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Large deviations for geodesic random walks
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Abstract

We provide a direct proof of Cramér’s theorem for geodesic random walks in a
complete Riemannian manifold (M, g). We show how to exploit the vector space
structure of the tangent spaces to study large deviation properties of geodesic random
walks in M. Furthermore, we reveal the geometric obstructions one runs into.

To overcome these obstructions, we provide a Taylor expansion of the inverse
Riemannian exponential map, together with appropriate bounds. Furthermore, we
compare the differential of the Riemannian exponential map to parallel transport.
Finally, we show how far geodesics, possibly starting in different points, may spread
in a given amount of time.

With all geometric results in place, we obtain the analogue of Cramér’s theorem for
geodesic random walks by showing that the curvature terms arising in this geometric
analysis can be controlled and are negligible on an exponential scale.
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1 Introduction

Random walks are among the most extensively studied discrete stochastic processes.
Given a sequence of random variables {X,},>1 in some vector space V, one defines the
random walk with increments {X,, },,>1 as the random variable

=1

When rescaled by a factor % one can study large deviations for the so obtained sequence
{%Sn}nZL When the increments are independent and identically distributed, Cramér’s
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Large deviations for geodesic random walks

theorem ([1, 5]) states that the sequence {%Sn}nzl satisfies the large deviations principle.
Intuitively, this means that there is some rate function 7 : V' — [0, co] such that

1 n
Pl - X,LN =~ 771[(:6).

More specifically, the rate function is given as the Legendre transform of the log moment
generating function of the increments, i.e.,

I(x) = St;p{</\, z) = AN},

where A()\) = log E(e»*1)). One may weaken the independence assumption to obtain
for example the Gartner-Ellis theorem, see e.g. [1, 5]. Also, Cramér’s theorem can be
generalized to the setting of topological vector spaces or Banach spaces. Furthermore,
Cramér’s theorem provides a basis for path space large deviations, such as Mogulskii’s
theorem (random walks) and Schilder’s theorem (Brownian motion), see e.g. [1, 12,
2]. Recently, it was shown in [8] that the analogue of Cramér’s theorem (as well as
Mogulskii’s theorem and Schilder’s theorem) also holds in the Riemannian setting.

In [8], Cramér’s theorem for geodesic random walks is obtained by first proving
the Riemannian analogue of Moguslkii’s theorem, the path space analogue of Cramér’s
theorem. As evaluation in the end point of trajectories is a continuous map, Cramér’s
theorem then follows by an application of the contraction principle (see e.g. [1, Chapter
4]). To obtain Mogulskii’s theorem, the Feng-Kurtz formalism ([3]) is used. However, this
is the reverse order in which the theorems are obtained naturally in the Euclidean case.
In the Euclidean setting, one uses Cramér’s theorem to prove Mogulskii’s theorem by
first proving large deviations for the finite dimensional distributions and then deducing
from these the large deviations on path space. Furthermore, the Feng-Kurtz approach
is only suitable for Markov processes and hence does not extend to the case where
the increments are allowed to be dependent. This causes an obstruction in finding a
Riemannian analogue of the Gartner-Ellis theorem for example.

These observations raise the question whether it is possible to avoid the use of the
Feng-Kurtz formalism and path space large deviations to obtain Cramér’s theorem for
geodesic random walks. It turns out that it is possible to only study the underlying
geometry in order to prove Cramér’s theorem. This gives us new insight in what
geometrical aspects allow us to still obtain the large deviation principle for rescaled
geodesic random walks, even though the geodesic random walk is in general no longer a
simple function of its increments. Furthermore, this approach does not rely on the fact
that the random walk is a Markov process, and thus seems suitable to be extended to
random walks with dependent increments for example. This will be investigated further
in future work.

The main difficulty in the Riemannian setting, is that we lack a vector space structure
to define a random walk as sum of increments. The appropriate analogue is a geodesic
random walk as introduced by Jorgensen in [6]. To define a geodesic random walk, we
need to find a replacement for the additive structure, as well as a generalization of the
increments. It turns out that as increments one uses tangent vectors, while the additive
structure is replaced by an application of the Riemannian exponential map.

More precisely, we introduce a family of probability measures {y }»ca such that for
each z € M, p, is a measure on 7, M, the tangent space at . These measures { i, }ocm
provide the space-dependent distribution of the increments. Now we start a random
walk at some initial point Zy = x¢p € M. Then recursively, we define for k =0,...,n —1
the random variable

1
Zy+1=Expy, (nXk+1> ;
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where X} is distributed according to i1z, . Hence, the random variable Z,, takes values
in M and is the natural analogue of the empirical mean of the increments X;,...,X,,. In
Euclidean space, this definition reduces to the usual one, as the Riemannian exponential
map is simply vector addition, i.e.,

Exp,v =z +v.

To obtain an analogue of Cramér’s theorem, we also need to generalize the notion of
the increments of the random walk being identically distributed, since the increments
are no longer in the same space. To compare two distributions p, and pu,, we need to
identify the tangent spaces T, M and T,,M. We do this by taking a curve v connecting x
and y and using parallel transport along 7. Because different curves lead to different
identifications, we say that the distributions p, and u, are identical if for all curves «y
from x to y we have

Ha = [y © Ty_zl;»ya
where 7 denotes parallel transport. Equivalently, one can characterize this property
by assuming that the log moment generating functions are invariant under parallel

transport, i.e.,
As(A) = Ay(Tayn ),

where A, (\) = log [; e i (dv).

In Euclidean space, the end point of the random walk is a simple function of the
increments. In the Riemannian setting, curvature ensures that this is in general no longer
the case. For example, the endpoint in general depends on the order of the increments.
Nonetheless, it is possible to utilize the vector space structure of the tangent spaces.
By controlling the error induced by the curvature, the large deviations for the geodesic
random walk Z,, can be obtained from the large deviations for % Z?zl X, the empirical
mean of the appropriately pulled back increments in T,,, M, were x is the starting point
of the random walk.

To support this claim, we can also define an alternative random walk in M. For this,
we take a sequence of independent, identically distributed random variables {Y;,},>1 in
T, M with distribution p,, and consider the process

- 1<
Zn = EXpw0 (nZYZ> .
i=1

In general, Zn is different from Z,,, even in distribution. Although our method of
proving the large deviations for Z,, does not immediately allow us to conclude that Z,
and Z,, are exponentially equivalent, the main idea of our proof does rely on the fact
that we can (in some sense) relate and compare the geodesic random walk to a sum
of independent, identically distributed random variables in the tangent space at zg,
following the distribution pi,.

The paper is organised as follows. In Section 2 we introduce the main notions we
use from large deviation theory to obtain our results, as well as some notation and
results from differential geometry. Section 3 introduces the geodesic random walks. In
Section 4 we give the precise statement of Cramér’s theorem for geodesic random walks.
Additionally, we provide an overview of the various steps that are needed for the proof.
In Section 5 we obtain a Taylor expansions of the Riemannian exponential map with
appropriate error bound. Furthermore, we compare the differential of the exponential
map to parallel transport. Finally, we also provide bounds for how far geodesics, possibly
starting at different points, can spread in a given amount of time. These geometric
results are key ingredients in the proof of Cramér’s theorem, which is given in Section 6.
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2 Notation and important notions

In this section we collect some important notions and fix the notation we will be
using. Firstly, we introduce large deviation principles, along with some general useful
results from the theory. Following up, we introduce the necessary tools from differential
geometry and fix the notation for the various objects.

2.1 Large deviation principle

Large deviation principles are concerned with the asymptotic behaviour on an expo-
nential scale of a sequence of probability measures {v,,},>1. This behaviour is governed
by a rate function. We make this precise in the following definition.

Definition 2.1. Let {v,,},,>1 be a sequence of probability measures with values in a
metric space X.

1. A rate function is a lower semicontinuous function I : X — [0, 0c]. A rate function
is called good if the level sets {x € X|I(x) < ¢} are compact for any ¢ > 0.

2. The sequence {v,},>1 satisfies the large deviation principle (LDP) in X with rate
function I if the following are satisfied:

(a) (Upper bound) For any closed ' C X

1
limsup — log v, (F) < — inf I(x).

n—oo N el

(b) (Lower bound) For any open G C X

1
lim inf — log v, (G) > — inf I(x).

n—oo 1 zeG

3. The sequence {v,},>1 is exponentially tight if for every o > 0 there exists a
compact set K, C X satisfying

1
lim sup — log v, (K§) < —a.
n

n—oo

When a sequence of probability measures is exponentially tight, it is sufficient to
know the upper bound of the large deviation principle only for compact sets. The upper
bound then also immediately holds for all closed sets, see e.g. [1, Section 1.2].

2.2 Riemannian geometry

In this section we introduce the necessary notions from differential geometry, see for
example [11] for a general introduction. We mainly focus on Riemannian geometry, for
which we refer to [9] among others.

Let (M, g) be a Riemannian manifold of dimension N. As usual, we denote by T M
the tangent bundle of M. For a point x € M we write T, M for the tangent space at .
Tangent vectors are usually denoted by v. A smooth assignment of tangent vectors to all
points at M is called a vector field, and the set of vector fields is denoted by I'(T'M).

For x € M and v,w € T, M we write the inner product as (v,w),), where the
subscript is omitted when the tangent space is understood. Given the inner product, we
define the length of v € T, M by its usual formula

[Vlg@) = /{0, V)g(a)-
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Given a curve 7 : [a,b] — M, we define its length by

b
Lislet) = [ ]
Using this length function, we define the Riemannian distance d on M as

d(z,y) :== inf{L(7)|v : [a,b] = M,~v(a) = x,v(b) = y,~ piecewise smooth}. (2.1)

2.2.1 Connection and parallel transport

Associated to the Riemannian metric g is a unique connection V, the Levi-Civita connec-
tion, which is compatible with the metric and torsion free.

A vector field v(t) along a curve ~(t) is called parallel if D;v(t) := V;)v(t) = 0. If
the vector field 4(¢) is parallel along ~(t), then ~ is called a geodesic. It turns out that
optimal paths for the distance between points in M are geodesics for the Levi-Civita
connection.

Equivalent to having a connection is having a notion of parallel transport. Given a
curve v : [a,b] — M and v € T, (,)M, we can consider the unique solution v(t) of the
differential equation

Viwv(t) =0, v(0) = v.

This allows us to define a linear map
Ty@r - Dy@M = Ty M

by setting 7. (q)~(t);7v = v(t). The map Ty(a)v(t);y 1S called parallel transport along v. We
omit the reference to the curve v when it is understood. Because V is compatible with
the Riemannian metric, parallel transport is in fact an isometry.

Conversely, we can use parallel transport to compute covariant derivatives. To this
end, let v,w € I'(T'M) be vector fields and = € M. Let v be a curve with v(0) = = and
4(0) = v. Then

Vow(z) = fllli% Tx_w(h)w(’r(:)) - w(:c).

2.2.2 Riemannian exponential map

Given x € M, define for every v € T,, M the geodesic v, satisfying 7, (0) = z and %, (0) = v.
A priori, this geodesic does not exist for all time ¢. We say that the manifold M is complete
if every such geodesic can be extended indefinitely. By the Hopf-Rinow theorem, this is
equivalent to the completeness of M as a metric space with the Riemannian distance d
defined in (2.1).

We now define the Riemannian exponential map Exp, : £(x) — M by setting Exp,v =
v»(1), where £(x) C T, M contains all v € T,, M for which +, as above exists at least on
[0,1]. If M is complete, we have £(z) = T, M. If additionally M is simply connected, it
holds that Exp, is surjective.

However, due to curvature, the exponential map is not necessarily injective. For
x € M we define the injectivity radius ((x) € (0, 00] as

t(x) = sup{d > 0|Exp,, is injective on B(0,)}.
Given a set A C M, the injectivity radius of A is defined by

t(A) = inf{u(x)|x € A}. (2.2)
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It can be shown (see e.g. [7]) that the map « — ¢(z) is continuous on M. Consequently,
for a compact set K we have ((K) > 0.

