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Abstract. We develop an improved version of the stochastic semigroup approach to study the edge of β-ensembles pioneered by
Gorin and Shkolnikov (Ann. Probab. 46 (2018) 2287–2344), and later extended to rank-one additive perturbations by the author and
Shkolnikov (Ann. Inst. Henri Poincaré Probab. Stat. 55 (2019) 1402–1438). Our method is applicable to a significantly more general
class of random tridiagonal matrices than that considered in (Ann. Inst. Henri Poincaré Probab. Stat. 55 (2019) 1402–1438; Ann.
Probab. 46 (2018) 2287–2344), including some non-symmetric cases that are not covered by the stochastic operator formalism of
Bloemendal, Ramírez, Rider, and Virág (Probab. Theory Related Fields 156 (2013) 795–825; J. Amer. Math. Soc. 24 (2011) 919–944).

We present two applications of our main results: Firstly, we prove the convergence of β-Laguerre-type (i.e., sample covariance)
random tridiagonal matrices to the stochastic Airy semigroup and its rank-one spiked version. Secondly, we prove the convergence of
the eigenvalues of a certain class of non-symmetric random tridiagonal matrices to the spectrum of a continuum Schrödinger operator
with Gaussian white noise potential.

Résumé. Nous développons une version améliorée de l’approche de stochastic semigroup pour étudier l’extrémité des ensembles
bêta introduits par Gorin et Shkolnikov (Ann. Probab. 46 (2018) 2287–2344), ensuite étendue aux ensembles bêta gaussiens avec
perturbation de rang un par l’auteur et Shkolnikov (Ann. Inst. Henri Poincaré Probab. Stat. 55 (2019) 1402–1438). Notre méthode est
applicable à une classe nettement plus générale de matrices tridiagonales aléatoires que celles dans (Ann. Inst. Henri Poincaré Probab.
Stat. 55 (2019) 1402–1438; Ann. Probab. 46 (2018) 2287–2344), y compris certains cas non symétriques qui ne sont pas couverts par
la méthode de stochastic operators introduite par Bloemendal, Ramírez, Rider et Virág (Probab. Theory Related Fields 156 (2013)
795–825; J. Amer. Math. Soc. 24 (2011) 919–944).

Nous présentons deux applications de nos principaux résultats : Premièrement, nous prouvons la convergence de matrices tridia-
gonales aléatoires de type β-Laguerre (c.-à-d., matrices de covariances empiriques) vers le semi-groupe du stochastic Airy operator
et sa perturbation de rang un. Deuxièmement, nous prouvons la convergence des valeurs propres d’une certaine classe de matrices
tridiagonales aléatoires non symétriques vers le spectre d’opérateurs de Schrödinger avec bruit blanc gaussien.
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1. Introduction

1.1. Operator limits of random matrices

This paper, which is a direct sequel of [14,20], is concerned with operator limits of random matrices. The theory of
operator limits was initiated in [10,11,28] and eventually gave rise to a vast literature on the subject. We refer to the
survey article [32] for a recent historical account of these early developments.

A fundamental object in this theory is the stochastic Airy operator, formally defined as

SAOβf (x) := −f ′′(x) + xf (x) + W ′
β(x)f (x), f : R+ →R,
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where β > 0 is fixed parameter, Wβ is a Brownian motion with variance 4/β , R+ := [0,∞), and f obeys a Dirichlet or
Robin boundary condition at the origin. We refer to [6, Section 2.3], [26, Section 2], and [28, Section 2] for a rigorous
definition.

The interest of studying SAOβ comes from the fact that its eigenvalue point process captures the asymptotic edge
fluctuations of a large class of random matrices and interacting particle systems. In [6,28], this was proved for the β-
Hermite ensemble, the β-Laguerre ensemble (for the right edge), as well as rank-one perturbations of the β-Hermite and
β-Laguerre ensembles (the spiked models). Then, [23] established operator limits as a means of proving edge universality
for general β-ensembles (cf., [8]). More generally, [6,28] proved the eigenvalue and eigenvector convergence of a wide
class of symmetric random tridiagonal matrices to the spectrum of Schrödinger operators of the form −� + Y ′, where Y

is a random function.

1.2. Stochastic semigroups

More recently, Gorin and Shkolnikov introduced in [20] a new method of studying edge fluctuations of β-ensembles. Their
main result was that high powers of a generalized version of the β-Hermite ensemble converge to a random Feynman-
Kac-type semigroup that was dubbed the stochastic Airy semigroup ([20, Theorem 2.1]), which we denote by SASβ(t)

for β, t > 0 (see Definition 2.7 and Notation 2.9).
Combining their result with the fact that the edge-rescaled β-Hermite ensemble converges to SAOβ , Gorin and Shkol-

nikov concluded that SASβ(t) = e−tSAOβ/2 for all t > 0 ([20, Corollary 2.2]), thus providing a new tool with which
SAOβ ’s spectrum can be studied. As a demonstration of this, it was shown in [20, Corollary 2.3 and Proposition 2.6]
that certain statistics of SASβ(t) admit an especially simple form when β = 2. Among other things, this provided the
first manifestation of the special integrable structure in the β-ensembles when β ∈ {1,2,4} at the level of the operator
limits describing edge fluctuations. These results were extended to rank-one spiked β-Hermite models in [14]. Feynman-
Kac formulas for general one-dimensional Schrödinger operators with multiplicative Gaussian noise were obtained more
recently in [13].

1.3. Overview of main results

In this paper, we introduce a modification of the formalism developed in [14,20]. Our main results (Theorems 2.20
and 2.21) establish the convergence of high powers of a large class of random tridiagonal matrices to the semigroups of
continuum Schrödinger operators with Gaussian white noise. Our results improve on [14,20] and [6,28] in two significant
ways.

Firstly, a main technical achievement of [20] was to show that the moment method can be used to study edge fluctua-
tions of β-ensembles for β /∈ {1,2,4}. The key to achieving this is to relate the combinatorics of traces of high powers of
tridiagonal matrices to strong invariance principles for random walks and their occupation measures ([20, Section 3] and
[14, Section 3.1]). A notable feature of the combinatorial analysis in [20] is that it requires the tridiagonal matrices under
consideration to have diagonal entries of smaller order than their super/sub-diagonal entries (see Section 4.3 for details).
In particular, this argument is not directly applicable to the β-Laguerre ensemble. In this context, one contribution of
this paper is to develop an improved version of the stochastic semigroup formalism that does not have restrictions on the
relative size of diagonal/off-diagonal entries. As a demonstration of this, we prove that our main results apply to every
matrix model considered in [14,20], as well as generalized β-Laguerre ensembles (Section 3.2).

Secondly, a notable feature of our results is that they appear to be the first to apply to non-symmetric matrices. As a
consequence, we prove new limit laws for the eigenvalues of certain non-symmetric random tridiagonal matrices (Propo-
sitions 3.1 and 3.5). In particular, we identify a new matrix model whose edge fluctuations are in the Tracy–Widom
universality class (Corollary 3.13). These results complement previous investigations on the spectrum of non-symmetric
random tridiagonal matrices, such as [16–19].

Several features of the strategy of proof in [14,20] for analyzing the combinatorics of large powers of tridiagonal
matrices carry over to this paper. For instance, strong invariance principles for occupation measures of random walks
also play a fundamental role in our proofs. That being said, the differences are significant enough that many nontrivial
modifications and new ideas need to be introduced. Most notably, several results in the literature concerning strong
approximations of Brownian local time that are used without modification in [14,20] require significant work to be
applicable to our setting (Sections 5 and 6).

1.4. Organization

In Section 2, we introduce our random matrix models, their continuum limits, and we state our main results. In Section 3,
we discuss applications of our main results to random matrices. In Section 4, we explain the main idea in our strategy of
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proof, and we make a brief comparison with the method of [14,20]. In Sections 5 and 6, we prove two local time strong
invariance results that lie at the heart of our proof. Finally, in Sections 7, 8, and 9, we complete the proofs of our main
results.

2. Setup and main results

2.1. Random matrix models

We begin by introducing our random matrix models. Let (mn)n∈N be a sequence of positive numbers and (wn)n∈N be a
sequence of real numbers such that the following holds:

Assumption 2.1. There exists 0 < C ≤ 1 and 1/13 < d< 1/2 such that

Cnd ≤ mn ≤ C−1nd, n ∈N. (2.1)

Assumption 2.2. There exists some w ∈R such that

lim
n→∞mn(1 − wn) = w. (2.2)

For every n ∈N, let us define the (n + 1) × (n + 1) tridiagonal matrices �n,�
w
n , and Qn as

�n := m2
n

⎡
⎢⎢⎢⎢⎣

−2 1

1
. . .

. . .

. . .
. . . 1
1 −2

⎤
⎥⎥⎥⎥⎦ , Qn :=

⎡
⎢⎢⎢⎢⎣

Dn(0) Un(0)

Ln(0)
. . .

. . .

. . .
. . . Un(n − 1)

Ln(n − 1) Dn(n)

⎤
⎥⎥⎥⎥⎦ ,

�w
n := �n + diagn

(
m2

nwn,0, . . . ,0
)
,

where Dn(a),Un(a),Ln(a) are real-valued random variables for every n ∈N and 0 ≤ a ≤ n (or 0 ≤ a ≤ n − 1).

Notation 2.3. Throughout, we index the entries of a (n + 1) × (n + 1) matrix M as M(a,b) for 0 ≤ a, b ≤ n. Similarly,
v ∈ R

n+1 is indexed as v(a) for 0 ≤ a ≤ n. We use diagn(d0, . . . , dn) to denote the (n + 1) × (n + 1) diagonal matrix M

with entries M(a,a) = da for 0 ≤ a ≤ n.

Notation 2.4. For simplicity, we often state properties of Dn(a),Un(a),Ln(a) for 0 ≤ a ≤ n, with the understanding that
a ≤ n − 1 for Un(a) and Ln(a).

We assume that the entries of Qn satisfy the following decomposition: For E ∈ {D,U,L},
En(a) = V E

n (a) + ξE
n (a), 0 ≤ a ≤ n, (2.3)

where the V E
n (a) are deterministic and the ξE

n (a) are random. We call V E
n the potential terms and ξE

n the noise terms.
The random matrix models studied in this paper are as follows.

Definition 2.5 (Random matrix models). For every n ∈N and t > 0, we define

K̂n(t) :=
(

In − −�n + Qn

3m2
n

)�m2
n(3t/2)�

, K̂w
n (t) :=

(
In − −�w

n + Qn

3m2
n

)�m2
n(3t/2)�

. (2.4)

2.2. Continuum limit

We now describe the continuum limits of (2.4). In order to describe these objects, we need some notations:

Notation 2.6. We use B to denote a standard Brownian motion on R, and X to denote a standard reflected Brownian
motion on R+.
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Let Z = B or X. For every t > 0 and x, y ≥ 0, we denote

Zx := (Z|Z(0) = x
)

and Z
x,y
t := (Z|Z(0) = x and Z(t) = y

)
,

and we use Ex and Ex,y
t to denote the expected value with respect to the law of Zx and Z

x,y
t respectively.

For any t > 0, we use x 
→ Lx
t (Z) to denote the continuous version of the local time process of Z on [0, t], which we

characterize by the requirement that for every measurable function f , one has

∫ t

0
f
(
Z(s)
)

ds =
∫
R

Lx
t (Z)f (x)dx. (2.5)

As a matter of convention, in the case where Z = X, we distinguish the boundary local time L0
t (Z) from the above, which

we define as

L0
t (Z) := lim

ε→0

1

2ε

∫ t

0
1{0≤Z(s)<ε} ds. (2.6)

Finally, we let τ0(B) denote the first hitting time of zero by B .

Definition 2.7 (Continuum limits). Let Q be the diffusion process

dQ(x) = V (x)dx + dW(x), x ≥ 0,

where V ≥ 0 is a deterministic locally integrable function on R+, and W is a Brownian motion with variance σ 2 > 0. For
every t > 0, we let K̂(t) and K̂w(t) be the integral operators on L2(R+) with random kernels

K̂(t;x, y) := e−(x−y)2/2t

√
2πt

Ex,y
t

[
1{τ0(B)>t}e−〈Lt (B),Q′〉], (2.7)

K̂w(t;x, y) :=
(

e−(x−y)2/2t

√
2πt

+ e−(x+y)2/2t

√
2πt

)
Ex,y

t

[
e−〈Lt (X),Q′〉−wL0

t (X)
]

(2.8)

for x, y ≥ 0, where

1. we assume that B and X are independent of W , and that Ex,y
t is the conditional expected value of B

x,y
t or X

x,y
t given

W ; and
2. for any piecewise continuous and compactly supported function f ,

〈
f,Q′〉 := ∫

R

f (x)dQ(x)

denotes dQ pathwise stochastic integration (see [13, Remark 2.18]).

Remark 2.8. Consider the operator Ĥ := − 1
2� + V + W ′ acting on R+ with Dirichlet boundary condition at zero, and

let Ĥw be the same operator but with Robin boundary condition f ′(0) = wf (0). If the function V satisfies

lim
x→∞V (x)/ logx = ∞, (2.9)

then Ĥ and Ĥw can be rigorously defined as self-adjoint operators with compact resolvent (and thus discrete spectrum)
using quadratic forms ([13, Proposition 2.9 and Corollary 2.12]; see also [6,26,28]). According to [13, Theorem 2.23],
for every t > 0, it holds with probability one that K̂(t) and K̂w(t) are self-adjoint Hilbert–Schmidt operators on L2(R+),

and K̂(t) = e−tĤ and K̂w(t) = e−tĤw
. We also have the trace formula Tr[K̂(t)] = ∫∞

0 K̂(t;x, x)dx < ∞.

Notation 2.9. Let β > 0. If V (x) = x/2 and σ 2 = 1/β in Definition 2.7, then we use the notation SASβ(t) := K̂(t) and
SASw

β (t) := K̂w(t), since in this case we recover the stochastic Airy semigroup defined in [14,20], which is the semigroup
of the stochastic Airy operator.
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2.3. Technical assumptions

We are now finally in a position to state our main results and the assumptions under which they apply. We begin with the
assumptions on the random entries of Qn in (2.3); our theorems are stated in Section 2.4.

2.3.1. Assumptions on the potential terms V E
n

Assumption 2.10 (Potential convergence). There exists nonnegative continuous functions V D,V U ,V L : R+ →R such
that

lim
n→∞V E

n

(�mnx�)= V E(x), x ≥ 0

uniformly on compact sets for every E ∈ {D,U,L}. Moreover, the function

V := 1

2

(
V D + V U + V L

)
, x ≥ 0 (2.10)

satisfies (2.9).

Assumption 2.11 (Growth upper bounds). For every E ∈ {D,U,L} we have the following: For large enough n,

0 ≤ V E
n (a) ≤ 2m2

n, 0 ≤ a ≤ n, (2.11)

and if Cn = o(n) as n → ∞, then

max
a≤Cn

V E
n (a) = o

(
m2

n

)
, n → ∞. (2.12)

Assumption 2.12 (Growth lower bounds). At least one of E ∈ {D,U,L} satisfies the following: For every θ > 0, there
exists c = c(θ) > 0 and N = N(θ) ∈N such that for every n ≥ N ,

θ log(1 + a/mn) − c ≤ V E
n (a) ≤ m2

n, 0 ≤ a ≤ n. (2.13)

Moreover, at least one of E ∈ {D,U,L} (not necessarily the same as (2.13)) satisfies the following: With d as in (2.1),
there exists d/2(1 − d) < α ≤ 2d/(1 − d), ε > 0, and positive constants κ and C > 0 such that

κ(a/mn)
α ≤ V E

n (a) ≤ m2
n, Cn1−ε ≤ a ≤ n (2.14)

for n large enough.

2.3.2. Assumptions on the noise terms ξE
n

Assumption 2.13 (Independence). For every n ∈ N, the variables ξD
n (0), . . . , ξD

n (n) are independent, and likewise for
ξU
n (0), . . . , ξU

n (n − 1) and ξL
n (0), . . . , ξL

n (n − 1). We emphasize, however, that the random vectors ξD
n , ξU

n , and ξL
n need

not be independent of each other (for instance, if Qn is symmetric, then ξU
n = ξL

n ).

Assumption 2.14 (Moment asymptotics). For every E ∈ {D,U,L}, we have:

∣∣E[ξE
n (a)
]∣∣= o
(
m

−1/2
n−a

)
as (n − a) → ∞, (2.15)

and there exists constants C > 0 and 0 < γ < 2/3 such that

E
[∣∣ξE

n (a)
∣∣q]≤ m

q/2
n Cqqγq (2.16)

for every 0 ≤ a ≤ n, integer q ∈ N, and n large enough.

Assumption 2.15 (Noise convergence). There exists Brownian motions WD , WU , and WL such that

lim
n→∞

(
1

mn

�mnx�∑
a=0

ξE
n (a)

)
E=D,U,L

= (WE(x)
)
E=D,U,L

, x ≥ 0 (2.17)
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in joint distribution with respect to the Skorokhod topology. We assume that

W := 1

2

(
WD + WU + WL

)
(2.18)

is also a Brownian motion with some variance σ 2 > 0. Furthermore, if ϕ1, . . . , ϕk are continuous and compactly supported
functions and (ϕ

(n)
1 )n∈N, . . . , (ϕ

(n)
k )n∈N are such that ϕ

(n)
i → ϕi uniformly for every 1 ≤ i ≤ k, then

lim
n→∞

(∑
a∈N0

ϕ
(n)
i (a/mn)

ξE
n (a)

mn

)
E=D,U,L;1≤i≤k

=
(∫

R+
ϕi(a)dWE(a)

)
E=D,U,L;1≤i≤k

(2.19)

in joint distribution, and also jointly with (2.17).

2.3.3. Assumptions for the Robin boundary condition
The following assumption will only be made when considering K̂w

n (t):

Definition 2.16. We say that a sequence (Xn)n∈N is uniformly sub-Gaussian if there exists C,c > 0 independent of n

such that

sup
n∈N

E
[
ey|Xn|]≤ Cecy2

, y ≥ 0. (2.20)

Assumption 2.17. (Dn(0)/m
1/2
n )n∈N is uniformly sub-Gaussian.

Remark 2.18. If γ < 1/2 in (2.16), then Assumption 2.17 is satisfied.

2.4. Main theorems

Notation 2.19. In order to make sense of the claim that K̂n(t) → K̂(t) and K̂w
n (t) → K̂w(t), we need to ensure that the

discrete and continuous objects act on the same space. For this purpose, we note that the action of the matrices (2.4) on
R

n+1 can naturally be extended to step functions on R+ of the form

n∑
a=0

v(a)1[a/mn,(a+1)/mn) for some v ∈ R
n+1.

This can then be further extended to any locally integrable f : R+ →R via

πnf := m
1/2
n

n∑
a=0

∫ (a+1)/mn

a/mn

f (x)dx1[a/mn,(a+1)/mn). (2.21)

Thus, for any (n + 1) × (n + 1) matrix M and locally integrable functions f,g, we define Mf as the vector/step function
M(πnf ), and we define

〈f,Mg〉 := mn

∑
0≤a,b≤n

(∫ (a+1)/mn

a/mn

f (x)dx

)
M(a,b)

(∫ (b+1)/mn

b/mn

g(x)dx

)
.

Our limit results are as follows.

Theorem 2.20. Suppose that Assumptions 2.1 and 2.10–2.15 hold. Let K̂(t) be defined as in (2.7), where V is given by
(2.10) and W is given by (2.18). Then, K̂n(t) → K̂(t) as n → ∞ in the following two senses:

1. For every t1, . . . , tk > 0 and f1, g1, . . . , fk, gk : R+ → R uniformly continuous and bounded,

lim
n→∞
(〈
fi, K̂n(ti)gi

〉)
1≤i≤k

= (〈fi, K̂(ti)gi

〉)
1≤i≤k

in joint distribution and mixed moments.
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2. For every t1, . . . , tk > 0,

lim
n→∞
(
Tr
[
K̂n(ti)

])
1≤i≤k

= (Tr
[
K̂(ti )
])

1≤i≤k

in joint distribution and mixed moments.

