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Abstract. Based on a decomposition of a U-statistic, Nobre, Singer and Sil-
vapulle (In Beyond Parametrics in Interdisciplinary Research, Festschrift to
PK. Sen (2008) 197-210 Institute of Mathematical Statistics) proposed a test
for the hypothesis that the within-treatment variance component in a one-way
random effects model is null, specially useful when very mild assumptions
are imposed on the underlying distributions. We consider a bootstrap version
of that U-test and evaluate its performance via simulation studies in different
scenarios. The bootstrap U-test has better statistical properties than the orig-
inal test even in small samples. Furthermore, it is easy to implement and has
a low computational cost. We consider two examples with unbalanced small
sample datasets, for illustrative purposes.

1 Introduction

Consider the one-way random effects model

y,-j:u+bi+e,'j, i=1,....k,j=1,...,n; (=2) (D)

with b; and e;; denoting independent random variables with null means and variances sz

and 06,2, respectively. The parameter u is the mean response, b; represents the random effect
associated to the i-th treatment and e;; represents a random measurement error associated
with the j-th observation obtained under the i-th treatment. Here, o7 and o2 are the between-
and within-treatment variance components, respectively.

In general, data analysis based on such a model focuses on the estimation of u and on
testing the hypothesis of no treatment effects, namely

Hozabzzo Vs 7-[1101,2>0. 2)

Inference about variance components in random effects models and more specifically in linear
mixed models, has a long history in the statistical literature. In this context, McCulloch,
Searle and Neuhaus (2008) provide an excellent overview of estimation and prediction while
Khuri, Mathew and Sinha (1998) and Demidenko (2013) present extensive reviews of this
topic. With exception of some special situations (under the assumption of normality) there
are no exact tests for the hypothesis of null variance components, as discussed in Khuri,
Mathew and Sinha (1998), Lencina, Singer and Stanek (2005) and Demidenko (2013), for
example. Asymptotic tests are needed in more general situations as we will discuss.

Under the additional assumption that b; and e;; follow normal distributions, the usual F-
statistic for testing (2) is

F= QO] 3)
SQ(e)/(n — k)
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where SQ(b) = Zf‘:l n;(y; —y )% and SQ(e) = Zle Z';;l inj — Zle n,i% are, respec-
tively, the between- and within-treatment sums of squares with dots indicating over which
indices the averages are computed. The F-statistic (3) follows a central F distribution with
k — 1 and n — k degrees of freedom when Hj : sz = 0 i1s true. In the balanced case (i.e.,
when n| = - -+ = ng) the test is uniformly most powerful invariant (UMPI). This optimality
property does not hold in the unbalanced case. Details may be found in Khuri, Mathew and
Sinha (1998), for example.

Nobre (2007) and Nobre, Singer and Silvapulle (2008) provide an alternative test based on
the decomposition of U -statistics in a nonparametric setup. Although it is not an exact test, it
has good properties for moderate sample sizes and does not require the normality assumption.
The test is derived under the assumption that E[efj] < 00 and thus accommodates a large class
of distributions (not necessarily absolutely continuous) underlying the source of variation in
model (1). The proposed test is also valid for other situations, like for tests of null variance
components in heteroskedastic random effects as discussed in Nobre, Singer and Silvapulle
(2008).

The class of U-statistics has its genesis in the papers of Halmos (1946) and Hoeffd-
ing(1948) and is well known for its simple structure and for the weak assumptions required
for its use in statistical inference. It also provides a unified paradigm in the field of non-
parametric Statistics and has been used in many applications, as illustrated in Lee (1990),
Kowalski, Pagano and DeGruttola (2002), Kowalski and Tu (2007), Nobre, Singer and Sil-
vapulle (2008), Pinheiro, Sen and Pinheiro (2009) and Nobre, Singer and Sen (2013), among
others. The related theory is available in many sources, among which we mention Serfling
(1980), Lee (1990) or Sen, Singer and Pedroso de Lima (2010), for example.