The differential d(Exp, ) of the exponential map at « is a linear map from 7(7, M)
into TM. Upon identifying 7T, (T, M) with T, M, we find that for any v € T, M we have

d(Exp, )y : To M — Texp, oM.

2.2.3 Jacobi fields

Let~ :[0,1] — M be a smooth curve. A variation of -y is a smooth map I' : (—¢,¢) x[0,1] —
M such that I'(0, t) = y(t) for all ¢ € [0, 1]. Denoting by s the first variable, the variational
vector field V of I is defined as

V(t)= —| T(s,t) = 8,0(0,¢).

Intuitively, V measures the speed at which the curve « deforms.

We denote by D, the covariant derivative along the curve ¢ — I'(s, t), and similarly for
Ds. Because the Levi-Civita connection is symmetric, we obtain the following symmetry
lemma, see e.g. [9, Lemma 6.3].

Lemma 2.2 (Symmetry lemma). Let v : [0, 1] — M be a smooth curve andI": (—¢,¢) X
[0,1] = M a variation of v. If M is equipped with the Levi-Civita connection, then

Dsatl—‘(s, t) = Dt68F(87 t)

Now suppose v : [0,1] — M is a geodesic. Let I': (—¢,¢) x [0, 1] — M be a variation of
~ such that for any s € (—¢,¢), the curve t — I'(s, t) is a geodesic. We call I" a variation of
geodesics, and the corresponding variational vector field is called a Jacobi field along ~.

It is possible to derive a second order differential equation satisfied by Jacobi fields.
For this, we need to introduce the Riemann curvature endomorphism. The Riemann cur-
vature endomorphism measures the commutativity of second order covariant derivatives
of a vector field. More precisely, itis a map R : I'(TM) x T(TM) x I(TM) — I'(TM)
defined by

R(v, w)u = V,Vyu -V, Vou — Vi, wu,

where [v, w] = vw — wv is the commutator of the vector fields v and w.
One can show (see e.g. [9, Theorem 10.2] or [4, Section 10.1]) that a Jacobi field J(t)
along a geodesic v satisfies

D J(t) 4+ R(J(t),%(t)¥(t) = 0, (2.3)

where R denotes the Riemann curvature endomorphism. Equation (2.3) is called the
Jacobi equation.
If J(0) = 0 and J(0) is given, a Jacobi field along a geodesic v satisfying these
conditions is
J(t) = A(ExD. 0))es (o) ((0)):

This can be seen by considering the variation I'(t,s) = Exp. ) (t(7(0) + 5J(0))). The
condition that J(0) = 0 indicates that all geodesics in the variation start in the same
point.

In Euclidean space, this Jacobi field reduces to J(t) = tJ(0), which is indeed the
variation field of the variation I'(t, s) = 7(0) + t(5(0) + s.J(0)).

We conclude this section by collecting some properties of Jacobi fields that we need
later on. We include the arguments for the reader’s convenience.
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Proposition 2.3. Let v : [0,1] — M be a geodesic and J(t) a Jacobi field along . Then

for allt € [0, 1].

Proof. Define f(t) = (J(t),%(t)). Then

f1(t) = (D (t),5(1)) + (J(£), Dey(t)) = (DeJ (t),5(1)),

because + is a geodesic. We are done once we show that f”(¢) = 0. For this, notice that,
using (2.3)
f1(t) = (DFJ(t),5(t)) = —(R(J(1),4(1)7(t),7(t)) = 0.

Here, the last step follows from the symmetry properties of the Riemann curvature
tensor. O

Proposition 2.4. Let v : [0,1] — M be a geodesic and J(t) a Jacobi field along ~. For
every t € [0,1] there exists & € (0,t) such that

. . 1 .
J@t)| = [J(0)] —t———(R(J (&), ¥(&))V(&), J(&)).
|J ()] = [J(0)] tlJ(&)|< (J (&) 7(&)) (&), T (&)
Proof. Define f(t) = |J(t)|. We have
=L
£10) = T O I)
- U.(lt)'<R<J<tm<tm<t>, J).
The statement now follows from the mean-value theorem. O

3 Geodesic random walks

In order to generalize Cramér’s theorem to the setting of Riemannian manifolds, we
first need to introduce the appropriate analogue of the sequence {}L Z?Zl Xi}n>o fora
sequence of increments {X,,},>1. In order to do this, we introduce geodesic random
walks, following the construction in [6]. Finally, we generalize the notion of identically
distributed increments to geodesic random walks and characterize it using log moment
generating functions.

3.1 Definition of geodesic random walks

We start by defining a geodesic random walk {S,, },,>0 on M with increments {X,, },>1.
For this we need to generalize how to add increments together. This is achieved by
using the Riemannian exponential map. Because the space variable determines in which
tangent space the increment should be, we have to define the random walk recursively,
which is the main difficulty in the definition below.

Definition 3.1. Fix =y in M. A pair ({S,}n>0,{Xn}n>1) is called a geodesic random
walk with increments {X,, },>1 and started at x if the following hold:

1. So = X,
2. Xpy1 €Ts, M foralln > 0,

3. Suy1 = Expg, (Xpy1) foralln > 0.
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In what follows, the sequence {X, },>1 of increments will usually be omitted and we
simply write that {S, }»>0 is a geodesic random walk with increments {X,,},,>1.

Note that in the above definition, we fix nothing about the distribution of the incre-
ments {X,,},>1. The distribution is allowed to depend both on the space variable, as
well as on time.

For M = R, the Riemannian exponential map can be identified with addition, i.e.,
Exp,(v) = z + v. Hence, a geodesic random walk in R" reduces to the usual random
walk, ie. S, =Y, X;.

Next, we introduce the concept of time-homogeneous increments for geodesic random
walks. For this, we need to fix the distribution of the increments independent of the time
variable. Because the increments can take values in different tangent spaces, we need a
collection of measures {i; }zcar such that y, is a probability measure on T, M for every
x € M. We denote the set of probability measures on 7, M by P(T,,M). We have the
following definition.

Definition 3.2. Let {S,,},,>0 be a geodesic random walk with increments { X, },>1 and
started at xo. Let {u, }-en be a collection of measures such that u, € P(T, M) for every
xr € M. We say the random walk ({S,,}n>0,{Xn}n>1) is compatible with the collection
{ttz tzemr if Xpi1 ~ ps, for everyn > 0.

Essentially, the collection of measures provides the distributions for the increments
of the geodesic random walk. Because the collection of measures is independent of n,
the increments are time-homogeneous.

Next, we want to define what it means for the increments of a geodesic random
walk to be independent. Because the distribution of increment X,,;; depends on &,
we have that X,,1; is in general not independent of A,, = 0({X1,..., X, }) in the usual
sense. However, this dependence is purely geometric, as S,, simply determines in which
tangent space we have to choose X, 1. If this is the only dependence of X,,.; on A,,
we say the increments of {S, },>0 are independently distributed. We make this precise
in the following definition.

Definition 3.3. Let {1, }.cnm be a collection of measures such that u, € P(T, M) for
every x € M. Let {S,},>0 be a geodesic random walk with increments {X,},>1,
compatible with {1z }zcnr. For every n > 1, define the o-algebra F,, by

]:n = O'({(So, Xl), ceey (Sn—laxn)})

We say the increments of {S, },,>o are independent, if for every n > 1 and all bounded,
continuous functions f : M™ — R we have

E(f(X1,.. ., Xp)|Fno1) = /T Ny F(Xq,. o, Xno1,0)ps,_, (dv).

n—1

Remark 3.4. Because S,, = Expg _ X,, we have that S, is F,-measurable. Conse-
quently, we have o({So,...,S,}) C F,. However, equality need not hold. Indeed, if the
Riemannian exponential map Exp, is not injective, one cannot retrieve the increments
Xq,..., X, from Sy, ..., S,.

Remark 3.5. Let {y; }zcn be a collection of measures such that p, € P(T, M) for all
z € M. Let {S,,}n>0 be a geodesic random walk with increments {X,,},>1 compatible
with {p; }zen. Suppose furthermore that the increments are independent. Then {S, }.>0
is a time-homogeneous, discrete time Markov process on M with transition operator

Pi(r) = B(f(5))|Sy = z) = /T (B, (0) e ().

This is the point of view taken in [8].
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3.1.1 Rescaled geodesic random walks

In Euclidean space, one commonly encounters rescaled versions of a random walk, for
example for laws of large numbers and central limit theorems. On a general manifold,
this rescaling cannot be achieved by multiplication.

Before we define the appropriate analogue of { > | X;},,>0, we first need to define
how to rescale a geodesic random walk by a factor a > 0 independent of n. Note that
in Euclidean space we can write a ). ; X; = >, (aX;). This shows that we should
rescale the increments of the random walk, which is possible in a manifold, because the
increments are tangent vectors.

Definition 3.6. Fix 2y in M and o > 0. A pair ({(a * S8)n}n>0,{Xn}n>1) is called an
a-rescaled geodesic random walk with increments {X, },>1 and started at z if the
following hold:

1. (axS)p = xo,
2. Xn+1 € T(oz*S)nM foralln >0,
3. (a*8)nt1 = Exp(qus), (@Xpi1) foralln > 0.

As with geodesic random walks, we will often omit the sequence of increments and
simply write that {(a * S), }n>0 is an a-rescaled geodesic random walk with increments
{Xntn>1

Note that an a-rescaled geodesic random walk can itself be considered as a geodesic
random walk. Indeed, if (a * S),, is an a-rescaled geodesic random walk with increments
{X,}n>1, then it is a geodesic random walk with increments {aX,, },,>1.

As for geodesic random walks, we say that an a-rescaled geodesic random walk
{(a * 8)p}n>0 with increments {X,,},>1 is compatible with a collection of probability
measures {/i; fzem if Xni1 ~ fass), for every n > 0. It follows that when considered
as geodesic random walk, {(a * S,)},>0 is compatible with the collection of measures

{12 }zem given by
:ug = Hz © m;1

where m,, : T,M — T, M denotes multiplication by «, i.e., m,(v) = awv.

3.1.2 Empirical average process

We conclude this section by introducing the analogue of the sequence of empirical
averages {% Z?zl X }n>o for a sequence {X,,},,>1 of random variables.

Fix 9 € M and let {{, }zen be a collection of measures such that u,, € P(T, M) for all
x € M. For every n > 1, let {(% *S);}j>0 bea %-rescaled geodesic random walk started
at xo with increments {X7'},>1, compatible with the measures {/i; }.cn. By considering
the diagonal elements of {(% + S);},>1,j>0, We obtain for every n > 1 a random variable
(£ % 8), in M. If we now set the initial value of the sequence {( * &), }n>0 to be zo,
we obtain the Riemannian analogue of the sequence {% > Xitn>0. We refer to this
process as the empirical average process started at xy compatible with the collection of
measures { iz bzem-

3.2 Identically distributed increments

For our purposes, we also need a notion of identically distributed increments. In
general, the increments of a geodesic random walk do not live in the same tangent space.
In order to overcome this problem, we use parallel transport to identify tangent spaces.
Because the identification via parallel transport depends on the curve along which the
vectors are transported, we need to make the following definition.
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Definition 3.7. Let {u, }.cn be a collection of measures such that p,, € P(T, M) for all
z € M. Let {5, },>0 be a geodesic random walk with increments {X,, },>1, compatible
with {p, }zenr. We say the increments { X, },,>1 are identically distributed if the measures
satisfy the following consistency property: for any y,z € M and any smooth curve
v : [a,b] = M with v(a) = y and v(b) = z we have

e = 1y 0Tk

By the transitivity property of parallel transport, one can equivalently define the
consistency property to hold for all piecewise smooth curves.

