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Abstract. This paper considers linear regression models when neither the
response variable nor the covariates can be directly observed, but are mea-
sured with multiplicative distortion measurement errors. To eliminate the ef-
fect caused by the distortion, we propose two calibration procedures: the con-
ditional absolute mean calibration and the conditional variance calibration.
Both calibration procedures avoid using the nonzero expectation conditions
imposed on the variables in the literature. Utilizing these calibrated variables,
the least squares estimators are obtained, associated with their asymptotic re-
sults. The asymptotic normal confidence intervals and empirical likelihood
confidence intervals are also proposed. Simulation studies are conducted to
compare the proposed calibration procedures and a real example is analyzed
to illustrate our proposed method.

1 Introduction

In many applications of regression analysis, variables of interest may be observed with mea-
surement errors. A multiplicative distortion errors-in-variables linear regression model is
written as

Y = α0 + XTβ0 + ε, Ỹ = φ(U)Y, X̃ = ψ(U)X, (1.1)

where Y is an unobservable response variable, X = (X1,X2, . . . ,Xp)T is an unobservable
continuous covariate vector (the superscript “T” denotes the transpose operator throughout
this paper), Ỹ and X̃ are the observed response and covariate vector. The parameter β0 is
unknown p × 1 parameter vector on a compact parameter space �β ⊂ R

p . The model error
ε satisfies E(ε|X) = 0 and E(ε2|X) < ∞. The confounding variable U ∈ R

1 is observable
and independent of (X, Y ). The multiplicative distortion function ψ(·) is a p × p-diagonal
matrix: diag(ψ1(·), . . . ,ψp(·)). Moreover, we assume that (φ(·),ψr(·)), r = 1, . . . , p, are
unknown continuous distortion functions. It is noted that φ(·) and ψ(·) distort unobserved Y

and X in a multiplicative relation.
Multiplicative distortion measurement data usually occur in biomedical research and

health related studies. The collected data are often needed to adjust for some measures like
body mass index, body surfaces area, height or weight. Kaysen et al. (2002) studied the re-
lation between fibrinogen level and serum transferrin level among haemodialysis patients,
and realized that BMI plays the role of confounding variable U that may contaminate the
fibrinogen level and the serum transferrin level simultaneously. To eliminate the potential
bias, Kaysen et al. (2002) numerically normalized the observed data with the confounding
variable-BMI, and this procedure in analyzing the collected dataset implies that there may
exist a multiplicative fashion between the primary unobserved variables and the confound-
ing variable. As claimed in Şentürk and Müller (2005, 2006), because the exact relations
between the confounding variable and primary observed variables are usually unknown, the
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way of simply dividing the confounding variable on the primary observed variables may
lead to an inconsistent estimator of the parameter in the model. As a remedy, Şentürk and
Müller (2005, 2006) introduced a flexible multiplicative adjustment by adopting some un-
known smooth distortion functions φ(u) and ψr(u) on the confounding variable. Recently,
a number of authors have studied the multiplicative distortion measurement errors models in
various parametric or semi-parametric settings: Cui et al. (2009), Nguyen, Şentürk and Car-
roll (2008), Li, Lin and Cui (2010), Nguyen and Şentürk (2007, 2008), Şentürk and Nguyen
(2009), Li, Zhang and Feng (2016). These above literature focus on the nonzero expectation
assumptions of the underlying unobserved variables. Delaigle, Hall and Zhou (2016), Zhao
and Xie (2018), Li et al. (2018), Lu, Li and Feng (2019), Zhang, Lin and Li (2019), Feng, Gai
and Zhang (2019), Xie and Zhu (2019) estimated the distortion functions by using the kernel
smoothing methods with absolute value of distorting variables and the confounding variable,
and these techniques need not impose the nonzero expectation conditions on the underlying
unobserved variables.

In this paper, we first use the conditional absolute mean calibration to obtain the calibrated
variables. With these calibrated variables, a least squares estimator is obtained. We study the
asymptotic normality of this estimator and further estimate the asymptotic covariance matrix
to construct asymptotic confidence intervals. Next, we propose another calibration method
by using of conditional variance function between the distorted variables and confounding
variable. Using the conditional variance calibration, the least squares estimator is proposed
and compared its asymptotic covariance matrix with the one obtained from the conditional
absolute mean calibration, and we further discuss the efficiency between these estimators.
After estimating the asymptotic covariance matrix obtained from the conditional variance
calibration, asymptotic confidence intervals are constructed. Lastly, we made use the empiri-
cal likelihood method to construct the asymptotic intervals for the two calibration procedures.
We show that the empirical likelihood statistic asymptotically follows a centered chi-squared
distribution. Monte Carlo simulation experiments are conducted to examine the performance
of the proposed calibration procedures.

The reminder of the paper is organized as follows: In Section 2, we introduce two cal-
ibration procedures and present some asymptotic results. In Section 3, we provide to use
the asymptotic normality and asymptotic empirical likelihood to construct the confidence
intervals. In Section 4, we conduct Monte Carlo simulation experiments to compare the per-
formance of estimators and confidence intervals obtained from two calibration procedures.
An analysis of the air quality dataset will be reported on Section 5. All the technical proofs
of the asymptotic results are given in “online-supplementary materials” (Zhang and Zhou,
2020).

2 Estimation methods and asymptotic results

2.1 Conditional absolute mean calibration

In this subsection, we first calibrate unobserved Y and X by using the observed i.i.d. sample
{Ỹi , X̃i ,Ui}ni=1. To ensure identifiability, it is assumed that

E
[
φ(U)

] = 1, E
[
ψr(U)

] = 1, r = 1, . . . , p. (2.1)

These identifiability conditions (2.1) are introduced by Şentürk and Müller (2006, 2005), and
it is analogous to the classical additive measurement errors: E(e) = 0 for W = X + e, where
W is error-prone and X is error-free (Li, Zhang and Feng, 2016, Tomaya and de Castro, 2018,
Yang, Tong and Li, 2019).
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Under the independence condition between U and (Y,X), the identifiability conditions
(2.1) entailed that

E[Ỹ |U = u] = φ(u)E(Y ),

E[X̃r |U = u] = ψr(u)E(Xr), r = 1, . . . , p.
(2.2)

It is seen that we need the condition that U is independent of (Y,X), and this is the
usual assumptions of the distortion measurement errors model. If the independence condi-
tion fails, then E(Ỹ |U = u) = φ(u)E(Y |U = u) and E(X̃r |U = u) = ψr(u)E(Xr |U = u),
r = 1, . . . , p. In fact, both φ(u) and E(Y |U = u) are unknown, and also Y is unobserv-
able. So, we could not get an estimate of φ(u) and E(Y |U = u) because of the model un-
identifiability. The independence condition between U and (Y,X) makes the model iden-
tifiability, and this is also a usual assumption of the distortion measurement errors models
literature.