In the context under investigation, the derivation of tests for (2) may not follow the standard
procedures since the null hypothesis defines a point (or region) on the boundary of the pa-
rameter space and this brings in some technical difficulties. Asymptotic tests for (2) or, more
generally, for testing the significance of variance components under linear mixed models are
available in the literature. Based on the ideas of Silvapulle and Silvapulle (1995), Verbeke
and Molenberghs (2003) obtained score-type tests under the assumption that the underly-
ing probability distributions are normal. Along the same lines, Savalli, Paula and Cysneiros
(2006) extended the results to accommodate elliptical underlying distributions. In particular,
for the one-way random effects models, the corresponding test statistic follows an asymptotic
distribution given by a 50:50 mixture of xé and X12 distributions. Tests based on generalized
likelihood methods (that are asymptotically equivalent to score-type tests) are considered in
Self and Liang (1987), Stram and Lee (1994) and Silvapulle and Sen (2005), for example.
The main disadvantage of such tests is the difficulty in verifying the required regularity con-
ditions as shown in Giampaoli and Singer (2009). Other alternatives have been suggested in
the literature as in Lin (1997), Hall and Praestgaard (2001), Zhu and Fung (2004), Zhang and
Lin (2008), Crainiceanu and Ruppert (2004), Crainiceanu (2008), Greven et al. (2008) and
Sinha (2009). In practice, all these results are difficult to apply, specially when the dimension
of the vector of random effects is large; furthermore, they are only valid for some classes of
distributions. The derivation of the proposed U -test is not affected by such difficulties and we
envisage that it may serve as a building block for more general setups, as indicated in Nobre
(2007), Nobre, Singer and Silvapulle (2008) and Nobre, Singer and Sen (2013).

Although there exists an exact F-test with optimal properties for testing whether the
between-treatments variance component is null in a one-way random effects model with bal-
anced data under normality, we must rely on sub-optimal or approximate tests in unbalanced
or nonnormal settings. The asymptotic U-test that may be employed with unbalanced data
and does not require a specified form for the underlying distributions. Nobre, Singer and Sil-
vapulle (2008) advocate that to test Hg in situations where the distribution of the random
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effects and within-treatment errors are nonnormal, the U-test is preferable even when the
number of treatments is small. Simulation studies indicated that the U-test is more powerful
than the F-test, mainly for small and moderate samples. However, for small samples, the U -
test is very liberal, that is, the size of the test (the true probability of falsely rejecting the null
hypothesis) is greater than the nominal significance level. To bypass this problem, we obtain
the empirical distribution of the test statistic for H( via bootstrap methods. This generates an
exact test for (2) that does not depend on the normality of the b; and e;;. The key idea is to
resample via the fitted model to create replicate datasets with the objective of obtaining the
exact (empirical) distribution of the U -test proposed by Nobre, Singer and Silvapulle (2008).

In Section 2, we summarize the decomposition of the U -statistic that underlies the test as
in Nobre, Singer and Silvapulle (2008). In Sections 3 and 4, we present the parametric and
nonparametric versions of the bootstrap U -test and present a simulation study to evaluate its
properties. In Section 5, we apply the proposed bootstrap test to small sample unbalanced
nonnormal data. We conclude in Section 6 with a brief discussion and future research pro-
posals.

2 Outline of the U -test

Consider the one-way random effects model (1) and suppose that the focus is on testing the
hypothesis in (2) Let g(x y)=(x — y) /2 and note that under model (1), E[g(yi;, yij)] =
El(eij — e J/) 1/2 = o . An unbiased estimator of cr , based only on the n; observations
obtained under the i- th treatment (i =1, ..., k) is given by the following U -statistic

-1 n;

n; _ _

U = (2> Yo g0y =i — D7 (i — ;) =57 4)
1<j<j'<n; j=1

Since E[(b; — bir)(eij —eij))] =0, it follows that Elg(yij, yirj)]l = {2ob +202}/2 = ob +
o . Therefore, an unbiased estimator of o*b + a , based only on the observations obtained
under treatments i and i’ is given by the followmg generalized U -statistic of order (1, 1)

ll/ = (” ”t/) ! Z Z (ylj yl/J/) ’ 1 <i< i, fk- (5)

j=1j'=1
Letting n = Zf.‘: 1 i, the lexicographically ordered observations,
Vils -« Yings Y215 -+« 5 Y2nps «++5 Ykls -+ 5 Ykng
may be re-expressed as

ylv L) yﬂls yﬂ1+lv LR} Ynl-i-nzv LR} yn1+-'~+l’lk_1+la ) )’m

where the first n| observations relate to treatment 1, the next ny, to treatment 2 and so on.
The uniformly minimum variance unbiased estimator (UMVUE) of the variance of the ob-
servations is given by the U -statistic

