[|θ̂ − θ |].
We characterize these minimax risks by deriving matching (up to numerical constants)

lower and upper bounds, uniformly over the parameter k; see Sections 2 and 3. The results
are summarized in Table 1. It is interesting to compare these orders of magnitude with those
derived for the Huber contamination model with at most k contaminated samples. From, for
example, Section 2 of [14], the minimax risk is of order max(n−1/2, k

n
) in Huber’s model

(the results in [14] are proved for a model where the number of contaminated samples follows
a Binomial distribution with parameters (n, k/n), but the proofs straightforwardly extend to
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TABLE 1
Minimax estimation risks of θ (up to numerical constants)

General bound 1 ≤ k ≤ √
n

√
n ≤ k ≤ n/2 n/2 ≤ k ≤ n − 1

R[k,n] log( n
n−k

)

log1/2(1+ k2
n

)
n−1/2 k/n

log1/2(k2/n)

log( n
n−k

)

log1/2 n

R[k,n] log2(1+
√

k
n−k

)

log3/2(1+( k√
n
)2/3)

n−1/2 k/n

log3/2(k2/n)

log2( n
n−k

)

log3/2 n

Huber max(n−1/2, k
n ) n−1/2 k/n ∞

the case of a fixed parameter k). For k ≤ √
n, the rate is parametric in all three models. For

k ∈ (
√

n,n/2), the assumption of one-sided contamination leads to a log1/2(k2/n) gain over
the Huber model, while assuming that the contaminations are Gaussian lead to an additional
logarithmic gain. For k ∈ [n/2, n − 1], recall that Huber’s model is not identifiable while the
one-sided contamination model is and we identify various minimax rates. For a fixed pro-
portion (k/n) of contaminated samples, the optimal rate converges to 0 at a polylogarithmic
rate. For a proportion (n − k)/n of noncontaminated samples slowly decaying with n, the
estimation rate still goes to 0.

For both models (OSC and gOSC), we also provide estimation procedures that are adaptive
to the unknown number k of contaminated samples. Finally, in Section 4, we consider the case
where the noise level σ in (4) is unknown. We prove, in the OSC model, that adaptation to
unknown σ is possible, and we characterize the optimal estimation risk for σ .

OSC: Technical aspects and connection to robust estimation. As explained earlier, the
OSC model (1) is a one-sided counterpart of Huber’s contamination model [41, 42]; see
also [58] for the historical reference on the concept of contamination and [50, 53] for more
recent reviews. From a technical perspective, minimax bounds for the OSC model proceed
from the same general ideas as for Huber’s contamination model, but with a twist. In Huber’s
model, the empirical median turns out to be optimal [42], while in the OSC model, there is a
benefit to using other empirical quantiles. Since the contaminations are one-sided, the left tail
is less perturbed than the right tail. Correcting for the bias and choosing a suitable quantile,
we prove that the resulting estimator achieves (up to a constant) the optimal rate R[k,n].
Adaptation to unknown k is performed via Lepski’s method, while adaptation to unknown σ

is based on a difference of empirical quantiles.

gOSC: Technical aspects and connection to nonsmooth functional estimation. Pinpoint-
ing the minimax risk in the Gaussian contamination model (gOSC) is much more technical.
Indeed, standard estimators, such as those based on quantiles, are not optimal in this setting.
The key idea of our upper bound is to invert a collection of local tests of the form “θ ≥ u”
versus “θ < u” for u ∈ R, following an approach from [13] developed for sparsity testing.
Recall that γi in (5) stands for the expectation of Yi ; then under the null “θ ≥ u”, we have∑n

i=1 1γi<u = 0, whereas under the alternative “θ < u” we have
∑n

i=1 1γi<u ≥ n − k. Thus,
this approach boils down to estimating the nonsmooth-functional u 
→ ∑n

i=1 1γi<u.
Starting from the seminal works [23, 43] (for respectively linear and quadratic functionals),

an extensive literature on estimating smooth functionals of the mean of a Gaussian vector has
been developed. Under a sparsity assumption, this problem has been investigated in [9, 15,
17, 66], and shares some strong connections with the problem of signal detection, as studied
in, for example, [2, 45].
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However, estimation of nonsmooth functionals (e.g.,
∑n

i=1 |γi |q with q ∈ (0,1]) is signifi-
cantly more involved, even without sparsity assumptions; see, for example, [8, 10, 13, 16, 40,
46–49, 55, 68]. For this class of problems, one powerful approach, known as the polynomial
approximation method [40, 55], amounts to building a suitable polynomial approximation of
the nonsmooth function and plugging in unbiased estimators of the moments

∑n
i=1 γ s

i for
some integers s ∈ {1, . . . , smax}. Unfortunately, we cannot rely on this strategy for estimating∑n

i=1 1γi<u, mainly because the contaminated γi’s may be arbitrarily large. In a related set-
ting, where the contaminated means γi �= θ are distributed according to some smooth prior
distributions supported on R, Cai and Jin [8] have pinpointed the optimal rate by using the
empirical Fourier transform (see also [22]). However, this approach also falls down in our
framework, again because the contaminated γi’s are arbitrary. In this work, we introduce a
new strategy that combines polynomial approximation methods with the empirical Laplace
transform. Indeed, the empirical Laplace transform has the virtue of being almost insensitive
to arbitrarily large values of γi .

As for the minimax lower bound, we rely on moment matching techniques, following the
approach of [55] that has been recently applied to other non-smooth functional models [10,
13, 40, 68].

1.3. Controlled selection of the outliers. Turning to the second objective, we now detail
our contributions and discuss the relevant literature. Our approach falls with the multiple
testing paradigm and builds upon some of our estimators for θ (and for σ ).

1.3.1. Multiple testing formulation. Recall that our second objective was to identify the
active set of outliers in the general model (1). Again, we emphasize that what we described
before as outliers is in this part the quantities of interest (e.g., the city locations with abnormal
pollutant concentration in our motivating example). In the OSC model, we formulate this
selection problem as n simultaneous tests of

(8) H0,i : “πi = N (0,1)” against H1,i : “πi �N (0,1)”, 1 ≤ i ≤ n.

(Recall that “�” stands for strict stochastic domination.)
In the specific case of the gOSC model (4), this problem amounts to simultaneously testing

H0,i : “μi = 0” against H1,i : “μi > 0”, 1 ≤ i ≤ n.

We denote the set of nonoutlier coordinates by H0(π) = {1 ≤ i ≤ n : πi = N (0,1)}, and the
set of outlier coordinates by H1(π) = {1 ≤ i ≤ n : πi � N (0,1)}.

The cardinality of H0(π) (resp., H1(π)) is denoted by n0(π) (resp., n1(π)). Hence, π ∈
Mk , means that the number of outliers is n1(π) ≤ k. Our selection problem thus amounts to
estimating H1(π) (or equivalently H0(π)). The dependence on π of H0(π), H1(π), n0(π),
n1(π) is sometimes suppressed for convenience.