Theorem 2.21. Suppose that Assumptions 2.1, 2.2, and 2.10–2.17 hold. Let K̂w(t) be defined as in (2.8), where V is given
by (2.10) and W is given by (2.18). Then, K̂w

n (t) → K̂w(t) as n → ∞ in the following sense: For every t1, . . . , tk > 0 and
f1, g1, . . . , fk, gk : R+ → R uniformly continuous and bounded,

lim
n→∞
(〈
fi, K̂

w
n (ti)gi

〉)
1≤i≤k

= (〈fi, K̂
w(ti)gi

〉)
1≤i≤k

in joint distribution and mixed moments.

Remark 2.22. Unlike Theorem 2.20, Theorem 2.21 contains no statement on the convergence of traces. Similarly to the
lack of trace convergence in [14], this is due to the fact that we were unable to construct a strong coupling of a certain
Markov chain and its occupation measures with the reflected Brownian bridge X

x,x
t and its local time process. Throughout

this paper, we make several remarks and conjectures concerning this trace convergence, its consequences, and the related
strong invariance result (see Conjectures 2.23 and 6.11, and Remark 3.2).

Conjecture 2.23. In the setting of Theorem 2.21, for every t1, . . . , tk > 0,

lim
n→∞
(
Tr
[
K̂w

n (ti)
])

1≤i≤k
= (Tr
[
K̂w(ti)

])
1≤i≤k

in joint distribution and mixed moments.

Remark 2.24. The conclusions of Theorems 2.20 and 2.21 remain valid if we define

K̂n(t) =
(

In − −�n + Qn

3m2
n

)ϑ(n,t)

, K̂w
n (t) =

(
In − −�w

n + Qn

3m2
n

)ϑ(n,t)

for ϑ(n, t) := �m2
n(3t/2)� ± 1, instead of (2.4). Thus, up to making this minor change, there is no loss of generality in

assuming that �m2
n(3t/2)� is always even or odd if that is more convenient (this distinction comes in handy in the proof

of Proposition 3.1 below). We refer to Remark 7.2 for more details.

3. Applications to random matrices

In this section, we provide applications of our main results to the study of random matrices and β-ensembles. We begin
by stating our results in Sections 3.1–3.3, and then provide their proofs in Sections 3.4–3.9.

3.1. Application 1. Convergence of eigenvalues

Throughout Section 3.1, we assume that −�n + Qn satisfies the hypotheses of Theorem 2.20, and we denote by −∞ <

λ1(Ĥ ) ≤ λ2(Ĥ ) ≤ · · · the eigenvalues of the operator Ĥ = − 1
2� + V + W ′ (as per Remark 2.8), where W is given by

(2.18), and V by (2.10). The main result of Section 3.1 is the following:

Proposition 3.1. Suppose that −�n + Qn is diagonalizable with real eigenvalues λn;1 ≤ λn;2 ≤ · · · ≤ λn;n+1 for large
enough n, and that there exists δ > 0 such that

P
[
λn;n+1 ≥ (6 − δ)m2

n for infinitely many n
]= 0. (3.1)

Then for every k ∈ N,

lim
n→∞

1

2
(λn;1, . . . , λn;k) = (λ1(Ĥ ), . . . , λk(Ĥ )

)
in joint distribution. (3.2)
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Remark 3.2. Proposition 3.1 is only stated for the Dirichlet boundary condition since it depends on the trace convergence
of Theorem 2.20-(2). If Conjecture 2.23 holds, then the same argument used to prove Proposition 3.1 would imply that
the eigenvalues of 1

2 (−�w
n + Qn) converge to that of Ĥw .

Question 3.3. It would be interesting to see if some analog of Proposition 3.1 can be proved in the case where −�n +Qn

is diagonalizable with complex eigenvalues. We leave this as an open question.

We have the following convenient sufficient condition for (3.1), which is easily seen to be satisfied for every example
considered in Sections 3.2 and 3.3 below.

Proposition 3.4. Suppose that there exists δ̄ > 0 and N ∈N such that

max
0≤a≤n

(
2 + V D

n (a)

m2
n

+
∣∣∣∣V U

n (a)

m2
n

− 1

∣∣∣∣+
∣∣∣∣V L

n (a − 1)

m2
n

− 1

∣∣∣∣
)

≤ 6 − δ̄ (3.3)

for every n ≥ N . Then, (3.1) holds.

Finally, the following result provides a simple sufficient condition that allows to apply Proposition 3.1 to a very general
class of non-symmetric matrices.

Proposition 3.5. Suppose that there exists N ∈N large enough so that Qn’s off-diagonal entries satisfy

(
Un(a) − m2

n

)(
Ln(a) − m2

n

)
> 0, 0 ≤ a ≤ n − 1, n ≥ N. (3.4)

Then, −�n + Qn is diagonalizable with real eigenvalues for n ≥ N .

Propositions 3.1, 3.4, and 3.5 are proved in Sections 3.4–3.6. See Section 3.3 for an example of how these three results
can be combined to prove new eigenvalue limit laws for non-symmetric tridiagonal matrices.

3.2. Application 2. Classical β-ensembles

In Section 3.2 we show that our main results apply to the edge-rescaled β-Hermite ensemble, the right-edge-rescaled
β-Laguerre ensemble, as well as their rank-one spiked versions. In all cases, the limits we obtain are the stochastic Airy
semigroups SASβ(t) and SASw

β (t) respectively, thus extending the results of [14,20].

3.2.1. Generalized β-Hermite ensembles
Definition 3.6. Let ξD

n ∈R
n+1 and ξU

n = ξL
n ∈R

n be random vectors that satisfy Assumptions 2.13–2.15 with mn = n1/3.
Let β > 0 be such that the Brownian motion W in (2.18) has variance 1/β . Let us denote χn(a) := √

n − a − ξU
n (a)/n1/6

for all 0 ≤ a ≤ n. We define the generalized β-Hermite ensemble as

Hn :=

⎡
⎢⎢⎢⎢⎣

−ξD
n (0)/n1/6 χn(0)

χn(0)
. . .

. . .

. . .
. . . χn(n − 1)

χn(n − 1) −ξD
n (n)/n1/6

⎤
⎥⎥⎥⎥⎦ .

Definition 3.7. Let (μn)n∈N be a sequence of real numbers such that

lim
n→∞n−1/6(

√
n − μn) = w ∈R. (3.5)

Let ξE
n and Hn be as in Definition 3.6, assuming further that (ξD

n (0)/n1/6)n∈N is uniformly sub-Gaussian. The generalized
spiked β-Hermite ensemble is defined as Hw

n := Hn + diagn(μn,0, . . . ,0).

Hn and Hw
n are slight generalizations of the random matrix models studied in [14,20]. As shown in [20, Lemma 2.1],

the β-Hermite ensemble studied in [10,11,28] is a special case of Hn. Similarly, as noted in [14, Remarks 1.3 and 1.8],
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Hw
n generalizes the spiked β-Hermite ensemble with a critical (i.e., of size

√
n) rank-one additive perturbation introduced

in [6, (1.5)] (see also [27]). As per classical theory, the edge fluctuations of Hn and Hw
n are captured by the rescalings

Rn := n1/6(2
√

nIn − Hn) and Rw
n := n1/6(2√

nIn − Hw
n

)
. (3.6)

We have the following result regarding (3.6), which we prove in Section 3.7.

Corollary 3.8. We can define Qn so that Rn = −�n + Qn and Rw
n = −�w

n + Qn satisfy the hypotheses of Theorems
2.20 and 2.21 respectively, where mn = n1/3, wn = μn/

√
n, W in (2.18) has variance 1/β , and V (x) in (2.10) equals

x/2.

3.2.2. Generalized β-Laguerre ensembles
Definition 3.9. Suppose that ξ̃D

n and ξ̃U
n = ξ̃L

n satisfy Assumptions 2.13 and 2.14 with mn = n1/3, and that ξ̃E
n satisfy

(2.17) and (2.19) with mn = n1/3. Denoting the limits in distribution

W̃E(x) := lim
n→∞

1

n1/3

�n1/3x�∑
a=0

ξ̃E
n (a), E ∈ {D,U,L},

we further assume that W̃D + W̃U = W̃D + W̃L is a Brownian motion with variance 1/β for some β > 0. Let p =
p(n) > n be an increasing sequence such that n/p → ν ∈ [0,1] as n → ∞. Denote χn(a) := √

n − a − ξ̃U
n (a)/n1/6 and

χn;p(a) := √
p − a − ξ̃D

n (a)/n1/6. We define the generalized β-Laguerre ensemble as Ln := (L∗
n)

�L∗
n, where

L∗
n :=

⎡
⎢⎢⎢⎣

χn;p(0)

χn(0) χn;p(1)

. . .
. . .

χn(n − 1) χn;p(n)

⎤
⎥⎥⎥⎦ .

Definition 3.10. Let ξ̃E
n ,p(n), and L∗

n be as in Definition 3.9, with the additional assumption that (ξ̃D
n (0)/n1/6)n∈N and

(ξ̃L(0)/n1/6)n∈N are uniformly sub-Gaussian. Let (�n)n∈N be a sequence of real numbers such that

lim
n→∞

( √
np√

n + √
p

)2/3(
1 −√p/n(�n − 1)

)= w ∈R. (3.7)

The generalized spiked β-Laguerre ensemble is defined as Lw
n := (L∗

n)
�diagn(�n,1, . . . ,1)L∗

n.

Ln is a generalization of the β-Laguerre ensemble studied in [10,11,28]; Lw
n is a generalization of the critical (i.e.,

of size 1 + √
ν) rank-one spiked model of the β-Laguerre ensemble (cf., [2] and [6, (1.2)]). The right-edge (i.e., largest

eigenvalues) fluctuations of these matrices are captured by the rescalings

�n := m2
n√
np

(
(
√

n + √
p)2In − Ln

)
, where mn :=

( √
np√

n + √
p

)2/3

, (3.8)

and �w
n := (m2

n/
√

np)((
√

n + √
p)2In − Lw

n ) with the same mn. The following is proved in Section 3.8:

Corollary 3.11. We can define Qn so that �n = −�n + Qn and �w
n = −�w

n + Qn satisfy the hypotheses of Theorems
2.20 and 2.21 respectively, where mn is as in (3.8), wn = √

p/n(�n − 1), W in (2.18) has variance 1/β , and V (x) in
(2.10) equals x/2.

3.3. Application 3. Non-symmetric ensemble

We now provide an example of a non-symmetric matrix model for which we can prove a new limit law. The following
model is inspired by the β-Hermite ensemble:
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Definition 3.12. Suppose that ξD
n and ξU

n �= ξL
n satisfy Assumptions 2.13–2.15 with mn = n1/3. Let us denote χU

n (a) :=√
n − a − ξU

n (a)/n1/6 and χL
n (a) := √

n − a − ξL
n (a)/n1/6, and assume that χU

n (a),χL
n (a) > 0 (or, equivalently,

ξU
n (a), ξL

n (a) < n1/6√n − a) for every 0 ≤ a ≤ n − 1. Define the random matrix

H̃n :=

⎡
⎢⎢⎢⎢⎣

−ξD
n (0)/n1/6 χU

n (0)

χL
n (0)

. . .
. . .

. . .
. . . χU

n (n − 1)

χL
n (n − 1) −ξD

n (n)/n1/6

⎤
⎥⎥⎥⎥⎦ . (3.9)

In order to capture the edge fluctuations of H̃n, we consider the rescaled version

R̃n := n1/6(2
√

nIn − H̃n).

The following result is proved in Section 3.9:

Corollary 3.13. For every k ∈ N, the k smallest eigenvalues of R̃n converge in joint distribution to the k smallest eigen-
values of SAOβ with Dirichlet boundary condition.

3.4. Proof of Proposition 3.1

As argued in [20, Section 6] and [30, Section 5], it suffices to prove the convergence of Laplace transforms

lim
n→∞

(
n+1∑
j=1

e−tiλn;j /2

)
0≤i≤k

=
( ∞∑

j=1

e−tiλj (Ĥ )

)
0≤i≤k

, t1, . . . , tk > 0

in joint distribution. On the one hand, if −�n + Qn is diagonalizable, then

Tr
[
K̂n(t)
]= n+1∑

j=1

(
1 − λn;j

3m2
n

)�m2
n(3t/2)�

for every t > 0. On the other hand, by [13, Theorem 2.23], for every t > 0,

Tr
[
K̂(t)
]= ∞∑

j=1

e−tλj (Ĥ ) < ∞ almost surely.

Consequently, by Theorem 2.20-(2), we need only prove that

lim
n→∞

(
n+1∑
j=1

e−tiλn;j /2 −
(

1 − λn;j
3m2

n

)�m2
n(3ti /2)�)

0≤i≤k

= (0, . . . ,0) (3.10)

in joint distribution.
By the Skorokhod representation theorem, if K̂n(t) → K̂(t) in the sense of Theorem 2.20-(2), then there exists a

coupling of the sequence (λn;j )1≤j≤n+1,n∈N and (λj (Ĥ ))j∈N such that

lim
n→∞

n+1∑
j=1

(
1 − λn;j

3m2
n

)�m2
n(3ti /2)�

=
∞∑

j=1

e−tiλj (Ĥ ) < ∞ (3.11)

almost surely for 1 ≤ i ≤ k. By Remark 2.24, there is no loss of generality in assuming that �m2
n(3ti/2)� is even for all n;

hence

n+1∑
j=1

(
1 − λn;j

3m2
n

)�m2
n(3ti /2)�

=
n+1∑
j=1

∣∣∣∣1 − λn;j
3m2

n

∣∣∣∣
�m2

n(3ti /2)�
.

Let us fix 0 < δ < 1 and 0 < ε < d, where d is as in (2.1). We consider four different regimes of eigenvalues of −�n +Qn:
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1. Jn;1 := {j : λn;j < −nε};
2. Jn;2 := {j : −nε ≤ λn;j < nε};
3. Jn;3 := {j : nε ≤ λn;j < (6 − δ)�m2

n(3ti/2)�}; and
4. Jn;4 := {j : (6 − δ)�m2

n(3ti/2)� ≤ λn;j }.
Firstly, note that

∑
j∈Jn;1

∣∣∣∣1 − λn;j
3m2

n

∣∣∣∣
�m2

n(3ti /2)�
≥ |Jn;1|

(
1 + nε

3m2
n

)�m2
n(3ti /2)�

,

where |Jn;1| denotes the cardinality of Jn;1. If |Jn;1| > 0 for infinitely many n, then this quantity diverges, contradicting
the convergence of (3.11). Hence Jn;1 does not contribute to (3.10).

Secondly, recall the elementary inequalities

0 < ez −
(

1 + z

m

)m

<

(
1 + z

m

)m((
1 + z

m

)z

− 1

)
, ∀z,m > 0

and

0 < e−z −
(

1 − z

m

)m

<

(
1 − z

m

)m((
1 − z

m

)−z

− 1

)
, ∀m > z > 0,

which imply that

∣∣∣∣ ∑
j∈Jn;2

e−tiλn;j /2 −
(

1 − λn;j
3m2

n

)�m2
n(3ti /2)�∣∣∣∣≤

((
1 + nε

3m2
n

)nε

− 1

) ∑
j∈Jn;2

∣∣∣∣1 − λn;j
3m2

n

∣∣∣∣
�m2

n(3ti /2)�
.

Since n2ε = o(m2
n), we have (1 + nε

3m2
n
)n

ε = 1 + o(1), and thus (3.11) implies that the contribution of Jn;2 to (3.10)

vanishes.
Thirdly, one the one hand, we have that

∑
j∈Jn;3

e−tiλn;j /2 ≤ |Jn;3|e−tin
ε/2,

and on the other hand, since |1 − z| ≤ max{e−z, ez−2} (z ∈R), we see that

∑
j∈Jn;3

∣∣∣∣1 − λn;j
3m2

n

∣∣∣∣
�m2

n(3ti /2)�

≤ |Jn;3| max
j∈Jn;3

max

{
exp

(
−�m2

n(3ti/2)�λm;j
3m2

n

)
, exp

(�m2
n(3ti/2)�λm;j

3m2
n

− 2
⌊
m2

n(3ti/2)
⌋)}

.

Note that |Jn;3| ≤ n + 1 and that there exists a constant C > 0 independent of n such that for every j ∈ Jn;3,

exp

(
−�m2

n(3ti/2)�λm;j
3m2

n

)
≤ e−Cnε

,

exp

(�m2
n(3ti/2)�λm;j

3m2
n

− 2
⌊
m2

n(3ti/2)
⌋)≤ exp

(
− δ

3

⌊
m2

n(3ti/2)
⌋)

.

Consequently, the contribution of Jn;3 to (3.10) vanishes.
Finally, we know from (3.1) that there is eventually no eigenvalue in Jn;4, and thus it has no contribution to (3.10),

completing the proof Proposition 3.1.
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3.5. Proof of Proposition 3.4

According to the Gershgorin disc theorem (e.g., [33, Corollary 9.11]),

λn;n+1

m2
n

≤ max
0≤a≤n

(
2 + Dn(a)

m2
n

+
∣∣∣∣−1 + Un(a)

m2
n

∣∣∣∣+
∣∣∣∣−1 + Ln(a − 1)

m2
n

∣∣∣∣
)

.

By combining this with (3.3) and the triangle inequality, we get

λn;n+1

m2
n

≤ 6 − δ̄ +
∑

E=D,U,L

max
0≤a≤n

|ξE
n (a)|
m2

n

for large enough n. By a union bound, (2.16), and Markov’s inequality, we see that

P
[

max
0≤a≤n

|ξE
n (a)|
m2

n

≥ δ̃

]
= O

(
n

m
3q/2
n

)

for any δ̃ ∈ (0, δ̄) and q ∈ N. By (2.1), we can take q large enough so that
∑

n n/m
3q/2
n < ∞; the result then follows by

the Borel–Cantelli lemma.

3.6. Proof of Proposition 3.5

This is a direct consequence of the following classical result in matrix theory:

Lemma 3.14 ([21, 3.1.P22; see also p. 585]). Let M be a (n + 1) × (n + 1) real-valued tridiagonal matrix. If
M(a,a + 1)M(a + 1, a) > 0 for every 0 ≤ a ≤ n − 1, then M is similar to a Hermitian matrix.

3.7. Proof of Corollary 3.8

Thanks to (3.6), straightforward computations reveal that we can write Rn = −�n + Qn and Rw
n = −�w

n + Qn with
mn = n1/3, where the noise terms ξE

n are as in Definition 3.6, and the potential terms are

V D
n (a) = 0 and V U

n (a) = V L
n (a) = n1/6(

√
n − √

n − a) (3.12)

for 0 ≤ a ≤ n. By Definitions 3.6 and 3.7, ξE
n satisfy Assumptions 2.13–2.15, and Assumptions 2.2 and 2.17 hold for Hw

n

with wn = μn/
√

n. Thus, it only remains to prove that (3.12) satisfies Assumptions 2.10–2.12 with V (x) in (2.10) equal
to x/2.

Note that n1/6(
√

n − √
n − a) = n2/3(1 − √

1 − a/n); hence Assumption 2.11 is met. Elementary calculus shows that
for any 0 < κ < 1/2 and c > 0, the function

x 
→ c2(1 −
√

1 − x/c3
)− κx/c

is nonnegative on x ∈ [0, c3]. Taking c = mn, this implies that Assumption 2.12 is met with E = U,L in both (2.13) and
(2.14). Finally, for E = U,L and x ≥ 0,

V E(x) := lim
n→∞V E

n

(⌊
n1/3x
⌋)= lim

n→∞n2/3(1 −
√

1 − ⌊n1/3x
⌋
/n
)= x/2 pointwise.

Since V E
n (�n1/3x�) is nondecreasing in x for every n, the convergence is uniform on compacts. Then, we are led to

V (x) = 1
2 (V U(x) + V L(x)) = x/2, as desired.