—1 -1
1 i
U, = (Z) > 7 Or — )’ = (Z) [ > (’;>Ui + Y nminpUsy

1<r<s<n i=1 1<i<i’'<k
ni(n; — nin;
Z ( Ui+2 > ﬁUii/, (0)
i— = 1<i<i'<k "V
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that is a linear combination of generalized U -statistics. The first and second terms in (6)
correspond, respectively, to the within and between-treatment components. The U -statistic in
(6) may be re-expressed as

k
n; nin;
U= Uit 3 o Ui = Ui = Up) = Wa+ By, @)
where

k

n; n;n;
Wn:Z:;'Ui and B, = Z m{zU,-,—Ui—U,}.
i=1 1<i<i’<k

Note that E[B,,] > 0, so E[B, ] = 0if and only if o*b2 = 0. This fact motivated Nobre, Singer
and Silvapulle (2008) to construct a test for (2) based on

—1
B, = (n) Z Nurs¥ (Vrs Ys), (8)

2
l<r<s<n

where

ni —1 €))

n—mn; . .

Loif v, and yg are both observed under the i-th treatment,

nan -
-1, otherwise,

and ¥ (x1, x2) = (x1 — u)(x2 — w). Defining My, = 31, <y nﬁrs, Nobre, Singer and Silva-
pulle (2008), using the martingale property exhibited by B,, as demonstrated in Pinheiro, Sen
and Pinheiro (2009) in a different setup, show that under Hy : 013 =0,

PGL
=

W/ My,
Additionally, letting lim,_, oo M, /n> = A, and assuming that the fourth moment of the dis-

tribution of the random effects is finite, they also showed that under the sequence of local
hypotheses

PN, 1) ask — oo. (10)

Hin:of =82//n, (11)
it follows that
> 2
J, —>N<71> as k — 00, (12)
" 2682\/X

with § representing a constant. Under the sequence Hi,, the limiting normal distribution is
shifted to the right by §2/ (2062«/X). We may use J, as a test statistic for (2), rejecting the null
hypothesis Hg with significance level « when J,, > z,, where z, represents the (1 —«)100%
percentile of the standard normal distribution. By (12), the power of the test is directly related
to the magnitude of the intraclass correlation coefficient p = obz / (%2 + aez); more specifically,
the power is a monotone increasing function of p, as expected.

These results are all asymptotic and may not necessarily be appropriate for samples of
small/moderate sizes. In order to obtain a test with good properties even with small samples,
we advocate using a bootstrap U-test, where the idea is to obtain the empirical distribution
of the statistic J, under Ho and use the fact that it suggests that the null hypothesis should
be rejected for high values of J,. In the next sections we discuss parametric and nonpara-
metric bootstrap procedures. For the parametric bootstrap we will also study the effect of
the misspecification of the conditional error distribution in order to evaluate the robustness
of the method. To evaluate the possible effect of different distributions, we carry out simula-
tions with asymmetric and heavy tailed distributions standardized (i.e., with zero mean and
variance 1) to make the results comparable.
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3 A parametric bootstrap U -test

For the parametric bootstrap, we generate B pseudosamples under the null hypothesis as
follows. Let

yOD) =46, i=1,...k,j=1,....n;,b=1,..., B,

where e;; represents a sequence of independent and identically distributed (i.i.d.) random
variables with a given distribution. For each of B = 999 bootstrap pseudosamples, we ob-
tain the statistics J{", J;', ..., Jg. Given the value of the statistic obtained from the original
sample, J,, the adjusted p-value for the bootstrap test (Davison and Hinkley, 1997, p. 175) is

SR T S (O
P= B+1

where 1(-) denotes the indicator function. To evaluate the behaviour of the proposed test for
small and moderate samples, we considered 10,000 Monte-Carlo samples obtained under
model (1) with u =2, oez =1, b; ~N(0, obz), for different distributions of e;; and numbers
of treatments (k =5, 10, 30 and 100) in balanced studies. The within-treatment variance, abz,
was set to O (to estimate the size of the test), 0.2, 0.5 or 1. The empirical power of the test
under each setting was evaluated for significance levels equal to 0.01, 0.05 and 0.10. Initially,
we simulated data sets with different levels of imbalance, as in Nobre, Singer and Silvapulle
(2008). Because the results did not differ too much from the balanced case, we only show
those for the latter (n; = m, Vi). To evaluate the effect of misspecification of the generating
distribution on the parametric procedure, the bootstrap pseudosamples were generated under
normality assumptions even though the true underlying distribution was not normal.

We used both the REML estimator of o, obtained under of normality as well as the con-
sistent estimator W,,. Here, also, the results were practically identical and for that reason, we
only show the results based on W,,.