A multiple-testing procedure is a data-driven set R ⊂ {1, . . . , n} of proposed outliers. For
a given R, we classically quantify the amount of false positives of R by its false discovery
proportion [4],

(9) FDP(π,R) = |R ∩H0(π)|
|R| ∨ 1

,

which records the proportion of errors among the set R of selected outliers. The expectation
of this quantity Eθ,π,σ [FDP(π,R)] is the false discovery rate, which can be considered as the
standard generalization of the single testing type I error rate to large scale multiple testing.
The true discovery proportion is then defined by

(10) TDP(π,R) = |R ∩H1(π)|
n1(π) ∨ 1

,
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and corresponds to the proportion of (correctly) selected outliers among the set of true out-
liers. The expectation of this quantity Eθ,π,σ [TDP(π,R)] is a widely used analogue of the
power in single testing; see, for example, [1, 59, 63]. Our contribution falls into two frame-
works:

• Multiple testing: find a procedure selecting a subset R ⊂ {1, . . . , n} as close as possible
to H1(π), that is, that has a TDP as high as possible while maintaining a controlled FDR.

• Post hoc bound: provide a confidence bound on FDP(π,S), uniformly valid over all
possible selection S ⊂ {1, . . . , n}.
While the first objective is classical in the multiple testing field (see, e.g., [4, 5, 32, 34]), the
second objective was proposed more recently in [35–37]. It is connected to the burgeoning re-
search field of selective inference; see, for example, [6] and references therein. The rationale
behind developing such a bound is that, since the control is uniform, the probability coverage
is guaranteed even if S is itself data-dependent. The obtained bound is therefore also valid
when practitioners reuse the same dataset, possibly several times, in order to design S. We
denote the outlier selected set either by R or S depending on the considered setting: R is
typically a procedure designed by the statistician, whereas S is chosen by the user.

1.3.2. Relation to the first objective and to previous literature. In the OSC model (1),
solving the above multiple testing issues is challenging primarily because the parameters
θ and σ are unknown. Indeed, this entails that the scaling of the null distribution (i.e., the
distribution under the null hypothesis) is unknown. A natural idea is to design a two-stage
procedure: first, we estimate θ and σ by some estimators θ̂ and σ̂ (as we do in the first part
of this paper). Then, in a testing stage, we apply a standard multiple testing procedure to the
rescaled observation Y ′

i = (Yi − θ̂ )/σ̂ .
Estimating the null distribution in a multiple testing context has been popularized in a se-

ries of works by Efron; see [25, 27, 28]. Through careful data analyses, Efron noticed that the
theoretical null distribution often turns out to be wrong in practical situations, which can lead
to an uncontrolled increase in false positives. To address this issue, Efron recommends esti-
mating the scaling parameters of the null distribution (θ, σ here) by “central matching,” that
is, by fitting a parametric curve to the trimmed data. In his work, Efron provides compelling
empirical evidence for his approach. However, to our knowledge, the FDP and TDP of such
two-stage testing procedures have never been theoretically controlled. Note that estimating
the null in a multiple testing context was also the motivation of the minimax results of [8,
48], although the corresponding multiple testing procedure was not studied. We recall that
these previous studies are all developed in the two-sided context, whereas our focus is on a
one-sided shape constraint.

Finally, let us mention that a procedure learning part of the null distribution while main-
taining FDR control and a form of power optimality has been proposed in [1, 3], often referred
to as the Barber–Candès procedure. In the one-sided case, it is able to learn the unknown null
density when this is assumed to be symmetric around 0. However, this assumption is not sat-
isfied in our context because the symmetry point of the null distribution (θ here) is unknown.

1.3.3. Summary of our results. In Sections 5 and S-1, we show that a fair modification
of the quantile-based estimators θ̂ , σ̂ , introduced for the OSC model, can be used to estimate
the null distribution to rescale the p-value process, and can then be suitably combined with
classical multiple testing procedures:

1. A new (θ̂ , σ̂ )-rescaled Benjamini–Hochberg procedure R is defined that satisfies
the following FDR controlling property: in the general model (1), for any π ∈ Mk ,
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with k = �0.9n�, (
Eθ,π,σ

(
FDP(π,R)

) − n0

n
α

)
+
� log(n)/n1/16.

In addition, we derive a power result showing that the power (the expectation of the TDP) of
this procedure is close to that of the (θ, σ )-rescaled Benjamini–Hochberg procedure, under
mild conditions. The latter is an oracle benchmark that would require the exact knowledge of
θ and σ .

2. A new (θ̂ , σ̂ )-rescaled post hoc bound FDP(·) is proposed, satisfying, for any π ∈ Mk ,
with k = �0.9n�,(

1 − α − Pθ,π,σ

(∀S ⊂ {1, . . . , n},FDP(π,S) ≤ FDP(S)
))

+ � log(n)/n1/16.

To the best of our knowledge, these are the first results that theoretically validate Efron’s
principle of empirical null correction in a specific multiple testing context.

For bounding the type I error rates, the technical argument used in our proof is close
in spirit to recent studies [44, 57] (among others): the idea is to divide the data into two
“orthogonal” parts (small or large Yi’s), the first part being used for the rescaling and the
second one for testing. For the power result, our formal argument is entirely new to our
knowledge; see also Remark 5.3.

Finally, let us mention that the above rate log(n)/n1/16 is certainly not optimal and could
be improved by using more involved estimators θ̂ , σ̂ . Indeed, our concern here regarding
the multiple testing procedure is to show that it is consistent with respect to the FDP/TDP
metrics, this for a wide range of values of k, including the dense case where k is of the
order of n. Furthermore, despite the fact that this rate is relatively slow, the new rescaled BH
procedure improves on the vanilla BH procedure, as illustrated in the numerical experiments
of Section S-1.3 (see also Figure 1).

1.3.4. Application to decorrelation in multiple testing. It is well known that Efron’s
methodology on empirical null correction can be applied to reduce the effect of correlations
between the tests, as noted by Efron himself [26, 29] where he mentioned that “there is a lot
at stake here.” Several following works supported this assertion, especially by decomposing
the covariance matrix of the data into factors; see [30, 31, 33, 54]. However, strong theoretical
results on such corrected multiple testing procedures are still not available.

Meanwhile, another branch of the literature aims at incorporating known and unknown de-
pendence into multiple testing procedures, for instance, by resampling-based approaches [3,

FIG. 1. X-axis: targeted FDR level α ∈ {0.005,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5}, Y -axis: TDP
(power) averaged over 100 replications for four different procedures (see text in Section S-1.3). The model is the
one-sided Gaussian one with equicorrelation ρ = 0.3. The parameters used are n = 106, 
 = 2.5, k/n = 0.1.
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24, 60–62, 67] or by directly plugging the known dependence structure [7, 19, 39]. However,
as noted for instance in the discussion of [64], even for very simple correlation structures, no
multiple testing procedure has yet been proved to control the FDR while having an optimal
expected TDP.