3.8. Proof of Corollary 3.11

Remark 3.15. Unless otherwise stated, mn in this proof refers to the quantity (
√

np√
n+√

p
)2/3 defined in (3.8). If we invoke

statements regarding quantities that satisfy Assumptions 2.13–2.15 with other values of mn, we will explicitly state so.
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By definition of p and ν, n−1/3mn = (1 + √
ν)−2/3(1 + o(1)), and thus (2.1) holds with d = 1/3. With this in hand,

straightforward computations using (3.8) reveal that we can write �n = −�n + Qn with the potential terms

V D
n (a) = 2

m2
n√
np

a, V U
n (a) = V L

n (a) = m2
n

(
1 −
√

(1 − a/n)
(
1 − (a − 1)/p

))
and the noise terms

ξD
n (a) = m2

n√
np

(
2

(√
p − a

ξ̃D
n (a)

n1/6
+ √

n − a
ξ̃U
n (a)

n1/6

)
− ξ̃D

n (a)2

n2/3
− ξ̃U

n (a)2

n2/3

)
,

ξU
n (a) = ξL

n (a) = m2
n√
np

((√
n − a

ξ̃D
n (a + 1)

n1/6
+√p − a − 1

ξ̃U
n (a)

n1/6

)
− ξ̃D

n (a + 1)ξ̃U
n (a)

n2/3

)
.

We can similarly write �w
n = −�w

n + Qn with wn = √
p/n(�n − 1), the only difference in Qn being in the (0,0) entry,

which has V D(0) = 0 and

ξD
n (0) = m2

n√
np

(
2

(√
p�n

ξ̃D
n (0)

n1/6
+ √

n
ξ̃U (0)

n1/6

)
− �n

ξ̃D
n (0)2

n2/3
− ξ̃U

n (0)2

n2/3

)
. (3.13)

We now check that the hypotheses of Theorems 2.20 and 2.21 are met.
Regarding the potential terms, (2.11) and (2.12) are immediate from the definition of V E

n above. Given that (1 −√
(1 − a/n)(1 − (a − 1)/p)) ≥ (1 − √

(1 − a/n)), the same argument used in the proof of Corollary 3.8 implies that
(2.13) and (2.14) both hold with E = U,L. Next, by writing n = νp(1 + o(1)), we observe that we have the following
pointwise limits in x ≥ 0:

V D(x) := lim
n→∞V D

n

(�mnx�)= 2
√

νx

(1 + √
ν)2

,

V E(x) := lim
n→∞V E

n

(�mnx�)= (1 + ν)x

2(1 + √
ν)2

, E = U,L.

Once again the monotonicity in x of the functions involved implies uniform convergence on compacts, and we have
V (x) := 1

2 (V D(x) + V U(x) + V L(x)) = x/2.
We now prove that the noise terms ξE

n satisfy Assumptions 2.13–2.15. Since

mn = O
(
n1/3) and m2

n/
√

n,m2
n/

√
p = O

(
m

1/2
n

)= O
(
n1/6), (3.14)

the fact that ξ̃E
n satisfies Assumptions 2.13 and 2.14 with mn = n1/3 implies that ξE

n satisfy Assumptions 2.13 and 2.14
as well. Recall that, by definition, ξ̃E

n satisfy Assumption 2.15 with mn = n1/3 (and we denote the corresponding limiting
Brownian motions as W̃D , W̃U = W̃L). Since mn/n1/3 → (1 + √

ν)−2/3 converges to a constant, it then follows from a
straightforward Brownian scaling that 1

mn

∑�mnx�
a=0 ξ̃E

n (a) → (1 + √
ν)1/3W̃E(x) in distribution. Combining this with the

fact that for every a = o(n), one has

lim
n→∞

m2
n

√
p − a

n1/6√np
= 1

(1 + √
ν)4/3

and lim
n→∞

m2
n

√
n − a

n1/6√np
=

√
ν

(1 + √
ν)4/3

we then obtain that ξE
n satisfy Assumption 2.15 with

WD(x) := lim
n→∞

1

mn

�mnx�∑
a=0

ξD
n (a) =

(
2

1 + √
ν

)
W̃D(x) +

(
2
√

ν

1 + √
ν

)
W̃U (x),

and for E = L,U ,

WE(x) := lim
n→∞

1

mn

�mnx�∑
a=0

ξE
n (a) =

(
1

1 + √
ν

)
W̃U (x) +

( √
ν

1 + √
ν

)
W̃D(x).

From this we immediately obtain that W := 1
2 (WD + WU + WL) = W̃D + W̃L is a Brownian motion with variance 1/β ,

as desired.
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We conclude the proof by checking the assumptions related to the rank-one spike in Lw
n . That Assumption 2.2 is

satisfied with wn = √
p/n(�n − 1) is an immediate consequence of (3.7). As for (3.13) satisfying Assumption 2.17,

this is immediate from the fact that ξ̃E
n (0)/n1/3 are uniformly sub-Gaussian, the estimates (3.14), and the fact that �n =

1 + √
ν + O(m−1

n ) (by (3.7)).

3.9. Proof of Corollary 3.13

It is easy to see that R̃n is of the form −�n + Qn (with mn = n1/3 = n1/6√n), where, for E = U,L, one has

Un(a) = n1/6(√n − √
n − a + ξU

n (a)/n1/6),
and Dn(a) = ξD

n (a). Given that −√
n − a + ξU

n (a)

n1/6 ,−√
n − a + ξL

n (a)

n1/6 < 0 (by Definition 3.12), R̃n satisfies (3.4). We can

prove that R̃n satisfies Assumptions 2.1 and and 2.10–2.15 in the same way as Corollary 3.8; hence the result follows
from Propositions 3.1, 3.4, and 3.5 ((3.3) is easily seen to hold here).

4. From matrices to Feynman–Kac functionals

In this section, we derive probabilistic representations for 〈f, K̂n(t)g〉, Tr[Kn(t)], and 〈f, K̂w
n (t)g〉 that serve as finite-

dimensional analogs of (2.7) and (2.8).

4.1. Dirichlet boundary condition: Lazy random walk

Definition 4.1 (Lazy random walk). Let S = (S(u))u∈N0 (N0 := {0,1,2, . . .}) be a lazy random walk, i.e., the increments
S(u) − S(u − 1) are i.i.d. uniform random variables on {−1,0,1}. For every a, b,u ∈ N0, we denote Sa := (S|S(0) = a)

and S
a,b
u := (S|S(0) = a and S(u) = b).

4.1.1. Inner product
Let M be a (n + 1) × (n + 1) random tridiagonal matrix, let v ∈ R

n+1 be a vector, and let ϑ ∈ N be a fixed integer. By
definition of matrix product, for every 0 ≤ a ≤ n,

((
1

3
M

)ϑ

v

)
(a) = 1

3ϑ

∑
a1,...,aϑ−1

M(a,a1)M(a1, a2) · · ·M(aϑ−1, aϑ)v(aϑ), (4.1)

where the sum is taken over all a1, . . . , aϑ ∈ N0 such that (a, a1, . . . , aϑ) forms a path on the lattice {0,1,2, . . . , n} with
self-edges (i.e., |ai − ai−1| ∈ {0,1}). The probability that Sa is equal to any such path is 3−ϑ , and thus we see that

((
1

3
M

)ϑ

v

)
(a) = Ea

[
1{τ (n)(S)>ϑ}

(
ϑ−1∏
u=0

M
(
S(u), S(u + 1)

))
v
(
S(ϑ)
)]

, (4.2)

where the random walk S is independent of the randomness in M , Ea denotes the expected value with respect to the law
of Sa conditional on M , and

τ (n)(S) := min
{
u ≥ 0 : S(u) = −1 or n + 1

}
.

We can think of the contribution of M to (4.2) as a type of random walk in random scenery process on the edges of
{0,1,2, . . . , n}, that is, each passage of S on an edge contributes to the multiplication of the corresponding entry in M . In
particular, if we define the edge-occupation measures

�
(a,b)
ϑ (S) :=

ϑ−1∑
u=0

1{S(u)=a and S(u+1)=b}, 0 ≤ a, b ≤ n, (4.3)

then we have that

ϑ−1∏
u=0

M
(
S(u), S(u + 1)

)= ∏
a,b∈Z

M(a,b)�
(a,b)
ϑ (S). (4.4)



2700 P. Y. Gaudreau Lamarre

We now apply the above discussion to the study of K̂n(t). We observe that(
In − −�n + Qn

3m2
n

)
(a, a) = 1

3

(
1 − Dn(a)

m2
n

)
, 0 ≤ a ≤ n, (4.5)

(
In − −�n + Qn

3m2
n

)
(a, a + 1) = 1

3

(
1 − Un(a)

m2
n

)
, 0 ≤ a ≤ n − 1, (4.6)

(
In − −�n + Qn

3m2
n

)
(a + 1, a) = 1

3

(
1 − Ln(a)

m2
n

)
, 0 ≤ a ≤ n − 1. (4.7)

Let t > 0 and n ∈ N be fixed, and let us denote ϑ = ϑ(n, t) := �m2
n(3t/2)�. By combining (4.5)–(4.7), the combinatorial

analysis in (4.1)–(4.4), and the embedding πn in (2.21), we see that

〈
f, K̂n(t)g

〉= ∫ (n+1)/mn

0
f (x)E�mnx�

[
Fn,t (S)mn

∫ (S(ϑ)+1)/mn

S(ϑ)/mn

g(y)dy

]
dx, (4.8)

where S is independent of Qn, we define the random functional

Fn,t (S) := 1{τ (n)(S)>ϑ}
∏

a∈N0

(
1 − Dn(a)

m2
n

)�
(a,a)
ϑ (S)(

1 − Un(a)

m2
n

)�
(a,a+1)
ϑ (S)(

1 − Ln(a)

m2
n

)�
(a+1,a)
ϑ (S)

, (4.9)

and for any x ≥ 0, E�mnx� denotes the expected value with respect to S�mnx�, conditional on Qn.

4.1.2. Trace
Letting M be as in the previous section, it is easy to see that

Tr

[(
1

3
M

)ϑ]
=

n∑
a=0

P
[
Sa(ϑ) = a

]
Ea,a

ϑ

[
1{τ (n)(S)>ϑ}

ϑ−1∏
u=0

M
(
S(u), S(u + 1)

)]
,

where S is independent of M , and Ea,a
ϑ denotes the expected value with respect to the law of S

a,a
ϑ , conditional on M .

Given that P[Sa(ϑ) = a] = P[S0(ϑ) = 0] is independent of a, if we apply a Riemann sum on the grid m−1
n Z to the

previous expression for Tr[( 1
3M)ϑ ], we note that

Tr

[(
1

3
M

)ϑ]
= mnP

[
S0(ϑ) = 0

]∫ (n+1)/mn

0
E�mnx�,�mnx�

ϑ

[
1{τ (n)(S)>ϑ}

ϑ−1∏
u=0

M
(
S(u), S(u + 1)

)]
dx.

Applying this to the model of interest K̂n(t), we then see that

Tr
[
K̂n(t)
]= mnP

[
S0(ϑ) = 0

]∫ (n+1)/mn

0
E�mnx�,�mnx�

ϑ

[
Fn,t (S)

]
dx, (4.10)

where ϑ = ϑ(n, t) = �m2
n(3t/2)�, S is independent of Qn, E

�mnx�,�mnx�
ϑ denotes the expected value of S

�mnx�,�mnx�
ϑ

conditional on Qn, and Fn,t is as in (4.9).

4.2. Robin boundary condition: “Reflected” random walk

Definition 4.2. Let T = (T (u))u∈N0 be the Markov chain on the state space N0 with the following transition probabilities:

P
[
T (u + 1) = a + b|T (u) = a

]= 1

3
if a ∈ N0 \ {0} and b ∈ {−1,0,1},

P
[
T (u + 1) = 0|T (u) = 0

]= 2

3
, and P

[
T (u + 1) = 1|T (u) = 0

]= 1

3
.

We denote T a := (T |T (0) = a) and T
a,b
u := (T |T (0) = a and T (u) = b).
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Let M be a (n + 1) × (n + 1) tridiagonal matrix, and let M̃ be defined as

M̃(a, b) =
{

2
3M(a,b) if a = b = 0,

1
3M(a,b) otherwise.

For any ϑ ∈N, 0 ≤ a ≤ n, and vector v ∈ R
n+1,

(
M̃ϑv
)
(a) = Ea

[
1{τ (n)(T )>ϑ}

( ∏
a,b∈N0

M(a,b)�
(a,b)
ϑ (T )

)
v
(
T (ϑ)
)]

(4.11)

with T independent of M , Ea denoting the expected value of T a conditioned on M , and we define �
(a,b)
ϑ (T ) in the same

way as (4.3).
We now apply this to the study of the matrix model K̂w

n (t). The entries of In − (−�w
n + Qn)/3m2

n are the same as
(4.5)–(4.7) except for the (0,0) entry, which is equal to(

In − −�w
n + Qn

3m2
n

)
(0,0) = 1

3

(
1 + wn − Dn(0)

m2
n

)

= 1

3

(
2 − (1 − wn) − Dn(0)

m2
n

)
= 2

3

(
1 − (1 − wn)

2
− Dn(0)

2m2
n

)
.

Therefore, if we let ϑ = ϑ(n, t) := �m2
n(3t/2)�, then

〈
f, K̂w

n (t)g
〉= ∫ (n+1)/mn

0
f (x)E�mnx�

[
Fw

n,t (T )mn

∫ (T (ϑ)+1)/mn

T (ϑ)/mn

g(y)dy

]
dx, (4.12)

where T is independent of Qn, we define the random functional

Fw
n,t (T ) := 1{τ (n)(T )>ϑ}

(
1 − (1 − wn)

2
− Dn(0)

2m2
n

)�
(0,0)
ϑ (T )

(4.13)

·
(∏

a∈N

(
1 − Dn(a)

m2
n

)�
(a,a)
ϑ (T ))

(4.14)

·
(∏

a∈N0

(
1 − Un(a)

m2
n

)�
(a,a+1)
ϑ (T )(

1 − Ln(a)

m2
n

)�
(a+1,a)
ϑ (T ))

, (4.15)

and E�mnx� is the expected value of T �mnx� conditional on Qn.

4.3. A brief comparison with other matrix models

The assumptions made in Section 2 suggest that 1
2 (−�n + Qn) → Ĥ and 1

2 (−�w
n + Qn) → Ĥw as n → ∞. Thus, by

Remark 2.8, we expect that for any sequence of functions (fn;t )n∈N such that fn;t (x) → e−tx/2 in a suitable sense, one
has fn;t (−�n + Qn) → K̂(t) and fn;t (−�w

n + Qn) → K̂w(t). The difficulty involved in carrying this out rigorously in
the generality aimed in this paper is to choose fn;t ’s that are both amenable to combinatorial analysis and applicable to
general tridiagonal models. The main insight of this paper is that the matrix models K̂n(t) and K̂w

n (t) (which correspond

to the choice fn;t (x) := (1 − x/3m2
n)

�m2
n(3t/2)�) are in this sense better suited than arguably more “obvious” choices of

fn;t .
In order to illustrate this claim, we compare our matrix models with fn;t (x) := (1 − x/2m2

n)
�m2

nt/2�, which is what
was used in [14,20], and fn;t (x) := e−tx/2, which is arguably the most straightforward matrix model one could use in
order to obtain semigroup limits. We begin with the latter: If Qn is diagonal, then we can express the matrix exponen-
tial e−t (−�n+Qn)/2 in terms of a Feynman-Kac formula involving the continuous-time simple random walk on Z with
exponential jump times. This formula is very similar to (2.7) and (2.8) and is arguably easier to work with than (4.9) or
(4.13). However, for general tridiagonal Qn, the Feynman-Kac formula becomes much more unwieldy. In particular, the
generator of the associated random walk depends on the entries of Qn, making a general unified treatment more difficult.
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As for the matrix model used in [14,20], we note that(
In − −�n + Qn

2m2
n

)
(a, a) = −Dn(a)

m2
n

, 0 ≤ a ≤ n,

(
In − −�n + Qn

2m2
n

)
(a, a + 1) = 1

2

(
1 − Un(a)

m2
n

)
, 0 ≤ a ≤ n − 1,

(
In − −�n + Qn

2m2
n

)
(a + 1, a) = 1

2

(
1 − Ln(a)

m2
n

)
, 0 ≤ a ≤ n − 1.

If Dn(a) = 0 for all n and a, then a combinatorial analysis similar to the one performed earlier in this section can relate
the above to a functional of simple symmetric random walks on Z (i.e., i.i.d. uniform ±1 increments). More generally, if
Dn(a) is of smaller order than m2

n −Un(a) and m2
n −Ln(a) for large n (e.g., for β-Hermite), then a similar analysis holds,

but with additional technical difficulties (see [14, Section 3.1] and [20, Section 3] for the details). However, if Dn(a) is
allowed to be of the same order as m2

n − Un(a) and m2
n − Ln(a) (e.g., for β-Laguerre), then the analysis of [20] and [14]

no longer applies.

5. Strong couplings for Theorem 2.20

Equations (4.8) and (4.10) suggest Theorem 2.20 relies on understanding how Brownian motion and its local time arises
as the limit of the lazy random walk and its edge-occupation measures. This is the subject of this section.

Definition 5.1. For every x ≥ 0, let B̃x be a Brownian motion started at x with variance 2/3, and for every t > 0, let
B̃

x,x
t := (B̃x |B̃x(t) = x). We define the local time process for B̃ in the same way as in (2.5).

The main result of this section is the following.

Theorem 5.2. Let t > 0 and x ≥ 0 be fixed. For every 0 ≤ s ≤ t and n ∈ N, let ϑs = ϑs(n) := �m2
ns� and xn := �mnx�.

We use the shorthand ϑ := ϑt . For every y ∈ R, let (yn, ȳn)n∈N be equal to one of the three sequences(�mny�, �mny�)
n∈N,

(�mny�, �mny� + 1
)
n∈N, or

(�mny� + 1, �mny�)
n∈N. (5.1)

Finally, suppose that (Zn,Z) = (Sxn
, B̃x), or (S

xn,xn

ϑ , B̃
x,x
t ) for each n ∈N. For every 0 < ε < 1/5, there exists a coupling

of Zn and Z such that the following holds almost surely as n → ∞

sup
0≤s≤t

∣∣∣∣Zn(ϑs)

mn

− Z(s)

∣∣∣∣= O
(
m−1

n logmn

)
, (5.2)

sup
0≤s≤t,y∈R

∣∣∣∣�
(yn,ȳn)
ϑs

(Zn)

mn

− L
y
s (Z)

3

∣∣∣∣= O
(
m

−1/5+ε
n logmn

)
. (5.3)

Classical results on strong couplings of local time (such as [3]) concern the vertex-occupation measures of a random
walk:

�a
u(S) :=

u∑
j=0

1{S(j)=a}, a ∈ Z, u ∈N. (5.4)

Indeed, for any measurable f : R→R, the vertex-occupation measures satisfy

u∑
j=0

f
(
S(j)
)=∑

a∈Z
�a

u(S)f (a), (5.5)

making a direct comparison with local time more convenient by (2.5). Thus, our strategy of proof for Theorem 5.2 has
two steps: We first use standard methods to construct a strong coupling of the vertex-occupation measures of Sxn

and
S

xn,xn

ϑ with the local time of their corresponding continuous processes. Then, we prove that the occupation measure of a
given edge (a, b) is very close to a multiple of the occupation measure of the vertices a and b. More precisely:
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Proposition 5.3. For every 0 < ε < 1/5, there exists a coupling such that

sup
0≤s≤t,y∈R

∣∣∣∣�
�mny�
ϑs

(Zn)

mn

− L
y
s (Z)

∣∣∣∣= O
(
m

−1/5+ε
n logmn

)
(5.6)

and (5.2) hold almost surely as n → ∞.

Proposition 5.4. Almost surely, as n → ∞, one has

sup
0≤u≤ϑ

a,b∈Z,|a−b|≤1

1

mn

∣∣∣∣�(a,b)
u (Zn) − �a

u(Zn)

3

∣∣∣∣= O
(
m

−1/2
n logmn

)
.