We repeated a similar simulation process considering b; ~ {Y; — E[Y;1}/+/VarlY;] x oy,
where the i.i.d. random variables Y7, ..., Y; follow a skew ¢ distribution with 4.1 degrees
of freedom, location parameter 0, dispersion parameter 1 and asymmetry parameter A = 1
(St(0, 1, 1, 4.1)) with index of skewness equal to 1.77. For details on the skew ¢ distribution,
see Azzalini and Capitanio (2003). The results were very similar and for that reason they
were omitted. In Table 1 we show the results regarding the size and the empirical power of
the test for different data generating distributions.

The results displayed in Table 1 suggest that when the ¢;; are normally distributed, the size
of the bootstrap parametric U-test is very close to the nominal level, with a 10% maximum
relative difference for the 1% significance level, less than 10% maximum relative difference
for the 5% significance level and less than 4% maximum relative difference for the for 10%
significance level, even with few treatments and few observations per treatment. The same
conclusion holds when e;; has an asymmetric distribution, with a small increase in the rela-
tive difference, principally for the 1% significance level. On the other hand, for heavy tailed
distributions, the size of the bootstrap parametric U -test obtained under normality is not close
to the nominal when there are few treatments and few repetitions per treatment (k =5 and
m < 4), mainly for the 1% significance level; in this case, the maximum relative difference
increases to 20% in some settings. Otherwise, the results are quite satisfactory.

: (13)

4 A nonparametric bootstrap U -test

In this context, we generated B pseudosamples under the null hypothesis, so that the ob-
servations yl-(Jl-’), b=1,..., B are randomly sampled from the set of the original observations



Table 1 Rejection rates (%) for the parametric bootstrap U -test in balanced designs with b; ~ N (0, 0‘}3) for different distributions of the conditional errors

5 =10 k=30 k=100
og o m=2 m=4 m=5 m=10 m=2 m=4 m=5 m=10 m=2 m=4 m=5 m=10 m=2 m=4 m=5 m=10
eij "’N(O, 1)

0 1% 1.0 1.0 1.0 0.9 1.0 1.0 1.1 1.1 1.1 1.1 1.0 1.0 0.9 1.1 1.0 1.0
5% 5.4 5.0 5.1 5.0 5.4 5.0 5.0 5.1 5.3 5.1 5.0 4.9 5.0 5.0 5.1 5.0

10% 10.2 10.2 10.2 10.0 10.2 10.0 10.2 10.2 10.2 10.0 10.0 9.9 10.3 9.8 10.1 10.0

0.2 1% 2.2 7.1 10.5 30.5 3.0 13.1 20.9 56.6 7.8 38.8 56.8 95.5 25.8 90.5 98.2 100.0
5% 9.3 20.2 25.9 494 12.8 32.0 41.7 74.7 22.8 63.9 77.6 98.6 51.1 97.2 99.6 100.0

10% 17.3 30.9 37.2 60.1 22.1 45.1 54.4 82.6 35.0 75.3 86.6 99.3 65.5 98.5 99.9 100.0

0.5 1% 4.3 22.2 32.5 64.9 9.0 44.8 60.2 91.2 31.7 91.4 97.2 100.0 87.3 100.0 100.0 100.0
5% 16.2 43.6 53.5 79.1 26.9 67.6 78.6 96.6 58.3 97.2 99.4 100.0 96.3 100.0 100.0 100.0

0% 27.7 55.7 64.6 85.1 41.2 77.8 85.6 97.9 71.8 98.7 99.8 100.0 98.6 100.0 100.0 100.0

1.0 1% 9.0 45.9 58.3 85.1 23.2 77.3 88.3 98.8 74.1 99.8 100.0 100.0 99.9 100.0 100.0 100.0
5% 28.2 66.8 75.4 91.9 49.2 90.26 95.4 99.6 91.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10% 42.8 76.5 82.5 94.6 63.9 94.2 97.2 99.8 95.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ejj ~is X J3/5

0 1% 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.8 0.9 0.9 1.0 1.1 0.9 1.0 1.0
5% 4.2 4.0 4.2 4.7 4.4 4.5 4.6 4.8 4.4 4.6 4.6 4.8 4.7 4.8 4.9 5.0

10% 8.7 8.8 9.2 9.5 9.3 9.4 9.6 9.9 9.4 9.5 9.6 9.9 10.1 9.9 10.1 10.1

0.2 1% 2.0 7.0 9.8 29.9 2.8 13.0 20.1 56.0 7.0 38.3 56.4 95.4 25.6 90.2 97.9 100.0
5% 9.0 20.1 25.4 49.2 12.1 31.7 40.7 74.4 22.4 62.9 77.2 98.3 50.6 97.1 99.6 100.0