In Section S-1.2, we apply our two-step procedure to address the multiple testing problem
in the contaminated one-factor model. For instance, this model encompasses the one-sided
Gaussian equi-correlation case (with nonnegative equicorrelation ρ) which is often used as a
concrete test bed in multiple testing literature; see, for example, [18, 20, 51] among others.
It turns out that the contaminated one-factor model can be written in the form of the OSC
model (1) with a random value of θ and an unknown variance σ 2 = 1 − ρ. Hence, we can
directly apply our (θ̂ , σ̂ )-rescaled Benjamini–Hochberg procedure introduced above to solve
the problem: we show that the new procedure has performances close to the BH procedure
under independence (and even with a slight increase of the signal to noise ratio). Even if the
model is somewhat specific, this shows that correcting the dependence can be fully theoret-
ically justified. To illustrate numerically the benefit of such an approach, Figure 1 displays
a ROC-type curve for four different versions of corrected BH procedure (in the Gaussian
equicorrelated case). A full description of the simulation setting and additional experiments
are provided in Section S-1.3.

1.4. Notation. For x > 0, we write �x�(log2) (resp., �x�(log2)) for 2�log2(x)� (resp.,
2�log2(x)�), that is, the largest (resp., smallest) dyadic number no larger (resp., no smaller)
than x. Similarly, �x�even is the largest even integer which is not larger than x.

For x ∈ R
n, we denote by x(k) the kth smallest element of {xi,1 ≤ i ≤ n}. We also write

x(�:m) for the �th smallest element among {xi,1 ≤ i ≤ m}, for some integer 1 ≤ m ≤ n.
In what follows, c, c′ denote numerical positive constants whose values may vary from line

to line. For two sequences (ut )t∈T and (vt )t∈T , we write that for all t ∈ T , ut � vt (resp., for
all t ∈ T , ut � vt ), if there exists a universal constant c > 0 such that for all t ∈ T , ut ≤ cvt

(resp., for all t ∈ T , ut ≥ cvt ). We write ut � vt if ut � vt and vt � ut .
For X,Y two real random variables with respective cumulative distribution functions

FX,FY , we write X � Y if for all x ∈ R, we have FX(x) ≤ FY (x). We write X � Y if X � Y

and if there exists x ∈ R, such that FX(x) < FY (x). We also denote P � Q (resp., P � Q)
whenever X � Y (resp., X � Y ) for X ∼ P and Y ∼ Q.

We write � for the cumulative distribution function of the standard normal distribution,
we write �̄ = 1 − � and φ for its usual density.

For space reasons, part of the outlier selection results, the numerical experiments and all
the proofs of the paper are deferred to a Supplementary Material [11]. For clarity, the sections,
equations and results of this supplement are referred to with an additional symbol “S-” in the
numbering.

2. Estimation of θ in the gOSC model with known variance. In this section, we con-
sider the problem of estimating θ in the Gaussian contamination model (4) and investigate
the L1 minimax risk defined in (7). We assume throughout this section that σ 2 = 1. The case
of unknown variance is discussed in Section 6.

2.1. Lower bound for the gOSC model with known variance.

THEOREM 2.1. There exists a universal constant c > 0 such that for any positive integer
n and for any integer k ∈ [1, n − 1],

(11) R[k,n] ≥ c
log2(1 + ( k

n−k
)1/2)

log3/2(1 + (k2

n
)1/3)

.
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The proof of this theorem is given in Section S-2.1. The main tool for proving this lower
bound is moment matching: we build two priors on the parameter γ that correspond to distant
values of θ while they have the same logn (or so) first moments. This is done in an implicit
way using the Hahn–Banach theorem together with properties of Chebychev polynomials, by
using techniques close to [13, 49].

Let us distinguish between the following three regimes (see also Table 1):

• for k ≤ √
n, the lower bound (11) is of order n−1/2, which is the parametric rate that

would hold in the case of no contamination (i.e., k = 0);
• for k ∈ (

√
n, ζn) with ζ ∈ (0,1), the lower bound is of the order (k/n)log−3/2(k2/n).

In particular, in the nonsparse case k = �n/2�, we obtain a rate log−3/2 n;
• for k ∈ [ζn,n − 1] with ζ ∈ (0,1), the lower bound on the minimax risk is of order

log2( n
n−k

) log−3/2(n). In particular, for k = n − 1, the lower bound is of order log1/2 n.

In the remainder of this section, we match these lower bounds by considering three dif-
ferent estimators of θ , corresponding to the three regimes discussed above. They are then
combined to derive an adaptive estimator.

2.2. Upper bound for small and large k in the gOSC model with known variance. For
small and for large values of k, the optimal risk is achieved by simple quantile estimators.
For k ≤ n1/2, we consider the empirical median defined by

(12) θ̂med = Y(�n/2�).
The following result holds for θ̂med (note that it is stated in the more general OSC model (1)).

PROPOSITION 2.2. Consider the OSC model (1) with σ = 1. Then there exist universal
positive constants c1, c2 and a universal positive integer n0 such that the following holds. For
any n ≥ n0, any k ≤ n/10, any π ∈ Mk and any θ ∈ R, we have

Pθ,π

[
|θ̂med − θ | ≥ 3(k + 1)

2(n − k)
+ 3

√
(n + 1)x

n − k

]
≤ e−x for all x ≤ c1n,

Eθ,π

[|θ̂med − θ |] ≤ 3(k + 1)

2(n − k)
+ c2√

n
.

A proof is provided in Section S-3.1. A consequence is that, for k ≤ √
n, the empirical

median θ̂med achieves the parametric rate n−1/2, which turns out to be optimal in this regime;
see Theorem 2.1. Note that in the regime k ≤ √

n, the empirical median was already known to
achieve this parametric rate in the more general Huber’s contamination model (which allows
for two-sided contaminations).

When k is really close to n, there are very few noncontaminated data. Since θ =
min1≤i≤n{γi} in the model (4), we consider a debiased empirical minimum estimator

(13) θ̂min = Y(1) + �
−1

(1/n),

where we recall that �
−1

(1/n) = √
2 log(n) + O(1); see Section S-5.2. The following result

holds for θ̂min (note that it is again stated in the more general OSC model (1)).

PROPOSITION 2.3. Consider the OSC model (1) with σ = 1. Then there exists some
universal positive integer n0 such that for any n ≥ n0, any π ∈ Mn−1 and any θ ∈ R, the
estimator θ̂min satisfies

Pθ,π

[|θ̂min − θ | ≥ 2
√

2 logn
] ≤ 2

n
; Eθ,π

[|θ̂min − θ |] ≤ 2
√

2 logn + 1.
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A proof is provided in Section S-3.1. From Theorem 2.1, the estimator θ̂min turns out to be
optimal when k is very close to n, that is, when k is larger than n − nε for a fixed ε ∈ (0,1)

(very few samples are noncontaminated).

2.3. Upper bound in the intermediate regime in the gOSC model with known variance.
In the previous section, we have introduced estimators that are optimal in the regimes where
k ≤ √

n and where k is very close to n, respectively. The intermediate case turns out to be
much more involved.