Notation 5.5. In Propositions 5.3 and 5.4, and the remainder of Section 5, whenever we state a result for Zn and Z, we
mean that the result in question applies to (Zn,Z) = (Sxn

, B̃x) and (S
xn,xn

ϑ , B̃
x,x
t ).

5.1. Condition for strong local time coupling

We begin with a criterion for local time couplings. The following lemma is essentially the content of the proof of [3,
Theorem 3.2]; we provide a full proof since we need a modification of the result in Section 6.

Lemma 5.6. For any 0 < δ < 1, the following holds almost surely as n → ∞:

sup
0≤u≤ϑ,a∈Z

∣∣∣∣�a
u(Zn)

mn

− L
a/mn

u/m2
n
(Z)

∣∣∣∣
= O

(
sup

0≤s≤t,|y−z|≤m−δ
n

∣∣Ly
s (Z) − Lz

s(Z)
∣∣

+ m2δ
n sup

0≤s≤t

∣∣∣∣Zn(ϑs)

mn

− Z(s)

∣∣∣∣+ sup
0≤u≤ϑ,|a−b|≤m1−δ

n

|�a
u(Zn) − �b

u(Zn)|
mn

+ sup
0≤u≤ϑ,a∈Z

�a
u(Zn)

m2−δ
n

)
.

Proof. Let n ∈ N and a ∈ Z be fixed, and for each ε > 0, define the function fε : R→R as follows.

1. fε(a/mn) = 1/ε;
2. fε(z) = 0 whenever |z − a/mn| > ε; and
3. define fε(z) by linear interpolation for |z − a/mn| ≤ ε.

Since fε integrates to one, for every 0 ≤ u ≤ ϑ , we have that

∣∣∣∣
∫ u/m2

n

0
fε

(
Z(s)
)

ds − L
a/mn

u/m2
n
(Z)

∣∣∣∣=
∣∣∣∣
∫
R

fε(y)
(
L

y

u/m2
n
(Z) − L

a/mn

u/m2
n
(Z)
)

dy

∣∣∣∣
≤ sup

|y−a/mn|≤ε

∣∣Ly

u/m2
n
(Z) − L

a/mn

u/m2
n
(Z)
∣∣.

Note that |fε(z) − fε(y)|/|z − y| ≤ 1
ε2 for all z, y ∈R; hence, for every 0 ≤ u ≤ ϑ ,

∣∣∣∣∣
∫ u/m2

n

0
fε

(
Z(s)
)

ds − 1

m2
n

u∑
j=1

fε

(
Zn(j)/mn

)∣∣∣∣∣=
∣∣∣∣
∫ u/m2

n

0
fε

(
Z(s)
)− fε

(
Zn(ϑs)/mn

)
ds

∣∣∣∣
≤ t

ε2
sup

0≤s≤u/m2
n

∣∣∣∣Zn(ϑs)

mn

− Z(s)

∣∣∣∣.
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Finally,

1

m2
n

u∑
j=1

fε

(
Zn(j)/mn

)− �a
u(Zn)

mn

= 1

m2
n

∑
b∈Z

fε(b/mn)�
b
u(Zn) − �a

u(Zn)

mn

= 1

mn

∑
b∈Z

fε(b/mn)
(�b

u(Zn) − �a
u(Zn))

mn

+ �a
u(Zn)

mn

(
1

mn

∑
b∈Z

fε(b/mn) − 1

)
.

By a Riemann sum approximation,∣∣∣∣ 1

mn

∑
b∈Z

fε(b/mn) − 1

∣∣∣∣= O

(
1

εmn

)
,

and thus we conclude that

1

m2
n

u∑
j=1

fε

(
Zn(j)/mn

)− �a
u(Zn)

mn

= O

(
sup

|a−b|≤εmn

|�b
u(Zn) − �a

u(Zn)|
mn

+ �a
u(Zn)

εm2
n

)
.

The result then follows by taking a supremum over 0 ≤ u ≤ ϑ and a ∈ Z, and taking ε = ε(n) = m−δ
n . �

5.2. Proof of Proposition 5.3

We begin with the proof of (5.2):

Lemma 5.7. There exists a coupling such that (5.2) holds. In particular, for any 0 < δ < 1/2, it holds almost surely as
n → ∞ that

m2δ
n sup

0≤s≤t

∣∣∣∣Zn(ϑs)

mn

− Z(s)

∣∣∣∣= O
(
m−1+2δ

n logmn

)
.

Proof. Suppose first that x = 0 so that (Zn,Z) = (S0, B̃0) or (S
0,0
ϑ , B̃

0,0
t ). According to the classical KMT coupling

(e.g., [24, Section 7]) for Brownian motion and its extension to the Brownian bridge (e.g., [7, Theorem 2]), it holds that

sup
0≤u≤ϑ

∣∣∣∣Zn(u)

mn

− Z
(
u/m2

n

)∣∣∣∣= O
(
m−1

n logmn

)
almost surely. Thus it only remains to prove that

sup
0≤s≤t

∣∣Z(ϑs/m2
n

)− Z(s)
∣∣= O
(
m−1

n logmn

)
.

For Z = B̃0, this is Lévy’s modulus of continuity theorem. For Z = B̃
0,0
t , we note that the laws of (B̃

0,0
t (s))s∈[0,t/2] and

(B̃
0,0
t (t − s))s∈[0,t/2] are absolutely continuous with respect the the law of (B̃0(s))s∈[0,t/2].
Suppose now that x > 0. We can define Sxn := xn + S0 and S

xn,xn

ϑ := xn + S
0,0
ϑ , and similarly for B̃ . Since xn/mn =

x + O(m−1
n ), our proof in the case x = 0 yields

sup
0≤s≤t

∣∣∣∣Sxn
(ϑs)

mn

− B̃x(s)

∣∣∣∣= O
(
m−1

n logn + m−1
n

)
and similarly for the bridge, as desired. �

With (5.2) established, the proof (5.6) is a straightforward application of Lemma 5.6:

Lemma 5.8. For every δ > 0 and 0 < ε < δ/2,

sup
0≤s≤t,|y−z|≤m−δ

n

∣∣Ly
s (Z) − Lz

s(Z)
∣∣= O
(
m

−δ/2+ε
n logmn

)

almost surely as n → ∞.
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Proof. The result for B̃x is a direct application of [3, Equation (3.7)] (see also [31, (2.1)]). We obtain the same result for
B̃

x,x
t by the absolute continuity of (B̃

x,x
t (s))s∈[0,t/2] and (B̃

x,x
t (t − s))s∈[0,t/2] with respect to (B̃x(s))s∈[0,t/2], and the

fact that local time is additive and invariant under time reversal. �

Lemma 5.9. For every δ > 0 and 0 < ε < δ/2,

sup
0≤u≤ϑ,|a−b|≤m1−δ

n

|�a
u(Zn) − �b

u(Zn)|
mn

= O
(
m

−δ/2+ε
n logmn

)

almost surely as n → ∞.

Proof. According to [3, Proposition 3.1], for every 0 < η < 1/2, it holds that

P
[

sup
0≤u≤ϑ,a,b∈Z

m−1
n |�a

u(S
xn

) − �b
u(S

xn
)|

(|a/mn − b/mn|1/2−η ∧ 1)
≥ λ

]
= O
(
e−cλ + m−14

n

)
(5.7)

for every λ > 0, where c > 0 is independent of n and λ. We recall that mn � nd with 1/13 < d, which implies in particular
that m−14

n is summable in n. Thus, if we take λ = λ(n) = C logmn for a large enough C > 0, then Borel–Cantelli yields

sup
0≤u≤ϑ,|a−b|≤m1−δ

n

|�a
u(S

xn
) − �b

u(S
xn

)|
mn

= O
(
m

δ(η−1/2)
n logmn

)

almost surely, proving the result for Zn = Sxn
. In order to extend the result to Zn = S

xn,xn

ϑ we apply the local CLT (i.e.,
P[Sxn

(ϑ) = xn]−1 = O(mn); e.g., [15, §49]) with the elementary inequality P[E1|E2] ≤ P[E1]/P[E2] to (5.7):

P
[

sup
0≤u≤ϑ,a,b∈Z

m−1
n |�a

u(S
xn,xn

ϑ ) − �b
u(S

xn,xn

ϑ )|
(|a/mn − b/mn|1/2−η ∧ 1)

≥ λ

]
= O
(
mne−c2λ + m−13

n

)

for all λ > 0. Since
∑

n m−13
n < ∞ the result follows by Borel–Cantelli. �

Lemma 5.10. For every 0 < δ < 1, it holds almost surely as n → ∞ that

sup
0≤u≤ϑ,a∈Z

�a
u(Zn)

m2−δ
n

= O
(
m−1+δ

n logmn

)
.

Proof. Note that, for any n,u ∈ N, |Sxn
(u)| ≤ |xn| + O(m2

n) Therefore, by taking a large b in (5.7) (i.e., large enough so
that �b

ϑ(Sxn
) = 0 surely), we see that

P
[

sup
0≤u≤ϑ,a∈Z

�a
u(S

xn
)

mn

≥ λ

]
= O
(
e−Cλ + m−14

n

)
(5.8)

for all λ > 0. The proof then follows from the same arguments as in Lemma 5.9. �

By combining Lemmas 5.6–5.10, we obtain that

sup
0≤u≤ϑ,a∈Z

∣∣∣∣�a
u(Zn)

mn

− L
a/mn

u/m2
n
(Z)

∣∣∣∣= O
(
mt

n logmn

)
,

where, for every 0 < δ < 1/2 and 0 < ε < δ/2, we have

t= t(δ, ε) := max{−1 + 2δ,−δ/2 + ε}.
For any fixed ε > 0, the smallest possible t(δ, ε) occurs at the intersection of the lines δ 
→ −1 + 2δ and δ 
→ −δ/2 + ε.
This is attained at δ = 2(1 + ε)/5, in which case t= −1/5 + 4ε/5. At this point, in order to get the statement of Proposi-
tion 5.3, we must show that

sup
0≤s≤t,y∈R

∣∣L�mny�/mn

ϑs/m2
n

(Z) − L
y
s (Z)
∣∣= O
(
m

−1/5+ε
n logmn

)
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as n → ∞ for any ε > 0. This follows by a combination of Lemma 5.8 with δ = 1 and the estimate [31, (2.3)], which
yields

sup
0≤s,s̄≤t,|s−s̄|≤m−2

n ,y∈R

∣∣Ly
s (Z) − L

y
s̄ (Z)
∣∣= O
(
m

−2/3
n (logmn)

2/3).
(The results of [31] are only stated for the Brownian motion, but this can be extended to the Bridge by the absolute
continuity argument used in Lemma 5.8.)

5.3. Proof of Proposition 5.4

We may assume without loss of generality that x = 0. We begin with the case of the unconditioned random walk Zn = S0.
Let (ζ a

n )n∈N0,a∈Z be a collection of i.i.d. random variables with uniform distribution on {−1,0,1}. We can define the
random walk S0 as follows: For every u,v ∈ N and a ∈ Z, if S0(u) = a and �a

u(S
0) = v, then S0(u + 1) = S0(u) + ζ a

v .
In doing so, up to an error of at most 1, it holds that

�(a,b)
n

(
S0)= �a

n(S0)∑
j=1

1{ζ a
j =b−a}, a, b ∈ Z.

Hence, by the Borel–Cantelli lemma, it is enough to show that for any z ∈ {−1,0,1},

∑
n∈N

P

[
sup

0≤u≤ϑ,a∈Z

∣∣∣∣∣
�a

u(S0)∑
j=1

1{ζ a
j =z} − �a

u(S
0)

3

∣∣∣∣∣≥ Cm
1/2
n logmn

]
< ∞ (5.9)

for some suitable finite constant C > 0. In order to prove this, we need two auxiliary estimates. Let us denote the range
of a random walk by

Ru(S) := max
0≤j≤u

S(j) − min
0≤j≤u

S(j), u ∈N0. (5.10)

Lemma 5.11. For every ε > 0,∑
n∈N

P
[
Rϑ

(
S0)≥ m1+ε

n

]
< ∞.

Proof. According to [9, (6.2.3)], there exists C > 0 independent of n such that

E
[
Rϑ

(
S0)q]≤ (Cmn)

q
√

q!, q ∈ N0. (5.11)

Consequently, for every r < 2 and C > 0,

sup
n∈N

E
[
eC(Rϑ (S0)/mn)r

]
< ∞, (5.12)

The result then follows from Markov’s inequality. �

Lemma 5.12. If C > 0 is large enough,∑
n∈N

P
[
sup
a∈Z

�a
ϑ

(
S0)≥ Cmn logmn

]
< ∞.

Proof. This follows directly from (5.8) since
∑

n m−14
n < ∞. �

According to Lemmas 5.11 and 5.12, to prove (5.9), it is enough to consider the sum of probabilities in question
intersected with the events

Dn :=
{
Rϑ

(
S0)≤ m1+ε

n , sup
0≤u≤ϑ,a∈Z

�a
n

(
S0)≤ Cmn logmn

}
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for some large enough C > 0. By a union bound,

P

[{
sup

0≤u≤ϑ,a∈Z

∣∣∣∣∣
�a

u(S0)∑
u=1

1{ζ a
j =z} − �a

u(S
0)

3

∣∣∣∣∣≥ cm
1/2
n logmn

}
∩ Dn

]

≤ P

[{
max

−m1+ε
n ≤a≤m1+ε

n
0≤h≤Cmn logmn

∣∣∣∣∣
h∑

j=1

1{ζ a
j =z} − h

3

∣∣∣∣∣≥ cm
1/2
n logmn

}
∩ Dn

]

≤
∑

−m1+ε
n ≤a≤m1+ε

n
0≤h≤Cmn logmn

P

[∣∣∣∣∣
h∑

j=1

1{ζ a
j =z} − h

3

∣∣∣∣∣≥ cm
1/2
n logmn

]
. (5.13)

By Hoeffding’s inequality,

P

[∣∣∣∣∣
h∑

j=1

1{ζ a
j =z} − h

3

∣∣∣∣∣≥ C̄m
1/2
n logmn

]
≤ 2e−2C̄2 logmn/C

uniformly in 0 ≤ h ≤ Cmn logmn. Since the sum in (5.13) involves a polynomially bounded number of summands in mn

and the latter grows like a power of n,

for any q > 0, we can choose C̄ > 0 so that (5.9) is of order O(n−q). (5.14)

This concludes the proof of Proposition 5.4 in the case Zn = S0 by Borel–Cantelli.
In order to extend the result to the case Zn = S

xn,xn

ϑ , it suffices to prove that (5.9) holds with the additional conditioning
{S0(ϑ) = 0}. The same local limit theorem argument used at the end of the proof of Lemma 5.9 implies that

P

[
sup

0≤u≤ϑ,a∈Z

∣∣∣∣∣
�a

u(S
xn,xn

ϑ )∑
j=1

1{ζ a
j =z} − �a

u(S
xn,xn

ϑ )

3

∣∣∣∣∣≥ Cm
1/2
n logmn

]

= O

(
mnP

[
sup

0≤u≤ϑ,a∈Z

∣∣∣∣∣
�a

u(S0)∑
j=1

1{ζ a
j =z} − �a

u(S
0)

3

∣∣∣∣∣≥ Cm
1/2
n logmn

])
.

The result then follows from (5.14) by taking a large enough q .

6. Strong coupling for Theorem 2.21

We now provide the counterpart of Theorem 5.2 for the Markov chain T in Definition 4.2 that is needed for Theorem 2.21.

Definition 6.1. Let X̃ be a reflected Brownian motion on R+ with variance 2/3. For every x ≥ 0, we denote X̃x :=
(X̃|X̃(0) = x), and we define the local time and the boundary local time of X̃ as in (2.5) and (2.6), respectively.

Our main result in this section is the following.

Theorem 6.2. Let t > 0 and x ≥ 0 be fixed. Let ϑ , ϑs (0 ≤ s ≤ t ), xn, and (yn, ȳn) (y > 0) be as in Theorem 5.2. For
every 0 < ε < 1/5, there exists a coupling of T xn

and X̃x such that

sup
0≤s≤t

∣∣∣∣T xn
(ϑs)

mn

− X̃x(s)

∣∣∣∣= O
(
m−1

n logmn

)
, (6.1)

∣∣∣∣�
(0,0)
ϑ (T xn

)

mn

− 4L0
t (X̃

x)

3

∣∣∣∣= O
(
m

−1/2
n (logmn)

3/4), (6.2)

sup
0≤s≤t,y>0

∣∣∣∣�
(yn,ȳn)
ϑs

(T xn
)

mn

(
1 − 1

2
1{(yn,ȳn)=(0,0)}

)
− L

y
s (X̃

x)

3

∣∣∣∣= O
(
m

−1/5+ε
n logmn

)
(6.3)

almost surely as n → ∞.
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Remark 6.3. In contrast with Theorem 5.2, Theorem 6.2 does not include a strong invariance result for the T ’s bridge
process T

xn,xn

ϑ . We discuss this omission (and state a related conjecture) in Section 6.5 below.

The first step in the proof for Theorem 6.2 is to use a modification of the Skorokhod reflection trick developed in [14,
Section 2] to reduce (6.1) to the KMT coupling stated in (5.2). As it turns out, this step also provides a proof of (6.2). The
second step is to introduce a suitable modification of Lemma 5.6 that provides a criterion for the strong convergence of
the vertex-occupation measures of T with the local time of X̃. The third step is to prove an analog of Proposition 5.4. We
summarize the last two steps in the following propositions:

Proposition 6.4. Almost surely, as n → ∞, one has

sup
0≤u≤ϑ

(a,b)∈N2
0\{(0,0)},|a−b|≤1

1

mn

∣∣∣∣�(a,b)
u

(
T xn)− �a

u(T
xn

)

3

∣∣∣∣= O
(
m

−1/2
n logmn

)

and

sup
0≤u≤ϑ

1

mn

∣∣∣∣�(0,0)
u

(
T xn)− 2�0

u(T
xn

)

3

∣∣∣∣= O
(
m

−1/2
n logmn

)
.

Proposition 6.5. For every 0 < ε < 1/5, under the same coupling as (6.1), it holds almost surely as n → ∞ that

sup
0≤s≤t,y>0

∣∣∣∣�
�mny�
ϑs

(T xn
)

mn

− L
y
s

(
X̃x
)∣∣∣∣= O

(
m

−1/5+ε
n logmn

)
.

6.1. Proof of (6.1)

Definition 6.6 (Skorokhod map). Let Z = (Z(t))t≥0 be a continuous-time stochastic process. We define the Skorokhod
map of Z, denoted �Z , as the process

�Z(t) := Z(t) + sup
s∈[0,t]
(−Z(s)

)
+, t ≥ 0,

where (·)+ := max{0, ·} denotes the positive part of a real number.

Notation 6.7. In the sequel, whenever we discuss the Skorokhod map of the random walk S, �S , we mean the Skorokhod
map applied to the continuous-time process s 
→ S(ϑs) for 0 ≤ s ≤ t .

Note that Z 
→ �Z is 2-Lipschitz with respect to the supremum norm on compact time intervals. Therefore, (6.1) is a
direct consequence of (5.2) if we provide couplings (T ,S) and (X̃, B̃) such that T xn(ϑs) = �Sxn (s) and X̃x(s) = �

B̃x (s).
Let us begin with the coupling of X̃x and B̃x . Note that we can define X̃x := |B̄x |, where B̄ is a Brownian motion with

variance 2/3. Since the quadratic variation of B̄x is t 
→ (2/3)t , it follows from Tanaka’s formula that

X̃x(t) = x +
∫ t

0
sgn
(
B̄x(s)
)

dB̄x(s) + 2L0
t (B̄

x)

3
, t ≥ 0

(e.g., [29, Chapter VI, Theorem 1.2 and Corollary 1.9]), where

L0
t

(
B̄x
) := lim

ε→0

1

2ε

∫ t

0
1{−ε<B̄x(s)<ε} ds = L0

t

(
X̃x
)
.