10% 17.2 30.8 36.7 59.9 20.9 44.2 53.7 81.5 34.2 74.0 85.9 99.0 64.6 98.2 99.8 100.0

S[OPOU $1091J9 WIOPURI ABM-JUO UT SJuauoduwiod 90UBLIBA 10 S189)- /7 paAoduuy
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Table 1 (Continued)

k=5 k=10 k=30 k=100
013 o m=2 m=4 m=5 m=10 m=2 m= m=5 m=10 m=2 m=4 m=5 m=10 m=2 m=4 m=5 m=10
ejj ~t5 X +/3/5 (Continued)

0.5 1% 4.1 21.3 32.2 64.0 8.6 44.0 58.5 91.0 31.2 91.1 97.1 100.0 87.0 100.0 100.0 100.0
5% 16.1 42.4 53.0 79.0 259 67.0 78.0 96.1 57.7 97.0 99.2 100.0 96.1 100.0 100.0 100.0

10% 27.1 54.6 64.1 84.5 39.8 77.2 85.2 97.2 71.1 98.5 99.7 100.0 98.4 100.0 100.0 100.0

1.0 1% 8.7 45.1 57.5 85.0 22.4 77.1 87.8 98.1 72.8 99.7 99.9 100.0 99.9 100.0 100.0 100.0
5% 28.0 66.0 75.4 91.6 49.1 89.7 95.2 99.6 90.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0

10% 42.2 75.0 82.5 94.2 63.4 93.9 97.0 99.7 95.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0

. 2
ejj~ (x5 —2)/2

0 1% 1.2 1.2 1.1 0.9 1.2 1.1 1.1 0.9 1.2 1.1 1.1 0.9 1.1 0.1 0.9 1.0
5% 4.6 4.7 4.8 5.0 5.7 53 5.1 5.0 5.3 5.2 5.3 5.1 5.1 4.9 5.0 5.1

10% 9.5 9.5 9.6 10.3 10.4 10.3 10.2 10.1 10.3 10.3 10.2 10.2 10.2 9.9 10.2 9.9

0.2 1% 2.0 7.0 10.1 29.3 3.0 12.9 20.2 55.5 7.8 38.6 55.7 95.4 25.5 90.2 98.1 100.0
5% 9.1 19.9 25.1 48.6 12.1 31.4 41.2 74.3 22.7 63.2 77.5 98.5 50.9 97.1 99.6 100.0

10% 16.8 30.3 36.8 59.3 20.9 44.3 54.3 82.2 34.9 75.0 86.1 99.1 64.5 98.4 99.8 100.0

0.5 1% 4.2 22.0 31.2 64.5 8.9 44.6 58.1 91.1 31.3 90.9 97.1 100.0 87.1 100.0 100.0 100.0
5% 15.7 433 52.0 78.9 26.5 66.9 78.3 96.2 58.0 97.1 99.2 100.0 96.2 100.0 100.0 100.0

10% 27.0 55.2 63.1 84.4 40.3 76.7 85.3 97.8 714 98.7 99.6 100.0 98.4 100.0 100.0 100.0

1.0 1% 8.8 44.8 57.9 84.7 22.6 77.2 87.8 98.7 73.5 99.7 100.0 100.0 99.8 100.0 100.0 100.0
5% 27.4 65.8 75.2 91.9 48.9 89.8 94.8 99.4 90.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10% 42.1 75.0 82.4 94.3 63.3 93.7 97.0 99.7 95.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(5%

e1sneg [ A pue 195UIS " °[ *9IQON °S °f
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{vij,i=1,...,k,j=1,...,n;}. Foreach of B =999 bootstrap pseudosamples, we obtained
the statistics J{*, J5', ..., J5. Given the value of the statistic obtained from the original sam-
ple, J,,, the adjusted p-value is given as in (13).

Chernick and LaBudde (2011, Chapter 8) comment that bootstrap statistics may be in-
consistent or unreliable; this occurs with the nonparametric bootstrap U -test mainly for the
1% significance level with k =5 and m = 2, where the rejection rates are less than 50%
of the nominal value. In a way, this is expected, since we are interested in an extreme case
(e =0.01) and the sample sizes are small (only 10 observations). The same occurs when we
consider few treatments. If we have at least 4 observations per treatment, the results displayed
in Table 2 suggest that the size of the bootstrap nonparametric U -test is close to the nominal
value, with maximum relative difference less than 10% for the 5% and 10% significance lev-
els; a maximum relative difference of 20% (few cases) is observed for the 1% significance
level, independently of the underlying distribution. As in the previous section, we repeated
the simulation considering a standardized skew ¢ distribution for the random effects obtaining
very similar results (omitted here).