From (2.2), Cui et al. (2009) assumed the conditions E(Y ) �= 0, E(Xr) �= 0 and obtained
that φ(u) = E[Ỹ |U=u]

E(Y )
, ψr(u) = E[X̃r |U=u]

E(Xr)
. In the population level, Cui et al. (2009) proposed

to use the calibrated variables Y = Ỹ
φ(U)

and Xr = X̃r
ψr (U)

for further statistical analysis. Such
conditions of nonzero expectations of variables (E(Y ) �= 0, E(Xr) �= 0) are slightly strict.
According to the assumptions of distortion functions in condition (C1), we have E(|Ỹ ||U) =
φ(U)E(|Y |) and E(|X̃r ||U) = ψr(U)E(|Xr |), r = 1, . . . , p. Thus, Delaigle, Hall and Zhou
(2016), Zhao and Xie (2018), Feng, Gai and Zhang (2019), Xie and Zhu (2019) used the
following conditional absolute mean relations:

m|Ỹ |(u)
def= E

[|Ỹ ||U = u
] = φ(u)E

(|Y |), (2.3)

m|X̃r |(u)
def= E

[|X̃r ||U = u
] = ψr(u)E

(|Xr |), r = 1, . . . , p. (2.4)

From (2.3)–(2.4), the conditions E(|Y |) = 0 and E(|Xr |) = 0 are equivalent to P(Y = 0) = 1,
P(Xr = 0) = 1, respectively. Thus, we can avoid the nonzero expectation conditions (Cui

et al., 2009) and use (2.3)–(2.4) to obtain estimators of φ(u) = m|Ỹ |(u)

E(|Y |) = m|Ỹ |(u)

E(|Ỹ |) and ψr(u) =
m|X̃r |(u)

E(|Xr |) = m|X̃r |(u)

E(|X̃r |) , r = 1, . . . , p. The Nadaraya–Watson estimators (Nadaraya, 1964, Watson,
1964) are used to estimate them, and they are defined as

φ̂M(u) = 1

nf̂U (u)|Ỹ |
n∑

i=1

Kh(Ui − u)|Ỹi |, (2.5)

ψ̂M,r(u) = 1

nf̂U (u)|X̃r |
n∑

i=1

Kh(Ui − u)|X̃ri |, (2.6)

f̂U (u) = 1

n

n∑
i=1

Kh(Ui − u), |Ỹ | = 1

n

n∑
i=1

|Ỹi |, |X̃r | = 1

n

n∑
i=1

|X̃ri |,

where Kh(·) = h−1K(·/h), K(·) denotes a density function, h is a positive-valued band-
width. Using (2.5) and (2.6), we obtain the conditional absolute mean calibrated variables
{ŶM,i, X̂M,ri}ni=1 as

ŶM,i = Ỹi

φ̂M(Ui)
, X̂M,ri = X̃ri

ψ̂M,r(Ui)
, r = 1, . . . , p. (2.7)

When some values of the estimated distortion functions are closed to zero, a useful remedy is
to use their estimators by adding a small constant, say, 1/n in practice. It is a commonly used
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remedy in nonparametric regression estimation. This remedy will not damage their asymp-
totic properties of the root-n convergent estimators.

In the following, we define A⊗2 = AAT for any matrix or vector A. The least squares
estimator of (α0,β0) is obtained as

(
α̂M, β̂

T
M

)T =
{

1

n

n∑
i=1

[(
1, X̂

T
M,i

)T]⊗2

}−1
1

n

n∑
i=1

(
1, X̂

T
M,i

)T
ŶM,i, (2.8)

where X̂M,i = (X̂M,1i , . . . , X̂M,pi)
T. In Theorem 2.1, we show that the least squares estima-

tor (2.8) is asymptotically normally distributed.
We now list the assumptions needed in the following theorems:

(C1) The distortion functions are such that φ(u) > 0 and ψr(u) > 0, r = 1, . . . , p, for all
u ∈ [UL,UR], where [UL,UR] denotes the compact support of U . Moreover, the distortion
functions φ(u), ψr(u)’s, have three continuous derivatives. The density function fU(u) of
the random variable U is bounded away from 0 and satisfies the Lipschitz condition of order
1 on [UL,UR].

(C2) For some s ≥ 4, E(|Y |s) < ∞, E(|Xr |s) < ∞, r = 1, . . . , p. The matrix � defined
in Theorem 2.1 is a positive-definite matrix.

(C3) The kernel function K(·) is a bounded symmetric density function supported on
[−A,A] satisfying a Lipschitz condition. K(·) also has second-order continuous bounded

derivatives, satisfying K(j)(±A) = 0 with K(j)(s) = djK(s)

dsj , and also
∫ A
−A s2K(s) ds �= 0.

(C4) As n → ∞, the bandwidth h satisfies h3 logn → 0, log2 n

nh2 → 0 and nh4 → 0.

These are mild conditions that are satisfied with most practical situations. Condition (C1) is
recently used in the study of distortion measurement error models, see Zhao and Xie (2018),
Delaigle, Hall and Zhou (2016), Zhang, Lin and Li (2019), Feng, Gai and Zhang (2019), Xie
and Zhu (2019). The bounded assumption of the support of U entails no loss of generality
as the variable can always be carried out by monotone transformations, even if the support
before transformation is unbounded. For practical computations, it suffices to transform the
empirical support to [−1,1]. Condition (C2) is used in calibration procedures and the proof
of theorems. Condition (C3) is the usual condition for the kernel function K(·). The Epanech-
nikov kernel satisfies this condition. Condition (C4) is the condition for the bandwidth h in
the nonparametric kernel smoothing.

Let Ip+1 be an identity matrix of size p + 1. We define the following notations:

� = E
{[(

1,XT)T]⊗2}
, �ε = E

{
ε2[(

1,XT)T]⊗2}
,

G
(
X,ψ(U)

) = diag
(

0,
(ψ1(U) − 1)|X1|

E(|X1|) , . . . ,
(ψp(U) − 1)|Xp|

E(|Xp|)
)
,

�φ,ψ = E

{[[
(φ(U) − 1)|Y |

E(|Y |) Ip+1 − G
(
X,ψ(U)

)](
α0
β0

)]⊗2}
.

Theorem 2.1. Suppose E(|Y |)∏p
r=1 E(|Xr |) > 0, and the conditions (C1)–(C4) hold, we

have

√
n

{(
α̂M

β̂M

)
−

(
α0
β0

)}
L−→ N

(
0p+1,�

−1�ε�
−1 + �φ,ψ

)
.

Remark. The first term �−1�ε�
−1 is the usual asymptotic covariance matrix for the

least squares estimator when the data are exactly observed, i.e., φ(U) ≡ 1, ψr(U) ≡ 1,
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r = 1, . . . , p. If the model error ε is further independent of X, this term reduces to E(ε2)�−1.
The second term �φ,ψ is dedicated to the multiplicative distortion measurement errors in-
volved in the response variable and covariates. It is also seen that the conditional absolute
mean calibration can eliminate the effect of distortion function φ(U) and ψr(U)’s for esti-
mating β0r when β0r = 0, that is, Avar(β̂M,r ) = eT

r+1�
−1�ε�

−1er+1, where β̂M,r is the r-th

component of β̂M , er+1 is a (p + 1)-dimensional vector with 1 in the (r + 1)-th position
and 0’s elsewhere, r = 1, . . . , p, and Avar(β̂M,r ) stands for the asymptotic variance of β̂M,r

obtained in Theorem 2.1.

2.2 Conditional variance calibration

In the following, we define that σY = √
Var(Y ), σXr = √

Var(Xr), r = 1, . . . , p, and

mỸ (u)
def= E(Ỹ |U = u), σỸ |U(u)

def=
√

Var(Ỹ |U = u),

mX̃r
(u)

def= E(X̃r |U = u), σX̃r |U(u)
def=

√
Var(X̃r |U = u).