Note that in Euclidean space, our definition of independent increments implies that
the measures are independent of the space variable, because parallel transport is the
identity map. Hence, our definition reduces to the usual one, as we obtain that every
increment has some fixed distribution u.

Because parallel transport is an isometry, we can use distributions with spherical
symmetry to construct a family of measures {u, }.cn satisfying Definition 3.7. We refer
to [8, Section 4] for the details and more specific examples.

The consistency property in Definition 3.7 may also be characterised by a consistency
assumption for the corresponding log-moment generating functions A, : T, M — R of u,
given by

A =tog [ ePug(av).

T: M
This is recorded in the following proposition, which can be found in [8, Section 4].

Proposition 3.8. Let {y, }.cn be a collection of measures such that p, € P(T,M) for
every x € M. Assume that A,(\) < oo forallz € M and all A € T,,M. The following are
equivalent:

(a) The collection {p. }»cn satisfies the consistency property in Definition 3.7.

(b) For all z,y € M and all smooth curves v : [a,b] = M with v(a) = z and v(b) = y and
forall A € T, M we have

Ap(N) = Ay (Tayn A).
The Legendre transform A} : T,M — R of A, is defined by

Ar(v) = sup (A v) — Az(N).
AET M
If the collection of log-moment generating functions {A, }.cns satisfies the consistency

property in (b) of the above proposition, then so does the collection {A%},cs of their
Legendre transforms.

4 Sketch of the proof of Cramér’s theorem for Riemannian mani-
folds

In this section we provide a sketch of the proof of Cramér’s theorem for geodesic
random walks and stress what observations and properties are important to make the
proof work. Before we get to this, let us first state the exact theorem we wish to prove.

4.1 Statement of Cramér’s theorem

Cramér’s theorem is concerned with the large deviations for the empirical average
process {( xS),, },>1 with independent, identically distributed increments.
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Along with the large deviation principle, we need to identify the rate function. In
Euclidean space, the rate function is given by

I(z) = A*(),

the Legendre transform of the log moment generating function of an increment. Note
here that one can consider the vector x as the tangent vector of the straight line from
the origin to the point x. Using this viewpoint, the analogue of the rate function in the
Riemannian setting should be

I(z) = inf{A} (v)|Exp, v = x}.

Here, we have to take the infimum, because the Riemannian exponential map is not
necessarily injective, i.e., there may be more than one geodesic connecting xy and x.
We will show that this is indeed the correct rate function, as collected in the following
theorem.

Theorem 4.1 (Cramér’s theorem for Riemannian manifolds). Let (M, g) be a complete
Riemannian manifold. Fix xo € M and let {yu,}.cnm be a collection of measures such
that yi, € P(T,M) for all = € M. For everyn > 1, let {(: x S);},50 be a 1-rescaled
geodesic random walk started at x( with independent increments {X]”}j21, compatible
with {pz }oerr. Let {(}L * S)n tn>0 be the associated empirical average process started at
xo. Assume the increments are bounded and have expectation 0. Assume furthermore
that the collection {p, }.»cn satisfies the consistency property in Definition 3.7. Then

{(£ «S),}n>0 satisfies in M the LDP with good rate function
Iy (z) = inf{A} (v)|Exp, v =z} 4.1)

Due to geometrical influences, which become apparent when sketching the proof, we
prove Cramér’s theorem only in the case when the increments are bounded. This allows
for a less technical proof of the theorem, but nevertheless introduces all geometrical
obstructions that have to be dealt with. The details of the proof can be found in Section
6.

Like in the Euclidean setting, we prove Cramér’s theorem for geodesic random walks
by separately proving the upper and lower bound for the large deviation principle of
{(£ %8)n}n>0. In Section 4.2 we give an overview of the steps one needs to take to prove
the upper bound, while in Section 4.3 we sketch how to prove the lower bound.

4.2 Sketch of the proof of the upper bound

In the Euclidean case, one proves the upper bound in Cramér’s theorem by using
Chebyshev’s inequality. More precisely, the key step is to show that for I' ¢ R¢ compact
one has (see e.g. [5, 1])

1 1 1

lim sup — log IP <Sn € F) < —inf sup {(A,x) — limsup — logE (en%ism)} )
n—oo N n z€l' \cRa n—oo N

The upper bound is then extended to all closed sets by proving exponential tightness.

The idea is to follow a similar procedure in the Riemannian case. However, because

(% * S), is M-valued, its moment generating function is not defined.

4.2.1 Step 1: Analogue of the moment generating function ]E(e”</\’%5">)

To overcome the problem of not having a moment generating function of (% *S),, we want

to identify points in M with tangent vectors in 7, M. For this we use the Riemannian
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exponential map. However, this map is not necessarily injective. Hence, we first assume
that for each n > 1, the %-rescaled geodesic random walk stays within the injectivity
radius ¢(zo) of its initial point x up to time n. Consequently, because Exp,, is injective
on B(0, t(x¢)) C Ty, M, we can uniquely define v} € T, M satisfying |v}| < ¢(zo) and

Expgol(v,’g) = (1 * S) .
n k
Ideally, we would like to prove the large deviation principle for {(% * S)ptn>0 DY
proving the large deviation principle for {v]! },,>¢ in T, M and then apply the contraction
principle (see e.g. [1, Chapter 4]) with the continuous function Exp, . For this to work,
we would need to show that

lim © log B(e"™vn)) = Ay, (M), (4.2)

n—o00 N

Unfortunately, using the estimate for E(e"“v”m) found in Step 2 as explained below, we
are only able to show that

1 n
lim sup — log B(e"™vn)) < Ay, (M) + C|A| (4.3)
n—oo N
and likewise 1
lim inf — log E(e™*vn)) > A, (A) — C|)\, (4.4)
n—so0o M

where the constant only depends on the curvature and the uniform bound of the incre-
ments.

4.2.2 Step 2: Upper bound for the moment generating function of v,

In R? we simply have v = % >, X; and hence its moment generating function is given
by

E(e"Mn)) = T B(eM ) = B(e™ ).
i=1
Here we use the fact that we can write v}’ = vp_; + 2 X;. This fails in the Riemannian
setting, which results in the fact that we can only estimate IE(e”(**»)) as mentioned
above in (4.3) and (4.4).
In a Riemannian manifold we replace the identity vy = v;_; + %X r by the Taylor
expansion of Expg[fo1 (see Section 5.1, Proposition 5.4). This results in

n__.n 1 —1 n 1
Vp = Vp_1 + Ed(Expzo)vi}_le + @ <n2> . (45)

Here one needs to be careful that the constant in the error term may depend on curvature
properties of the manifold around (% x S)k—1. Because we assume the increments are
uniformly bounded, there exists a compact set K C M such that for all n > 1 and all
0 < j <nwe have (% *S); € K. This allows us to control the constant in the error term.

However, the problem arises that this expression does not yet allow us to use the
assumption that the increments of the geodesic random walk are identically distributed,
which essentially means that the distribution of the increments is invariant under parallel
transport.

Consequently, we need to argue that d(Exp,, ) ! ,can be approximated well enough

n
vp_

by parallel transport. It turns out there exists a constant C' > 0 such that

A(Expa, )t X =g, XE] < Ol PIXE, (4.6)
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see Section 5.2 for details, in particular Corollary 5.8. By the same reasoning as before,
the constant C' may be controlled independent of k.
Combining (4.5) and (4.6) and using that v! = Y";_, v} — v}'_;, we have

n

1
n -1 n
vy — — g T X
"o zoL 81k
k=1

1
<S—+1 (4.7)
n

Consequently, using the Cauchy-Schwarz inequality, we find

n -1 n
E(en o)) < (ORI enOig (ezﬂ“”mo;s,mxk))
(4.8)

= OO (X0 )"

Here, the last line uses that the increments are independent and identically distributed.
From this it follows that

1 n
lim sup — log E(e"™Vn)) < CIA| 4+ Agy (N),
n

n—oo

so that
lim sup 1 logP(v;, € F) < —inf sup {(\v)— Az (X)) — C|A[}.
n—oo N VEF XeT, o M
It remains to get rid of the C'|\| term. In the next step we show how to reduce the order n
term in the upper bound in (4.8), so that we can still use the above estimating procedure
to obtain the upper bound of the large deviation principle for {(% * S)ntn>0.

4.2.3 Step 3: Reducing the upper bound in Step 2 by splitting the random walk
in pieces

The problematic factor in estimate (4.8) arises from the replacement of the differential
of the exponential map with parallel transport as done in Step 2. This error depends
on |v}], i.e., the distance from z; to (% * S)j. Note that in Step 2, we simply estimated
|v,’g| uniformly in k. However, if we write r for the uniform bound on the increments,
we actually have [v}}| < %r. Consquently, we can reduce the upper bound if the amount
of steps for which we need to compare parallel transport and the differential of the
exponential map becomes smaller.

To do this, the idea is to cut the random walk in finitely many pieces, say m, each
consisting of (roughly) m~!n steps. We can then consider each of these pieces as
separate random walks which we need to identify with a vector in some tangent space.
In the end, we can then let the amount of pieces tend to infinity by considering the limit
m — 00, so that the part of the upper bound which we want to reduce vanishes entirely.

More precisely, fix m € N, and define for [ = 0,...,m — 1 the indices n; = [|m~1n]
and set n,, = n. This divides the random walk in m pieces, where a piece starts in
(L % S),, and consists of [m~'n| increments. Now recall there is a compact set K C M
such that for all n and all 0 < j < n we have (% «S); € K. Because ((K) > 0, we can
choose m sufficiently large, such that foralln, alll =1,...,mandallk=1,...,|m ™ n|

we have
1 1
(*S) EB((*S) ,L(K)).
n ni—1+k n ni—1

Consequently, we may follow the same procedure as in Step 1, so that for every

l=1,...,mandevery k = 1,...,|m~'n] we can uniquely define ﬁ,?’m’l € Ti1is),, M
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1
~'1'7,,771‘,l ~1 n
Vg € Exp(%*s)"zfl ((n ' S) "l1+k>
~n,m,l

and [0, < t((+ * S)n,_,). Finally, we define o™ e T, M by

such that

vn,m,li —1 6n,m,l
ko = Tag(ieS)n,_ Uk

where the parallel transport can be taken along any path connecting xy and (% xS )

ni_1’
as long as it is measurable with respect to F,,,_, = o(X1,..., Xn,_,)-
This associates to (L xS),, € M a tuple

n
lm~—1in]’ Y lm1In]

(v”’m’l RO T ) € (Tp, M)™.

Following the procedure in Step 2, apart from some technical details, we find

1 n 'Un’m’l 1 1
lim sup — log IE (e s U"1"J>> < C|)\|73 + —Agp(N),
n m m

n—oo

forall A € T, M. From here it is possible to show that

1 n> " vl 1 — 1 —
lim sup — log & (e 2z Lman)) < Cﬁ Z |\| + m ZAIO()\I)
n
=1 =1

n—oo

forall (\1,...,\) € (T,; M)™. Consequently, we find that

1
lim sup — log IP ((Uf;n"ﬂllnj,...,vﬁ’n”}mJ) € F)
n—oco N
_ nf 1Zm sup {(\, muy) — Mgy (N) ! CIAld
o in . u , V) — g ) :
o (Uh”')vm)eFm )‘GT"”E)JM l ' mQ

=1

4.2.4 Step 4: Upper bound for the large deviation principle of {(% * S)n >0

To prove the large deviation upper bound for { (% % S)p}tn>0, we notice that the map

sending (v@?_"fnj, cu Y to (£ %8), is continuous. Hence, if F' C M is closed, there

Ulm=1n)

exists a closed set F' C (T, M)™ such that

1 _ n,m,l n,m,m r-
P ((n *s>n € F) =P (o]l ) € F).