5 Data examples

We consider an example originally presented in Snedecor and Cochran (1980) involving an
experiment on artificial insemination of cows; several semen samples from a bull were tested
for their ability to produce conceptions. The percentages of conceptions to services for suc-
cessive samples from six randomly sampled bulls are displayed in Table 3.

A model suggested by Alkhamisi (2000) is

y,'jz,u—i-bi—i—eij, i=1,....,5,j=1,...,n;

where y;; represents the percentages of conceptions obtained from the jth sample taken from
the ith bull, u designates the overall mean, b; designates the random effect due to the ith bull
and e;; denotes a random error. Given the bounded nature of the response variable, normality
does not seem valid for either sources of variation. The objective of this example is to test
whether the within-bull variance may be dropped from the model, that is, to test (2).

Crainiceanu and Ruppert (2004) show that for testing that a variance component in a one-
way random effects model is null, the reference chi-bar-squared distributed is a poor approx-
imation to the distribution of the likelihood ratio test (and consequently, to the distribution of
the score test) when there are few units and many observations per subject as in the example
under discussion. Besides that, with small sample sizes, standard asymptotic tests may not
yield satisfactory results. The J, test for this example yielded a p-value equal to 0.0072.
We applied both versions of the bootstrap U -test obtaining p-values equal to 0.0390 and to
0.0388, respectively for the parametric and nonparametric versions. The traditional F test
provided a p-value equal to 0.04163, which would lead us to a slightly different result at the
4% significance level, for example. At the 5% significance level, both methods suggest that
the variation within bulls is statistically significant. However, different p-values may lead to
incorrect inference in certain situations and, in these cases, the bootstrap method seems more
appropriate.

To further illustrate the advantage of the proposed test, consider a hypothetical data set
generated via the following unbalanced model

yij=,u+bl~+e,~j, i=1,....,5,j=1,...,n;

with ny =5, np =3, n3 =4, ngy =3 and ns = 6. We set u =8, b; ~ {W; — E[W;]}/
v/ Var[W;] x op, with 05, = /0.5, and ¢;; ~ {W;; — E[W;;]}/,/Var[W;;], where W; and W;;



Table 2 Rejection rates (%) for the nonparametric bootstrap U -test in balanced designs with b; ~ N (0, crbz) for different distributions of the conditional errors

k=5 k=10 k=30 k=100
013 o m=2 m=4 m=5 m=10 m=2 m=4 m=5 m=10 m=2 m=4 m=5 m=10 m=2 m=4 m=>5 m =10
ejj ~N(@O,1)

0 1% 0.5 1.0 1.1 1.1 1.0 1.0 1.1 1.1 1.1 1.2 1.2 1.1 1.3 1.0 1.1 1.1
5% 4.2 4.5 4.7 5.3 4.6 4.9 5.1 5.2 5.1 5.3 5.2 5.1 5.4 4.9 5.2 5.1

10% 9.9 9.8 10.0 10.4 9.7 9.8 10.0 10.1 10.2 10.2 10.3 10.0 10.4 10.0 9.8 9.9

0.2 1% 1.0 6.8 10.3 31.5 3.0 13.1 20.2 55.1 7.5 39.1 56.2 94.9 25.5 90.4 97.7 100.0
5% 8.2 20.5 26.2 49.8 11.6 32.3 41.0 72.8 22.8 63.7 77.4 98.4 50.9 97.1 99.5 100.0

10% 16.9 32.2 37.3 60.5 21.3 45.1 54.0 81.0 35.0 75.1 86.2 99.2 65.4 98.4 99.7 100.0

0.5 1% 1.8 22.0 31.4 64.6 8.0 44.6 59.5 91.0 31.4 91.0 97.1 100.0 87.1 99.9 100.0 100.0
5% 13.5 42.9 51.6 78.8 25.8 67.0 77.9 96.2 59.3 97.0 99.3 100.0 96.3 100.0 100.0 100.0

0% 27.7 55.4 62.6 84.2 39.7 77.2 85.5 97.8 71.3 98.3 99.8 100.0 98.5 100.0 100.00 100.0