Let q ≥ 2 be an even integer whose value will be fixed below. Let a = 3[1 + log(3 +
2
√

2)] ≈ 8.29 and qmax = � 1
2a

logn�even − 2, where �·�even is defined in Section 1.4. Let
us also introduce two rough estimators θ̂up and θ̂low,q such that θ is proved to belong to
[θ̂low,q , θ̂up] with high probability. Let θ̂up = Y(1) +2

√
logn. For any positive and even integer

q , define θ̂low,q = θ̂med − v with v = π2/(144q
3/2
max) if q ≤ 3

10a
logn and θ̂low,q = −∞ for

larger q .
To explain the intuition behind our procedure, assume for the purpose of discussion that

we have access to the mean γi = θ + μi , and that instead of estimating θ we simply want to
test whether θ is greater than u or not. Thus, our aim is to define a suitable function ψq,λ(u) of
u and the γi’s which is close to zero when all γi’s are higher than u and is as large as possible
when many γi’s are smaller than u. Since at least n− k of the γi’s are equal to θ , having large
values of ψq,λ(u) means that θ < u. Assuming without loss of generality that u = 0, this
can be achieved by constructing an auxiliary function gq : R 
→ R such that |gq(x)| ≤ 1 for
x ∈ (−∞,0] and gq(x) large for x > 0. If the interval (−∞,0] were replaced by [−1,1] and
the function gq was restricted to be a polynomial, constructing such a gq would look like a
polynomial extremum problem, which is solved by a Chebychev polynomial (see Section S-
5.1 for some definitions and properties). To handle the non-bounded interval (−∞,0], we
map (−∞,0] to (−1,1] using the function x 
→ 2ex − 1. Denoting by Tq the Chebychev
polynomial of degree q , this leads us to considering the function

(14) gq(x) = Tq

(
2ex − 1

) =
q∑

j=0

aj,qexj , x ∈ R,

where the coefficients aj,q are defined in (S-65). It follows from the definition of Chebychev
polynomials that gq(x) belongs to [−1,1] for x ≤ 0 and gq(x) = cosh[q arccosh(2ex − 1)]
for x > 0.

Now, for λ > 0 and u ∈ R, consider the function ψq,λ(u) defined by

(15) ψq,λ(u) = 1

n

n∑
i=1

gq

(
λ(u − γi)

) = 1

n

n∑
i=1

gq

(
λ(u − θ − μi)

)
.

This function depends on the γi’s. Since all μi’s are nonnegative, it follows from the above
observation that |ψq,λ(u)| ≤ 1 for all u ≤ θ . Conversely, for u ≥ θ , ψq,λ(u) is lower bounded
as follows:

(16) ψq,λ(u) ≥ −k

n
+ n − k

n
gq

(
λ(u − θ)

)
,

hence it is bounded away from 1 as long as u − θ is large enough. As a consequence, the
smallest number u∗ that satisfies ψq,λ(u∗) > 1 should be close (in some sense) to θ .

Obviously, we do not have access to the function ψq,λ as it requires the knowledge of the
γi’s (or, more precisely, of quantities of the form e−jλγi ). Nevertheless, we can still build
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an unbiased estimator of such quantities using the empirical Laplace transform of Y . Given
λ > 0 and u ∈ R, define

(17) η̂λ(u) = n−1
n∑

i=1

eλ(u−Yi)−λ2/2, ηλ(u) = n−1
n∑

i=1

eλ(u−θ−μi).

Since all Yi ’s are independent and normally distributed with unit variance, we have
E[η̂λ(u)] = ηλ(u). This leads us to considering the statistic

(18) ψ̂q,λ(u) =
q∑

j=0

aj,q η̂j ·λ(u),

which is an unbiased estimator of ψq,λ(u) for any fixed λ > 0 and u ∈ R. Since ψ̂q,λ(u)

approximates ψq,λ(u), we roughly want to take θ̂q to be the smallest value such that ψ̂q,λ(u)

is bounded away from 1. This is why we define θ̂q by inverting the function ψ̂q,λ(·). More
precisely, for an even integer q ≤ qmax, taking λq = √

2/q , we define the estimator θ̂q by

(19) θ̂q = inf
{
u ∈ [θ̂low,q , θ̂up] : ψ̂q,λq (u) > 1 + eaq

√
n

}
,

with the convention inf∅= θ̂up.

THEOREM 2.4. Consider the gOSC model (4) with known variance σ 2 = 1. There exist
universal positive constants c1, c2, c3 and n0 such that the following holds for any n ≥ n0,
any integer k ∈ [e2a

√
n,n − 64n1−1/(4a)), any μ ∈ Mk and any θ ∈ R. The estimator θ̂qk

defined by (19) with qk = � 1
a

log( k√
n
)�even ∧ qmax satisfies

(20) Pθ,μ

(
θ̂qk

/∈
[
θ, θ + c1

log2(1 +
√

k
n−k

)

log3/2(k2

n
)

])
≤ c3

(√
n

k

)4/3
log3

(
k2

n

)
and

(21) Eθ,μ

[|θ̂qk
− θ |] ≤ c2

log2(1 +
√

k
n−k

)

log3/2(k2

n
)

.

A proof is provided in Section S-3.3. This result shows that θ̂qk
has a maximum risk of

order k
n

log−3/2(k2/n) in the regime k ∈ [e2a
√

n,n−64n1−1/(4a))]. Combined with the lower
bound of Theorem 2.1, we have shown that θ̂qk

is minimax in the intermediate regime.

REMARK 2.5. Let us emphasize that in the regime e2a
√

n ≤ k ≤ �n/2�, the minimax
risk is of order (k/n) log−3/2(n), which is faster than the minimax rate (k/n) log−1/2(n) that
we would obtain in a two-sided deconvolution problem, as in [8] where k/n ∝ n−β (and by
considering the extreme case where there is no regularity assumption, that is, α = 0 with their
notation).

REMARK 2.6. If we are only interested in a probability bound (20) and not in the mo-
ment bound (21), the preliminary estimators θ̂low,q and θ̂up are not needed: the estimator
could be computed by taking the minimum over R in (19).

REMARK 2.7. The behavior of the estimator family {θ̂q}q given by (19) is illustrated
in Section S-6.3 by using numerical experiments. While a fine tuning of the constants is
required, this reinforces the theoretical finding that q should be chosen as a function of k in
order to provide a small risk.
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2.4. Adaptative estimation in the gOSC model with known variance. In this section, we
combine the three estimators studied in the above section to obtain an estimator that is adap-
tive with respect to the parameter k. The method stems from the Goldenshluger–Lepski prin-
ciple; see, for example, [38, 52, 56].

To unify notation, we henceforth write θ̂0 for the median estimator θ̂med and θ̂qmax+2 for
the minimum estimator θ̂min. In order to obtain an adaptive procedure, we select one of the
estimators {θ̂q , q ∈ {0,2, . . . , qmax, qmax + 2}} as follows:

(22) q̂ = min
{
q ∈ {0, . . . , qmax + 2} s.t. |θ̂q − θ̂q ′ | ≤ δq ′ for all q ′ > q

}
,

where the thresholds are chosen such that δq = 10 ea(q+2)√
nq3/2 for q ∈ {2, . . . , qmax − 2}, δqmax =

25
q

3/2
max

and δqmax+2 = 4
√

2 logn (the value of a being the same as in Section 2.3).