From this it follows that

1 1
limsup — log P (( *8) € F>
n—oo N n n

m

. 1 1
< - inf — Z sup {(\v) — Agy(A) — WC’W}

(V150eey0m ) EE TN =1 NETog M

Now note that for every v € ExpgolF we have that (%v, ceey %v) € F. Furthermore, by
convexity, the infimum in the upper bound is attained when all v; are equal. Consequently,
the upper bound reduces to

1 1
limsuplogIP<(*8) EF)
n—oo 1N n n

1
<— inf sup  {(\,v) — Ay (A) — —5 CA[}
vEEXps) F AETpy M m

The desired upper bound now follows by considering the limit m — oo.
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4.3 Sketch of the proof of the lower bound

To prove the lower bound of the large deviation principle for {(+ xS), },>0, it suffices
to show that if G C M is open, then

n—oo M

liminfllogIP ((1 *S) € G) > —In(x),
n n

for all z € G. Because Iy(z) = inf -1, A7 (v), it is in fact sufficient to show that
zg

n—oo nN

nminfllog]P ((1 *S) € G) > —A;, (v)
n n

forany v € Exp;[)lG. Consequently, we again need to transfer the problem to the tangent
space Ty, M.
4.3.1 Transfer to the tangent space 7, M
Similar to how estimate (4.7) is derived, we find that
Lm ™~ "n]
n 1 _ n 1 1
’Ul_mflnj . Z T Xk S — + ﬁ (4.9)

n = 0 3 Sk-1 nm

Consequently, by choosing m sufficiently large, we can get vf _; | arbitrarily close

[m—1

—1
to Ly>lm ml -1 X7 Using the fact that the increments of the geodesic random
n k=1 To L Sk_1 k
—1
walk are independent and identically distributed, we prove that Z,E:l Mot X

ToLSK_1
is a sum of independent random variables, each distributed according to p,,. Con-
sequently, by Cramér’s theorem for vector spaces, for every m € IN the sequence
-1
{+ sobm ol Tr_oll s._, Xt tnzo satisfies the large deviation principle in 7;, M with good

rate function I(v) = LA% (mv).

~m
Putting everything together, after some technicalities, we find that if ¢ > 0 is small
enough, there exists a constant ¢ € (0, 1) such that for m large enough

1
lim inf —log P(v[},,-1,,) € B(v,¢))

n—,oo N
1 1 lm~'n|
e . -1 n 2
> hnn_l)lorolfg log P - 7'2?(J%$k71X,C € B(v,ce?) (4.10)

k=1
1 *
> EA“’” (mw).

In order to make use of this fact, we again need to divide the random walk in pieces,
like in Step 3 in Section 4.2. Consequently, we again first identify (% *S), € M with a
tuple

(ﬁf;r:?z’llnj 1t ﬂf’r;zniylmnj> € T(i*s)no M x .- T(%*S)nm M.

n

However, this time we need to be careful how we transport these vectors to T, M.
Indeed, we wish to do this in such a way that

lm=tn]> 2 Vim=1n]

s , 1
(v”’m’l coum ) € B(v,ce)™ = ( * S) € B(Exp,,v,e). (4.11)
n

n

The key to making the correct choice is given by Proposition 5.10, which gives us
control over how far geodesics can spread in a short time when starting in different
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points of the manifold. This result shows us how to choose the parallel transport based on
the vector v, so that the curvature has only little effect. Essentially, one first transports
a vector to an associated point on the geodesic with speed v which connects xy and x.
After that, one transports the vector along this geodesic to xy. More precisely, we do the
following:

1. Consider the geodesic v(t) = Exp, (tv) and for i = 0,...,m define the points
Y = ’Y(i) Note that Yo = Xg.

2. For every ¢ = 0,...,m and every x € M, choose a geodesic of minimal length
connecting y; and = and define 7,,, to be parallel transport along this geodesic.

3. Now define for i = 1,...,m the vector v[""™! = € T,,M by

[m~1n}

U'n,m,i _ 7_—1 7_71 ﬂn,m,i
|m—1n| Yo¥i y; (£xS)n, , Lm~1n]

Now, given G C M open, x € G and v € Exp;()lx, by (4.11) we have

P ((i *S)n € G) > P ((vﬁ;:rﬁ’llnj,...,vﬁ’:i’f%) € B(U,ce2)m) )

Using this, an approach similar to the one used to obtain (4.10), also using that the
increments are independent and identically distributed, gives us that

1 1
liminf — log P <(>(<S) € G)
n—oo N n n

1
> lim inf — log P ((v"’m’l coom ) € B(v, 052)m)

n—oo M mean7 I melnj

> =A%, (v),

which is as desired.

5 Geometric results for the proof

This section focuses on geometric results needed for the proof of Cramér’s theorem
for geodesic random walks as sketched in Section 4. We obtain a Taylor expansion for
the inverse Riemannian exponential map and estimate the residual term. Furthermore,
we bound the difference between the differential of the Riemannian exponential map
and parallel transport. This heavily relies on the theory of Jacobi fields, which have been
introduced in Section 2.2.3. We conclude this section by proving how far geodesics can
spread in a short time interval when starting in different points on the manifold.

5.1 Taylor expansion of the inverse Riemannian exponential map

The Riemannian exponential map Exp_ : T, M — M is a local diffeomorphism around
0. More precisely, it is a diffeomorphism between B(0, ¢(z)) C T, M and Exp,(B(0, c(z))).
Now suppose v(t) is a curve in Exp,(B(0,:(z))). There exists a unique curve w(t) in
B(0,u(x)) € T, M such that Exp,w(t) = v(t). Our aim is to find a Taylor expansion for
w(t) around ¢ = 0. Although this seems to be folklore, we also find a precise estimate of
the residual term of the Taylor approximation.

Before we can do this, we first need two lemmas that will help us control the error
term in the first order Taylor polynomial for the inverse of the Riemannian exponential
map.
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Lemma 5.1. Let K C M be compact and for any x € K, let K,, C T,,M be compact.

Assume there exists a C > 0 such that K, C B(0,C) for any «x € K. Then

sup sup [d(Exp,),| < 00
zeKveK,

Proof. Because the sets K, are uniformly bounded and K is compact, it follows that
{(z,v) e TM|z € K,v € K,}

is compact.
Now fix x € M and v € T, M. Because the Riemannian exponential map Exp : TM —
M x M is continuous, there exists a neighbourhood U C TM of (x,v) such that

Exp(U) C B(z,1(x)) x B(Exp,v, t(Exp,v)).
Now for (y,w) € U, and any u € Tgyp, M we define

Fu,m,v : (va) = |7'ExpywEprvd(EXpy)wayu|

where parallel transport is taken along the unique minimizing geodesic connecting the
two points, which exists by the choice of U. We argue that F;, ; , is continuous for any
u € Tgxp, oM. By the choice of parallel transport, TExp, wExp, v and 7., are continuous.
Furthermore, note that we can write

d(EXpy)wﬁ = dExp((y, w), @).

Because Exp is smooth, it follows that dExp is continuous. Consequently, F, , , is a
composition of continuous maps, and hence continuous on U.

Since T'M is locally Euclidean, we can find a relatively compact set U(, ., containing
(z,v), such that U, .y C U.

Because the set {(z,v) € TM|z € K,v € K,} is compact, we can find (z1,v1),...,
(g, vg) such that

k
{(z,v) e TM|z € K,ve K} C U Uz vi)-
=1
Consequently, we have that

k
sup sup |d(Exp,)o| <max  sup  |d(Exp,)|.
2€K veK, = @) el o

It follows that we are done once we show that

sup_|d(Exp,).| < o0
(@,0)€U(a; v;)

forall:=1,...,k.

For this, remember that F, ., ,, is continuous on Uy, ,,), and hence bounded for any
u, since Uy, ,,) is compact. Consequently, it follows from the uniform boundedness
principle that

sup |TExpmvExpzivid(Expx)vTa:im < o0

(@0)EU(z; ,0;)

However, because parallel transport is an isometry, we have

|d(Epr)v ‘ = |TEpr ”Esz,i v; d(Esz)UTl‘jl‘ | 5

which concludes the proof. O
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As long as one restricts to a set where the inverse of the Riemannian exponential map
is well-defined, one obtains in a similar way a bound for the differential of the inverse
Riemannian exponential map.

Lemma 5.2. Let K C M be compact and for any x € K, let K, C B(0,.(x)) C T, M be
compact. Assume that there exists a constant C > 0 such that K, C B(0,C) for any
x € K. Then

sup sup |d(Exp,),"| < oc.

rzeKveK,
Remark 5.3. When we take K = {70} in Lemma 5.2, the statement simplifies as follows:
If K C B(0,(z0)) is compact, then

sup [d(Exp,, )y | < oo.
veEK
We are now in a position to find a first order Taylor expansion of the inverse Rieman-

nian exponential map and control the error term appropriately.
Proposition 5.4. Fix z, € M and let K C B(0,(x)) be compact. Define K = Exp, K
and let x € K and v € T,M. Consider the geodesic v, : [0,T7] — M defined by
v, (t) = Exp,(tv), where T is such that the image of -, is contained in K. Restrict
Exp,, to K and set w(t) = Exp; (v,(t)) € K C Ty, M. Then there exists a constant C' > 0
such that

[w(t) = w(0) — td(Expy, )5y (0)lg(an) < CF

for all t € [0, T]. Here, the constant C' only depends on the compact set K.

Proof. First observe that w(t) is well-defined, because K C B(0,:(zo)) so that the
restriction of Exp, to K is injective. Moreover, it is actually a diffeomorphism onto
K, and thus d(Exp,, )w is also injective. By the inverse function theorem, Exp, has a
differentiable inverse, whose derivative at w is given by

d(Expg, ) (w) = d(Exp,, ),
Consequently, by Taylor’s theorem, we find for any ¢ € [0, 7] that
w(t) = w + td(Exp,, ), ' (v) + *w" (&)

for some &; € (0,¢).
To control the error term, we estimate |w’(t)|. We have

1 . 1 )
W (t) = }Liﬁb d(Expy, )y pny (o (t + f;)) — d(Expy,) (1) (Fo (t))
—

We estimate the numerator to find a desired bound on w”(¢). Set

u = d(EXPxO);(lt)(;Yv(t)) €Ty, M (5.1)

and
@ = A(ExPy, )y p) (o (t + 1)) € Ty M. (5.2)
Then
Yo(t) = A(Expy, )u () ()

and

Yot + h) = d(Expy, )w(e+n) (@)-
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As 1, is a geodesic, we have ¥, (t + h) = T, (+), (t+h)»(t). Consequently, we obtain
A(EXP, )w(t-+h) (@) = Ty, (£)7, (4 0) AEXD ) (2) (w).- (5.3)
Define the curves 1,92 in T, M by
Yi(s) =w(t) +su,  ho(s) =w(t+h)+ st
and the corresponding curves ¢, ¢2 in M by
#1(s) = BExp,, (w(t) + su), $2(s) = Exp,, (w(t + h) + si).