Under the independence condition between U and (Y,X), the identifiability condition (2.1)
and condition (C1) entail that

σỸ |U(u) = φ(u)σY , E
(
σỸ |U(U)

) = σY , (2.9)

σX̃r |U(u) = ψr(u)σXr , E
(
σX̃r |U(U)

) = σXr , r = 1, . . . , p. (2.10)

Suppose that σY

∏p
r=1 σXr > 0, these equations (2.9)–(2.10) entail that

φ(u) = σỸ |U(u)

E(σỸ |U(U))
, ψr(u) = σX̃r |U(u)

E(σX̃r |U(U))
. (2.11)

Together with (2.11), we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Y = Ỹ

φ(U)
= E(σỸ |U(U))

σỸ |U(U)
Ỹ ,

Xr = X̃r

ψM,r(U)
= E(σX̃r |U(U))

σX̃r |U(U)
X̃r .

(2.12)

Thus, unobserved variables Y and Xr , r = 1, . . . , p, can be obtained through (2.12) at the
population level. It is seen that the conditional variance calibration involved in (2.9)–(2.11)
does not need the nonzero expectation condition (E(Y ) �= 0, E(Xr) �= 0) imposed in Cui
et al. (2009). Also, σY = 0 and σXr = 0 are equivalent to P(Y = E(Y )) = 1 and P(Xr =
E(Xr)) = 1, the conditions P(Y = E(Y )) < 1 and P(Xr = E(Xr)) < 1 are much less strict
than E(Y ) �= 0 and E(Xr) �= 0.

In the following, we summarize the conditional variance calibration estimation procedure.

• The Nadaraya–Watson estimators are used to estimate φ(u) and ψr(u). Define that

m̂Ỹ (u) = 1

nhf̂U (u)

n∑
i=1

Kh(Ui − u)Ỹi,

σ̂ 2
Ỹ |U(u) = 1

nhf̂U (u)

n∑
i=1

Kh(Ui − u)
[
Ỹi − m̂Ỹ (Ui)

]2
,

m̂X̃r
(u) = 1

nhf̂U (u)

n∑
i=1

Kh(Ui − u)X̃ri,

σ̂ 2
X̃r |U(u) = 1

nhf̂U (u)

n∑
i=1

Kh(Ui − u)
[
X̃ri − m̂X̃r

(Ui)
]2

.
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We obtain σ̂Ỹ |U(u) =
√

σ̂ 2
Ỹ |U(u), σ̂X̃r |U(u) =

√
σ̂ 2

X̃r |U(u), and

Ê
(
σỸ |U(U)

) = σ̂Y = 1

n

n∑
i=1

σ̂Ỹ |U(Ui),

Ê
(
σX̃r |U(U)

) = σ̂Xr = 1

n

n∑
i=1

σ̂X̃r |U(Ui).

Then, we have

φ̂V (u) = σ̂Ỹ |U(u)

Ê(σỸ |U(U))
, ψ̂V,r (u) = σ̂X̃r |U(u)

Ê(σX̃r |U(U))
. (2.13)

• Using (2.13), the conditional variance calibrated variables for {Yi,Xri , r = 1, . . . , p}ni=1
are defined as

ŶV ,i = Ỹi

φ̂V (Ui)
, X̂V,ri = X̃ri

ψ̂V,r (Ui)
. (2.14)

• The least squares estimator of (α0,β0) is obtained as(
α̂V , β̂

T
V

)T

=
{

1

n

n∑
i=1

[(
1, X̂

T
V,i

)T]⊗2

}−1
1

n

n∑
i=1

(
1, X̂

T
V,i

)T
ŶV ,i , (2.15)

where X̂V,i = (X̂V,1i , . . . , X̂V,pi)
T.

In the following theorems, we introduce the asymptotic results of the conditional variance
calibration procedure.

Theorem 2.2. Let W = (Y,XT)T and M(W ) be a function of W , satisfying E{[M(W )]2} <

∞. Suppose that P(Y = E(Y )) < 1, P(Xr = E(Xr)) < 1, r = 1, . . . , p, and also the condi-
tions (C1)–(C4) hold, we have

1

n

n∑
i=1

(ŶV,i − Yi)M(W i )

= 1

n

n∑
i=1

[
(Yi − E(Y ))2

2σ 2
Y

+ 1

2

][
φ(Ui) − 1

]
E

[
YM(W )

] + oP

(
n−1/2)

.

For r = 1, . . . , p, we have

1

n

n∑
i=1

(X̂V,ri − Xri)M(W i )

= 1

n

n∑
i=1

[
(Xri − E(Xr))

2

2σ 2
Xr

+ 1

2

][
ψr(Ui) − 1

]
E

[
XrM(W )

] + oP

(
n−1/2)

.

Remark. Theorem 2.2 gives a fundamental theory to construct asymptotic results of es-
timators with the conditional variance calibration estimation procedure. Theorem 2.2 and
Lemma 1.1 in the on-line supplementary material of Zhao and Xie (2018) provides differ-
ent calibration procedures for multiplicative distortion measurement errors in the light of the
circumstances. Separate calibration procedures will result in different calibrated variables,
and finally lead to different asymptotic properties of estimators. This is far from trivial, and
should be analyzed case by case.
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In the following, we define

Q
(
X,ψ(U)

) =
(

0,
(
ψ1(Ui) − 1

)[(X1 − E(X1))
2

2σ 2
X1

+ 1

2

]
, . . . ,

(
ψp(U) − 1

)[(Xp − E(Xp))2

2σ 2
Xp

+ 1

2

])
,

�φ,ψ = E

{[[(
(Y − E(Y ))2

2σ 2
Y

+ 1

2

)[
φ(U) − 1

]
Ip+1

− Q
(
X,ψ(U)

)](
α0
β0

)]⊗2}
.

Theorem 2.3. Suppose conditions in Theorem 2.2 hold, we have

√
n

{(
α̂V

β̂V

)
−

(
α0
β0

)}
L−→ N

(
0p+1,�

−1�ε�
−1 + �φ,ψ

)
.

Remark. Compared with Theorem 2.1, it is seen that the estimator (α̂V , β̂V ) is asymptoti-
cally more efficient than (α̂M, β̂M) when �φ,ψ −�φ,ψ is a positive-definite matrix, and vice
versa. In detail, we denote the asymptotic variance of α̂M as Avar(α̂M), and we further denote
the asymptotic variance of α̂V as Avar(α̂V ). It is easily seen that

Avar(α̂M) − Avar(α̂V ) = Var
(
φ(U)

){ E(Y 2)

[E(|Y |)]2 − E[(Y − E(Y ))4]
4σ 4

Y

− 3

4

}
.

Similarly, we denote the asymptotic variance of β̂V ,r (the r-th component of β̂V ) as
Avar(β̂V,r ). We have

Avar(β̂M,r ) − Avar(β̂V,r )

= β2
0rVar

(
φ(U)

){ E(Y 2)

[E(|Y |)]2 − E[(Y − E(Y ))4]
4σ 4

Y

− 3

4

}

+ β2
0rVar

(
ψr(U)

){ E(X2
r )

[E(|Xr |)]2 − E[(Xr − E(Xr))
4]

4σ 4
Xr

− 3

4

}

+ 2β2
0rCov

(
φ(U),ψr(U)

){E[(Y − E(Y ))2(Xr − E(Xr))
2]

4σ 2
Y σ 2

Xr

+ 3

4

− E|YXr |
E(|Y |)E(|Xr |)

}
.