THEOREM 2.8. Consider the gOSC model (4) with known variance σ 2 = 1. There exist
universal positive constants c1, c2, c3 and n0 such that the following holds. For any n ≥ n0,
for any integer k ∈ [1, n − 1], any θ ∈ R, and any μ ∈ Mk , the adaptive estimator θ̂ad = θ̂q̂

satisfies

(23) Pθ,μ

[
|θ̂ad − θ | > c1

log2(1 +
√

k
n−k

)

log3/2(1 + (k2

n
)1/3)

]
≤ c2

( √
n

k ∨ √
n

)4/3
log3

(
k ∨ (2

√
n)√

n

)
and

(24) Eθ,μ

[|θ̂ad − θ |] ≤ c3
log2(1 +

√
k

n−k
)

log3/2(1 + (k2

n
)1/3)

.

A proof is given in Section S-3.4. The risk bound in (24) matches the minimax lower bound
of Theorem 2.1 for all k ∈ [1, n − 1]. The estimator θ̂ad is therefore minimax adaptive with
respect to k. The qualitative behavior of θ̂ad = θ̂q̂ is illustrated in Section S-6.3 via numerical
experiments.

REMARK 2.9. Theorem 2.8 implies that the estimation rate is not affected by knowledge
of k. This contrasts with other statistical setting where costless adaptation is impossible. For
instance, the optimal adaptative rate is slower than the minimax rate in signal detection for
the smooth Gaussian white noise model; see [65]. A related phenomenon appears also in
extreme value theory, for the problem of adaptively estimating the tail coefficient [12]. In both
cases, in the nonadaptive setting, the bias and deviations are of the same order. Intuitively, the
deviations have to be slightly inflated to enable adaptivity, which leads to slower rates. This
does not happen in our problem because the bias of the statistic turns out to be significantly
larger than the deviations (see the proof in the Supplementary Material for more details) and,
therefore, a slight inflation of the deviations to account for adaptivity has no impact on the
rate.

3. Estimation of θ in the general OSC model with known variance. In this section,
we study the estimation problem in the general OSC model (1). Hence, the contaminations
are no longer assumed to be Gaussian. Throughout this section, σ is still assumed to be
known and equal to 1 (for unknown variance, see Section 4). Recall that the L1 minimax risk
is defined in (7).
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3.1. Lower bound in the OSC model with known variance. We first show that estimating
θ is more difficult in this model than for the gOSC case.

THEOREM 3.1. There exists a universal positive constant c such that for any positive
integer n and for any integer k ∈ [1, n − 1],

(25) R[k,n] ≥ c
log( n

n−k
)

log1/2(1 + k2

n
)
.

A proof is provided in Section S-2.2. Let us comment briefly the order of this lower bound,
by considering again the three aforementioned regimes (see also Table 1):

• for k ≤ √
n, the lower bound (25) is of order n−1/2, which is the parametric rate, hence

is the same as for the Gaussian case;
• for k ∈ (

√
n, ζn) with ζ ∈ (0,1), the lower bound is of the order (k/n)log−1/2(k2/n),

and so is strictly slower than with the Gaussian assumption (by an additional factor of order
log(k2/n)). In particular, in the nonsparse case k = �n/2�, this gives a lower bound of order
log−1/2(n) (by contrast to the log−3/2(n) bound in the Gaussian model);

• for k ∈ [ζn,n−1] with ζ ∈ (0,1), the lower bound is of order log(n/(n−k)) log−1/2(n).
Compared to the gOSC model, there is an additional factor of order log(n)/ log(n/(n − k)).
Nevertheless, in the extreme case k = n−1, the two lower bounds are both of order log1/2(n).

3.2. Upper bound in the OSC model with known variance. In this subsection, we in-
troduce a bias-corrected quantile estimator that matches the minimax lower bound of The-
orem 3.1. Consider some π ∈ Mk . Let ξ = (ξ1, . . . , ξn) denote a standard Gaussian vector.
The starting point is the following: on the one hand, all random variables Yi −θ stochastically
dominate ξi so that Y(q) − θ � ξ(q). On the other hand, Y(q) is stochastically dominated by the
qth smallest observation among the noncontaminated data Yj . As a consequence, we have

(26) ξ(q) � Y(q) − θ � ξ(q:(n−k)),

where we recall that ξ(q:(n−k)) is the qth largest observation among the n−k first observations

of ξ . Since ξ(q) is concentrated around �
−1

(q/n), this leads to introducing the debiased
estimator

(27) θ̃q = Y(q) + �
−1

(q/n), 1 ≤ q ≤ �n/2�.
In view of (12), we have that θ̃1 = θ̂min while θ̃�n/2� is almost equal to the empirical median

θ̂med (up to the additive �
−1

(�n/2�/n) term which is of order 1/n and so is negligible). The
following theorem bounds the error of θ̃q for a wide range of q .

THEOREM 3.2. Consider the OSC model (1) with known variance σ 2 = 1. There exist
universal positive constants c1, c2, c′

2, c3, c4 such that the following holds. For any integer
k ∈ [1, n − 1], any integer q such that c4 logn ≤ q ≤ (0.7(n − k)) ∧ �n/2�, any θ ∈ R and
any π ∈ Mk , the estimator θ̃q satisfies

(28)
Pθ,π

[
−c2

√
x

q[log(n−k
q

) ∨ 1] ≤ θ̃q − θ ≤ c1
log( n

n−k
)√

log(n−k
q

) ∨ 1
+ c2

√
x

q[log(n−k
q

) ∨ 1]
]

≥ 1 − 2e−x

for all 0 < x < c3q , and

(29) Eθ,π

[|θ̃q − θ |] ≤ c1
log( n

n−k
)√

log(n−k
q

) ∨ 1
+ c′

2
1√

q[log(n−k
q

) ∨ 1]
.
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A proof is given in Section S-3.5. The risk bound in (29) exhibits a bias/variance trade-off
as a function of q via the quantities

b(q) = log( n
n−k

)√
log(n−k

q
) ∨ 1

; s(q) = 1√
q[log(n−k

q
) ∨ 1]

.

The quantity s(q) is a deviation term that decreases with q and whose minimum is of the
order of n−1/2. This minimum is achieved for q = �n/2� and the corresponding estimator is
close to the empirical median. The quantity b(q) is a bias term which increases slowly with q .
Its minimum is of the order of log( n

n−k
) log−1/2(n − k) and is achieved for q constant (or of

the order of logn). The corresponding estimators are extreme quantiles such as θ̃1 = θ̂min.
Note also that the condition c4 log(n) ≤ q ≤ 0.7(n − k) cannot be met when k is too close

to n (i.e., n− k < (c4/0.7) log(n)). Hence, Theorem 3.2 is silent in that regime. Nevertheless,
this case is addressed by the minimum estimator θ̃1 = θ̂min already studied in Proposition 2.3.