If we define

B̃x
t := x +

∫ t

0
sgn
(
B̄0(s)
)

dB̄0(s), t ≥ 0,
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Fig. 1. On the left is a step function A ∈ C+ (where xn = 2). the segments contributing to H0(A) are blue. On the right are two (out of 2H0(S) = 8)
step functions Ã ∈ C such that �

Ã
= A.

which is a Brownian motion with variance 2/3 started at x, then we get from [29, Chapter VI, Lemma 2.1 and Corol-
lary 2.2] that X̃x

t = �
B̃x (t) and

(2/3)L0
t

(
X̃x
)= sup

s∈[0,t]
(−B̃x(s)

)
+ (6.4)

for every t ≥ 0, as desired.
We now provide the coupling of T xn

and Sxn
. (See Figure 1 for an illustration of the procedure we are about to

describe.) Let C be the set of step functions of the form

A(s) =
ϑ∑

u=0

Au1[u,u+1)(s), (6.5)

where A0,A1, . . . ,Aϑ ∈ Z are such that A0 = xn and Au+1 − Au ∈ {−1,0,1} for all u. Let C+ ⊂ C be the subset of such
functions that are nonnegative. For every A ∈ C, let us define

H0(A) :=
ϑ−1∑
u=0

1{Au=Au+1=0}. (6.6)

By definition of S and T , we see that for any A ∈ C,

P
[(

Sxn

(ϑs)
)

0≤s≤t
= (A(ϑs)

)
0≤s≤t

]= 1

3ϑ
,

P
[(

T xn

(ϑs)
)

0≤s≤t
= (A(ϑs)

)
0≤s≤t

]= 2H0(A)

3ϑ
1{A∈C+}.

It is clear that A 
→ �A maps C to C+ and that this map is surjective since �A = A for any A ∈ C+. Thus, in order to
construct a coupling such that T xn(ϑs) = �Sxn (s), it suffices to show that for every A ∈ C+, there are exactly 2H0(A)

distinct functions Ã ∈ C such that �
Ã

= A.
Let A ∈ C+. If H0(A) = 0, then there is no Ã �= A such that �

Ã
= A, as desired. Suppose then that H0(A) = h > 0.

Let 0 ≤ u1, . . . , uh ≤ ϑ − 1 be the integer coordinates such that Auj
= Auj +1 = 0, 1 ≤ j ≤ h. Then, �

Ã
= A if and only

if the following conditions hold:

1. Ãuj +1 − Ãuj
= 0 or Ãuj +1 − Ãuj

= −1 for all 1 ≤ j ≤ h, and

2. Ãu+1 − Ãu = Au+1 − Au for all integers u such that u /∈ {u1, . . . , uh}.
Note that, up to choosing whether the increments Ãuj +1 − Ãuj

(1 ≤ j ≤ h) are equal to 0 or −1, the above conditions

completely determine Ã. Moreover, there are 2h ways of choosing these increments, each of which yields a different Ã.
Therefore, there are 2H0(A) distinct functions Ã ∈ C such that �

Ã
= A, as desired.
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6.2. Proof of (6.2)

Since the map Z 
→ sups∈[0,t](−Z(s))+ is Lipschitz with respect to the supremum norm on [0, t], if we prove that the
coupling of T and S introduced in Section 6.1 is such that∣∣∣∣�

(0,0)
ϑ (T xn

)

mn

− 2 max
0≤s≤t

(−Sxn
(ϑs))+

mn

∣∣∣∣= O
(
m

−1/2
n (logmn)

3/4) (6.7)

almost surely as n → ∞, then (6.2) is proved by a combination of (5.2) and (6.4).
Note that if T xn

(ϑs) = A(ϑs) for s ≤ t , where A ∈ C+ is a step function of the form (6.5), then �
(0,0)
ϑ (T xn

) =H0(A),
as defined in (6.6). By analyzing the construction of the coupling of T and S in Section 6.1, we see that, conditional on
the event {�(0,0)

ϑ (T xn
) = h} (h ∈ N0), the quantity max0≤s≤t (−Sxn

(ϑs))+ is a binomial random variable with h trials and
probability 1/2. With this in mind, our strategy is to prove (6.7) using a binomial concentration bound similar to (5.13).
For this, we need a good control on the tails of �

(0,0)
ϑ (T xn

):

Proposition 6.8. There exists constants C,c > 0 independent of n such that for every y ≥ 0,

sup
n∈N,x≥0

P
[
�

(0,0)
ϑ

(
T xn)≥ mny

]≤ Ce−cy2
.

In particular, there exists C > 0 large enough so that∑
n∈N

P
[
�

(0,0)
ϑ

(
T xn)≥ Cmn

√
logmn

]
< ∞. (6.8)

Indeed, with this result in hand, we obtain by Hoeffding’s inequality that

P
[∣∣∣(h/2) − max

0≤s≤t

(−Sxn

(ϑs)
)
+
∣∣∣≥ C̃m

1/2
n (logmn)

3/4/2|�(0,0)
ϑ

(
T xn)= h

]
≤ 2e−C̃2 logmn/2C

uniformly in 0 ≤ h ≤ Cmn

√
logmn. By taking C̃ > 0 large enough, we conclude that (6.2) holds by an application of the

Borel–Cantelli lemma combined with (6.8).

Proof of Proposition 6.8. Let T and S be coupled as in Section 6.1, and let

μϑ(S) :=
ϑ−1∑
u=0

1{S(u+1)≤min{S(0),S(1),...,S(u)}},

that is, the number of times that S is smaller or equal to its running minimum over the first ϑ steps. Then, we see that

�
(0,0)
ϑ (T ) =

ϑ−1∑
u=0

1{S(u)≤0,S(u+1)≤min{S(0),S(1),...,S(u)}} ≤ μϑ(S).

Given that μϑ(S) is independent of S’s starting point, it suffices to prove that

sup
n∈N

P
[
μϑ

(
S0)≥ mny

]≤ Ce−cy2
, y ≥ 0 (6.9)

for some constants C,c > 0.
If y > mnt , then mny ≥ ϑ , hence P[μϑ(S0) ≥ mny] = 0. Thus, it suffices to prove (6.9) for y ≤ mnt . Our proof of this

is inspired by [25, Lemma 7]: Let 0 = t0 < t1 < t2 < · · · be the weak descending ladder epochs of S0, that is,

tu+1 := min
{
v > tu : S0(v) ≤ S0(tu)

}
, u ∈N0.

Then, for any ν > 0,

P
[
μϑ

(
S0)≥ mny

]= P[t�mny� ≤ ϑ] ≤ P
[
S0(t�mny�) ≥ min

0≤u≤ϑ
S0(u)
]

≤ P
[
S0(t�mny�) ≥ −νmny

]+ P
[

min
0≤u≤ϑ

S0(u) < −νmny
]
.
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On the one hand, we note that S0(t�mny�) is equal in distribution to the sum of �mny� i.i.d. copies of S0(t1), which we
call the the ladder height of S0. Moreover, it is easily seen that the ladder height has distribution P[S0(t1) = 0] = 2/3 and
P[S0(t1) = −1] = 1/3. In particular, E[S0(t�mny�)] = −�mny�/3. Thus, if we choose ν small enough (namely ν < 1/3),
then by combining Hoeffding’s inequality with mn ≥ y/t , we obtain

P
[
S0(t�mny�) ≥ −νmny

]= P
[
S0(t�mny�) + �mny�

3
≥ −νmny + �mny�

3

]
≤ C1e−c1mny ≤ C1e−c1y

2/t

for some C1, c1 > 0 independent of n.
On the other hand, by Etemadi’s and Hoeffding’s inequalities,

P
[

min
0≤u≤ϑ

S0(u) < −νmny
]

≤ P
[

max
0≤u≤ϑ

∣∣S0(u)
∣∣> νmny

]
≤ 3 max

0≤u≤ϑ
P
[∣∣S0(u)

∣∣> νmny/3
]≤ C2e−c2y

2

for some C2, c2 > 0 independent of n, concluding the proof of (6.9) for y ≤ mnt . �

6.3. Proof of Proposition 6.4

By replicating the binomial concentration argument in the proof of Proposition 5.4, it suffices to prove that∑
n∈N

P
[
Rϑ

(
T xn)≥ m1+ε

n

]
< ∞ (6.10)

for every ε > 0, where we define Rϑ(T xn
) as in (5.10), and

∑
n∈N

P
[
sup
a∈Z

�a
ϑ

(
T xn)≥ Cmn logmn

]
< ∞ (6.11)

provided C > 0 is large enough. In order to prove this, we introduce another coupling of S and T , which will also be
useful later in the paper:

Definition 6.9. Let a ∈N0 be fixed. Given a realization of T a , let us define the time change (�̃a(u))u∈N0 as follows:

1. �̃a(0) = 0.
2. If T a(�̃a(u)) �= 0 or T a(�̃a(u) + 1) �= 0, then �̃a(u + 1) = �̃a(u) + 1.
3. If T a(�̃a(u)) = 0 and T a(�̃a(u) + 1) = 0 then we sample

P
[
�̃a(u + 1) = �̃a(u) + 1

]= 1

4
and P

[
�̃a(u + 1) = �̃a(u) + 2

]= 3

4
,

independently of the increments in T a .

In words, we go through the path of T a and skip every visit to the self-edge (0,0) independently with probability 3/4.
Then, we define �a as the inverse of �̃a , which is well defined since the latter is strictly increasing.

By a straightforward geometric sum calculation, it is easy to see that we can couple S and T in such a way that

T xn

(u) = ∣∣Sxn(
�xn

(u)
)∣∣, u ∈N0. (6.12)

For the remainder of the proof of Proposition 6.4 we adopt this coupling.
On the one hand, Rϑ(T xn

) =R�xn
(ϑ)(|Sxn |) ≤ Rϑ(Sxn

). Thus (6.10) follows directly from Lemma 5.11. On the other
hand, for every a �= 0,

�a
u

(
T xn)= �a

�xn
(ϑ)

(
Sxn)+ �−a

�xn
(ϑ)

(
Sxn)≤ �a

ϑ

(
Sxn)+ �−a

ϑ

(
Sxn)

(6.13)

and

�0
u

(
T xn)= �(0,0)

u

(
T xn)+ �

(0,−1)

�xn
(u)

(
Sxn)+ �

(0,1)

�xn
(u)

(
Sxn)≤ �(0,0)

u

(
T xn)+ �0

u

(
Sxn)

.

Thus (6.11) follows from (6.8) and Lemma 5.12.
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6.4. Proof of Proposition 6.5

The following extends Lemma 5.6 to T .

Lemma 6.10. For any 0 < δ < 1, the following holds almost surely as n → ∞:

sup
0≤u≤ϑ,a∈N0

∣∣∣∣�a
u(T

xn
)

mn

− L
a/mn

u/m2
n

(
X̃x
)∣∣∣∣

= O

(
sup

0≤s≤t

y,z≥0,|y−z|≤m−δ
n

∣∣Ly
s

(
X̃x
)− Lz

s

(
X̃x
)∣∣

+ m2δ
n sup

0≤s≤t

∣∣∣∣T xn
(ϑs)

mn

− X̃x(s)

∣∣∣∣+ sup
0≤u≤ϑ

a,b∈N0,|a−b|≤m1−δ
n

|�a
u(T

xn
) − �b

u(T
xn

)|
mn

+ sup
0≤u≤ϑ,a∈N0

�a
u(T

xn
)

m2−δ
n

)
.

Proof. Let a ∈ N be fixed. For every ε > 0, let fε : R → R be defined as in the proof of Lemma 5.6, and let us define
gε :R+ →R as

gε(z) := fε(z)

(∫ ∞

0
fε(z)dz

)−1

, z ≥ 0.

gε integrates to one on R+, and |gε(z) − gε(y)|/|z − y| ≤ 2
ε2 for y, z ≥ 0. By repeating the proof of Lemma 5.6 verbatim

with gε instead of fε , we obtain the result. �

We now apply Lemma 6.10. (6.1) yields

m2δ
n sup

0≤s≤t

∣∣∣∣T xn
(ϑs)

mn

− X̃x(s)

∣∣∣∣= O
(
m1−2δ

n logmn

)
.

As for the regularity of the vertex-occupation measures and local time of T xn
and X̃x , they follow directly from the proof

of Proposition 5.3 using Lemma 5.6 by applying some carefully chosen couplings of T xn with Sxn , and X̃x with B̃x :
We begin with the latter. If we define X̃x(s) = |B̃x(s)|, then for every y ≥ 0 and s ≥ 0, we have that L

y
s (X̃

x) =
L

y
s (B̃

x) + L
−y
s (B̃x). Consequently,∣∣Ly

s

(
X̃x
)− Lz

s̄

(
X̃x
)∣∣≤ ∣∣Ly

s

(
B̃x
)− Lz

s̄

(
B̃x
)∣∣+ ∣∣L−y

s

(
B̃x
)− L−z

s̄

(
B̃x
)∣∣. (6.14)

The regularity estimates for L
y
s (X̃

x) then follow from the same results for L
y
s (B̃

x).
To prove the desired estimates on the occupation measures, we use the coupling introduced in Definition 6.9. This

immediately yields an adequate control of the supremum of �a
ϑ(T xn

) by (6.11). As for regularity, one the one hand, we
note that∣∣�a

u

(
T xn)− �b

u

(
T xn)∣∣≤ ∣∣�a

�xn
(u)

(
Sxn)− �b

�xn
(u)

(
Sxn)∣∣+ ∣∣�−a

�xn
(u)

(
Sxn)− �−b

�xn
(u)

(
Sxn)∣∣

for any a, b �= 0. On the other hand, for any a �= 0,

∣∣�0
u

(
T xn)− �a

u

(
T xn)∣∣≤ ∣∣∣∣12�0

u

(
T xn)− �a

�xn
(u)

(
Sxn)∣∣∣∣+

∣∣∣∣12�0
u

(
T xn)− �−a

�xn
(u)

(
Sxn)∣∣∣∣.

Hence we get the desired estimate by Lemma 5.9 if we prove that

sup
0≤u≤ϑ

∣∣∣∣12�0
u

(
T xn)− �0

�xn
(u)

(
Sxn)∣∣∣∣= O

(
m

−1/2
n logmn

)
(6.15)

almost surely as n → ∞. By Propositions 5.4 and 6.4, (6.15) can be reduced to

sup
0≤u≤ϑ

3

∣∣∣∣14�(0,0)
u

(
T xn)− �

(0,0)

�xn
(u)

(
Sxn)∣∣∣∣= O

(
m

−1/2
n logmn

)
. (6.16)
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By Definition 6.9, conditional on �
(0,0)
u (T xn

), we note that �
(0,0)

�xn
(u)

(Sxn
) is a binomial random variable with �

(0,0)
u (T xn

)

trials and probability 1/4. Hence we obtain (6.16) by combining (6.8) with Hoeffding’s inequality similarly to (5.13).

6.5. Coupling of T
a,b
ϑ

In light of Theorems 5.2 and 6.2, the following conjecture is natural.

Conjecture 6.11. The statement of Theorem 6.2 holds with every instance of T xn
replaced by T

xn,xn

ϑt
, and every instance

of X̃xn
replaced by X̃

xn,xn

t .

However, if we couple T in S as in Section 6.1, then conditioning on the endpoint of T corresponds to an unwieldy
conditioning of the path of S:

P
[
T a(ϑ) = a

]= P
[
Sa(ϑ) = max

0≤u≤ϑ

(−Sa(u)
)
+ + a
]
.

There seems to be no existing strong invariance result (such as KMT) applicable to this conditioning. Consequently, it
appears that a proof of Conjecture 6.11 relies on a strong invariance result for conditioned random walks that is outside
the scope of the current literature, or that it requires an altogether different reduction to a classical coupling (which we
were not able to find).

7. Proof of Theorem 2.20-(1)

For the remainder of this section, we fix some times t1, . . . , tk > 0 and uniformly continuous and bounded functions
f1, g1, . . . , fk, gk .

7.1. Step 1: Convergence of mixed moments

Consider a mixed moment

E

[
k∏

i=1

〈
fi, K̂n(ti)gi

〉ni

]
, n1, . . . , nk ∈N0.

Up to making some fi ’s, gi ’s, and ti ’s equal to each other and reindexing, there is no loss of generality in writing the
above in the form

E

[
k∏

i=1

〈
fi, K̂n(ti)gi

〉]
. (7.1)

By applying Fubini’s theorem to (4.8), we can write (7.1) as

∫
[0,(n+1)/mn)k

(
k∏

i=1

fi(xi)

)
E

[
k∏

i=1

Fn,ti

(
Si;xn

i
)
mn

∫ (S
i;xn

i (ϑi )+1)/mn

S
i;xn

i (ϑi )/mn

gi(y)dy

]
dx1 · · ·dxk (7.2)

and the corresponding limiting expression as

E

[
k∏

i=1

〈
fi, K̂(ti )gi

〉]=
∫
R

k+

(
k∏

i=1

fi(xi)

)
E

[
k∏

i=1

1{τ0(B
i;xi )>t}e

−〈Lt (B
i;xi ),Q′〉gi

(
Bi;xi (t)

)]
dx1 · · ·dxk, (7.3)

where

1. ϑi = ϑi(n, ti) := �m2
n(3ti/2)� for every n ∈N and 1 ≤ i ≤ k;

2. xn
i := �mnxi� for every n ∈N and 1 ≤ i ≤ k;

3. S1;xn
1 , . . . , Sk;xn

k are independent copies of S with respective starting points xn
1 , . . . , xn

k ; and
4. B1;x1 , . . . ,Bk;xk are independent copies of B with respective starting points x1, . . . , xk .
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We further assume that the Si;xn
i are independent of Qn, and that the Bi;xi are independent of Q. The proof of moment

convergence is based on the following:

Proposition 7.1. Let x1, . . . , xn ≥ 0 be fixed. There is a coupling of the Si;xn
i and Bi;xi such that the following limits hold

jointly in distribution over 1 ≤ i ≤ k:

1. limn→∞ sup0≤s≤ti
|S

i;xn
i (�m2

n(3s/2)�)
mn

− Bi;xi (s)| = 0.

2. limn→∞ supy∈R |�
(yn,ȳn)
ϑi

(S
i;xn

i )

mn
− 1

2L
y
ti
(Bi;xi )| = 0, jointly in (yn, ȳn)n∈N equal to the three sequences in (5.1).

3. limn→∞ mn

∫ (S
i;xn

i (ϑi )+1)/mn

S
i;xn

i (ϑi )/mn

gi(y)dy = gi(B
i;xi (t)).

4. The convergences in (2.17).

5. limn→∞
∑

a∈N0

�
(aE,āE)

ϑi
(S

i;xn
i )

mn

ξE
n (a)

mn
= 1

2

∫
R+ L

y
ti
(Bi;xi )dWE(y) jointly in E ∈ {D,U,L}, where for every a ∈N0,

(aE, āE) :=

⎧⎪⎨
⎪⎩

(a, a) if E = D,

(a, a + 1) if E = U,

(a + 1, a) if E = L.

(7.4)

Proof. According to Theorem 5.2 in the case of the lazy random walk, we can couple Si;xn
i with a Brownian motion with

variance 2/3 started at xi , B̃i;xi , in such a way that

Si;xn
i (�m2

n(3s/2)�)
mn

→ B̃i;xi (3s/2) and
�

(yn,ȳn)
ϑi

(Si;xn
i )

mn

→ 1

3
L

y

3ti /2

(
B̃i;xi
)

uniformly almost surely. Let Bi;xi (s) := B̃i;xi (3s/2). By the Brownian scaling property, Bi;xi is standard, and
L

y

3ti /2(B̃
i;xi ) = 3

2L
y
ti
(Bi;xi ). Hence (1) and (2) hold almost surely. Since gi is uniformly continuous, (3) holds almost

surely by (1) and the Lebesgue differentiation theorem. With this given, (4) and (5) follow from Assumption 2.15. �

Remark 7.2. Since the strong invariance principles in Theorem 5.2 are uniform in the time parameter, it is clear that
Proposition 7.1 remains valid of we take ϑi := �m2

n(3ti/2)� ± 1 instead of �m2
n(3ti/2)�. Referring back to Remark 2.24,

there is no loss of generality in assuming that the ϑi have a particular parity. The same comment applies to our proof of
Theorem 2.20-(2) and Theorem 2.21.