If the response variable Y is exactly observed, that is, φ(U) ≡ 1, so Var(φ(U)) = 0 and
Cov(φ(U),ψr(U)) = 0, and the difference between the asymptotic variances Avar(β̂M,r )

and Avar(β̂V,r ) reduces to

β2
0rVar

(
ψr(U)

){ E(X2
r )

[E(|Xr |)]2 − E[(Xr − E(Xr))
4]

4σ 4
Xr

− 3

4

}
.

Next, it is also seen that if the true parameter β0r = 0, we have

Avar(β̂M,r ) = Avar(β̂V,r ) = eT
r+1�

−1�ε�
−1er+1.
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When β0r = 0, both the conditional absolute mean calibration and conditional variance cal-
ibration result in asymptotic efficiency estimators, that is, the calibration estimation pro-
cedures eliminate the effect caused by the distorting multiplicative functions φ(U) and
ψr(U)’s.

3 Confidence intervals

3.1 Asymptotic normal approximation

According to Theorem 2.1 and Theorem 2.3, the (1 − α) × 100% (0 < α < 1) confidence
interval for β0r can be obtained by estimating the asymptotic variances.

3.1.1 Conditional absolute mean calibration. According to Theorem 2.1, let ε̂M,i = ŶM,i −
α̂M − β̂

T
MX̂M,i , i = 1, . . . , n, we define

�̂M = 1

n

n∑
i=1

[(
1, X̂

T
M,i

)T]⊗2
, �̂M,ε = 1

n

n∑
i=1

ε̂2
M,i

[(
1, X̂

T
M,i

)T]⊗2
,

and

Ĝ
(
X̂M,i, ψ̂M(Ui)

) = diag
(

0,
(|X̃1i | − |X̂M,1i |)

|X̃1|
, . . . ,

(|X̃pi | − |X̂M,pi |)
|X̃p|

)
,

�̂φ,ψ = 1

n

n∑
i=1

[[
(|Ỹi | − |ŶM,i |)

|Ỹ |
Ip+1 − Ĝ

(
X̂M,i, ψ̂M(Ui)

)](
α̂M

β̂M

)]⊗2

,

and also

σ̂ 2
M,r = eT

r+1�̂
−1
M �̂M,ε�̂

−1
M er+1 + eT

r+1�̂φ,ψer+1.

Based on the estimator σ̂ 2
M,r , the (1 − α) × 100% (0 < α < 1) confidence interval for β0r is

(
β̂M,r −

√
σ̂ 2

M,r

n
zα/2, β̂M,r +

√
σ̂ 2

M,r

n
zα/2

)
,

where β̂M,r is the r-th component of β̂M , and zα/2 is the quantile satisfying P(N(0,1) ≥
zα/2) = α/2.

3.1.2 Conditional variance calibration. According to Theorem 2.3, let ε̂V ,i = ŶV ,i − α̂V −
β̂

T
V X̂V,i , i = 1, . . . , n, we define

�̂V = 1

n

n∑
i=1

[(
1, X̂

T
V,i

)T]⊗2
, �̂V,ε = 1

n

n∑
i=1

ε̂2
V,i

[(
1, X̂

T
V,i

)T]⊗2
,

and

Q̂
(
XV,i, ψ̂V (Ui)

) =
(

0,
(
ψ̂V,1(Ui) − 1

)[(X̂V,1i − X̃1)
2

2σ̂ 2
X1

+ 1

2

]
, . . . ,

(
ψ̂V,p(Ui) − 1

)[(X̂V,pi − X̃p)2

2σ̂ 2
Xp

+ 1

2

])
,
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and

�̂φ,ψ = 1

n

n∑
i=1

{[(
(ŶV,i − Ỹ )2

2σ̂ 2
Y

+ 1

2

)[
φ̂V (Ui) − 1

]
Ip+1

− Q̂
(
X̂V,i, ψ̂V (Ui)

)](
α̂V

β̂V

)}⊗2
.

Moreover, we define

σ̂ 2
V,r = eT

r+1�̂
−1
V �̂V,ε�̂

−1
V er+1 + eT

r+1�̂φ,ψer+1.

Based on the estimator σ̂ 2
V,r , the (1 − α) × 100% (0 < α < 1) confidence interval for β0r is

(
β̂V ,r −

√
σ̂ 2

V,r

n
zα/2, β̂V ,r +

√
σ̂ 2

V,r

n
zα/2

)
,

where β̂V ,r is the r-th component of β̂V .

3.2 Empirical likelihood method

Another popular method to construct confidence intervals is the empirical likelihood (EL)
method method proposed by Owen (2001). The EL method is an appealing nonparametric
approach for constructing confidence intervals (regions) for the parameter of interest without
estimating the covariance matrix. There has been much literature to discuss the EL method
and its applications. For example, Lian (2012), Li, Lin and Zhu (2012), Cui et al. (2009),
Liang et al. (2009), Yang, Xue and Cheng (2011, 2009), Guo et al. (2015).

Then, we make statistical inference based on the EL principle. Usually, the EL method
needs an auxiliary vector ℘n,i(β

′) = (℘
[1]
n,i(β

′), . . . ,℘[p]
n,i (β

′))T with the property of that
E℘n,i(β

′) = 0 when β ′ = β0:

℘n,i

(
β ′) = Xi

(
Yi − α0 − XT

i β ′).
Because of {Yi,Xi}ni=1 are unavailable, we need the “calibrated” variables {ŶM,i, X̂M,i}ni=1

or {ŶV ,i , X̂V,i}ni=1, respectively. We now define two calibrated EL principles by plugging in
the estimated arguments {ŶM,i, X̂M,i}ni=1 and {ŶV ,i , X̂V,i}ni=1 into ℘n,i(β

′):

l̂M,n

(
β ′)

= −2 max

{
n∑

i=1

log(npi) : pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

pi℘̂M,n,i

(
β ′) = 0

}
,

l̂V ,n

(
β ′)

= −2 max

{
n∑

i=1

log(npi) : pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

pi℘̂V,n,i

(
β ′) = 0

}
,

where ℘̂M,n,i(β
′) = X̂M,i(ŶM,i − α̂M − X̂

T
M,iβ

′), ℘̂V,n,i(β
′) = X̂V,i(ŶV ,i − α̂V − X̂

T
V,iβ

′),
i = 1, . . . , n. By the Lagrange multiplier method, we have l̂M,n(β

′) = 2
∑n

i=1 log{1 +
λ̂T

M℘̂M,n,i(β
′)}, and also l̂V ,n(β

′) = 2
∑n

i=1 log{1 + λ̂T
V ℘̂V,n,i(β

′)}, where λ̂M and λ̂V are

determined by 1
n

∑n
i=1

℘̂M,n,i (β
′)

1+λ̂T
M℘̂M,n,i (β

′) = 0, 1
n

∑n
i=1

℘̂V,n,i (β
′)

1+λ̂T
V ℘̂V,n,i (β

′) = 0, respectively.
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Theorem 3.1. Suppose conditions in Theorem 2.2 hold, both l̂M,n(β0) and l̂V ,n(β0) asymp-
totically converge in distribution to χ2

p , namely, a centered Chi-squared distribution with p

degrees of freedom.