To achieve the minimax risk, it remains to suitably choose q as a function of k. Examining
b(·) and s(·), we see that when k increases we should decrease q (and, therefore, use a more
extreme quantile) in order to decrease the bias. More precisely, we define

(30) qk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�n/2� if k ∈ [1,4

√
n);⌈

n5/4

k1/2

⌉(log2)

if k ∈ [
4
√

n,n − n4/5];
1 if k ∈ (

n − n4/5, n − 1
]
.

In the very sparse situation (k ≤ 4
√

n), θ̃qk
corresponds to the empirical median. As k in-

creases toward n, qk goes smoothly to n1/4. Finally, when k is very close to n, we consider
the minimum estimator θ̃1. Other choices of qk may also lead to optimal risk bounds and the
choice (30) is made to simplify the proofs.

COROLLARY 3.3. Consider the OSC model (1) with known variance σ 2 = 1. There exist
universal positive constants c and n0 such that the following holds. For any integer n ≥ n0,
any integer k ∈ [1, n − 1], any θ ∈ R and any π ∈ Mk , the estimator θ̃qk

satisfies

(31) Eθ,π

[|θ̃qk
− θ |] ≤ c

log( n
n−k

)

log1/2(1 + k2

n
)
.

A proof is given in Section S-3.5. The estimation rate of the estimator θ̃qk
matches the

minimax lower bound given in Theorem 3.1. However, it is not adaptive because it uses the
value of k.

3.3. Adaptive estimation in the OSC model with known variance. We now provide a pro-
cedure that adapts to k, by following a Goldenshluger–Lepski approach. Let Q denote the
collection of values of qk when k goes from 1 to n − 1. This collection contains 1, �n/2�
and a dyadic sequence from n1/4 to n/2 (roughly). To build an adaptive procedure, we select
among the estimators {θ̃q , q ∈Q} in the following way:

(32) q̂ = max
{
q ∈Q s.t. |θ̂q − θ̂q ′ | ≤ δq ′ for all q ′ < q

}
,

where

(33) δq = c0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

log(n) if q <
√

2n1/4;
n1/6

q2/3
√

log(n
q
) ∨ 1

otherwise,
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where the constant c0 is large enough (depending on the constants c1 and c′
2 of Theorem 3.2).

Note that at most three elements in Q are less than
√

2n1/4.

PROPOSITION 3.4. Consider the OSC model (1) with known variance σ 2 = 1. There
exist universal positive constants c and n0 such that the following holds. For any integer
n ≥ n0, any integer k ∈ [1, n − 1], any θ ∈ R, and any π ∈ Mk , the estimator θ̃ad = θ̃q̂ (see
(30) and (32)) satisfies

Eθ,π

[|θ̃ad − θ |] ≤ c
log( n

n−k
)

log1/2(1 + k2

n
)
.

A proof is given in Section S-3.5. The above result shows that, as in the Gaussian case,
adaptation with respect to k can be achieved without any loss.

4. Estimation in the OSC model with unknown variance. In this section, we consider
the OSC model (1) for which the noise variance σ 2 is unknown. We derive the minimax risks
and estimators for θ and σ in that setting.

4.1. Lower bound in the OSC model with unknown variance. First, note that, obviously,
the lower bound (25) for estimating θ is also a valid lower bound for the minimax risk

inf
θ̃

sup
θ∈R,σ>0,π∈Mk

Eθ,π,σ

[ |θ̃ − θ |
σ

]
,

corresponding to the OSC model (1) where σ is unknown.
Now, let us provide a lower bound for the estimation risk of σ . Since the problem of

estimating σ when θ is unknown is at least as difficult as the problem when it is known
that θ = 0, we provide a lower bound for the latter. Interestingly, the procedure that will be
presented in Section 4.2 achieves the same risk even in the more general setting where θ ∈R

is unknown. We introduce the minimax risk

(34) Rv[k,n] = inf
σ̃

sup
σ>0,π∈Mk

E0,π,σ

[ |σ̃ − σ |
σ

]
.

The following theorem provides a lower bound for Rv[k,n] (and, therefore, also a lower
bound on the minimax risk with arbitrary unknown θ ).

THEOREM 4.1. There exists a universal positive constant c such that for any integer
n ≥ 2 and any integer k ∈ [1, n − 2], we have

(35) Rv[k,n] ≥ c
log( n

n−k
)

log(1 + k
n1/2 )

.

A proof is given in Section S-2.3. For k ≤ √
n, the lower bound (35) is of order n−1/2. For

k ∈ [√n, ζn] (with ζ ∈ (0,1) fixed), the risk is of order k/[n log(k2/n)] which is faster by
a log1/2(k2/n) term than for mean estimation. When n − k = nγ with γ ∈ (0,1) (almost no
uncontaminated data), the relative risk of convergence is at least of constant order.

In the next section, we prove that these lower bounds on θ and σ are all sharp (up to
numerical constants).
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4.2. Upper bound for the OSC model with unknown variance. Since the model is trans-
lation invariant, the variance can be estimated without knowing θ . This is done by consid-
ering a rescaled difference of empirical quantiles. More precisely, for two positive integers
1 ≤ q ′ ≤ q ≤ n, let

(36) σ̃q,q ′ = Y(q) − Y(q ′)

�
−1

(q ′/n) − �
−1

(q/n)
,

with the convention 0/0 = 0. When k = 0 (no contamination), Y(q) (resp., Y(q ′)) should be

close to θ − σ�
−1

(q/n) (resp. θ − σ�
−1

(q ′/n)) so that, intuitively, σ̃q,q ′ should be close
to σ . Then, to estimate θ , we simply plug σ̃q,q ′ into the quantile estimator considered in
Section 3.2. More precisely, we consider

(37) θ̃q,q ′ = Y(q) + σ̃q,q ′�
−1

(
q

n

)
.

Given k ∈ {1, . . . , n − 1}, qk is taken as in (30) and

(38) q ′
k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�n/3� if k ∈ [1,4

√
n);⌊

n7/4

k3/2

⌋(log2)

if k ∈ [
4
√

n,n − n4/5];
1 if k ∈ (

n − n4/5, n − 2
]
.

For sparse contaminations (k < 4
√

n), σ̃qk,q
′
k

is a rescaled difference of the empirical median
and the empirical quantile of order 1/3. For a larger number of contaminations, more extreme
quantiles are considered. For k ≥ n − n4/5, we simply take σ̃qk,q

′
k
= 0.

PROPOSITION 4.2. Consider the OSC model (1) with unknown variance σ 2 and the
quantities qk and q ′

k defined in (30) and (38). There exist universal positive constants c, c′
and n0 such that the following holds. For any n ≥ n0, for any integer k ∈ [1, n − 2], any
θ ∈R, any σ > 0 and any π ∈ Mk , we have

Eθ,π,σ

[|σ̃qk,q
′
k
− σ |/σ ] ≤ c

log( n
n−k

)

log(1 + k
n1/2 )

;(39)

Eθ,π,σ

[|θ̃qk,q
′
k
− θ |/σ ] ≤ c′ log( n

n−k
)

log1/2(1 + k2

n
)
.(40)

A proof is given in Section S-3.5. The above proposition together with the lower bounds
of Section 4.1 implies that σ̃qk,q

′
k

and θ̃qk,q
′
k

are minimax estimator of σ and θ , respectively.