7.1.1. Convergence inside the expected value
We first prove that for every fixed x1, . . . , xk ≥ 0, there exists a coupling such that

lim
n→∞

k∏
i=1

Fn,ti

(
Si;xn

i
)
mn

∫ (S
i;xn

i (ϑi )+1)/mn

S
i;xn

i (ϑi )/mn

gi(y)dy =
k∏

i=1

1{τ0(B
i;xi )>ti }e

−〈Lti
(Bi;xi ),Q′〉gi

(
Bi;xi (ti )

)
(7.5)

in probability. According to the Skorokhod representation theorem (e.g., [5, Theorem 6.7]), there is a coupling such that
Proposition 7.1 holds almost surely. For the remainder of Section 7.1.1, we adopt such a coupling.

Since m−1
n Si;xn

i (�m2
n(3s/2)�) → Bi,xi (s) uniformly on s ∈ [0, ti], and m2

n = o(n),

lim
n→∞ 1{τ (n)(S

i;xn
i )>ϑi } = 1{τ0(B

i;xi )>ti }

almost surely. By combining this with Proposition 7.1-(3), it only remains to prove that the terms involving the matrix

entries Dn, Un, and Ln in the functional Fn,ti converge to e−〈Lti
(Bi;xi ),Q′〉. To this effect, we note that for E ∈ {D,U,L},

∏
a∈N0

(
1 − En(a)

m2
n

)�
(aE,āE)

ϑi
(S

i;xn
i )

= exp

(∑
a∈N0

�
(aE,āE)
ϑi

(
Si;xn

i
)

log

(
1 − En(a)

m2
n

))
,
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where we recall that (aE, āE) are defined as in (7.4). By using the Taylor expansion log(1 + z) = z + O(z2), this is equal
to

exp

(
−
∑
a∈N0

�
(aE,āE)
ϑi

(
Si;xn

i
)En(a)

m2
n

+ O

(∑
a∈N0

�
(aE,āE)
ϑi

(
Si;xn

i
)En(a)2

m4
n

))
. (7.6)

We begin by analyzing the leading order term in (7.6). On the one hand, the uniform convergence of Proposition 7.1-
(2) (which implies in particular that y 
→ �

(yn,ȳn)
ϑi

(Si;xn
i )/mn and y 
→ Ly(Bi;xi ) are supported on a common compact

interval almost surely) together with the fact that V E
n (�mny�) → V E(y) uniformly on compacts (by Assumption 2.10)

implies that

lim
n→∞
∑
a∈N0

�
(aE,āE)
ϑi

(
Si;xn

i
)V E

n (a)

m2
n

= lim
n→∞

∫ ∞

0

�
(yn,ȳn)
ϑi

(Si;xn
i )

mn

V E
n

(�mny�)dy = 1

2

〈
Lti

(
Bxi
)
,V E
〉

(7.7)

almost surely (where we choose the appropriate sequence (yn, ȳn) as defined in (5.1) depending on (aE, āE)). By com-
bining this with Proposition 7.1-(5), we get

lim
n→∞
∑
a∈N0

�
(aE,āE)
ϑi

(
Si;xn

i
)En(a)

m2
n

= 1

2

〈
Lti

(
Bxi
)
,
(
QE
)′〉 (7.8)

almost surely, where dQE(y) := V E(y)dy + dWE(y).
Next, we control the error term in (7.6). By using (z + z̄)2 ≤ 2(z2 + z̄2), for this it suffices control

∑
a∈N0

�
(aE,āE)
ϑi

(
Si;xn

i
)V E

n (a)2

m4
n

and
∑
a∈N0

�
(aE,āE)
ϑi

(
Si;xn

i
)ξE

n (a)2

m4
n

separately. On the one hand, the argument used in (7.7) yields

∑
a∈N0

�
(aE,āE)
ϑi

(
Si;xn

i
)V E

n (a)2

m4
n

= m−2
n

1

2

(
1 + o(1)

)〈
Lti

(
Bxi
)
,
(
V E
)2〉

.

Since V E is continuous and Lti (B
xi ) is compactly supported with probability one, this converges to zero almost surely.

On the other hand, by definition of (4.3),∑
a∈N0

�
(a,b)
ϑi

(
Si;xn

i
)≤ ϑi = O

(
m2

n

)

uniformly in b ∈ Z. Therefore, it follows from the tower property and (2.16) that

E
[∑

a∈N0

�
(aE,āE)
ϑi

(
Si;xn

i
)ξE

n (a)2

m4
n

]
= E
[∑

a∈N0

�
(aE,āE)
ϑi

(
Si;xn

i
)E[ξE

n (a)2]
m4

n

]
= O
(
m−1

n

);
hence we have convergence to zero in probability.

By combining the convergence of the leading terms (7.8), our analysis of the error terms, and (2.10) and (2.18), we
conclude that (7.5) holds.

7.1.2. Convergence of the expected value
Next, we prove that

lim
n→∞ E

[
k∏

i=1

Fn,ti

(
Si;xn

i
)
mn

∫ (S
i;xn

i (ϑi )+1)/mn

S
i;xn

i (ϑi )/mn

gi(y)dy

]

= E

[
k∏

i=1

1{τ0(B
i;xi )>ti }e

−〈Lti
(Bi;xi ),Q′〉gi

(
Bi;xi (ti )

)]
(7.9)
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pointwise in x1, . . . , xk ≥ 0. Given (7.5), we must prove that the sequence of variables inside the expected value on the
left-hand side of (7.9) are uniformly integrable. For this, we prove that

sup
n≥N

E

[
k∏

i=1

(
Fn,ti

(
Si;xn

i
)
mn

∫ (S
i;xn

i (ϑi )+1)/mn

S
i;xn

i (ϑi )/mn

gi(y)dy

)2
]

≤ sup
n≥N

k∏
i=1

E
[(

Fn,ti

(
Si;xn

i
)
mn

∫ (S
i;xn

i (ϑi )+1)/mn

S
i;xn

i (ϑi )/mn

gi(y)dy

)2k]1/k

< ∞

for large enough N , where the first upper bound is due to Hölder’s inequality.
Since the gi ’s are bounded,

mn

∫ (S
i;xn

i (ϑi )+1)/mn

S
i;xn

i (ϑi )/mn

gi(y)dy ≤ ‖gi‖∞ < ∞,

uniformly in n, and thus we need only prove that

sup
n≥N

E
[∣∣Fn,ti

(
Si;xn

i
)∣∣2k]

< ∞, 1 ≤ i ≤ k. (7.10)

Since indicator functions are bounded by 1, their contribution to (7.10) may be ignored. For the other terms, we note that
for E ∈ {D,U,L} we can write

1 − En(a)

m2
n

= m2
n − V E

n (a) − ξE
n (a)

m2
n

=
(

1 − V E
n (a)

m2
n

)(
1 − ξE

n (a)

m2
n − V E

n (a)

)
. (7.11)

By (2.11), for large n we have |1 − V E
n (a)/m2

n| ≤ 1, hence by applying Hölder’s inequality in (7.10), we need only prove
that

sup
n≥N

E
[∏

a∈N0

∣∣∣∣1 − ξE
n (a)

m2
n − V E

n (a)

∣∣∣∣
6k�

(aE,āE)

ϑi
(S

i;xn
i )]

< ∞, E ∈ {D,U,L}. (7.12)

Let us fix E ∈ {D,U,L} and define

ζn(a) := ξE
n (a)

m
1/2
n

and rn(a) := m
1/2
n

m2
n − V E

n (a)
.

By (2.16), we know that there exists C > 0 and 0 < γ < 2/3 such that E[|ζn(a)|q ] ≤ Cqqγq for every q ∈ N and n large
enough. Thus, since the variables ξE

n (0), . . . , ξE
n (n) are independent, it follows from the upper bound [20, (4.25)] that

there exists C′ > 0 and 2 < γ ′ < 3 both independent of n such that (7.12) is bounded above by

E
[

exp

(
C′
(∑

a∈N0

∣∣rn(a)
∣∣�a

ϑi

(
Si;xn

i
)∣∣E[ζn(a)

]∣∣

+
∑
a∈N0

rn(a)2�a
ϑi

(
Si;xn

i
)2 +
∑
a∈N0

∣∣rn(a)
∣∣γ ′

�a
ϑi

(
Si;xn

i
)γ ′
))]

, (7.13)

where we use the trivial bound �
(a,b)
ϑ ,�

(b,a)
ϑ ≤ �a

ϑ for all a, b.
For any fixed xi , we know that Si;xn

i (u) = O(m2
n) uniformly in 0 ≤ u ≤ ϑi because ϑi = O(m2

n). Thus, the only values
of a for which �a

ϑi
is possibly nonzero are at most of order O(m2

n) = o(n). For any such values of a, the assumption

(2.12) implies that V E
n (a) = o(m2

n), hence rn(a) = O(m
−3/2
n ). By combining all of these estimates with (2.15), (7.12) is

then a consequence of the following proposition.

Proposition 7.3. Let ϑ = ϑ(n, t) := �m2
nt� and xn := �mnx� for some t > 0 and x ≥ 0. For every C > 0 and 1 ≤ q < 3,

sup
n∈N,x≥0

E
[

exp

(
C

mn

∑
a∈Z

�a
ϑ(Sxn

)q

m
q
n

)]
< ∞.
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Since the proof of Proposition 7.3 is rather long and technical, we provide it later in Section 7.3 so as to not interrupt
the flow of the present argument.

7.1.3. Convergence of the integral
We now complete the proof that (7.2) converges to (7.3). With (7.9) established, it only remains to justify passing the
limit inside the integral in dx1 · · ·dxk . In order to prove this, we aim to use the Vitali convergence theorem (e.g., [12,
Theorem 2.24]). For this, we need a more refined version of the uniform integrability estimate used in Section 7.1.2. By
Hölder’s inequality,(

k∏
i=1

fi(xi)

)
E

[
k∏

i=1

Fn,ti

(
Si;xn

i
)
mn

∫ (S
i;xn

i (ϑi )+1)/mn

S
i;xn

i (ϑi )/mn

gi(y)dy

]

≤
k∏

i=1

‖fi‖∞‖gi‖∞E
[∣∣Fn,ti

(
Si;xn

i
)∣∣k]1/k

. (7.14)

Our aim is to find a suitable upper bounds for the functions

x 
→ E
[∣∣Fn,ti

(
Si;xn)∣∣k]1/k

, 1 ≤ i ≤ k.

In order to achieve this, we fix a small ε > 0 (precisely how small will be determined in the following paragraphs), and
we consider separately the two cases x ∈ [0, n1−ε/mn) and x ∈ [n1−ε/mn, (n + 1)/mn).

Let us first consider the case x ∈ [0, n1−ε/mn). Note that for any E ∈ {D,U,L},

1{τ (n)(S)>ϑ}
∏

a∈N0

∣∣∣∣1 − En(a)

m2
n

∣∣∣∣
�

(aE,āE)

ϑ (S)

≤
∏
a∈Z

∣∣∣∣1 − En(|a|)
m2

n

∣∣∣∣
�

(aE,āE)

ϑ (S)

.

Then, by combining Hölder’s inequality with a rearrangement similar to (7.11), E[|Fn,ti (S
i;xn

)|k]1/k is bounded above
by the product of the two terms

∏
E∈{D,U,L}

E
[∏

a∈Z

∣∣∣∣1 − ξE
n (|a|)

m2
n − V E

n (|a|)
∣∣∣∣
6k�

(aE,āE)

ϑi
(Si;xn

)]1/6k

, (7.15)

∏
E∈{D,U,L}

E
[∏

a∈Z

∣∣∣∣1 − V E
n (|a|)
m2

n

∣∣∣∣
6k�

(aE,āE)

ϑi
(Si;xn

)]1/6k

. (7.16)

Since mnx = O(n1−ε) = o(n), the random walk Si;xn
can only attain values of order o(n) in ϑi = O(m2

n) = o(n)

steps. Thus, for E ∈ {D,U,L}, it follows from (2.12) that V E
n (a) = o(m2

n) for any value attained by the walk when
x ∈ [0, n1−ε/mn). By using the same argument as for (7.12) (namely, the inequality [20, (4.25)] followed by Proposi-
tion 7.3), we conclude that (7.15) is bounded by a constant for large n. For (7.16), let us assume without loss of generality
that V D

n is the sequence (or at least one of the sequenes) that satisfies (2.13). According to (2.11), we have

∏
E∈{U,L}

E
[∏

a∈Z

∣∣∣∣1 − V E
n (|a|)
m2

n

∣∣∣∣
6k�

(aE,āE)

ϑi
(Si;xn

)]1/6k

≤ 1

for large enough n. For the terms involving V D
n , since |1 − y| ≤ e−y for any y ∈ [0,1], it follows from (2.13) that, up to

a constant C independent of n (depending on θ through c = c(θ) in (2.13)), we have the upper bound

E
[∏

a∈Z

∣∣∣∣1 − V D
n (|a|)
m2

n

∣∣∣∣
6k�

(a,a)
ϑi

(Si;xn
)]1/6k

≤ CE
[

exp

(
−6kθ

m2
n

∑
a∈Z

log
(
1 + |a|/mn

)
�

(a,a)
ϑi

(
Si;xn))]1/6k

(7.17)

for large enough n. If we define Si;xn := xn +S0 for all x ≥ 0, then �
(a,a)
ϑi

(Si;xn
) = �

(a−xn,a−xn)
ϑi

(S0). By combining this
change of variables with the inequality

log
(
1 + |z + z̄|)≥ log

(
1 + |z|)− log

(
1 + |z̄|)≥ log

(
1 + |z|)− |z̄|,
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which is valid for all z, z̄ ∈ R, we obtain that, up to a multiplicative constant independent of n, (7.17) is bounded by

E
[

exp

(
−6kθ

m2
n

∑
a∈Z

(
log(1 + x) − |a/mn|

)
�

(a,a)
ϑi

(
S0))]1/6k

.

Noting that �
(a,a)
ϑi

≤ �a
ϑi

for every a ∈ Z and that the vertex-occupation measures satisfy (5.5), an application of Hölder’s
inequality then implies that (7.17) is bounded above by the product of the two terms

E
[

exp

(
−12kθ log(1 + x)

m2
n

∑
a∈Z

�
(a,a)
ϑi

(
S0))]1/12k

, (7.18)

E
[

exp

(
12kθ

m2
n

∑
0≤u≤ϑi

|S0(u)|
mn

)]1/12k

. (7.19)

Recall the definition of the range Rϑi
(S0) in (5.10). Since

Rϑi

(
S0)≥ max

0≤u≤ϑi

∣∣S0(u)
∣∣,

we conclude that there exists C > 0 independent of n such that (7.19) is bounded by the exponential moment

E[eCRϑi
(S0)/mn]1/12k . Thus, by (5.12), we see that (7.19) is bounded by a constant independent of n. It now remains

to control (7.18). To this end, we note that
∑

a∈Z �
(a,a)
ϑi

(S0), which represents the total number of visits on the self-edges

of Z by S0 before the ϑ th
i step, is a Binomial random variable with ϑi trials and probability 1/3. Thus, for small enough

ν > 0, it follows from Hoeffding’s inequality that

P
[∑

a∈Z
�

(a,a)
ϑi

(
S0)< νm2

n

]
≤ e−cm2

n (7.20)

for some c > 0 independent of n. By separating the expectation in (7.18) with respect to whether or not the walk has taken
less than νm2

n steps on self-edges, we may bound it above by

(
e−12kνθ log(1+x) + e−cm2

n
)1/12k ≤ (1 + x)−νθ + e−(c/12k)m2

n .

Combining all of these bounds together with the fact that mn is of order nd by (2.1), we finally conclude that for every
1 ≤ i ≤ k, there exists constants c1, c2, c3 > 0 independent of n such that, for large enough n,

E
[∣∣Fn,ti

(
Si;xn)∣∣k]1/k ≤ c1

(
(1 + x)−c2θ + e−c3n

2d)
, x ∈ [0, n1−ε/mn

)
. (7.21)

Remark 7.4. We emphasize that c2 does not depend on θ , and thus the assumption (2.13) implies that we can make c2θ

arbitrarily large by taking a large enough θ . In particular, if we take θ > 1/c2, then (1 + x)−c2θ is integrable on [0,∞).

We now turn to the estimate in the case where x ∈ [n1−ε/mn, (n + 1)/mn). By taking ε > 0 small enough (more
specifically, such that 1 − ε > 2d, with d as in (2.1)), we can ensure that mnx ≥ n1−ε implies that, for any constant
0 < C < 1, we have Si;xn

(u) ≥ Cn1−ε for all 0 ≤ u ≤ ϑi and n large enough. Let us assume without loss of generality
that V D

n satisfies (2.14). Provided ε > 0 is small enough (namely, at least as small as the ε in (2.14)), for any a ∈ N0 that
can be visited by the random walk, we have that V D

n (a) ≥ κ(Cn1−ε/mn)
α ; hence∣∣∣∣1 − Dn(a)

m2
n

∣∣∣∣≤ m2
n − V D

n (a)

m2
n

+ |ξD
n (a)|
m2

n

≤ m2
n − κ(Cn1−ε/mn)

α

m2
n

+ |ξD
n (a)|
m2

n

=
(

1 − κ(Cn1−ε/mn)
α

m2
n

)(
1 + |ξn(a)|

m2
n − κ(Cn1−ε/mn)α

)
. (7.22)

According to (2.1), we know that (n1−ε/mn)
α � nα(1−d)−αε . Since α is chosen such that d/2 < α(1 − d) ≤ 2d in As-

sumption 2.12, we can always choose ε > 0 small enough so as to guarantee that

nd/2 = o
(
nα(1−d)−αε

)
and
(
n1−ε/mn

)α = o
(
n2d)= o

(
m2

n

)
. (7.23)
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As a consequence of the second equation in (7.23), for n large enough (7.22) yields∣∣∣∣1 − Dn(a)

m2
n

∣∣∣∣≤
(

1 − κ(Cn1−ε/mn)
α

m2
n

)(
1 + 2|ξn(a)|

m2
n

)
.

As for E ∈ {U,L}, we have from (2.11) that∣∣∣∣1 − En(a)

m2
n

∣∣∣∣≤ |m2
n − V E

n (a)|
m2

n

+ |ξE
n (a)|
m2

n

≤ 1 + |ξE
n (a)|
m2

n

.

Thus, for any x ∈ [n1−ε/mn, (n + 1)/mn) and large enough n, it follows from Hölder’s inequality that the expectation
E[|Fn,ti (S

i;xn
)|k]1/k is bounded above by the product of the following three terms:

E
[∏

a∈Z

(
1 − κ(Cn1−ε/mn)

α

m2
n

)4k�
(a,a)
ϑi

(Si;xn
)]1/4k

, (7.24)

E
[∏

a∈Z

(
1 + 2|ξD

n (|a|)|
m2

n

)4k�
(a,a)
ϑi

(Si;xn
)]1/4k

, (7.25)

∏
E∈{U,L}

E
[∏

a∈Z

(
1 + |ξE

n (|a|)|
m2

n

)4k�
(aE,āE)

ϑi
(Si;xn

)]1/4k

. (7.26)

By repeating the bound (7.20) and the argument thereafter, we conclude that there exists c4, c5 > 0 independent of n

such that (7.24) is bounded by e−c4n
α(1−d)−αε + e−c5n

2d
. For (7.25), let us define ζn(a) := |ξD

n (a)|/m
1/2
n . By applying [20,

(4.25)] in similar fashion to (7.13), we see that (7.25) is bounded above by

E
[

exp

(
C′
(

1

m
1/2
n

∑
a∈Z

�a
ϑi

(Si;xn
i )

mn

E
[∣∣ζn

(|a|)∣∣]

+ 1

mn

∑
a∈Z

�a
ϑi

(Si;xn
i )2

m2
n

+ 1

m
γ ′/2
n

∑
a∈Z

�a
ϑi

(Si;xn
i )γ

′

m
γ ′
n

))]
(7.27)

for some C′ > 0 and 2 < γ ′ < 3 independent of n. By (2.16), the moments E[|ζn(a)|] are uniformly bounded in n, and
thus

1

m
1/2
n

∑
a∈Z

�a
ϑi

(Si;xn
i )

mn

E
[∣∣ζn

(|a|)∣∣]= O
(
m

1/2
n

)= O
(
nd/2).