The aim is to control |u — i|y(,,). For this, take normal coordinates around z, (which
can be taken to cover all of K, because K C Exp,,[B(0,¢(z0))]). In these coordinates, let
us write u = u'9;(z) and @ = @’ d;(zo). Note that in coordinates

d1(s) = (wh(t) + sul, ..., wi(t) + su?)

and
Ba(s) = (wh(t + h) + sat, ..., wi(t + h) + sa?).
Consequently, ) 4
¢1(s) = u'0i(¢1(s))
and

$a(s) = @ 0;(92(s))-
By equation (5.3) we have ¢, (0) = T,Yv(t)%(t+h)¢51 (0). But then we find that the coefficients
of ég(O) satisfy the equations

VE(s) + Tl (7 (t + )75t + )V (s) =0
with V*(0) = ¢¥(0). Consequently, using a Taylor expansion, we find
$5(0) = @1 (0) — hT'E; (3 ()74 (1)1 (0) + O(h?)
Using that ¢¥(0) = u* and ¢5(0) = @*, we obtain
u¥ — @ = hI (v ()75 (t)u + O(h?). (5.4)

Because we are using normal coordinates around xy, we have

d
[ = 5 = Y (u* —a*)?.
k=1
If we plug in expression (5.4), we get
d .
Ju — ﬂ'?)(z Z ij (7 (8)) 7 (2) J)2 + O(h3)

As the Christoffel symbols are continuous, they are bounded on our compact set K by
some constant C;. Furthermore, the coefficients g;; of the metric are also continuous,
and in particular, by the positive definiteness of the metric, there exists a uniform
constant § > 0 such that g;;(z) > d forall x € K and alli = 1,...,d. In particular, this
implies

(B () <8 Ay = 0 0120 0))-
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Similarly, we have

(u')? < Id(Expxo);(lt)(%(t))|§<m> <3200 00 = Calvla o))

where we used Lemma 5.2 to find the constant C5, which again only depends on the
compact set K.
Collecting everything, we find

|’LL — U|g(m0) < 0202 |'U|g(,Y ®) h2 + O(hg)

Recalling the definition of v and « in (5.1) and (5.2) respectively, we find after taking the
limit h — 0 that
W (t)lg(z0) < C1C2[0] g, (0))

which provides the desired constant, because C7, C5 only depend on K. O

5.2 Differential of the Riemannian exponential map and parallel transport

Next, we wish to understand the relation between the differential of the Riemannian
exponential map and parallel transport. Before we can make the appropriate comparison,
we first need a version of Taylor’s theorem suitable for vector fields along a curve on a
manifold.

Proposition 5.5 (Taylor’s theorem). Let v be a curve in M and v a vector field along .
Define Dyv(t) := V4 yv(t) and Df as the k-th covariant derivative in this way. Fixn € N.
For every t > 0 there exists &, € (0,t) such that

n tk+1
Zk' 2070 DE0(0) + Gyt Ty DE (&),

Proof. Consider the map f(t) = T,Y_(é)w(t)v(t), mapping into 7’,y) M. Because f is smooth,
by Taylor’s theorem, given n € IN and ¢ > 0, there exists &; € (0,t¢) such that

tk *) tk+1 (k1)
f6)y=>=f (0)+mf (&)

ft+h) = f(t)

/
—1
f (t }LE%) h
—1 -1
i O P R) T )
h—0 h
-1
lim (e U+ ) —u(t)
om0 2

= T on D).

Using induction, one can show that

FO) =760 Do)

for all k¥ € IN. But then we find that

= n tk & tk‘+1
Ton ) = 2 Do) + 5y To)ien Dt (&)
k=0
Applying 7. (0)(¢) to both sides and observing that ¢ > £ gives the desired result. O
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We are now able to compare the differential of the Riemannian exponential map and
parallel transport. The Taylor series of the differential of the exponential map may be
found in e.g. [13, Appendix A]. The error term for finite Taylor polynomials seems to
belong to folklore, but we insert a proof here for the reader’s convenience.

Proposition 5.6. Let 2o € M and take w,u € T,,M. Consider the geodesic 7, : [0,1] —
M given by v, (t) = Exp,, (tw). For everyt € [0, 1] there exists & € (0,t) such that

1 . .
d(Expwo )tw (’LL) = T"‘/w (0)’)'11! (t) u + itT')’w (Et)'Yw (t) R'Yw (ff) (d(EXpwo )5“1) (gtu) ) 'Vw (é-t ) )’y'w (gt)

Proof. Consider the vector field J(t) = d(Exp,, ) (tu) along 7, (t). As argued in Section
2.2.3, J(t) is a Jacobi field along ~(t) with J(0) = 0 and .J(0) = u. By the Jacobi equation
(2.3), the second derivative is given by

DYJ(t) = =R, 5y (J (1), T () Y (1)

Consequently, by Proposition 5.5 we find there exists some &; € (0,t) such that

1
T() = 1770 (0) a0 () = 587, (€0 (1) Ry ) (ABXD 1 D (§010), Fu (€)oo (€0

The result now follows after dividing by t¢. O

This proposition allows us to obtain the following estimate.

Corollary 5.7. Fix xg € M and let w € B(0,t(x¢)) C T,,M. Define the geodesic 7, :
[0,1] = M by vw(t) = Exp,, (tw). There exists a constant C' > 0 only depending on some
compact set containing ,, such that

|A(EXD, ) (1) = Ty 0y (1) g (1)) < Clttlgag) 0[5 )
forallu € T, M.

Proof. By Proposition 5.6 there exists ¢ € (0, 1) such that

1 . .
d(Exp,, )w(t) = Ty (07, (1)U = =5 (@7 () @) (d(Exp,, )ew (1), Y (€)Y (§)-

Now taking norms on both sides, we first observe that the norm of the Riemann curvature
endomorphism is bounded on compact sets, because it is continuous (in coordinates the
norm can be expressed as a continuous functions of the coefficients). Furthermore, by
Lemma 5.1 we have that w + |d(Exp,, ).| is bounded on compact sets.

We thus obtain constants C;,C5 > 0, only depending on some compact set containing
the curve v, such that

[AEXD, o () = Ty 0 (1)U g (1))

< 2 1R (BN, w (€, 40 (€) Vi (Ot

< Cl|d(EXon)£w(fU)|g(vw(€))Ww(f)\z(%(g))

< C1Calulg(ap) w3y -

Here, in the last line we used that ¢ < 1 and the fact that ~,, is a geodesic. O
The result in the latter corollary can also be used to compare the inverse of the

differential of the exponential map to the inverse of parallel transport, which itself is
parallel transport, but in the opposite direction.
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Corollary 5.8. Let zp € M and fix w € B(0,(x¢)) C T,,M. Define the geodesic 7, :
[0,1] = M by v, (t) = Exp,, (tw). Then there exists a constant C' > 0 only depending on
some compact set containing +,,, such that

|d(Exsz);1(u) - T;wl(o)ywu)ub(vw(l)) < C|“|g(w(1))‘w|3(xo)

forallu e T, 1)M.

Proof. Fixu € T, (1yM and consider d(Exp,, ),'u € T,,M. By Corollary 5.7, there exists
a constant C' > 0 only depending on a compact set containing +,, such that

|u - T’yw(O)yw(l)d(Epro);lwg('yw(l)) < C|d(Epr0);1u|g(zo) ‘w|§(lo)

Because parallel transport is an isometry, the left hand side is equal to

|T'Y1U(1)'Yw (O)U - d(EXpﬂlo);lulg("/w(l)) :

For the right hand side, we observe that by Lemma 5.2 there exists a constant C >0,
only depending on some compact set containing ~,, such that

|A(Exp,y ) w g < Clulgir, 1))

Putting everything together, we find

70 (D (0 = AEXDG ) o g4, (1)) < CClulg(r,, (1)) 1015 o)

as desired. O

5.3 Spreading of geodesics

We conclude this section with a result on how far geodesics, possibly starting in
different points, can spread in a given amount of time. To shed some light on the
upcoming result, we first consider the Euclidean case. For this, let v(¢) = v(0) + t§(0)
and ¢(t) = ¢(0) + t¢(t) be two straight lines. Then

() = ¢()[* = [(0) = $(0)|* + 2¢(5(0) — $(0),7(0) — $(0)) + £*[5(t) — S(1)[*.

It turns out that in a Riemannian manifold, this formula is analogous up to first order.
The curvature terms show up in the second order term. Before we prove this, we first
need a lemma.

Lemma 5.9. Let K C M be compact and fix L > 0. Let 0 < r < «(K). Let ¢ : [0,T] = M
and v : [0,T] — M be two geodesics contained in K. Assume that d(¢(0),7(0)) < 5 and
|(0)],]5(0)| < L. Then there exists a t, > 0, only depending on K, L and r, such that for
all0 <t <ty we have

d(o(t),7(t)) <.

Proof. Because d : M x M — R is continuous, and K x K is compact, d(-,-) is uniformly
continuous on K x K. Consequently, pick ¢ > 0 such that |d(x,y)—d(z',y')| < §, whenever
d(z,2’) < e and d(y,y’) < e.

Now observe that d(¢(t), $(0)) < t|¢(0)| < tL and likewise d(v(t),v(0)) < tL. Hence,
if we take to < eL ™1, then for all 0 < t < ¢y, we have d(¢(t), #(0)) < € and d(v(t),v(0)) < .
By the choice of ¢, it follows that

|ﬂM®w@D*MMWV®N<g

Since d(¢(0),v(0)) < 3r, the above then implies that d(¢(t),~(t)) < r as desired. O
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Proposition 5.10. Let K C M be compact and fix L > 0. Let 0 < r < «(K) and fixtg > 0
as in Lemma 5.9. Let ¢ : [0,t9]) — M and v : [0,t9] — M be two geodesics in K such
that d(v(0),¢(0)) < 5 and |$(0)], |7(0)| < L. Finally, let K be a compact set containing all
geodesics of minimal length between points in K. Then for all 0 < t < t; we have

d(~(t), ¢(1))?
< d(7(0), $(0))* + 2t(7 0,0y ¥(0) = 3(0), Expy; 5y 7(0)) + £*C(|5(0)] + [$(0)]),
where the constant C' > 0 only depends on f(, L andr.

Proof. Define f(t) = d(v(t), ¢(t))?. By the choice of ¢y, Lemma 5.9 gives us that

d(o(t),~(t)) <r <u(K)
for every 0 < t < ty5. Consequently, ¢(t) and ~(¢) may be joined by a unique geodesic
of minimal length. Moreover, by restricting Exp, we have f(¢) = |Exp;(1t)7(t)\2. Conse-
quently, we can compute
7(t) = < Bxpp ()P
= Per)7
= 2<V¢(t)EXp;(1t)’y(t), Epr_Ol'Y(t»-

Now define the variation of curves I' : [0,%] x [0,1] — M by

[(t,5) = Expy(y) (SEXp ) V(1)

Then for each ¢, the curve s — I'(¢, s) is the geodesic of minimal length between ¢(¢) and
~(t). Hence, T'([0, 0] x [0,1]) C K. Furthermore, because I' is a variation of geodesics,
the vector field

Ji(s) = 0:T(¢, 8)

is a Jacobi field along the curve I';(s) :=I'(¢,s) forall 0 <t < to.
Now note that by the Symmetry Lemma (Lemma 2.2), we have

Vg0 Expy 7 (8) = DidsT(¢,0) = Dd,T(t,0) = Jy(0).
Consequently, we obtain

F1(8) = 2(J1(0), Expy(#)) = 2(J:(0), OsT(t, 0)).

By Proposition 2.3 we find

0),05I'(t,0))
1)a asr(t7 1)> - 2<Jt(0)a asr(tv O)>

(
(
(3(8), ~Exp, iy #(1)) — 2((t), Expy (1)
(b (0 — $(8), Expy(8)).
Consequently, we have

F1(0) = 207560 1(0) = 6(0), Exp 5, 7(0)).