From Theorem 3.1, we can construct a confidence region of β0 by Iα,M = {β ′ : l̂M,n(β
′) ≤

cα} and Iα,V = {β ′ : l̂V ,n(β
′) ≤ cα}, where cα denotes the α quantile of the χ2

p distribution. If
we focus on the confidence intervals for the parameter β0r , we can construct the EL statistics
as

l̂
{r}
M,n(βr)

= −2 max

{
n∑

i=1

log(npi) : pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

pi℘̂
{r}
M,n,i

(
β ′

r

) = 0

}
,

l̂
{r}
V,n

(
β ′

r

)
= −2 max

{
n∑

i=1

log(npi) : pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

pi℘̂
{r}
V,n,i

(
β ′

r

) = 0

}
,

where ℘̂
{r}
M,n,i(β

′
r ) = X̂M,ri(ŶM,i − α̂M − ∑

s �=r X̂M,si β̂M,s − X̂M,riβ
′
r ), and ℘̂

{r}
V,n,i(β

′
r ) =

X̂V,ri(ŶV ,i − α̂V − ∑
s �=r X̂V,si β̂V ,s − X̂V,riβ

′
r ), i = 1, . . . , n. Similar to the proof of The-

orem 3.1, we can construct confidence intervals of β0r by I
{r}
α,M = {β ′

r : l̂
{r}
M,n(β

′
r ) ≤ c∗

α} and

I
{r}
α,V = {β ′

r : l̂{r}V,n(β
′
r ) ≤ c∗

α}, where c∗
α denotes the α quantile of the χ2

1 distribution.

4 Simulation studies

Simulation studies are made in this section to show the performance of our proposed method.
The Epanechnikov kernel K(t) = 0.75(1 − t2)I {|t | ≤ 1} is used here. The bandwidth h

should be chosen according to condition (C4), and the optimal bandwidth for h cannot be
obtained because under-smoothing (nh4 → 0) for the non-parametric estimates is necessary.
The consequence of under-smoothing is that the biases of the non-parametric estimate are
kept small and preclude the optimal bandwidth for h. The asymptotic covariance matrices in
Theorem 2.1 and Theorem 2.3 depend on neither the bandwidth h nor the kernel function
K(t). Hence, we can use the rule of thumb: h = σ̂Un−1/3, and σ̂U is the sample standard
deviation of U . This method is fairly effective and easy to apply in practice. Our numerical
experience suggests that the numerical results were stable when we shifted several values
around this data-driven bandwidth.

Example. We consider the model

Y = α0 + β01X1 + β02X2 + β03X3 + ε. (4.1)

2000 realizations are generated and sample size are n = 300, n = 500 and n = 1000, re-
spectively. In this example, α0 = 1, β0 = (β01, β02, β03)

T = (2,−0.5,0)T, X ∼ N3(μX,�X)

with μX = 03×1 and �X = (σij )1≤i,j≤3, σij = 0.75|i−j |. The model error ε is independent of
X and generated from N(0,0.252). The variable U follows an uniform distribution U[0,1],
and the distortion functions are chosen as the following two cases:

Case 1 φ(u) = 12((u−0.5)2+1)
13 , ψ1(u) = 1 + 0.2 sin(2πu), ψ2(u) = 1 − u2−1/3

5 , and

ψ3(u) = 2(u+3)
7 .

Case 2 φ(u) = u + 1
2 , ψ1(u) = 1.5 − u, ψ2(u) = u2 + 2

3 , and ψ3(u) = 1.25 − u3.
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Table 1 Simulation results of Mean (M), Standard Error (SD) and Mean Squared Error (MSE) for true estimator
(α̂T , β̂T ), the proposed estimators (α̂M, β̂M) and (α̂V , β̂V ), and the naive estimator (α̂N , β̂N) for case 1

n = 300 n = 500 n = 1000

M SD MSE M SD MSE M SD MSE

Case 1 α̂T 1.0001 0.0143 0.2058 1.0004 0.0112 0.1276 1.0001 0.0080 0.0641
α̂M 0.9961 0.0184 0.3540 0.9981 0.0138 0.1938 0.9989 0.0093 0.0894
α̂V 1.0053 0.0164 0.3004 1.0036 0.0124 0.1688 1.0018 0.0085 0.0765
α̂N 1.0004 0.0221 0.4912 1.0007 0.0172 0.2984 1.0001 0.0122 0.1489
β̂T ,1 2.0002 0.0222 0.4935 1.9996 0.0167 0.2804 1.9999 0.0116 0.1364
β̂M,1 1.9894 0.0348 1.3226 1.9940 0.0263 0.7496 1.9983 0.0173 0.3064
β̂V ,1 1.9946 0.0342 1.2009 1.9975 0.0270 0.7368 2.0002 0.0167 0.2810
β̂N,1 1.9317 0.0411 6.3469 1.9320 0.0325 5.6810 1.9326 0.0221 5.0212
β̂T ,2 −0.5004 0.0276 0.7660 −0.4998 0.0212 0.4507 −0.5001 0.0148 0.2199
β̂M,2 −0.4917 0.0320 1.0922 −0.4942 0.0237 0.5969 −0.4973 0.0158 0.2565
β̂V ,2 −0.4955 0.0306 0.9561 −0.4969 0.0232 0.5500 −0.4987 0.0152 0.2348
β̂N,2 −0.4822 0.0406 1.9659 −0.4816 0.0325 1.3927 −0.4818 0.0225 0.8371
β̂T ,3 0.0004 0.0220 0.4869 −0.0003 0.0172 0.2985 0.0000 0.0117 0.1384
β̂M,3 0.0005 0.0249 0.6220 −0.0002 0.0187 0.3511 −0.0001 0.0122 0.1506
β̂V ,3 0.0002 0.0235 0.5529 −0.0003 0.0181 0.3295 −0.0001 0.0119 0.1434
β̂N,3 0.0336 0.0332 2.2364 0.0326 0.0264 1.7659 0.0324 0.0183 1.3899

Note: MSE is in the scale of ×10−3.

Table 2 Simulation results of Mean (M), Standard Error (SD) and Mean Squared Error (MSE) for true estimator
(α̂T , β̂T ), the proposed estimators (α̂M, β̂M) and (α̂V , β̂V ), and the naive estimator (α̂N , β̂N) for case 2

n = 300 n = 500 n = 1000

M SD MSE M SD MSE M SD MSE

Case 2 α̂T 1.0002 0.0143 0.2049 0.9997 0.0110 0.1219 0.9998 0.0080 0.0624
α̂M 0.9979 0.0272 0.7475 0.9975 0.0205 0.4292 0.9992 0.0143 0.2049
α̂V 1.0090 0.0292 0.9379 1.0044 0.0207 0.4250 1.0022 0.0138 0.1966
α̂N 1.0028 0.0576 3.3347 0.9985 0.0430 1.8564 1.0012 0.0314 0.9902
β̂T ,1 1.9996 0.0221 0.4883 2.0002 0.0173 0.3024 1.9995 0.0120 0.1450
β̂M,1 1.9919 0.0859 7.4498 1.9940 0.0664 4.4445 1.9972 0.0460 2.1245
β̂V ,1 1.9907 0.1119 12.6208 1.9972 0.0722 5.2293 1.9989 0.0466 2.1798
β̂N,1 1.3368 0.0954 448.8398 1.3337 0.0735 446.2293 1.3305 0.0528 451.0061
β̂T ,2 −0.5001 0.0269 0.7234 −0.5005 0.0216 0.4676 −0.4998 0.0149 0.2237
β̂M,2 −0.4912 0.0332 1.1175 −0.4952 0.0243 0.6169 −0.4971 0.0163 0.2756
β̂V ,2 −0.4881 0.0573 3.4271 −0.4950 0.0286 0.8479 −0.4973 0.0163 0.2734
β̂N,2 0.3632 0.1041 756.0647 0.3647 0.0817 754.4667 0.3678 0.0580 756.4651
β̂T ,3 0.0007 0.0216 0.4707 0.0003 0.0170 0.2898 −0.0004 0.0117 0.1376
β̂M,3 0.0000 0.0247 0.6131 0.0005 0.0188 0.3538 −0.0005 0.0124 0.1545
β̂V ,3 −0.0016 0.0290 0.8435 −0.0009 0.0182 0.3330 −0.0012 0.0119 0.1432
β̂N,3 −0.3344 0.0694 116.7067 −0.3352 0.0551 115.4227 −0.3374 0.0399 115.4609