By applying the uniform exponential moment bounds of Proposition 7.3 to the remaining terms in (7.27), we conclude
that there exists a constant c6 > 0 independent of n such that (7.25) is bounded by ec6n

d/2
. A similar bound applies to

(7.26). Then, by using the first equality in (7.23) and combining the inequalities for (7.24)–(7.26), we see that there exists
c̄4, c̄5 > 0 independent of n such that

E
[∣∣Fn,ti

(
Si;xn)∣∣k]1/k ≤ e−c̄4n

α(1−d)−αε + e−c̄5n
2d

, x ∈ [n1−ε/mn, (n + 1)/mn

)
(7.28)

By combining (7.21) and (7.28), we conclude that, for large n, the integral of the absolute value of (7.14) on the set
[0, (n + 1)/mn)

k is bounded above by(
k∏

i=1

‖fi‖∞‖gi‖∞

)(
c1

∫ n1−ε/mn

0
(1 + x)−c2θ + e−c3n

2d
dx +
∫ (n+1)/mn

n1−ε/mn

e−c̄4n
α(1−d)−αε + e−c̄5n

2d
dx

)k

for some c1, c2, c3, c̄4, c̄5 > 0 independent of n. If we take θ > 0 large enough so that (1 + x)−c2θ is integrable, then the
sequence of functions(

k∏
i=1

1[0,(n+1)/mn)(xi)fi(xi)

)
E

[
k∏

i=1

Fn,ti

(
Si;xn

i
)
mn

∫ (S
i;xn

i (ϑi )+1)/mn

S
i;xn

i (ϑi )/mn

gi(y)dy

]
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is uniformly integrable in the sense of [12, Theorem 2.24-(ii),(iii)], concluding the proof of the convergence of moments
in Theorem 2.20-(1).

7.2. Step 2: Convergence in distribution

Up to writing each fi and gi as the difference of their positive and negative parts, there is no loss of generality in assuming
that fi, gi ≥ 0. The convergence in joint distribution follows from the convergence in moments proved in Section 7.1.
The argument we use to prove this is essentially the same as [20, Lemma 4.4]:

For any ¯R ∈ [−∞,0] and R̄ ∈ [0,∞], let us define

K̂ ¯R,R̄
n (t)g(x) := E�mnx�

[(
¯R ∨ Fn,t (S) ∧ R̄

)
mn

∫ S(ϑ)+1)/mn

S(ϑ)/mn

g(y)dy

]

and

K̂ ¯R,R̄(t)g(x) := Ex
[(

¯R ∨ 1{τ0(B)>t}e−〈Lt (B),Q′〉 ∧ R̄
)
g
(
B(t)
)]

,

where we use the convention ¯R ∨ y ∧ R̄ := max{ ¯R,min{y, R̄}} for any y ∈ R. We note a few elementary properties of
these truncated operators:

1. K̂
−∞,∞
n (t) = K̂n(t), and K̂−¯R,∞(t) = K̂(t) for all ¯R ≤ 0.

2. Arguing as in Section 7.1, for every ¯R ∈ [−∞,0] and R̄ ∈ [0,∞],

lim
n→∞
〈
fi, K̂ ¯R,R̄

n (ti)gi

〉= 〈fi, K̂ ¯R,R̄(ti)gi

〉
, 1 ≤ i ≤ k (7.29)

in joint moments.

3. If | ¯R|, R̄ < ∞, then the 〈fi, K̂ ¯R,R̄
n (ti)gi〉 are bounded uniformly in n; hence the moment convergence of (7.29) implies

convergence in joint distribution.

Let ¯R > −∞ be fixed. Since 〈fi, K̂ ¯R,∞
n (ti)gi〉 → 〈fi, K̂ ¯R,∞(ti)gi〉 in joint moments, the sequences in question

are tight (e.g., [4, Problem 25.17]). Therefore, it suffices to prove that every subsequence that converges in joint dis-

tribution has 〈fi, K̂ ¯R,∞(ti)gi〉 as a limit (e.g., [4, Theorem–Corollary 25.10]). Let A ¯R1 , . . . ,A ¯Rk be limit points of

〈f1, K̂ ¯R,∞(t1)g1〉, . . . , 〈fk, K̂ ¯R,∞(tk)gk〉. Since fi, gi ≥ 0, the variables 〈fi, K̂ ¯R,R̄
n (ti)gi〉 and 〈fi, K̂ ¯R,R̄(ti)gi〉 are in-

creasing in R̄. Therefore, for every R̄ < ∞, we have

(
A ¯R1 , . . . ,A ¯Rk

)≥ (〈f1, K̂ ¯R,R̄(t1)g1
〉
, . . . ,
〈
fk, K̂ ¯R,R̄(tk)gk

〉)
(7.30)

in the sense of stochastic dominance in the space R
k with the componentwise order (e.g. [22, Theorem 1 and Proposi-

tion 3]). By the monotone convergence theorem,

lim
R̄→∞
〈
fi, K̂ ¯R,R̄(ti)gi

〉= 〈fi, K̂ ¯R,∞(ti)gi

〉
, 1 ≤ i ≤ k

almost surely; hence the stochastic dominance (7.30) also holds for R̄ = ∞. Since A ¯Ri and 〈fi, K̂ ¯R,∞(ti)gi〉 have the
same mixed moments, we thus infer that their joint distributions coincide. In conclusion, for any finite ¯R, we have that

lim
n→∞
〈
fi, K̂ ¯R,∞

n (ti)gi

〉= 〈fi, K̂ ¯R,∞
n (ti)gi

〉
in joint distribution. In order to get the result for ¯R = −∞, we use the same stochastic domination argument by sending

¯R → −∞.

7.3. Proof of Proposition 7.3

If we prove that

sup
n∈N

E
[

exp

(
C

mn

∑
a∈Z

�a
ϑ(S0)q

m
q
n

)]
< ∞,
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then we get the desired result by a simple change of variables. Similarly to [20, Proposition 4.3], a crucial tool for proving
this consists of combinatorial identities involving the quantile transform for random walks derived in [1]. However, such
results only apply to the simple symmetric random walk.

In order to get around this requirement, we decompose the vertex-occupation measures in terms of the edge-
occupations measures as follows: By combining

�a
ϑ

(
S0)= �

(a,a−1)
ϑ

(
S0)+ �

(a,a)
ϑ

(
S0)+ �

(a,a+1)
ϑ

(
S0)+ 1{S0(ϑ)=a}, a ∈ Z

with the inequality (z + z̄)q ≤ 2q−1(zq + z̄q ) (for z, z̄ ≥ 0 and q ≥ 1), it suffices by an application of Hölder’s inequality
to prove that the exponential moments of

1

mn

∑
a∈Z

(�
(a,a−1)
ϑ (S0) + �

(a,a+1)
ϑ (S0))q

m
q
n

(7.31)

and

1

mn

∑
a∈Z

�
(a,a)
ϑ (S0)q

m
q
n

(7.32)

are uniformly bounded in n.

7.3.1. Non-self-edges
Let us begin with (7.31).

Definition 7.5. Let S be a simple symmetric random walk on Z, that is, the increments S(u)−S(u−1) are i.i.d. uniform
on {−1,1}. For any a, b ∈ Z and u ∈ N0, we denote Sa := (S|S(0) = a) and S

a,b
u := (S|S(0) = a and S(u) = b) (note

that the latter only makes sense if |b − a| and u have the same parity).

For every u ∈N0, let

Hu

(
S0) :=∑

a∈Z
�(a,a)

u

(
S0), (7.33)

i.e., the number of times S0 visits self-edges by the uth step. Then, it is easy to see that we can couple S0 and S0 in such
a way that

S0(u) =S0(u −Hu

(
S0)), u ∈ N,

i.e., S0 is the same path as S0 with the visits to self-edges removed. If we define the edge-occupation measures for S0 in
the same way as (5.4), then it is clear that the coupling of S and S satisfies

�
(a,a−1)
ϑ (S) + �

(a,a+1)
ϑ (S) ≤ �a

ϑ(S).

Thus, for (7.31) we need only prove that the exponential moments of

1

mn

∑
a∈Z

�a
ϑ(S0)q

m
q
n

(7.34)

are uniformly bounded in n.
By the total probability rule, we note that

E
[

exp

(
C

mn

∑
a∈Z

�a
ϑ(S0)q

m
q
n

)]
=
∑
b∈Z

E
[

exp

(
C

mn

∑
a∈Z

�a
ϑ(S

0,b
ϑ )q

m
q
n

)]
P
[
S0(ϑ) = b

]
.

According to the proof of [20, Proposition 4.3] (more specifically, [20, (4.19)] and the following paragraph, explaining
the distribution of the quantity denoted M(N, T̃ ) in [20, (4.19)]), there exists a constant C̄ > 0 that only depends on C, q ,
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and the number t in ϑ = �m2
nt� such that

1

mn

∑
a∈Z

�a
ϑ(S

0,b
ϑ )q

m
q
n

≤ C̄
((
R

0,b
ϑ /mn

)q−1 + ((|b| + 2
)
/mn

)q−1)
, (7.35)

where R
0,b
ϑ is equal in distribution to the range of S0,b

ϑ , that is,

R
0,b
ϑ

d=Rϑ

(
S

0,b
ϑ

) := max
0≤u≤ϑ

S
0,b
ϑ (u) − min

0≤u≤ϑ
S

0,b
ϑ (u).

Hence, if Rϑ(S0) denotes the range of the unconditioned random walk S0, then

E
[

exp

(
C̄

mn

∑
a∈Z

�a
ϑ(S0)q

m
q
n

)]
≤ E
[

exp

(
C

(
(Rϑ(S0))q−1

m
q−1
n

+ (|S0(ϑ)| + 2)q−1

m
q−1
n

))]
.

Since q − 1 < 2, the result then follows from the same moment estimate leading up to (5.12), but by applying [9, (6.2.3)]
to the random walk S0 instead of S0.

7.3.2. Self-edges
We now control the exponential moments of (7.32). By referring to the uniform boundedness of the exponential moments
of (7.31) that we have just proved, we know that for any b ∈ {−1,1}, the exponential moments of

1

mn

∑
a∈Z

�
(a,a+b)
ϑ (S0)q

m
q
n

and
1

mn

∑
a∈Z

�
(a+b,a)
ϑ (S0)q

m
q
n

are uniformly bounded in n. Thus, by applying (x + y)q ≤ 2q(|x|q + |y|q), the exponential moments of

1

mn

∑
a∈Z

(�
(a+1,a)
ϑ (S0) + �

(a−1,a)
ϑ (S0) + �

(a,a+1)
ϑ (S0) + �

(a,a−1)
ϑ (S0))q

m
q
n

are uniformly bounded in n. Consequently, it suffices to prove that there exists c, c̄ > 0 such that for every n ∈ N and y

large enough (independently of n),

P
[∑

a∈Z
�

(a,a)
ϑ

(
S0)q > y

]

≤ P
[∑

a∈Z

(
�

(a+1,a)
ϑ

(
S0)+ �

(a−1,a)
ϑ

(
S0)+ �

(a,a+1)
ϑ

(
S0)+ �

(a,a−1)
ϑ

(
S0))q > cy − c̄

]
. (7.36)

We now prove (7.36).

Definition 7.6. If ϑ is even, let S0,S1, . . . ,Sϑ/2−1 be defined as the path segments

Su = (S0(2u),S0(2u + 1), S0(2u + 2)
)
, 0 ≤ u ≤ ϑ/2 − 1.

If ϑ is odd, then we similarly define S0,S1, . . . ,S(ϑ−1)/2−1,S(ϑ−1)/2 as

Su =
{

(S0(2u),S0(2u + 1), S0(2u + 2)) if 0 ≤ u ≤ (ϑ − 1)/2 − 1,

(S0(2u),S0(2u + 1)) if u = (ϑ − 1)/2.

In words, we partition the path formed by the first ϑ steps of S0 into successive segments of two steps, with the exception
that the very last segment may contain only one step if ϑ is odd (see Figure 2 for an illustration of this partition).
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Fig. 2. The partition into two-step segments is represented by dashed gray lines. Type 2 segments are red, and type 3 segments are blue. The two paths
represent S0 and Ŝ0, as related to each other by the permutation of type 2 and 3 segments.

Definition 7.7. Let Su be a path segment as in the previous definition. We say that Su is a type 1 segment if there exists
some a ∈ Z and b ∈ {−1,1} such that

Su =

⎧⎪⎨
⎪⎩

(a, a, a + b),

(a + b, a, a),or

(a, a),

we say that Su is a type 2 segment if there exists some a ∈ Z such that

Su = (a, a, a),

and we say that Su is a type 3 segment if there exists some a ∈ Z such that

Su = (a, a + 1, a).

Given a realization of the first ϑ steps of the lazy random walk S0, we define the transformed path (Ŝ0(u))0≤u≤ϑ by
replacing every type 2 segment (a, a, a) in (S0(u))0≤u≤ϑ by the corresponding type 3 segment (a, a + 1, a), and vice
versa. (see Figure 2 for an illustration of this transformation). Given that this path transformation is a bijection on the set
of all possible realizations of (S0(u))0≤u≤ϑ , (Ŝ0(u))0≤u≤ϑ is also a lazy random walk.

Every contribution of S0 to
∑

a �
(a,a)
ϑ (S0) comes from type 1 and 2 segments. Moreover, if a type 1 segment Su is not

at the end of the path and adds a contribution of one to �
(a,a)
ϑ (S0) for some a ∈ Z, then it must also add one to

�
(a+1,a)
ϑ

(
S0)+ �

(a−1,a)
ϑ

(
S0)+ �

(a,a+1)
ϑ

(
S0)+ �

(a,a−1)
ϑ

(
S0). (7.37)

Lastly, for every type 2 segment, a contribution of two to �
(a,a)
ϑ (S0) for some a ∈ Z is turned into a contribution of two

to (7.37) in Ŝ0. In short, we observe that there is at most one a0 ∈ Z (i.e., the one level, if any, where a type 1 segment
occurs at the very end of the path of S0(u), u ≤ ϑ ) such that

�
(a,a)
ϑ

(
S0)≤ �

(a+1,a)
ϑ

(
Ŝ0)+ �

(a−1,a)
ϑ

(
Ŝ0)+ �

(a,a+1)
ϑ

(
Ŝ0)+ �

(a,a−1)
ϑ

(
Ŝ0)

for every a ∈ Z \ {a0}, and

�
(a0,a0)
ϑ

(
S0)≤ �

(a0+1,a0)
ϑ

(
Ŝ0)+ �

(a0−1,a0)
ϑ

(
Ŝ0)+ �

(a0,a0+1)
ϑ

(
Ŝ0)+ �

(a0,a0−1)
ϑ

(
Ŝ0)+ 1

Given that (z + 1)q ≤ 2q−1zq + 2q−1 for every z, q ≥ 1, we obtain (7.36).

8. Proof of Theorem 2.20-(2)

This proof is very similar to that of Theorem 2.20-(1), except that we deal with random walks and Brownian motions
conditioned on their endpoint.
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8.1. Step 1: Convergence of moments

We begin with a generic mixed moment of traces, which we can always write in the form

E

[
k∏

i=1

Tr
[
K̂n(ti)

]]
.

By Fubini’s theorem, this is equal to

∫
[0,(n+1)/mn]k

E

[
k∏

i=1

mnP
[
S0(ϑi) = 0

]
Fn,ti

(
S

i;xn
i ,xn

i

ϑi

)]
dx1 · · ·dxk, (8.1)

and by the trace formula in Remark 2.8 the corresponding continuum limit is

E

[
k∏

i=1

Tr
[
K̂(ti)
]]=
∫
R+

E

[
k∏

i=1

1√
2πti

1{τ0(B
i;xi ,xi
ti

)>ti }e
−〈Lt (B

i;xi ,xi
ti

),Q′〉
]

dx1 · · ·dxk,

where ϑi and xn
i are as in Section 7.1, and

1. S
1;xn

1 ,xn
1

ϑ1
, . . . , S

k;xn
k ,xn

k

ϑk
are independent copies of random walk bridges S

x,x
ϑ with x = xn

i and ϑ = ϑi ;

2. B
1;x1,x1
t1

, . . . ,B
k;xk,xk
tk

are independent copies of standard Brownian bridges B
x,x
t with x = xi and t = ti .

Also, S
i;xn

i ,xn
i

ϑi
are independent of Qn, and B

i;xi ,xi
ti

are independent of Q.
According to the local central limit theorem,

lim
n→∞mnP

[
S0(ϑi) = 0

]= 1√
2πti

, 1 ≤ i ≤ k.

Moreover, we have the following analog of Proposition 7.1:

Proposition 8.1. The conclusion of Proposition 7.1 holds with every instance of Si;xn
i replaced by S

i;xn
i ,xn

i

ϑi
, and every

instance of Bi;xi replaced by B
i;xi ,xi
ti

.

Proof. Arguing as in the proof of Proposition 7.1, this follows from coupling Si;xn
i ,xn

i with a Brownian bridge B̃
i;xi ,xi

3ti /2

with variance 2/3 using Theorem 5.2, and then defining B
i;xi ,xi
ti

(s) := B̃
i;xi ,xi

3ti /2 (3s/2). �

With these results in hand, by repeating the arguments in Section 7.1.1, for any x1, . . . , xk ≥ 0, we can find a coupling
such that

lim
n→∞mnP

[
S0(ϑi) = 0

]
Fn,ti

(
S

i;xn
i ,xn

i

ϑi

)= 1√
2πti

1{τ0(B
i;xi ,xi
ti

)>ti }e
−〈Lt (B

i;xi ,xi
ti

),Q′〉

in probability for 1 ≤ i ≤ k. Then, by arguing as in Section 7.1.2 (more specifically, the estimate for (7.10)), we get the
convergence

lim
n→∞ E

[
k∏

i=1

mnP
[
S0(ϑi) = 0

]
Fn,ti

(
S

i;xn
i ,xn

i

ϑi

)]= E

[
k∏

i=1

1√
2πti

1{τ0(B
i;xi ,xi
ti

)>ti }e
−〈Lt (B

i;xi ,xi
ti

),Q′〉
]

pointwise in x1, . . . , xk thanks to the following proposition, which we prove at the end of this section.

Proposition 8.2. Let ϑ = ϑ(n, t) := �m2
nt� and xn := �mnx� for some t > 0 and x ≥ 0. For every C > 0 and 1 ≤ q < 3,

sup
n∈N,x≥0

E
[

exp

(
C

mn

∑
a∈Z

�a
ϑ(S

xn,xn

ϑ )q

m
q
n

)]
< ∞.
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It only remains to prove that we can pass the limit outside the integral (8.1). We once again use [12, Theorem 2.24].
For this, it is enough to prove that, for n large enough, there exists constants c1, c2, c3, c̄4, c̄5 > 0 such that

∫
[0,(n+1)/mn]k

∣∣∣∣∣E
[

k∏
i=1

Fn,ti

(
S

i;xn
i ,xn

i

ϑi

)]∣∣∣∣∣dx1 · · ·dxk

≤
k∏

i=1

∫ (n+1)/mn

0
E
[∣∣Fn,ti

(
S

i;xn,xn

ϑi

)∣∣k]1/k dx

≤
(

c1

∫ n1−ε/mn

0

(
(1 + x)−c2θ + e−c3n

2d)
dx +
∫ (n+1)/mn

n1−ε/mn

(
e−c̄4n

α(1−d)−αε + e−2c̄5n
2d)

dx

)k

, (8.2)

where θ is taken large enough so that (1 + x)−c2θ is integrable. To this end, for every ϑ ∈ N, let us define Rϑ(S
0,0
ϑ ) as

the range of S
0,0
ϑ . By replicating the estimates in Section 7.1.3, we see that (8.2) is the consequence of the following two

propositions, concluding the proof of the convergence of moments.