Interestingly, the estimators σ̃qk,q
′
k

and θ̃qk,q
′
k

do not require the knowledge of either θ or
σ whereas our lower bounds were respectively restricted to known θ and known σ settings.
This entails that the knowledge of one parameter (θ or σ ) does not significantly ease the
estimation of the other.

5. Controlled selection of outliers. In this section, we consider the OSC model (1)
(with unknown variance) and now turn to the identification of the outliers. As described in
Section 1.3, this can be reformulated as a multiple testing problem (see also the notation
therein).
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5.1. Rescaled p-values. As already discussed in Section 1.3, ensuring good multiple
testing properties in the OSC model is challenging because the scaling parameters θ and
σ are unknown. A natural approach is then to use the rescaled observations Y ′

i = (Yi − θ̂ )/σ̂ ,
1 ≤ i ≤ n, where θ̂ , σ̂ are some suitable estimators of θ and σ . To formalize further this idea,
let us consider the corrected p-values

(41) pi(u, s) = �

(
Yi − u

s

)
, u ∈ R, s > 0,1 ≤ i ≤ n.

The perfectly corrected p-values thus correspond to

(42) p�
i = pi(θ, σ ), 1 ≤ i ≤ n.

These oracle p-values cannot be used in practice, because they depend on the unknown pa-
rameters θ and σ . Our general aim is to build estimators θ̂ , σ̂ such that the theoretical per-
formance of the corrected p-values pi(θ̂ , σ̂ ) mimic those of the oracle p-values p�

i , when
plugged into standard multiple testing or post hoc procedures. Although the use of modi-
fied p-values and plug-in estimators has often been advocated since the seminal work of
Efron [25], proving that the behavior of the plug-in procedure is asymptotically similar to
that of the oracle procedure is, to our knowledge, new. The challenge is to precisely quantify
how the estimation error affects the FDP/TDP metrics. For this, a key point is the following
relation between pi(u, s) and p�

i :

(43)
{
pi(u, s) ≤ t

} = {
p�

i ≤ Uu,s(t)
}
, i ∈ {1, . . . , n}, t ∈ [0,1],

where

(44) Uu,s(t) = �

(
s

σ
�

−1
(t) + u − θ

σ

)
; U−1

u,s (v) = �

(
σ

s
�

−1
(v) + θ − u

s

)
.

Furthermore, a useful property is that the order of the p-values does not change after rescal-
ing. We will denote

(45) 0 = p(0)(u, s) ≤ p(1)(u, s) ≤ · · · ≤ p(n)(u, s),

the ordered elements of {pi(u, s),1 ≤ i ≤ n}. We also denote by 0 = p(0:H0)(u, s) ≤
p(1:H0)(u, s) ≤ · · · ≤ p(n0:H0)(u, s) the ordered elements of the subset {pi(u, s), i ∈ H0}, that
is, of the p-value set corresponding to false outliers (or, equivalently, true null hypotheses).

5.2. Upper-biased estimators. This section provides estimators θ̃+, σ̃+ that will be suit-
able to make the p-value rescaling. They are similar to the estimators introduced in Sec-
tions 3.2 and 4.2. However, since minimax estimation and false outliers control do not use
the same risk metrics, we need to slightly modify these estimators, especially by making them
upper-biased (which roughly means that the null hypotheses are favored).

For qn = �n3/4� and q ′
n = �n1/4�, let us consider

(46)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ̃+ = Y(qn) + σ̃+�

−1
(

qn

n

)
;

σ̃+ = Y(qn) − Y(q ′
n)

�
−1

(q ′
n/(n − k0)) − �

−1
(qn/n)

for some parameter k0 ≤ �0.9n�. The key difference with the estimators θ̃q,q ′, σ̃q,q ′ of Sec-
tion 4 is the quantity k0 appearing in the denominator of σ̃+. The following result holds.
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PROPOSITION 5.1. Consider the OSC model (1) with unknown variance σ 2. Then there
exist two universal positive constants c, c′ such that the following holds for any positive
integer n, for any θ ∈ R, σ > 0, for any π ∈ Mk with k = �0.9n�. Choosing k0 such that
n1(π) ≤ k0 ≤ �0.9n� within the estimators θ̃+, σ̃+ (46), we have

Pθ,π,σ

(
θ̃+ − θ ≤ −σn−1/16) ≤ c/n;(47)

Pθ,π,σ

(
σ̃+ − σ ≤ −σn−1/16) ≤ c/n;(48)

Pθ,π,σ

(|θ̃+ − θ | ≥ σ
(
c′(k0/n) log−1/2(n) + n−1/16)) ≤ c/n;(49)

Pθ,π,σ

(|σ̃+ − σ | ≥ σ
(
c′(k0/n) log−1(n) + n−1/16)) ≤ c/n.(50)

Proposition 5.1 is proved in Section S-3.5. It is closely related to Theorem 3.2 above,
although the statement is slightly different because of the introduced bias in the estimators.
Inequalities (47)–(48) entail that the estimators are (with high probability) above the targeted
quantity minus a polynomial term, which will be particularly suitable for obtaining a control
on the false positives (FDR control and post hoc bounds). Inequalities (49)–(50) are two-
sided, which is useful for studying the power (TDP) of the rescaled procedures: there is an
additional error term of order (k0/n) log−a(n), a ∈ {1/2,1}, where k0 corresponds to a known
upper bound of the number of contaminated coordinates of π .

The assumption n1(π) ≤ k0 ≤ �0.9n� in Proposition 5.1 is not very restrictive: it means
that the number of outliers is bounded by above by some quantity k0, which is used in the
definition of the estimators (46). For instance, taking k0 = �0.7n� means that we assume that
there is no more than 70% of outliers in the data.

Finally, note that our multiple testing analysis will only rely on the deviation bounds (47)–
(50). As a consequence, other estimators satisfying these properties can be used for scaling
the p-values.

5.3. FDR control and power optimality for selected outliers. The Benjamini–Hochberg
(BH) procedure, introduced in [4], has probably been the most widely used multiple test-
ing procedure. Here, the rescaled BH procedure (of nominal level α), denoted BHα(u, s) is
defined from the p-value family pi(u, s),1 ≤ i ≤ n, as follows:

• order the p-values as in (45);
• consider �̂α(u, s) = max{� ∈ {0,1, . . . , n} : p(�)(u, s) ≤ α�/n};
• reject H0,i for any i such that pi(u, s) ≤ t̂α(u, s), for t̂α(u, s) = α�̂α(u, s)/n.

The procedure, identified to the set of selected outliers, is then given by

(51) BHα(u, s) = {
1 ≤ i ≤ n : pi(u, s) ≤ t̂α(u, s)

}
.

The classical FDR-controlling result of [4, 5] can be re-interpreted as follows: the BH proce-
dure using the perfectly corrected p-values (42), that is, BH�

α = BHα(θ, σ ), satisfies

Eθ,π,σ

(
FDP

(
π,BH�

α

)) = n0

n
α ≤ α for all θ,π,σ .