By Taylor’s theorem, we find that

A6(0),6(0)” < d(1(0), 6(0)? + 2t{rzs ,3(0) — $(0), Exphy(0)) + 57 s 17(©)
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We now turn to estimating the residual term. For this, we compute f”(¢) as follows:

S0 = jt (30, ~Bxp (1)) —

t
(L), Va0 Expry 6(1)) — (9(0), V g Expyhy 1(1))
— (1), (1, 1)) — (3(8), HT(£,0))
— (1), (1)) — (3(1), i (0))-

Here we used that v¢'>(t)€2’(t) = V4 u¥(t) = 0, since ¢ and v are geodesics. Consequently,
we have

(O(t), Exp; (1)

—~

%If”(t)l < BOJD]+ 160117 0)] = 1§ O[T (D] + [¢(0)]].7:(0)],

where we again used that v and ¢ are geodesics. It follows that we are done once we
can bound |J;(0)| and |J;(1)|. For this, we first obtain a more specific expression for the
Jacobi field J;. To this end, we define for every 0 < ¢ < t; the vector fields

I} () = d(Expy(y))so.r(t,0) (547 (0))
and
J2( )= (EXPW(t)) sBSF(t,l)(Sth(O))a
where
JH0) = d(BxPy) gy 0y 1) € oM
and likewise
J2(0) = d(EprY(t))I;ip;(lt)¢(t)<25(t) e TymM

As explained in Section 2.2.3, J; and J are Jacobi fields along I';. Note that .J; (0) =
J2(0) = 0 and J} (1) = 4(t) and JZ(1) = ¢(t). Because J; is the unique Jacobi field along
I'; with J;(0) = ¢(t) and J;(1) = #(¢), it follows that

Ji(s) = J}H(s) + J2(1 — s).

Using the above decomposition, we show how to bound |.J;(0)|. The bound for |.j;(1)|
may be obtained similarly. By the triangle inequality, we have

1 7:(0)] < |FHO0)] + |2 (1)].
Note that

|74 (0)] = [d(Expy)) o O] < |A(ExPy(r)) o

Exp;(lt)'y t

ol

Consequently, by Lemma 5.2 there exists a constant C' > 0 only dependmg on K and r
(since |Exp )Y = d(o(t),~(t)) < r) such that

|1 (0)] < ClA(1)] = CI3(0)].
For the other term, it follows from Proposition 2.4 that

[JE)] < [J2(0)] + sup | Rr(1,5) (I (5), 05T (L, 5))0sT (¢, 5))|
se|0,

Exp

< Clo(0)| + |0 T (L, 0)* sup | Ry, (o7 (s)]

3

< Clo(0)] + Cd(y(t), ¢(t))* sup |J7(s)]

s€10,1]
< Clp(0)| + Cr? sup [JE(s)]-
s€[0,1]
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Here we used in the second line again Lemma 5.2 as above, together with the fact that
the curves I';(s) are geodesics. Furthemore, we used that the curvature is continuous,
and hence bounded on compact sets, so that C only depends on K, since the variation
I is contained in K. In the last line, we used that d(v(t), (t)) < r forall 0 < t < t, by
choice of tg.

Finally, we have for any s € [0, 1]

|J2(5)] = |d(ExD, (1)) —so.1(e,1) (37(0))]
< s|d(Exp 1)) —so,r(t.1) |17 (0))]
< C'9(0)],

where in the last line we used Lemma 5.1. Collecting everything, there exists a constant
C > 0, only depending on K and r, such that

[JZ(1D)] < Cl(0)].
Putting everything together, we find that
[J(0)] < [JH0)] + T2 < C(5(0)] +6(0)])

for some C' > 0 only depending on K and 7. Obtaining a similar bound for |.j;(1)| now
proves the claim. O

6 Proof of Cramér’s theorem for geodesic random walks

In this section we provide a proof of Cramér’s theorem for geodesic random walks
with independent and identically distributed increments, which are bounded and have
expectation 0. The proof relies on an analysis of the geometric properties of a geodesic
random walk. To prove the theorem, we follow the steps as discussed in Section 4. We
provide the details and show how we use the geometric results from Section 5. For
completeness, let us recall the statement of the theorem.

Theorem 6.1 (Cramér’s theorem for Riemannian manifolds). Let (M, g) be a complete
Riemannian manifold. Fix xqg € M and let {y,}.cnm be a collection of measures such
that p, € P(T,M) for all z € M. For every n > 1, let {(% % S);};>0 be a L-rescaled
geodesic random walk started at xy, with independent increments {X}L}jzl, compatible
with {ps }zenm- Let {(% % S)pn n>0 be the associated empirical average process started at
xo. Assume the increments are bounded and have expectation 0. Assume furthermore
that the collection {u. }.cn Satisfies the consistency property in Definition 3.7. Then

{(% * S)n tn>o satisfies in M the LDP with good rate function
In(z) = inf{A% (v)|v € Exp, 'z} (6.1)

In Section 6.1 we prove the upper bound of the large deviation principle for {(}L *
S)n}tn>1in M, while in Section 6.2 we prove the lower bound. More specifically, Theorem
6.1 follows immediately from Proposition 6.9 together with Proposition 6.11.

However, before we can prove the upper and lower bound of the large deviation
principle for {(% *S)y }n>1, we first need some general results and estimates. From here
on, we fix » > 0 to be the uniform bound on the increments of the random walk. By the
triangle inequality, we find

1 1 & k
— < — X< —r<
d((n*8>k’xo>_n§| k|_n7“_r
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for all 0 < k < n. Consequently, for every n > 0 and 1 < k < n we have

1 -
( *S) € B(xg,r) =: K.
n k
By completeness of M, K is compact since it is closed and bounded.
Now consider the process Z,, in T, M given by
_ —1 n
Zn = n 7—-770(%*5)1@71)(’“'
k=1

Here, the parallel transport 7, (1,s), , is considered along the piecewise geodesic path
traced out by the geodesic random walk. From Cramér’s theorem for vector spaces it
follows that {Z,,},,>0 satisfies the large deviation principle in 7, M, which we will show
in the following proposition.

Proposition 6.2. Let the assumptions of Theorem 6.1 be satisfied. For every n > 0,
define Z, = 1 3"}, Ta/;l(l*S)k,lervl € Ty, M. Let A, (\) = logE(e’X1) be the log moment
generating function of ‘the increments. Then {Z,}n>0 satisfies the large deviation
principle in T, M with good rate function

I(v) = A7, (v) := sup {(A,0) = Asy (M)}

AET, o M
Proof. Define Y} = T;)l(l*s)king € Ty, M. We compute for any A € T, M
—1 n
E(6<A7Ykn>) = (E (6<A’Tmo(i*8)lek ) |fk—1))
<)‘77'_1 1 v)
:]E / e ”;O(W*S)k—l ‘u(l*s)kil(dv)
T(%*S)k—lM
—E( [ )
Tog M
= / e<)"”>px0 (dv).
Tug M

Here we used in the second line that T;)l(%*s)kil
together with the fact that the increments are independent (see Definition 3.3). In
the third line we applied Proposition 3.8, using that the increments are identically
distributed. It follows that Y," is distributed according to fiz,.

Consequently, the result follows from Cramér’s theorem once we show that Y;* and
Y," are independent whenever k # [. To this end, assume without loss of generality that

[ < k. Then for measurable sets A, B C T, M we find in a similar way as above that
P(Y," € AY,' € B)
=E(I(Y" € AR, € B)[Fk-1))

is measurable with respect to Fj_1,

ﬂEHWeM/

—1
T I (Txﬂ(%*s)k—lv € B) M(%*S)k—l(dv)
(

1 M
7 *S) k-1

) (I(Yl" ed) [ Twe Bmm(dv))

E(I(Y]" € A)E(I(Y{' € B))
=P(Y" € A)P(Y" € B),
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where I denotes the indicator function. Above, we used in the one but last line that Y}
is distributed according to p,,. We conclude that the ;" and Y, are independent. [

Remark 6.3. Note that in the proof of Proposition 6.2 we did not use along which path
we performed the parallel transport Tz_ol(l* S only that it was measurable with respect
to F;—1. Consequently, the result holds for any choice of parallel transport, as long as it

is measurable with respect to Fj_1.

Proposition 6.2 suggests we should try to map the sequence {(% * S)p tn>0 from M to
T, M in such a way that it will be close to the sequence {Z,},>0.
To this end, recall that if we assume that r < ¢(z¢), then forall n and all 0 < k < n we

can uniquely define
, 1
vp € Exp,! (( 5 3) ) C TpyM
n k

with [v}| < t(z0), because d((L % S)y, z0) < 7 < (o).

As explained in Step 2 of Section 4.2, we have the following estimate. The first
term of the upper bound in (6.2) follows from replacing vﬁl with a sum of differentials of
the Riemannian exponential map, while the second term follows from replacing these
differentials with parallel transport.

Proposition 6.4. Let the assumptions of Theorem 6.1 be satisfied. Additionally, let r
be the uniform bound of the increments and assume that r < v(x). Then there exists a
constant C' > 0 such that

2l3

1 l
op-=> T X <O +0r° (6.2)

T
$o(%*5)k71

forallm andalll <[ <n.

Proof. Recall that for all n» and all 0 < £ < n we have that (% * S)g is in the compact set

K = B(xg,r). Consequently,

vy € B(0,r) C Tyy M
for all n and all 0 < k < n. But then it follows from Proposition 5.4 that for every
0 < k < n there exists a constant ) > 0 only depending on the norms of v}, v, ; and
Xj! such that

1 . 1

Because each of the norms v}/, [v}, ;| and | X}!| are bounded by 7, we conclude that
we can take ) = C independent of k.
Turning to the proof of the statement, by the triangle inequality we have

l
1
n -1 n
v — — T
LT, > o (L8)x 1 Xk

k=1
1 l
< v”—lzd(E il Xp| =S B, )7t xp - Xy
=Y n *Pa, vk + nz *Pzo Vg k Tmﬂ(%*s)k‘*l ke
k=1 k=1

We estimate both terms separately.
For the first term, we write v]* as the telescoping sum

l

off = (f —viy)-

k=1
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Consequently, we obtain

l l

1 L oom . 1 on
v Zd(EXPxU)U;iIXk < Z v — Vi1 — d(EXPxU)Ug:XH
k=1 k=1 (6.4)

l
S Cﬁv
where the last line follows from the estimate in (6.3).

For the other term, observe that by Corollary 5.8, there exists a constant C' > 0 only
depending on the compact set B(0,r) and r, such that

XD ot XE =T 1), , KR < Clopa P (6.5)

But then we find

l l
1 xn 1
Z |d(Exp,, ), ;;1 Xi = ;0(1 *S )i Xil < Cg Z |U/chf1|2

n
k=1

<C’7’—

where in the last line we used that [v}' ;| <7521 <rlforany1 <k <l O

Remark 6.5. The estimate in Proposition 6.4 is one of the most important ingredients of
the proof of Theorem 6.1. Indeed, it allows us in some sense to connect large deviations
for {(1 %8),,}n>0 in M to large deviations for the sums {2 >}, T 1( *S)k_le?}"ZO in the
tangent space T,,M. Consequently, by making appropriate assumpt1ons on the sequence
{ S T 0( L8)e X;?}nzo, for example in the spirit of the Gartner-Ellis theorem (see

e.g. [5, 1]), we can obtain more general results than Cramér’s theorem for geodesic
random walks in a similar way.

One might hope to combine Propositions 6.2 and 6.4 to prove that {v]},,>o satisfies in
T,,M the large deviation principle. Unfortunately, the upper bound found in Proposition
6.4 gives an unwanted contribution on the exponential scale. Indeed, taking [ = n, we
find that the upper bound in (6.2) is O(1), which results in the fact that we get stuck
with a constant as explained in Step 1 of Section 4.2. In an attempt to reduce this term
in the upper bound, we cut up the random walk in finitely many pieces and analyse the
pieces separately.

To this end, recall that

d((i*‘s)k,%) < Z|X |<77°

Now observe that ¢(B(zo, 7)) > 0, because B(zo, ) is compact (see (2.2) for the definition

e . : (B(=zo,r))
of the injectivity radius of a set). Consequently, if k < =722, then

d ((:L *s>k,x0) < @ < 1(B(zo,7)). (6.6)

2r

Now let m € N such that m > For 0 <! < m — 1 we define n; = [|m~!n|

o(B(wo,1))
and n,, = n. By (6.6), forevery 0 <! <m —1and 1 < k < n;y; — n; we can uniquely
define
1
~n m,l
n;+k
EJP 24 (2019), paper 93. http://www.imstat.org/ejp/

Page 28/39


https://doi.org/10.1214/19-EJP351
http://www.imstat.org/ejp/

Large deviations for geodesic random walks

with |57 < (2 % S),, ), because nyiq —ny < nm' < w. Finally, we set
Un,m,l _ 7_71 1~}n7m,l ceT. M
k - xo(%*S)nl k To "
where parallel transport T;JI(L* s) is taken along the piecewise geodesic path through
n ny

the points (£ %« 8),,, ..., (£ «S)n,_,.