Note: MSE is in the scale of ×10−3.

In Table 1 and Table 2, we report the mean, standard errors and mean squared errors for
the true estimator (α̂T , β̂T ) (the least squares estimator (MSE) by using the simulated data
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set {Yi,Xi}ni=1), the proposed estimators (α̂M, β̂M) and (α̂V , β̂V ), and the naive estimator

(α̂N , β̂N) (the least squares estimator by using the data set {Ỹi , X̃i}ni=1).
Here, MSE for each estimator is defined as MSE = 1

2000
∑2000

s=1 (θ̂s − θ0)
2, θ0 is the true

value, and θ̂s is the estimator of θ0 for the s-th simulated data, s = 1, . . . ,2000. For example,
the MSE of α̂T is defined as MSE = 1

2000
∑2000

s=1 (α̂T ,s − α0)
2. The MSE for other estimators

are defined similarly.
Comparison between true estimator (α̂T , β̂T ) and the proposed estimators (α̂M, β̂M) and

(α̂V , β̂V ), it is not surprised that the true estimator performs better than the proposed esti-
mators, because the values of MSE for (α̂T , β̂T ) are all smaller than the proposed estimators
(α̂M, β̂M) and (α̂V , β̂V ). For the proposed estimators, all the mean values are close to the
true value (1,2,−0.5,0)T, and the values of MSE decrease as the sample size n increases.
In Table 1, the conditional variance calibrated estimator (α̂V , β̂V ) performs better than the
conditional absolute mean calibrated estimator (α̂M, β̂M) for case 1, and (α̂M, β̂M) performs
better than (α̂V , β̂V ) for case 2 in Table 2. Also, it is also seen that the naive estimator
(α̂N , β̂N) have large bias especially for β01 in Table 1, and all the values of MSE for the
naive estimators are larger than the true estimator and proposed estimators in this table. In
Table 2, the bias of naive estimator (α̂N , β̂N) is much larger especially for estimating β01, and
the values of MSE are much larger than the others. This indicates that ignoring multiplica-
tive distortion functions φ(U) and ψr(U)’s increases the bias and result in an inconsistent
estimator even the sample size n is large.

Next, we report the 95% normal approximation (NA) confidence intervals and empirical
likelihood (EL) confidence intervals for β0,s , s = 1,2,3. The simulation results are reported
in Table 3 and Table 4. In Table 3, when the sample size n gets larger, we see that both the
EL confidence intervals show satisfactory performances for case 1 both in terms of average

Table 3 Simulation results of confidence intervals for case 1. “NA” stands for the normal approximation and
“EL” stands for the empirical likelihood. “Lower” stands for the average of lower bounds, “Upper” stands for
the average of upper bounds, “AL” stands for average of lengths of confidence intervals, “CP” stands for the
coverage probabilities

n = 300 n = 500 n = 1000

β1 β2 β3 β1 β2 β3 β1 β2 β3

Conditional absolute mean calibration
NA Lower 1.9177 −0.5532 −0.0490 1.9423 −0.5406 −0.0363 1.9625 −0.5283 −0.0244

Upper 2.0601 −0.4279 0.0494 2.0466 −0.4485 0.0360 2.0328 −0.4661 0.0247
AL 0.1424 0.1253 0.0984 0.1043 0.0920 0.0723 0.0702 0.0621 0.0491
CP 94.9% 94.0% 95.2% 94.8% 94.9% 94.5% 94.6% 94.0% 94.9%

EL Lower 1.9088 −0.5556 −0.0532 1.9335 −0.5439 −0.0376 1.9621 −0.5296 −0.0243
Upper 2.0589 −0.4305 0.0484 2.0455 −0.4505 0.0340 2.0337 −0.4654 0.0242
AL 0.1500 0.1250 0.1016 0.1120 0.0933 0.0717 0.0716 0.0642 0.0486
CP 94.8% 94.3% 95.2% 95.3% 95.7% 94.0% 95.2% 94.7% 94.6%

Conditional variance calibration
NA Lower 1.9294 −0.5536 −0.0457 1.9497 −0.5411 −0.0349 1.9661 −0.5288 −0.0239

Upper 2.0585 −0.4356 0.0463 2.0464 −0.4530 0.0341 2.0330 −0.4683 0.0239
AL 0.1290 0.1180 0.0921 0.0967 0.0881 0.0691 0.0668 0.0605 0.0478
CP 94.0% 94.2% 94.3% 94.1% 94.9% 94.3% 94.7% 94.1% 94.8%

EL Lower 1.9233 −0.5598 −0.0478 1.9488 −0.5461 −0.0345 1.9649 −0.5307 −0.0239
Upper 2.0593 −0.4395 0.0463 2.0491 −0.4560 0.0348 2.0333 −0.4689 0.0242
AL 0.1360 0.1203 0.0942 0.1002 0.0900 0.0694 0.0684 0.0618 0.0482
CP 94.6% 94.8% 94.6% 94.8% 95.3% 94.6% 95.4% 94.7% 95.1%
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Table 4 Simulation results of confidence intervals for case 2. “NA” stands for the normal approximation and
“EL” stands for the empirical likelihood. “Lower” stands for the average of lower bounds, “Upper” stands for
the average of upper bounds, “AL” stands for the average of lengths of confidence intervals, “CP” stands for the
coverage probabilities

n = 300 n = 500 n = 1000

β1 β2 β3 β1 β2 β3 β1 β2 β3

Conditional absolute mean calibration
NA Lower 1.8220 −0.5543 −0.0507 1.8650 −0.5418 −0.0368 1.9061 −0.5293 −0.0244

Upper 2.1553 −0.4250 0.0481 2.1211 −0.4468 0.0358 2.0861 −0.4651 0.0246
AL 0.3332 0.1293 0.0988 0.2560 0.0950 0.0727 0.1800 0.0642 0.0491
CP 94.0% 93.8% 94.8% 94.4% 94.2% 95.1% 95.1% 94.2% 94.8%

EL Lower 1.8136 −0.5607 −0.0489 1.8631 −0.5438 −0.0390 1.9037 −0.5303 −0.0250
Upper 2.1606 −0.4256 0.0500 2.1201 −0.4501 0.0343 2.0886 −0.4642 0.0252
AL 0.3470 0.1350 0.0990 0.2570 0.0937 0.0734 0.1849 0.0661 0.0503
CP 95.2% 95.5% 94.7% 94.6% 94.6% 95.1% 95.7% 94.9% 95.3%