This comes from the fact that the perfectly corrected p-values (42) are independent, with
uniform marginal distributions under the null hypothesis.

Recall the estimators θ̃+ and σ̃+ defined in (46) with the tuning parameter k0. The next
result gives the behavior of the rescaled procedure BHα(θ̃+, σ̃+) both in terms of FDP and
TDP.
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THEOREM 5.2. Consider the OSC model (1) with unknown variance σ 2. There exists a
universal positive constant c such that the following holds. Considering the estimators θ̃+, σ̃+
given by (46), for any α ∈ (0,0.4), θ ∈ R, σ > 0, and any π ∈ M�0.9n�, if k0 in σ̃+ satisfies
n1(π) ≤ k0 ≤ �0.9n�, we have

(52)
(
Eθ,π,σ

(
FDP

(
π,BHα(θ̃+, σ̃+)

)) − n0

n
α

)
+

≤ c log(n)/n1/16.

Additionally, for any sequence εn ∈ (0,1) tending to zero with εn � log−1/2(n), for any
sequence π = πn, k0 = k0,n with n1(πn) ≤ k0,n ≤ �0.9n� and n1(πn)/n � k0,n/n, we have
for all θ ∈ R, σ > 0,

lim sup
n

{
Eθ,πn,σ

(
TDP

(
πn,BH�

α

))
−Eθ,πn,σ

(
TDP

(
πn,BHα(1+εn)(θ̃+, σ̃+)

))} ≤ 0.

(53)

In a nutshell, inequalities (52) and (53) show that the selection procedure BHα(θ̃+, σ̃+)

behaves similar to the oracle procedure BH�
α , both in terms of false discovery rate control

and power. Note that the power result (53) is shown to be valid only when k0/n is taken of
the same order as n1(π)/n, that is, for a procedure using information on n1(π)/n. On the
positive side, it entails an optimal procedure even without sparsity: if we know that n1(π)/n

is of the order of a constant, then using the estimators θ̃+, σ̃+ for say k0 = �0.5n�, we will
always achieve both (52) and (53). In particular, Theorem 5.2 can be seen as a first step
toward the validation of Efron’s empirical null principle, in a specific one-sided situation.

The proof of this theorem is given in Section S-4.1. Compared to the usual FDR proofs
of the existing literature, there are two additional difficulties: first, the independence assump-
tion between the corrected p-values is not satisfied anymore, because the correction terms
are random; second, the quantity FDP(π,BHα(θ̃+, σ̃+)) is not monotone in the estimators
θ̃+, σ̃+, because of the denominator of the FDP. However, the specific properties of θ̃+,
σ̃+ given in Proposition 5.1 will be enough to get our result: first, these estimators are bi-
ased upwards with an error term vanishing at a polynomial rate n−1/16, which is enough for
false positive control. As for the power, we consider the bias downwards, which is of order
(k0/n) log−a(n), a ∈ {1/2,1}. It turns out that the error term induced in the power is of or-
der (k0/n) log−a(n) log(n/n1), which tends to 0 when k0/n � n1/n both in the sparse and
nonsparse cases.

The other multiple testing inferences described in the Introduction (Section 1.3): post hoc
bounds, decorrelation and the corresponding numerical experiments are postponed to the
Supplementary Material (see Section S-1).

REMARK 5.3. Let us define the risk of a procedure as FDR + FNR, where FNR de-
notes the average of 1 − TDP. Theorem 5.2 shows that the risk of the selection procedure
BHα(1+εn)(θ̃+, σ̃+) is smaller than the risk R∗(n,πn,α) of the oracle procedure BH�

α plus
some vanishing terms. Interestingly, the risk R∗(n,πn,α) has been studied in [1] for a partic-
ular choice of πn coming from the classical Gaussian sequence model in the specific Donoho–
Jin sparse regime [22]. It is shown that R∗(n,πn,αn) tends to zero when the signal strength
is above the estimation boundary (as defined, e.g., in [22]), for some proper calibration of
αn, typically αn = 1/(logn). Inspecting our proofs (see Section S-4.1), we can derive that
the procedure BHαn(1+εn)(θ̃+, σ̃+) also has a risk tending to zero in that regime. In addition,
the work [59] provides a polynomial decaying rate for R∗(n,πn,αn) when αn = n−κ for
some κ > 0. Again, inspecting our proofs (see Section S-4.1), this also holds for the risk of
BHαn(1+εn)(θ̃+, σ̃+), as our remainder term also vanishes at a polynomial rate in that regime,
although our exponent may be smaller (e.g., n−c with c < 1/16). Finally, we emphasize the
fact that Theorem 5.2 does not rely on the Donoho–Jin sparse regime. Hence, this type of
power result is new in multiple testing literature to the best of our knowledge.
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6. Discussion. In this section, we describe some possible extensions and future research
directions.

Knowledge of the variance in the gOSC model. In the gOSC model (Section 2), we as-
sumed exact knowledge of the variance. Unfortunately, plugging an estimator of the variance
into the empirical Laplace transform from (17) seems to deteriorate the deviations of the
corresponding estimator ψ̂q,λ(u). For this reason, we were not able to derive an estimator
of θ with σ unknown achieving the optimal rate R[k,n] in the intermediate regime where
k ∈ [√n; cn], c ∈ (0,1). Since the gOSC model is a specific case of the OSC model, it is
possible to achieve the rate R[k,n] using θ̃qk,q

′
k

(37). Since there is log(k2/n) gap between
the gOSC and OSC models, it still remains unclear if perfect adaptation to unknown σ is
possible in the gOSC model or if a logarithmic price must be paid.

Simultaneous adaptation to k and σ in the OSC model. In Sections 3 and 4, we assumed
that either σ or k is known. If both quantities are unknown, one needs to select a suitable
estimator θ̃q,q ′ in the collection {θ̃qk,q

′
k
} introduced in Section 4. This turns out to be possible

using a Goldenshluger–Lepski scheme in the spirit of the one studied in Section 3.3 provided
that we have at our disposal an estimator σ̃ of σ satisfying |σ̃ 2 − σ 2|/σ 2 ∈ [1/2,2] with
high probability. In view of Section 4, this is the case when k is not close to n (k ≤ n −
n/ec log1/2(n))). As a result, simultaneous adaptation to k and σ is possible provided that the
true number of contaminations is not too large. If k is allowed to be as large as n − 2, it
remains an open question whether there is price to pay.

Multivariate one-sided contaminations. Throughout this manuscript, we assumed that the
observations are univariate. One could think of a multivariate extension: Yi = θ + σεi where
Yi ∈ R

d and εi is either distributed as a standard normal distribution or, for a contaminated
observation, satisfies εi,j � N (0,1) for each coordinate j = 1, . . . , d . In Huber’s original
multivariate contamination model, it is known that estimating each coordinate θ indepen-
dently is suboptimal. This led Huber to introduce Tukey depth estimators [41]. More re-
cently, polynomial time estimators were proved to achieve similar performances [21] (up to
some logarithmic loss). It would be interesting to investigate whether it is possible to build
upon the one-sided assumption to improve their convergence rates.
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