Alongside this division of the random walk into pieces, we define a map ¥,, :
(TyeM)™ — M to identify the tuple (v@@"ﬂ’fnj,...,vﬁl"}ﬁj) with (£ % 8),, just like we
used the Riemannian exponential map to identify v]' and (% * S),, before. Essentially, ¥,,
is an m time recursive application of the Riemannian exponential map.

More precisely, let (vi,...,v,) € (T, M)™ be given and define ; = Exp, (v1). Now,
suppose 71, ...,x; are given. Denote by 7., parallel transport along the constructed
piecewise geodesic path via zi,...,2;—1. Then we define 0,11 = Ty,2,vi+1 and set
riy1 = Exp, (0;41). Finally, we define ¥,,(v1,...,v) = 2,,. In particular, we have for
every z € M and v € Exp, 'z that (1v,..., 2v) € U, lz. To see this, observe that the
path that ¥,, constructs is precisely the geodesic v,(t) = Exp,, (tv), because the speed
of a geodesic is parallel along the geodesic. Furthermore, the map ¥,, is continuous as
a composition of continuous maps.

Remark 6.6. Strictly speaking, if we divide the random walk into m pieces as above, for
the last piece we can only guarantee that it has at most |[m~!'n| + m increments, since
n need not be divisible by m. Additionally, this implies that \If,,,b(vf,;;”’f}n [ vl ) i
only equal to (+ «S) when n is divisible by m. However, for every m € IN it holds that

n,m,1 n,m,m 1 o 1
otttz (1)) -o(2)

Since in the proofs to follow we always first let n tend to infinity before m, this has no
influence on the results and arguments. Therefore, to avoid unnecessarily complicated
notation and reasoning, we proceed with the above.

6.1 Upper bound of the large deviation principle for {(% *S)n tn>0

In this section we prove the large deviation upper bound for {( *S),}n>0. Before
we can do this, we first need some preliminary results.

Proposition 6.7 (Upper bound for E(e”(**n))). Let the assumptions of Theorem 6.1 be
satisfied. Additionally, let r be the uniform bound of the increments and assume that
r < t(xo). Then there exists a constanct C' > 0 such that foralln and all1 <1 <n

E(en</\,vl">) < eln—l‘)\|Ce|A\Cr213n—2MT0()\)l

for all A € T,y M. Here, My, (A) = [, 1, €™ pg, (dv).
zo

Proof. By Proposition 6.4 and the Cauchy-Schwarz inequality, there exists a constant
C > 0 such that

l l
1 _ 1 _
(Aof) - = Z(x,%l(%*s)mxw <M Jop =~ ZTwol(%*S)HX};
k=1 k=1
3

l l
< Ol + CIAIr? .
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But then we can estimate

l -1 n -1 n
A X A X
E (en</\,v{">> - <62k=1 ( ’Tzo(%*s)k,I k }671( )= Zk 1 1‘0( LiS)_ 1 F >)

—1 n
< NI~ O ( Sh=1 ook e le>).

As shown in the proof of Proposition 6.2, for every 1 < k < n we have that
-1

T oo (LS X} is distributed accodring to y,, and is independent of 7_ ( S) X" for
any? # k. Consequentely, we find that
1 -1 n l -1 n
E (eZkl (AvTIO(%*s)k 1 ) _ H ( ’ ro(}L*S)le;@))
= M SV
where the last step follows from Proposition 3.8. O

Using Proposition 6.7, we obtain the following inequality, which is key in deriving the
large deviations upper bound for {(1 «8),},>0.

Proposition 6.8. Let the assumptions of Theorem 6.1 be satisfied. Denote by r the
uniform bound on the increments of the geodesic random walk. Then for any m € IN

such that m > —=-— and any closed F' C (T,,M)™ we have
(B(ioﬂ“))
. 1 n,m,1 n,m,m
lim sup — log IP ((vh’n,’lnJ s ,ijw) € F)
n—oo N
< - inf su — Aiymug) — Ny (N) — m*20|)\i|r2 .
(V150 vm)EF (A, ,,L)e( o M)™ T Z{ ’ }

Here, C is a constant depending on the curvature of the compact set B(0,r) and the
bound r.

Proof. We first prove the upper bound for compact sets, so let I' C (7., M )™ be compact.
Following the proof of Cramér’s theorem (see e.g. [1, 5]) for the vector space (T,,M)™
we have

lim sup — log P (( f,rﬁllny T ’vf;riﬁj) € F)

n—oo T

m 1 . i
< - inf sup {Z(/\i,vi) —limsup — logE (e it v 1nJ>) }

(W15 0m) €L (A, M) € (T M)™ | 5T n—oo N

Recall that for 0 < i < m — 1 we write n; = i|m~'n] and n,, = n. By Proposition 6.4
(which we may apply, because m is chosen large enough) there exists a C' > 0 such that
for any 1 < i < m we have

; I & |m~tn] |m~1n]3
~nmi L -1 n 2
Ulm=1n) = > T(he§)ny, (husy Xk | S O g + O3
k=n;_1+1
5 1
But then we also have that
R i - xrl <o L +C 2 1 (6.8)
vl_’rn_lnj nTzo(TlL*S)n171 T(%*S)ni,l(%*‘s)k kil = nm " m3’ ’
k=n;_1+1
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because parallel transport is an isometry.
Now define

n;

Y S X' eT, M.
i o(LxS)n,_, (La8)n,_, (Lx8) vk € Lo
k=n;_1+1

Using (6.8), it follows from the Cauchy-Schwarz inequality and the triangle inequality
that

m

nmz lm n
ZWU ) EZ:A“Y

i=1

m

<C<+7‘ 1)Z|/\i|.

i=1

Consequently, we find that
E <6"E?1<Aivv'[i’;'i’iw>> < (CMTIE il O T D N R (6 ?;1<Ai,n”>) ,

Now note that, like in the proof of Proposition 6.2, we can show that for i # j the
random variables Y;" and Y;" are independent. Consequently, we have that

B (2 0) = [T (07).
Moreover, again following the proof of Proposition 6.2, one can show that
E (6<>\i’yin>) = M.ro (Az) mean .

Combining everything, we find that

limsup — logE< i (i fmmlnﬂ)

n— 00

f“;isgp{niz z|+—Z|/\| m” nJZAIO(Ai)}

i=1
Cr? & 1 &
= g D il + =D A (A
i=1 i=1

Putting everything together, we obtain

lim sup — logIP (( fnﬁ’llﬂ - ”mm o ) )

n—oo N ) )

< — inf )\ , Vi) —m AL, (N = m 303 | \)) .
>~ (V14.ym )ET [CX T )6( )m; i Vi To( z) | z|}

This concludes the proof of the upper bound for compact sets.
To extend the upper bound to all closed sets, one should simply notice that

n,m,1 n,m,m m
(U[mflny" T )EB(O,T)

P mT ]

almost surely, where r is the uniform bound of the increments. Since M is complete,
m
B(0,r) is compact, so that the sequence is exponentially tight. O

It now remains to transfer the upper bound in Proposition 6.8 for the process in
(Tyo M)™ related to {(l xS ) } , to the upper bound of the large deviation principle

for {(++S) } s+ With all preperatlons done, the only thing that remains to be shown,
is that the upper bound has the desired form.
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Proposition 6.9. Let the assumptions of Theorem 6.1 be satisfied. Then for any F' C M
closed we have
1
hmsup log IP (( *S) € F) < — inf Ty (x),
n n

n—oo N zel

where

Iy (z) = inf{A} (v)lv € Expgolx}.
Proof. Let F' C M be closed and pick m € IN such that m > Mﬁ%m, where r denotes the
uniform bound of the increments. Let ¥, : (T, M )™ — M be the recursive application
of the Riemannian exponential map defined just above Section 6.1. Because ¥,, is
continuous, we have that ¥ 'F C (T, M)™ is closed. Hence, by Proposition 6.8 we find
that

1
hmsup log IP ((*S) €F>
n—oo n

<hmsup log P (( fn?’llnj7...7vfr’n”f’fzj> € \I/;LIF)
n— oo
< - inf = iy mvg) — Ao (Ng) — m™2Cr2 | N}
(V15 0y0m ) EURF (Aq,..0 A ,,L) ( M) mz{ 0 }

Now observe that for every A € T,, M we have |\| < |A\|? + 1. Plugging this into the above
estimate, keeping in mind the minus sign in front, we find that

1
lim sup — log]P << * S) € F)
n—00 n n

< — - inf )MEZ{ (Niymug) — Ay (M) — m’2CT2|)\i|2}o

2 _
m (V1500 ) EURLF (Mg, m)e(:rl0

We now focus on the infimum in the above expression. The necessity of replacing ||
2, and making the upper bound slightly worse, will become clear when we try to
calculate this infimum further.

First, consider the map A,, : T,, M — R defined by

1
Am()‘) = Awo ()‘) + WCT2|/\|2>

and denote by A}, its Legendre transform. Then

1 Z
E { iy mug) — Ngg (X)) = m™°Cr |)\z|} m = o)

(>‘11 >"m)6( M)m

The latter may be interpreted as

1
| Mlm(e)
0
where 7, is piecewise geodesic on intervals of the form [( ml), m] with speed mv;, where
vy = TIO’Y ((1 1))’U1

Now note that since A, is differentiable and convex, we find that A,, is differentiable
and strictly convex. Furthermore, we have for every u € T, M that

1 1
A (u) = sup {()\7u> — AN — mQCTQMQ} < sup {(A,u) - mZC’r2|/\2} < oo

AETyo M AETwy M
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Here we used that A, is non-negative, because the expectation of 1, is 0. Consequently,
we find that A}, is everywhere finite. Note that this does not contradict the fact that
the rate function might be infinite, since A}, merely provides a lower bound of the rate
function. Because A}, is everywhere finite, it follows from Lemma A.1 that A}, is strictly
convex and differentiable.