1.0 1% 4.5 44.2 57.9 84.9 21.1 77.1 87.3 98.6 72.6 99.6 99.9 100.0 99.9 100.0 100.0 100.0
5% 25.2 65.6 75.2 91.7 48.3 90.0 94.5 99.7 90.5 99.9 100.0 100.0 100.0 100.0 100.0 100.0

10% 40.0 76.0 82.3 94.1 62.9 93.9 96.7 99.7 95.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ejj ~ 15 X +/3/5

0 1% 0.4 0.9 1.1 1.2 0.7 1.1 1.1 0.9 1.3 1.2 1.3 1.1 1.2 1.0 1.2 1.2
5% 4.0 4.3 5.4 5.5 4.8 5.6 5.2 5.0 53 4.5 5.6 4.9 5.2 4.7 5.3 5.2

10% 8.7 9.3 10.1 10.4 9.6 10.9 9.8 10.4 10.4 9.9 10.6 10.3 10.4 9.5 10.4 10.2

0.2 1% 1.1 8.3 12.6 32.2 3.0 14.9 22.0 56.7 7.6 39.8 57.5 95.1 25.8 91.0 98.0 100.0
5% 7.8 23.0 27.4 50.9 13.0 34.0 433 74.4 23.7 64.2 78.5 98.9 51.5 97.3 99.7 100.0

10% 16.7 34.4 38.6 61.4 23.1 46.3 55.2 83.0 36.5 75.6 86.1 99.6 66.9 98.8 99.9 100.0
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Table 2 (Continued)

k=5 k=10 k=30 k=100
Ug o m=2 m=4 m=5 m=10 m=2 m=4 m=5 m=10 m=2 m=4 m=5 m=10 m=2 m=4 m=>5 m=10
ejj ~ 15 X +/3/5 (Continued)

0.5 1% 2.5 24.2 33.1 66.2 9.4 48.1 62.6 91.1 33.5 92.1 97.2 100.0 87.6 100.0 100.0 100.0
5% 16.8 44.6 54.2 79.4 29.0 69.7 79.8 97.0 60.7 98.0 99.7 100.0 96.8 100.0 100.0 100.0

10% 29.7 56.7 65.2 85.0 44.1 79.8 86.6 98.3 73.6 99.0 100.0 100.0 98.9 100.0 100.0 100.0

1.0 1% 5.5 47.1 60.0 85.8 22.8 78.9 87.6 98.7 73.3 99.8 100.0 100.0 100.0 100.0 100.0 100.0
5% 26.9 67.7 76.8 92.0 50.9 90.5 94.7 99.7 90.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10% 42.3 77.4 83.3 94.4 64.3 94.1 97.0 99.8 95.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0

. 2 _
ejj~ (X3 2)/2

0 1% 0.3 1.0 1.0 0.9 0.7 0.9 1.0 1.2 1.0 1.0 1.1 1.0 1.09 1.1 1.1 0.9
5% 4.4 4.7 4.7 4.7 4.6 5.1 4.7 4.8 4.8 5.1 4.9 4.9 4.66 5.4 53 4.9

10% 9.2 9.3 9.5 9.5 9.6 10.2 9.3 9.8 10.5 10.3 9.8 9.9 10.40 9.7 10.3 9.9

0.2 1% 1.3 9.3 13.2 34.3 4.0 16.4 23.7 59.0 8.2 41.0 58.7 95.3 26.0 90.5 98.9 100.0
5% 9.9 24.9 29.9 52.6 14.4 36.3 44.9 76.2 23.9 65.8 78.9 98.9 51.7 97.1 99.8 100.0

10% 18.7 374 422 62.2 23.8 48.7 57.9 83.3 37.0 76.5 86.7 99.6 67.2 98.4 100.0 100.0

0.5 1% 3.3 27.6 36.1 66.8 11.6 49.1 62.9 91.3 35.5 93.9 98.3 100.0 87.7 100.0 100.0 100.0
5% 18.7 46.2 56.3 80.0 31.2 71.0 80.2 97.0 62.3 98.7 99.9 100.0 97.2 100.00  100.0 100.0

10% 32.5 58.9 66.1 85.8 45.5 80.4 87.3 98.8 75.8 99.4 100.0 100.0 99.0 100.00  100.0 100.0

1.0 1% 7.6 49.4 61.3 86.3 25.6 79.7 87.9 98.8 76.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0
5% 30.1 69.4 77.5 92.8 52.2 92.0 95.0 99.9 92.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10% 46.5 77.9 84.0 94.9 66.9 95.3 97.2 100.0 96.1 100.0 100.0 100.00 100.0 100.0 100.0 100.0
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Table 3 Percentage of conceptions to services
for sucessive samples