Conditional variance calibration
NA Lower 1.7633 −0.6464 −0.1134 1.8648 −0.5400 −0.0360 1.9069 −0.5281 −0.0235

Upper 2.2165 −0.3283 0.1055 2.1255 −0.4479 0.0320 2.0887 −0.4664 0.0219
AL 0.4531 0.3181 0.2190 0.2606 0.0920 0.0680 0.1817 0.0617 0.0454
CP 93.5% 92.9% 94.0% 93.9% 93.6% 94.3% 94.9% 93.9% 93.9%

EL Lower 1.8030 −0.5653 −0.0584 1.8570 −0.5430 −0.0393 1.9047 −0.5300 −0.0249
Upper 2.1747 −0.4141 0.0487 2.1323 −0.4468 0.0336 2.0901 −0.4645 0.0234
AL 0.3717 0.1511 0.1072 0.2753 0.0962 0.0729 0.1854 0.0655 0.0483
CP 94.7% 95.7% 95.4% 95.3% 94.9% 95.2% 95.5% 95.5% 95.3%

lengths of the confidence intervals and the coverage probabilities, while NA confidence in-
tervals have lower coverage probabilities than the EL confidence intervals. It is also seen
that the conditional variance calibration performs better than the conditional absolute mean
calibration, because the average lengths of conditional variance calibration are much shorter
than the conditional absolute mean calibration. This coincides with the simulation results ob-
tained in Table 1. The simulation results for case 2 are reported in Table 4. In this table, the
conditional absolute mean calibration performs better than the conditional variance calibra-
tion. This meets our expectation because the parameter estimates obtained in Table 2 reveal
that conditional absolute mean calibration works well, and it is not surprised that conditional
absolute mean calibration works well for confidence intervals in case 2. It is worth noting
that the EL method does not need to estimate the asymptotic covariance matrices of estima-
tors, while the normal approximation methods need to estimate the asymptotic covariance
matrices. When then sample size is 300, NA confidence intervals have much lower coverage
probabilities especially for the conditional variance calibration in case 2. Generally, the NA
asymptotic intervals and the EL method are both recommended for constructing asymptotic
intervals when the sample size is large in practice.

From Theorem 2.1 and Theorem 2.3, we know that both the conditional absolute mean
calibration and conditional variance calibration can eliminate the effect of distortion function
φ(U) and ψr(U)’s for estimating β03 when β03 = 0. In Table 1 and Table 2, we find that
the values of MSE for β̂M,3 and β̂V ,3 are close to the true estimator β̂T ,3 when the sample
size n is 500 and 1000. The confidence intervals of β03 reported in Table 3 and Table 4 also
reveal a similar phenomenon. NA confidence intervals of β̂V ,3 for n = 300 performs not as
good as β̂M,3 in case 2. This is because the asymptotic variance of β̂V ,r is more complex than
β̂M,r , the finite-sample behaviors of the estimator σ̂ 2

V usually had poor performance when the
sample size is small.
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5 Real data analysis

We analyze the air quality dataset from the machine learning repository (https:/
/archive.ics.uci.edu/ml/machine-learning-databases/00360/). In this data set, it was recorded
from March 2004 to February 2005 (one year) representing the longest freely available
recordings of on field deployed air quality chemical sensor devices responses. The data set
contains hourly averaged responses from an array of five metal oxide chemical sensors em-
bedded in an Air Quality Chemical Multisensor Device. The device was located on the field
in a significantly polluted area, at the road level, within an Italian city.

We use a linear regression model to analyze this data set. The sample size is 826 when
we remove samples that contain missing values. The variables contained in this data set are
X̃1-ground truth hourly averaged CO concentrations (COC), X̃2-PT08.S1 (tin oxide) hourly
averaged sensor response (nominally CO targeted), X̃3-hourly averaged overall Non Metanic
HydroCarbons concentration (NMHC) in microg/m3, X̃4-hourly averaged Benzene concen-
tration (BC) in microg /m3, X̃5-PT08.S2 (titania) hourly averaged sensor response (nomi-
nally NMHC targeted), X̃6-hourly averaged NOx concentration (NOxC) in ppb, X̃7-PT08.S3
(tungsten oxide) hourly averaged sensor response (nominally NOx targeted), X̃8-hourly av-
eraged NO2 concentration (NO2C) in microg/m3, X̃9-PT08.S4 (tungsten oxide) hourly av-
eraged sensor response (nominally NO2 targeted), X̃10-PT08.S5 (indium oxide) hourly av-
eraged sensor response (nominally O3 targeted), Ỹ -relative humidity, and the confounding
variable U is the covariate-temperature (Â◦C).

Directly using the least squares method on the observed {Ỹi , X̃i}ni=1, the mean squared
residuals is obtained as 81.5. After using the conditional variance calibration, the mean
squared residuals is obtained as 1

n

∑n
i=1 ε̂2

V,i = 192.9. For the conditional absolute mean cal-

ibration, the mean squared residuals is obtained as 1
n

∑n
i=1 ε̂2

M,i = 20.0. This shows that the
conditional absolute mean calibration greatly reduces the mean squared residuals and fit the
model more appropriately, and the conditional variance calibration performs not well for this
data set. As such, we adopt the conditional absolute mean method here.

We present the patterns of ψ̂M,r(u), r = 1, . . . ,10 and φ̂M(u) in Figure 1 and Figure 2.
The plots in Figure 1 and Figure 2 show that the distortion functions φ̂M(u), ψ̂M,r(u)’s are
all not constant functions. In Figure 1 and Figure 2, we examine the form of distortions that

Figure 1 Estimated curves of distorting functions ψ̂M,r (u), r = 1, . . . ,10, against confounding variable-tem-
perature (Â◦C), associated 95% pointwise confidence intervals (dotted lines). Five plots in the first row are
ψ̂M,r (u), r = 1, . . . ,5 (left to right), and five plots in the second row are ψ̂M,r (u), r = 6, . . . ,10 (left to right).

https://archive.ics.uci.edu/ml/machine-learning-databases/00360/
https://archive.ics.uci.edu/ml/machine-learning-databases/00360/
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Figure 2 Estimated curve of distorting functions φ̂M(u) against confounding variable-temperature (Â◦C), as-
sociated 95% pointwise confidence intervals (dotted lines).