The above shows that we can apply [8, Proposition 8.3], giving us that minimizing
trajectories for the functional

1
JRSCIO
0
are geodesics. Because for every x € F and every v € Expgolx we have that
(Lv,...,Ltv) € U 'F, we find that
- inf — Z {iymug) — Mgy (Ni)} — m™2Cr2 |\ 2}

(V1,0 0m) EVLF (A1, A )e(T M)ym M

=— inf sup  {(A\,v) — Agy (N) —m_QCT2\)\| b
veEprOF)\GT M

Now note that

lim  sup  {(A\,0) — Ayy(A) = m2Cr?|A°}
M0 NET,y M

= sup lim {(\v) — Ay (A) — m2Cr? A} (6.9)
AET ) M 700

= sup {(\v)—Ar,;(N)},

AETy M

because A,,(\) = (\,v) — Ay, (\) — m~2Cr?|\|? is increasing in m for every \ € T, M.
Furthermore, we have

(A v) = Agg(N) — m_QCTz\M > (A v) — A — m_QCTQ\MQ,

because the support of 1, is contained in B(0,r). Furthermore, one may compute that
if |v| > r, then

sup  {(\v) —r|A| =m2Cr? AP} = o] — )2, (6.10)

L(
AETyg M 4Cr?
Now write
Exp, ' F = (ExpmlFﬂB(O 2r)) (ExplemB(o o) )

Note that by (6.10), we find that

lim inf sup  {(\,0) — Ayy(N) — m2Cr3|A?}
M0 e Expy FNB(0,2r)C A€Try M
> lim inf sup  {(\,v) — 7|A| = m2Cr3|A°}

M0y €Expy FNB(0,2r)C ATy M
2
m
> lim ——12
T m—oo 407“2

= OO,
where we used in the one but last line that |v| > 2r. Also, because |v| > 2r > r, we have

sup  {{A0) = Agy(A)} = o0

AETyo M
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so that
lim inf sup  {(\,0) — Ayy(N) — m2Cr3|A°}
M0 e Expy FNB(0,2r)C AETry M
= inf sup  {{(Av) — Ay (M)}

vEExp;, FNB(0,2r) " AeTuy M
For the other part, because ExpgolF N B(0,2r) is compact, it follows from (6.9) that

lim inf sup  {(\,0) — Ay (A) = m2Cr?|A?}

M=0 yeBxpy, FNB(0,2r) AETzy M

= inf sup {<>‘7 ’U> - Amo ()‘)} :
vEExpg, FNB(0,2r) AETzy M

Collecting everything, we find that

1 1
limsuplogIP<<*S) EF)
n—oo N n n

. Cr? : —2, 2112
< lim [ — — inf sup  {(A\,v) — Agy (A) — m—2Cr?|A)?}

2 _
m vEExpLy F AEToq M

=— lim inf sup  {(\,0) — Ay (\) — m2Cr2| A}
M0 4 €Expy, FNB(0,2r) AT,y M

=— inf sup {(A\,v) —Agyg (M)}
vEEXpL, F AeTpy M

==t Do)
which concludes the proof. O

6.2 Lower bound of the large deviation principle for {(% *S)ntn>0

In this section we prove the large deviation lower bound for {(% * S)ptn>0. In order
to do this, we need a refinement of Proposition 6.2, which may be proven in a similar
way.

Proposition 6.10. Let the assumptions of Theorem 6.1 be satisfied. Let m € IN and set
zp =Ly e, ) X{. Finally define Ay, (\) = log E(eX). Then {Z]'}u>1
satisfies in T),, M the Yargeideviation principle with good rate function

In(0) = A3, (o),

where A7 (v) = Sup)\eTzoM{O‘v v) — Mgy (M)}
We are now able to prove the large deviations lower bound for {(2 S),,},,>0.

Proposition 6.11. Let the assumptions of Theorem 6.1 be satisfied. Then for any G C M
open,

liminfllogIP <<1 *S) € G> > — inf Ip(x),
n—oo M n n z€G

where I, is as in (6.1).

Proof. It suffices to show that

n—oo n

liminfllogIP ((1 *S) € G) > —Iy(z)
n n

for every z € G.
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So fix x € G and pick v € Exp;()lx. Because G is open, there exists an € > 0 such that
B(z,e) C G. Let m € IN such that m > I(B(QT:TM)) where r is the uniform bound on the
increments of the geodesic random walk.

We again need to identify the geodesic random walk with a tuple in (7, M)™. How-
ever, this time the parallel transport back to T,,, M is carried out by first transporting to
a well-chosen point on the geodesic v, (t) = Exp, (tv) and then to z, along this geodesic.

More precisely, we define a map ¥, ;. : (I, M)™ — M that allows us to identify
the random variable (1 * S),, € M with a vector of random variables in (T,,M)™. To
this end, define for 0 < i < m the points y; = Exp, (;-v). For 1 <i < m we define
Tzoy, @S parallel transport along the geodesic Exp, (tv). Furthermore, for every z € M
and every 0 < ¢ < m — 1, we choose a geodesic v,,, of minimum length and denote

by 7,,. parallel transport along this geodesic. We now define Uy ww(1,...,0,) as
follows. Define z; = Expzo(%vl) and if x; is defined, we set ¥;11 = Ty, z, Taoy, v; and define
Tiy1 = Exp,, (L 0;41). Finally, we set Wy, 5 (v1, ..., Vi) = T

Now note that by the triangle inequality, we have

1< 1<
d(x;, <*E ‘<*§ j
(i, 20) < m]’:1 |UJ‘ > mj:1 ‘UJ|

for any 1 < i < m. Consequently, if (v1,...,vn) € B(v,1)™ we have |v;| < |v| + 1, so that
d(x;, z0) < |v|+1

for any 1 < i < m. Because also d(zo,y;) < -|v| < |v|, we find that z;, y; € B(wo, [v] + 1)
foralll <i<m.
Writing = |v| + 1, we will show that there exists a constant my € IN such that for all

m > mg we have

(V1. .., Um) € B(v,e2/(8n))™ = Uy ww(1,...,0m) € B(x,€), (6.11)

whenever ¢ > 0 is small enough.

To this end, let K C M be a compact set, such that all geodesics of minimal length
between points x,y € B(xg,n) are contained in K. Because K is compact, its injectivity
radius ¢(K) is strictly positive.

Fix 0 < § < «(K). We first show that for ¢ small enough and m large enough we have
d(xi,y:)* < i1 + ‘e (6.12)

CIY T 2m m?2 '
for 1 < < m. Here, C' > 0 is some constant only depending on K and . We proceed by
induction.

First consider the case i = 1. By taking m large enough, we can apply Proposition
5.10 to obtain a constant C' > 0 (depending only on K and J) such that

1 1 1
d(xl,y1)2 =d (EXPZL’O (mvl)  Expy, (m’0>) < WC'

Now suppose that d(z;,y;)* < 52e? + -5 C. Then in particular we have

62

d(miayi)Z S E + C>

1
m
which can be made smaller than g by taking ¢ sufficiently small and m sufficiently large.
In that case, we may again apply Proposition 5.10, so that for the same constant C' > 0
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as above, we have

1 1
d(xig1,yi01)> =d (Expxi <mTiniTwoyiUi+l) , Exp,, (mTwoyiv>>

1 _ 1
< d(mi’ yi)2 + 2%<Twovivi+1 — Taoy Vs EXpyilmi> + EC

-1 1 ) )
S 27’77, 2 + 70 + 2 |T$0y’ U1+1 Tzoyiv ‘Exp%lxz' + WC
i1, i1 9
=3 24 C+ —|vi —vld(zi,y:)-
m m m

Now, observe that d(x;,y;) < 27 since z;,y; € B(xo,n). Using this, together with the
induction hypothesis and the fact that |v; — v| < %, we find

i1, i+1 1 2 , i+l
d(zs,y;)? < ——¢° CH g—e? = —¢ C
(x’y)_2m€+m2 Jr2m6 QmSer2 ’
as desired.
Now taking 7 = m in (6.12), we obtain
2
€ 1
d my Im 2 < = C*,
(@m,ym)” < 5 +C—
whenever (vy,...,v,,) € B(v,e%/(8n))™. Consequently, if we take mo > 2, we obtain for
m > myg that
2 52 82
Ad(Wmzoi,. o 0m), )" = AT, ym)? < 5 + 5= e2

as desired.
Fixing my and C as above, let m > mg be large enough so that we can define

~nml 1
EEXP(1*S) <<n *S CT(%*S)MM
n;+k

like in (6.7). Different from before, we now define the vectors

n,m,l —1 —1 ~nml
Uk - Troy,,l y"z( L*S) € TzoM (613)

using the parallel transport procedure used in the definition of the map ¥, , ,.
Consequently, by construction we obtain

n,m,1 n,m,m 1
\I/m,x,v ('Utmfan,... Lm nj) (n xS n.
Using this, together with the implication in (6.11), we find
1 1
P(l—xS) €eG)>P(|—%S| € B(z,¢)
n n n n
> P ((vm&}nj Y J) € B(v, e? /(sm)m)

Now define for 1 < i < m the random variables

n;

n __ ,_—1 -1 —1 n
Y; N Txoy”'iflTy"i,—l(717*3)"4,—1 Z T(}T*S)W—ﬂ%*s)klek = Tx0M7
k=n;_1+1
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where the parallel transport 7‘( S (24S)a

geodesic random walk. The sum is then transported from T 1, Sy s M to T, M as in the
definition of v,”"™ ! asin (6.13).

In the same way as we obtained (6.8) in the proof of Proposition 6.8, we find that
there exists a constant C > 0 such that

is carried out along the trajectory of the

n,m,1

Vlm=1n| ~ Y.

Consequently, we may take m large enough such that almost surely we have

82

n,m,1
o Y < .
16n

lm=tn) ~ i

v

But then we find that if Y* € B(v,£?/(167)), then vf i n) € Blv,e 2/(8n)). This implies
that

P (gt o) € Blo,</(s)™)
>P((Y",....Y,") € B(v,e?/(16n))™) .

Now note that, like in the proof of Proposition 6.2, we can show that the random
variables Y;" and Y}" are independent and identically distributed for : = j, so that

P ((Y",...,Yn) € B(v,%/(16n))™) ﬁ (Y* € B(v,e%/(16n)))
IP(Y1 € B(v,e?/(16n)))"

Furthermore, by Proposition 6.10 we have

hmmf logIP (Y{* € B(v,e%/(16n))) > —iAZO(U).
m

n— oo

Combining everything, we find that

liminfllogIP ((1 *S) € G) > mhmmfflogIP (Y{* € B(v,e%/(16n)))
n n

n—oo n n—oo N

> A7, (v).

Since this holds for all v € Exp; 'z, we find that

lim inf 1 log P <(1 * S) € G> >— inf A} (v) = —Iu(2),
n n

n—oo N veExpgolI

which concludes the proof. O

A Some convex analysis

In this appendix we collect a result from convex analysis. Although this is probably
well-known, we provide a proof for the reader’s convenience.

Lemma A.l. Let V be a vector space, and let F : V — R be strictly convex and
differentiable. Then its Legendre transform F™* is strictly convex and differentiable on
the interior of its domain D¥,..
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Proof. The differentiability of F'* follows from [10, Theorem 26.3].
For the strict convexity, we first prove that for each v € DY%.., there existsa A} € V
such that
Fo(v) = (A, 0) = F(A).

Indeed, suppose this is not the case. Because F*(v) < oo, we can find a sequence )\,
such that
F*(v) = lim (\,,v) — F(\).
n—oo

Because the map A — (A, v) — F,()) is continuous, the sequence A, cannot contain a con-
vergent subsequence, else the limit of this subsequence would serve as \}. Consequently,
we must have that lim,, o |A\,| = o0.

But then there exists a w € V such that lim,,_, (A, w) = co. To see this, suppose

such a w does not exist. Denoting by ey, ..., e4 a basis of V, we must have that (\,, e;)
is a bounded sequence for all i = 1,...,d. But then, by taking subsequences, we find
(A, e;) converges forall i = 1,...,d, which contradicts the fact that lim, . |A,| = oc.

Now consider v + ew € V and let \,, be the sequence found above. We have that

F*(v+ew) > lim (\y,v+ew) — F(A,) = F*(v) + & lim (\,,w) = cc.

n—oo n—roo

We conclude that v + ew ¢ Dp~ for any € > 0, which contradicts the assumption that
v € D%..

We are now ready to prove that F™* is strictly convex on D%.. To this end, fix
v,w € DS, v # wand t € (0,1) and assume that

F(tv + (1 — tyw) = tF*(v) + (1 — t)F* (w). (A.1)
Now let A} be such that
F(tv + (1 — tyw) = (tv + (1 — hw, ) — F(AD).
We find that
tF(v) + (1 = ) F"(w) = t((Af,v) — F(AD)) + (1 = 6)((Af, w) — F(A})).

But then we find that
F*(v) = (v, Af) — F(\))

and
F*(w) = (w,A\}) — F(X)).

Now, because F is everywhere differentiable, it must be that VF(A\}) = v and VF(\}) =
w, which contradicts the assumption that v # w. We conclude that F™* is strictly convex
on D%.. O
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