Bulls
1 2 3 4 5 6

46 70 52 47 42 35
31 59 44 21 64 68
37 57 70 50 59
62 40 46 69 38
30 67 14 77 57
64 81 76
70 87 57
29
60

Table 4 Hypothetical data

Treatment
1 2 3 4 5
8.05 6.66 8.51 11.10 6.03
9.73 7.32 8.03 7.32 9.11
8.63 8.45 8.52 7.94 6.15
8.25 7.56 6.89
8.31 6.61
7.05
I _
T
- T
| l i —(
<
nTS nT3 nT4 n%3 nTG

1 2 3 4 5

Treatment

Figure 1 Mean by treatment + standard error of the mean.

are i.i.d. random variables following St(0, 1, 1,4.1). The generated values are displayed in
Table 4.

The plot of the treatment means (% standard errors) displayed in Figure 1 suggest het-
eroskedasticity, as expected, given the data were generation process.



Improved U -tests for variance components in one-way random effects models 475

An estimate of the mean p is 1 =y = 7.92. Assuming normality, we obtain 57 = 0.5961
and 2 = 1.0693, so that an estimate of the intraclass correlation coefficient is 5 = 0.3579,
which are values close to the true values (0.5, 1 and 1/3, respectively). The estimate based
on the consistent estimator W, is equal to 1.0241 which was the value used to implement the
parametric Bootstrap test. The objective is to test whether the within-treatment variance may
be dropped from the model, that is, to test (2).

For the generalized likelihood ratio test, we obtained a p-value of the 0.3575. The tradi-
tional F test provided a p-value equal to 0.1024 suggesting an inconsistent conclusion with
the generating model. Here, for the J,, test, we obtained a p-value less than 10~7, which may
not be realistic given the small sample size. We applied both versions of the bootstrap U -test
obtaining p-values of 0.0112 and 0.0335, respectively for the parametric and nonparamet-
ric versions. At the 5% significance level, both suggest that the variation within treatment is
statistically significant, as opposed to the conclusion based on the competing tests.

6 Discussion and conclusion

Although there exists an exact F-test with optimal properties for testing the significance of the
between-treatments variance component in a one-way random effects model with balanced
data under normality, we must rely on sub-optimal or approximate tests in unbalanced or non-
normal settings. Nobre, Singer and Silvapulle (2008) derived an asymptotic U -test that may
be employed with unbalanced data and does not require a specified form for the underlying
probability distributions. The authors conclude that the F-test is more affected by the lack of
normality of the random effects and within-treatment errors than by imbalance. Furthermore,
the U -test seems to be less sensitive to imbalance and to be more powerful than the F-test in
general. Such conclusions must be viewed with caution, given the liberal nature of the U -test,
specially for small sample sizes.

Sinha (2009) obtains the exact distribution of the score statistic to test the hypothesis of null
variance of a random intercept in generalized linear mixed models using parametric bootstrap.
Under this setup, for each pseudosample it is necessary to estimate the set of parameters
and to obtain the score statistic. This requires a high computational cost given that matrix
inversion, for example, may be needed. Our proposal is relatively simple, free of distribution
assumptions besides presenting a very low computational cost. An extension of the U-test
to more general Linear Mixed Models is proposed in Nobre, Singer and Sen (2013) but its
structure is slightly different from the one considered in Nobre, Singer and Silvapulle (2008)
on which the bootstrap version is based. The bootstrap procedure for the U -tests in this more
general situation where even under the null hypothesis, the dependent variables may not be
identically distributed nor be independent is more complicated and is the object of ongoing
investigation. See Davison and Hinkley (1997) and Lahiri (2003), among others, for details.

We propose bootstrap methods to obtain the empirical distribution an U -test statistic un-
der the null hypothesis. The statistic J,, suggests the null hypothesis to be reject when high
values of J,, are observed. Thus we use its easy structure to propose exact test versions using
Bootstrap, both in parametric and non-parametric approach. The simulation results suggest
that even for small sample sizes the test behaves well, despite a very small bias. Given that
it is a test addressed specifically at small sample sizes, computational effort is not really a
problem. We also evaluated the effect of misspecification of the distribution of conditional
errors. We noticed that for the parametric bootstrap, the result does not vary too much even
when pseudosamples are generated from a normal distribution. The simulation codes can be
obtained directly from the first author upon request.
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