Table 5 Parameter estimate and 95% confidence intervals of β̂M,r for the air quality dataset

Normal approximation Empirical likelihood

Estimate Lower Upper Lower Upper

β̂M,1 0.6675 0.6199 0.7150 0.5220 0.8097
β̂M,2 0.0055 0.0002 0.0110 0.0052 0.0058
β̂M,3 −0.0024 −0.0075 0.0026 −0.0038 −0.0011
β̂M,4 0.2673 −0.0253 0.5600 0.2368 0.2970
β̂M,5 −0.1243 −0.1344 −0.1142 −0.1247 −0.1240
β̂M,6 −0.0173 −0.0341 −0.0005 −0.0196 −0.0150
β̂M,7 −0.0398 −0.0424 −0.0371 −0.0401 −0.0395
β̂M,8 0.0206 −0.0080 0.0494 0.0175 0.0237
β̂M,9 0.0852 0.0792 0.0913 0.0850 0.0855
β̂M,10 −0.0028 −0.0056 −0.0002 −0.0032 −0.0025

the confounding variable temperature has effect on the observed variables X̃r ’s and Ỹ . It is
known that temperature-U affects the true humidity-Y , which in turn affects the potential for
precipitation. The interaction of temperature and humidity also directly affects the health and
well-being of humans. As air temperature increases, air can hold more water molecules, and
its relative humidity increases. In Figure 2, the figure φ̂(u) is revealed to show the downtrend
in a nonparametric way between distorted Ỹ and the confounding variable U . This shows
that the distortion function φ(U) should be taken into account to reveal the relation between
the true humidity-Y and temperature-U . After we obtain the calibrated humidity Ŷ , a simple
linear regression models shows that Ŷ = 49.1 + 0.002698U . It is seen that the positive re-
lation between the calibrated humidity Ŷ and temperature-U is more reasonable to meet the
expectation. But, the p-value of this coefficient 0.002698 is 0.97. This shows that the under-
lying true variable Y is possibly independent of the confounding variable U in this dataset.
This not spoils the independence condition between the unobserved variable Y and observed
confounder U .

The estimator of α0 is obtained as α̂M = 63.9, and the estimator β̂M and the associated
95% confidence intervals are presented in Table 5. In this table, all the 95% empirical likeli-
hood intervals indicate that β0r ’s are all non-zeros at the 5% significant level, while the 95%
normal approximation confidence intervals indicate that β03, β04 and β08 should be zero at the
5% significant level. Moreover, the lengths of the empirical likelihood confidence intervals
are shorter than the normal approximation confidence intervals. Together with the simulation
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results obtained in Tables 3–4, we recommend to using the empirical likelihood confidence
intervals for further analysis.

Compared with the least squares estimates by directly using the observed variables without
calibration, it indicates that the parameters β01, β02 and β03 and β010 should be excluded from
the model at the 5% significant level, and β04, β05, β06, β07, β08 and β09 are all non-zeros
at the 5% significant level, and the signs of the nonzero estimates are (−,−,−,−,+,+).
If we delete those irrelative variables (X1,X2,X3,X10) from the model, the mean squared
residuals is increased to 23.1, which is slightly larger than 22.9 obtained by the observed data
set without calibration, but both of them are still larger than the calibrated one: 1

n

∑n
i=1 ε̂2

M,i =
20.0.

In Table 5, it is seen that the signs of these estimates with the conditional absolute mean
calibration are (+,−,−,−,+,+), and the sign of the estimate β̂M,4 is different from those
obtained without calibration. This indicates that the larger values of benzene concentration
may result in larger values of underlying relative humidity in the significantly polluted area.
The existing studies showed that humidity depends on both the amount fractions of water
vapour and benzene. If benzene concentrations are above the annual limit value, high values
of benzene concentration will change the interference of environmental humidity and also
the air quality situation in that area. The negative value of the estimate of β04 without cali-
bration is an underestimation of benzene concentration, which may cause a mismanagement
of air quality in this area. Moreover, the daily traffic-related pollutant concentrations (such
as CO, NMHC and O3) also have impact on meteorological factor-relative humidity in the
air pollution studies, and the variables (X1,X2,X3,X10) should be included in the model.
Therefore, the confounding variable does have impact so that the significant predictors can
really be revealed in the model and any further analysis can be more meaningful.

6 Discussions and further research

In this paper, we proposed two different calibration procedures for the parameter estima-
tion and confidence intervals construction under multiplicative distortion measurement er-
rors. This paper serves as a basis for studies on the multiplicative distortion measurement
errors models in the light of the circumstances. Different calibration procedures will result
in different calibrated variables, and finally lead to different asymptotic properties of estima-
tors. In future work, the semi-parametric models such as partial linear models, single-index
models and partial linear varying coefficient models, can be considered, especially the non-
parametric part in these semi-parametric models are distorted. One can also consider the case
of multivariate confounding variables, such as modeling the distortion functions as single-
index models or additive models with different calibration procedures. For the other direc-
tions of the multiplicative distortion measurement errors models, one can pursue to consider
the comparison between different calibration procedures.
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Şentürk, D. and Nguyen, D. V. (2009). Partial covariate adjusted regression. Journal of Statistical Planning and
Inference 139, 454–468. MR2474018 https://doi.org/10.1016/j.jspi.2008.04.030

Tomaya, L. C. and de Castro, M. (2018). A heteroscedastic measurement error model based on skew and heavy-
tailed distributions with known error variances. Journal of Statistical Computation and Simulation 88, 2185–
2200. MR3804196 https://doi.org/10.1080/00949655.2018.1452925

https://doi.org/10.1214/19-BJPS451SUPP
http://www.ams.org/mathscinet-getitem?mr=2533473
https://doi.org/10.1214/08-AOS627
http://www.ams.org/mathscinet-getitem?mr=3546448
https://doi.org/10.1214/16-AOS1442
http://www.ams.org/mathscinet-getitem?mr=3941221
https://doi.org/10.1080/10485252.2019.1580708
http://www.ams.org/mathscinet-getitem?mr=3349080
https://doi.org/10.1080/02331888.2014.881826
http://www.ams.org/mathscinet-getitem?mr=2745361
https://doi.org/10.1080/03610920902846539
https://doi.org/10.1007/s00362-019-01084-0
http://www.ams.org/mathscinet-getitem?mr=2877505
https://doi.org/10.1016/j.jmva.2011.08.010
http://www.ams.org/mathscinet-getitem?mr=2903379
https://doi.org/10.1016/j.jspi.2012.02.008
http://www.ams.org/mathscinet-getitem?mr=2549703
https://doi.org/10.1111/j.1467-9469.2008.00632.x
http://www.ams.org/mathscinet-getitem?mr=3974138
https://doi.org/10.1080/03610926.2018.1481976
http://www.ams.org/mathscinet-getitem?mr=166874
https://doi.org/10.1137/1109020
http://www.ams.org/mathscinet-getitem?mr=2474018
https://doi.org/10.1016/j.jspi.2008.04.030
http://www.ams.org/mathscinet-getitem?mr=2458498
https://doi.org/10.1080/00949650701421907
http://www.ams.org/mathscinet-getitem?mr=2446438
https://doi.org/10.1080/10485250802226435
http://www.ams.org/mathscinet-getitem?mr=2204625
https://doi.org/10.1111/j.1467-9469.2005.00450.x
http://www.ams.org/mathscinet-getitem?mr=2281880
https://doi.org/10.1214/009053606000000083
http://www.ams.org/mathscinet-getitem?mr=2474018
https://doi.org/10.1016/j.jspi.2008.04.030
http://www.ams.org/mathscinet-getitem?mr=3804196
https://doi.org/10.1080/00949655.2018.1452925
https://doi.org/10.1080/10485252.2019.1580708
https://doi.org/10.1016/j.jmva.2011.08.010
https://doi.org/10.1111/j.1467-9469.2008.00632.x
https://doi.org/10.1080/03610926.2018.1481976
https://doi.org/10.1016/j.jspi.2008.04.030
https://doi.org/10.1080/10485250802226435
https://doi.org/10.1111/j.1467-9469.2005.00450.x


536 J. Zhang and Y. Zhou

Watson, G. S. (1964). Smooth regression analysis. Sankhyā: The Indian Journal of Statistics, Series A 26, 359–
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