Proposition 8.3. Let ϑ = ϑ(n, t) := �m2
nt� for some t > 0. For every C > 0,

sup
n∈N

E
[
eCRϑ (S

0,0
ϑ )/mn

]
< ∞.

Proposition 8.4. Let ϑ = ϑ(n, t) := �m2
nt� for some t > 0. For small enough ν > 0, there exists some c > 0 independent

of n such that

P
[∑

a∈Z
�

(a,a+b)
ϑ

(
S

0,0
ϑ

)
< νm2

n

]
≤ e−cm2

n , b ∈ {−1,0,1}.

Proof of Proposition 8.3. Let us define

M
(
S

0,0
ϑ

) := max
0≤u≤ϑ

∣∣S0,0
ϑ (u)
∣∣.

It is easy to see that Rϑ(S
0,0
ϑ ) ≤ 2M(S

0,0
ϑ ), and thus it suffices to prove that the exponential moments of M(S

0,0
ϑ )/mn

are uniformly bounded in n.
Let S be as in Definition 7.5, and define

M
(
S0,0

v

) := max
0≤u≤v

∣∣S0,0
u

∣∣, v ∈ 2N0.

According to [20, (4.7)] (up to normalization, the quantity denoted M̃(N, T̃ ) in [20, (4.7)] is essentially the same as what
we denote by M(S

0,0
ϑ ); see the definition of the former on [20, Page 2302]) we know that for every 0 < q < 2 and C > 0,

sup
u∈N

E
[
eC(M(S

0,0
u )/

√
u)q
]
< ∞. (8.3)

Let us define

H
(
S0,0

u

) :=∑
a∈Z

�
(a,a)
ϑ

(
S0,0

u

)
, u ∈ 2N0. (8.4)

For any h ∈N0, we can couple the bridges of S and S in such a way that(
S

0,0
ϑ (u)|H(S0,0

ϑ

)= h
)=S

0,0
ϑ−h

(
u −H

(
S0,0

u

))
.

In words, we obtain S
0,0
ϑ−· from S

0,0
ϑ (u) by removing all segments that visit self-edges. Since visits to self-edges do not

contribute to the magnitude of S
0,0
ϑ ,

(
M
(
S

0,0
ϑ

)|H(S0,0
ϑ

)= h
)=M

(
S

0,0
ϑ−h

)
.
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Thus, (8.3) for q = 1 implies that

sup
n∈N

E
[
eCM(S

0,0
ϑ )/mn

]= sup
n∈N

∑
h∈N0

E
[
eCM(S

0,0
ϑ )/mn |H(S0,0

ϑ

)= h
]
P
[
H
(
S

0,0
ϑ

)= h
]

≤ sup
n∈N

sup
1≤u≤ϑ

E
[
e(

√
u/mn)CM(S

0,0
u )/

√
u
]
< ∞ (8.5)

for every C > 0, as desired. �

Proof of Proposition 8.4. Note that

P
[∑

a∈N0

�
(a,a+b)
ϑ

(
S

0,0
ϑ

)
< νm2

n

]
≤ P
[∑

a∈N0

�
(a,a+b)
ϑ

(
S0)< νm2

n

]
P
[
S0(ϑ) = 0

]−1
.

By the local central limit theorem, P[S0(ϑ) = 0]−1 = O(mn), and thus the result follows from the same binomial con-
centration argument used for (7.20). �

Proof of Proposition 8.2. In similar fashion to the proof of Proposition 7.3, it suffices to prove that the exponential
moments of

1

mn

∑
a∈Z

(�
(a,a−1)
ϑ (S

0,0
ϑ ) + �

(a,a+1)
ϑ (S

0,0
ϑ ))q

m
q
n

and
1

mn

∑
a∈Z

�
(a,a)
ϑ (S

0,0
ϑ )q

m
q
n

(8.6)

are uniformly bounded in n. We start with the first term in (8.6). Under the coupling in the proof of Proposition 8.3,(∑
a∈Z

(
�

(a,a−1)
ϑ

(
S

0,0
ϑ

)+ �
(a,a+1)
ϑ

(
S

0,0
ϑ

))q |H(S0,0
ϑ

)= h

)
≤
∑
a∈Z

�a
ϑ−h

(
S

0,0
ϑ−h

)q

for every h ∈ N0. By conditioning on H(S
0,0
ϑ ) as in (8.5), we need only prove that

sup
n∈N

E
[

exp

(
C

mn

∑
a∈Z

�a
ϑ(S

0,0
ϑ )q

m
q
n

)]
< ∞.

By using (7.35) in the case b = 0 (i.e., [20, (4.19)]), this follows from (8.3). With this established, the exponential moments
of the second term in (8.6) can be controlled by using the same argument in Section 7.3.2 (the path transformation used
therein does not change the endpoint of the path that is being modified; hence the transformed version of S

0,0
ϑ is a random

walk bridge). �

8.2. Step 2: Convergence in distribution

The convergence in distribution follows from the convergence of mixed moments by using the same truncation/stochastic
domination argument as in Section 7.2.

9. Proof of Theorem 2.21

This follows roughly the same steps as the proof of Theorem 2.20-(1).

9.1. Step 1: Convergence of moments

9.1.1. Expression for mixed moments and convergence result
By Fubini’s theorem, any mixed moment E[∏k

i=1〈fi, K̂
w
n (ti)gi〉] can be written as

∫
[0,(n+1)/mn)k

(
k∏

i=1

fi(xi)

)
E

[
k∏

i=1

Fn,ti

(
T i;xn

i
)
mn

∫ (T
i;xn

i (ϑi )+1)/mn

T
i;xn

i (ϑi )/mn

gi(y)dy

]
dx1 · · ·dxk, (9.1)
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and the corresponding continuum limit is

E

[
k∏

i=1

〈
fi, K̂(ti )gi

〉]=
∫
R

k+

(
k∏

i=1

fi(xi)

)
E

[
k∏

i=1

e−〈Lti
(Xi;xi ),Q′〉−wL0

ti
(Xi;xi )

gi

(
Xi;xi (ti )

)]
dx1 · · ·dxk, (9.2)

where ϑi and xn
i are as in Section 7.1,

1. T 1;xn
1 , . . . , T k;xn

k are independent copies of the Markov chain T with respective starting points xn
1 , . . . , xn

k ; and
2. X1;x1, . . . ,Xk;xk are independent copies of X with respective starting points x1, . . . , xk .

T i;xn
i are independent of Qn and Xi;xi are independent of Q.

Proposition 9.1. Let x1, . . . , xn ≥ 0 be fixed. The following limits hold jointly in distribution over 1 ≤ i ≤ k:

1. limn→∞ sup0≤s≤ti
|T

i;xn
i (�m2

n(3s/2)�)
mn

− Xi;xi (s)| = 0.

2. limn→∞ supy>0 |�
(yn,ȳn)
ϑi

(T
i;xn

i )

mn
(1 − 1

2 1{(yn,ȳn)=(0,0)}) − 1
2L

y
ti
(Xi;xi )| = 0, jointly in (yn, ȳn)n∈N as in (5.1).

3. limn→∞ |�
(0,0)
ϑi

(T
i;xn

i )

mn
− 2L0

ti
(Xi;xi )| = 0.

4. limn→∞ mn

∫ (T
i;xn

i (ϑi )+1)/mn

T
i;xn

i (ϑi )/mn

gi(y)dy = gi(X
i;xi (t)).

5. The convergences in (2.17).

6. limn→∞
∑

a∈N0

�
(aE,āE)

ϑi
(X

i;xn
i )

mn

ξE
n (a)

mn
= 1

2

∫
R+ L

y
ti
(T i;xi )dWE(y) for E ∈ {D,U,L}, where, for every a ∈ N0, (aE, āE)

are as in (7.4).

Proof. Arguing as in Proposition 7.1, the result follows by using Theorem 6.2 to couple the T i;xn
i with reflected Brownian

motions with variance 2/3, X̃i;xn
i , and then defining Xi;xn

i (s) := X̃i;xn
i (3s/2), which yields a standard reflected Brownian

motion such that L
y

3ti /2(X̃
i;xi ) = 3

2L
y
ti
(Xi;xi ) and L0

3ti /2(X̃
i;xi ) = 3

2L
0
ti
(Xi;xi ). �

9.1.2. Convergence inside the expected value
We begin with the proof that for every x1, . . . , xk ≥ 0, there is a coupling such that

lim
n→∞

k∏
i=1

Fn,ti

(
T i;xn

i
)
mn

∫ (T
i;xn

i (ϑi )+1)/mn

T
i;xn

i (ϑi )/mn

gi(y)dy =
k∏

i=1

e−〈Lti
(Xi;xi ),Q′〉−wL0

ti
(Xi;xi )

gi

(
Xi;xi (ti )

)
(9.3)

in probability. Proposition 9.1 provides a coupling such that

k∏
i=1

1{τ (n)(T
i;xn

i )>ϑi }

(∏
a∈N

(
1 − Dn(a)

m2
n

)�
(a,a)
ϑi

(T
i;xn

i ))

·
(∏

a∈N0

(
1 − Un(a)

m2
n

)�
(a,a+1)
ϑi

(T
i;xn

i )(
1 − Ln(a)

m2
n

)�
(a+1,a)
ϑi

(T
i;xn

i ))

converges in probability to
∏k

i=1 e−〈Lti
(Xi;xi ),Q′〉. Combining this with Proposition 9.1-(4), it only remains to show that

lim
n→∞

k∏
i=1

(
1 − (1 − wn)

2
− Dn(0)

2m2
n

)�
(0,0)
ϑi

(T
i;xn

i )

=
k∏

i=1

e−wL0
ti
(Xi;xi )

.

To this effect, the Taylor expansion log(1 + z) = z + O(z2) yields

(
1 − (1 − wn)

2
− Dn(0)

2m2
n

)�
(0,0)
ϑi

(T
i;xn

i )

= exp

(
−�

(0,0)
ϑi

(
T i;xn

i
)( (1 − wn)

2
+ Dn(0)

2m2
n

+ O

(
(1 − wn)

2

4
+ Dn(0)2

2m4
n

)))
.
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By Proposition 9.1-(3) and Assumption 2.2,

lim
n→∞�

(0,0)
ϑi

(
T i;xn

i
)( (1 − wn)

2
+ Dn(0)

2m2
n

)
= wL0

ti

(
Xi;xi
)

and

lim
n→∞�

(0,0)
ϑi

(
T i;xn

i
)( (1 − wn)

2

4
+ Dn(0)2

2m4
n

)
= 0

almost surely, as desired.

9.1.3. Convergence of the expected value
Next we prove

lim
n→∞ E

[
k∏

i=1

Fw
n,ti

(
T i;xn

i
)
mn

∫ (T
i;xn

i (ϑi )+1)/mn

T
i;xn

i (ϑi )/mn

gi(y)dy

]

= E

[
k∏

i=1

e−〈Lti
(Xi;xi ),Q′〉−wL0

ti
(Xi;xi )

gi

(
Xi;xi (ti )

)]
(9.4)

pointwise in x1, . . . , xk ≥ 0. Similarly to Section 7.1.2, this is done by combining (9.3) with the uniform integrability
estimate

sup
n≥N

E
[∣∣Fw

n,ti

(
T i;xn

i
)∣∣2k]

< ∞, 1 ≤ i ≤ k (9.5)

for large enough N . To achieve this we combine Proposition 6.8 and the following:

Proposition 9.2. Let ϑ = ϑ(n, t) = �m2
nt� for some t > 0. For every C > 0 and 1 ≤ q < 3,

sup
n∈N,x≥0

E
[

exp

(
C

mn

∑
a∈N

�a
ϑ(T xn

)q

m
q
n

)]
< ∞.

Proof. If we couple X and S as in Definition 6.9, then we see that

E
[

exp

(
C

mn

∑
a∈N

�a
ϑ(T xn

)q

m
q
n

)]
≤ E
[

exp

(
2q−1C

mn

∑
a∈Z\{0}

�a

�xn
(ϑ)

(S0)q

m
q
n

)]

≤ E
[

exp

(
2q−1C

mn

∑
a∈Z

�a
ϑ(S0)q

m
q
n

)]
.

Thus Proposition 9.2 follows directly from Proposition 7.3. �

Indeed, the arguments of Section 7.1.2 show that the contribution of the terms of the form (4.14) and (4.15) to (9.5)
can be controlled by Proposition 9.2. Thus, it suffices to prove that for every C > 0, there is some N ∈N large enough so
that

sup
n≥N,x≥0

E
[∣∣∣∣1 − (1 − wn)

2
− Dn(0)

2m2
n

∣∣∣∣
C�

(0,0)
ϑi

(T
i;xn

i )]
< ∞. (9.6)

By using the bound |1 − z| ≤ e|z|, it suffices to control the exponential moments of

�
(0,0)
ϑ

(
T xn)|1 − wn| and

�
(0,0)
ϑ (T xn

)|Dn(0)|
m2

n

. (9.7)
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We begin with the first term in (9.7). According to Proposition 6.8, for every C > 0,

sup
n∈N,x≥0

E
[
eC�

(0,0)
ϑ (T xn

)/mn
]
< ∞.

Thus, given that |1 − wn| = O(m−1
n ) by Assumption 2.2, we conclude that

sup
n∈N,x≥0

E
[
eC�

(0,0)
ϑ (T xn

)|1−wn|]< ∞.

Let us now consider the second term in (9.7). By the tower property and Assumption 2.17, there exists C̄, c̄ > 0 indepen-
dent of n such that

E
[
eC(�

(0,0)
ϑ (T xn

)/m
3/2
n )(|Dn(0)|/m

1/2
n )
]≤ C̄E

[
ec̄(C2/mn)(�

(0,0)
ϑ (T xn

)/mn)2]
.

Since c̄(C2/mn) → 0, it follows from Proposition 6.8 that

sup
n≥N,x≥0

E
[
ec̄(C2/mn)(�

(0,0)
ϑ (T xn

)/mn)2]
< ∞

for large enough N , concluding the proof of (9.6).

9.1.4. Convergence of the integral
With (9.1.3) established, once more we aim to prove that (9.1) converges to (9.2) by using [12, Theorem 2.24]. Similarly
to Section 7.1.3, for this we need upper bounds of the form

E
[∣∣Fw

n,ti

(
T i;xn)∣∣k]1/k ≤ c1

(
(1 + x)−c2θ + e−c3n

2d)
, x ∈ [0, n1−ε/mn

)
(9.8)

and

E
[∣∣Fw

n,ti

(
T i;xn)∣∣k]1/k ≤ e−c̄4n

α(1−d)−αε + e−c̄5n
2d

, x ∈ [n1−ε/mn, (n + 1)/mn

)
, (9.9)

where ε, c1, c2, c3, c̄4, c̄5 > 0 are independent of n and θ > 0 is taken large enough so that (1 + x)−c2θ is integrable.
We begin with x ∈ [0, n1−ε/mn). Replicating the analysis leading up to (7.15) and (7.16) leads to bounding

E[|Fw
n,ti

(T i;xn
)|k]1/k by the product of the following five terms:

E
[∣∣∣∣1 − (1 − wn)

2
− Dn(0)

2m2
n

∣∣∣∣
7k�

(0,0)
ϑi

(T
i;xn

i )]1/7k

, (9.10)

∏
E∈{U,L}

E
[∏

a∈N0

∣∣∣∣1 − ξE
n (a)

m2
n − V E

n (a)

∣∣∣∣
7k�

(aE,āE)

ϑi
(T i;xn

)]1/7k

, (9.11)

E
[∏

a∈N

∣∣∣∣1 − ξD
n (a)

m2
n − V D

n (a)

∣∣∣∣
7k�

(a,a)
ϑi

(T i;xn
)]1/7k

, (9.12)

∏
E∈{U,L}

E
[∏

a∈N0

∣∣∣∣1 − V E
n (a)

m2
n

∣∣∣∣
7k�

(aE,āE)

ϑi
(T i;xn

)]1/7k

, (9.13)

E
[∏

a∈N

∣∣∣∣1 − V D
n (a)

m2
n

∣∣∣∣
7k�

(a,a)
ϑi

(T i;xn
)]1/7k

. (9.14)

Suppose without loss of generality that V D
n satisfies (2.13). (9.10) can be controlled with (9.6); (9.11) and (9.12) can be

controlled with Proposition 9.2; and (9.13) can be controlled with (2.11). For (9.14), up to a constant independent of n,
we get from (2.13) the upper bound

E
[

exp

(
−7kθ

m2
n

∑
a∈N

log
(
1 + |a|/mn

)
�

(a,a)
ϑi

(
T i;xn))]1/7k

. (9.15)
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Let us couple T i;xn
and Sxn = xn + S0 as in Definition 6.9. The same argument used to control (7.17) implies that (9.15)

is bounded above by the product of

E
[

exp

(
−14kθ log(1 + x)

m2
n

∑
a∈Z\{0}

�
(a,a)

�xn
(ϑi )

(
S0))]1/14k

, (9.16)

E
[

exp

(
14kθ

m2
n

∑
0≤u≤�xn

(ϑi )

|S0(u)|
mn

)]1/14k

. (9.17)

Since �xn
(ϑi) ≤ ϑi , we can prove that (9.17) is bounded by a constant independent of n by using (5.12) directly. As for

(9.16), we have the following proposition:

Proposition 9.3. Let ϑ = ϑ(n, t) := �m2
nt� for some t > 0. For every x ≥ 0, let us couple T xn

and Sxn := xn + S0 as in
Definition 6.9. For small enough ν > 0, there exists C,c > 0 independent of x and n such that

sup
x≥0

P
[ ∑

a∈Z\{0}
�

(a,a+b)

�xn
(ϑ)

(
S0)< νm2

n

]
≤ Ce−cm2

n , b ∈ {−1,0,1}.

Proof. By Proposition 6.8, for any 0 < δ < 1, we can find C̄, c̄ > 0 such that

sup
x≥0

P
[
�

(0,0)
ϑ

(
T xn)≥ δϑ

]≤ C̄e−c̄m2
n .

Given that ϑ − �xn
(ϑ) ≤ �

(0,0)
ϑ (T xn

), it suffices to prove that

sup
x≥0

P
[ ∑

a∈Z\{0}
�

(a,a+b)
(1−δ)ϑ

(
S0)< νm2

n

]
≤ Ce−cm2

n , b ∈ {−1,0,1}

for large enough N . This follows by Hoeffding’s inequality. �

By arguing as in the passage following (7.20), Proposition 9.3 implies that (9.16) is bounded above by c1((1+x)−c2θ +
e−c3n

2d
) for c1, c2, c3 > 0 independent of n (and c2 independent of θ ), hence (9.8) holds.

We now prove (9.9). Let x ∈ [n1−ε/mn, (n+ 1)/mn). Assuming without loss of generality that V D
n satisfies (2.14), by

arguing as in Section 7.1.3, we get that E[|Fw
n,ti

(T i;xn
)|k]1/k is bounded by the product of the four terms

E
[∣∣∣∣1 − (1 − wn)

2
− Dn(0)

2m2
n

∣∣∣∣
5k�

(0,0)
ϑi

(T
i;xn

i )]1/5k

· E
[∏

a∈N

(
1 − κ(Cn1−ε/mn)

α

m2
n

)5k�
(a,a)
ϑi

(T i;xn
)]1/5k

· E
[∏

a∈N

(
1 + 2|ξD

n (a)|
m2

n

)5k�
(a,a)
ϑi

(T i;xn
)]1/5k

·
∏

E∈{U,L}
E
[∏

a∈N0

(
1 + |ξE

n (a)|
m2

n

)5k�
(aE,āE)

ϑi
(T i;xn

)]1/5k

.

By combining Propositions 9.2 and 9.3 with (9.6), the same arguments used in Section 7.1.3 yields (9.9), concluding the
proof of the convergence of moments.

9.2. Step 2: Convergence in distribution

The convergence in joint distribution follows from the convergence of moments by using the same truncation/stochastic
dominance argument Section 7.2, thus concluding the proof of Theorem 2.21.
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