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This paper proposes a numerical bootstrap method that is consistent in
many cases where the standard bootstrap is known to fail and where the m-
out-of-n bootstrap and subsampling have been the most commonly used infer-
ence approaches. We provide asymptotic analysis under both fixed and drift-
ing parameter sequences, and we compare the approximation error of the nu-
merical bootstrap with that of the m-out-of-n bootstrap and subsampling. Fi-
nally, we discuss applications of the numerical bootstrap, such as constrained
and unconstrained M-estimators converging at both regular and nonstandard
rates, Laplace-type estimators, and test statistics for partially identified mod-
els.

1. Introduction. We propose a new type of bootstrap called the numerical bootstrap
which offers an alternative to the m-out-of-n bootstrap [6, 30] and subsampling [25] in many
cases where the standard bootstrap fails. Motivated by [16]’s work on inference for direction-
ally differentiable functions, the numerical bootstrap is based on perturbing the sample by
εn

√
n times the difference between the bootstrapped sample and the data. We show that when

εn

√
n → ∞ and εn ↓ 0, the numerical bootstrap can be used to conduct pointwise asymptoti-

cally valid inference for a large class of M-estimators converging at possibly slower than
√

n

rates and subject to a set of known constraints which can be approximated in the limit by a
cone centered at the true parameter value.

Section 2 provides an overview of the numerical bootstrap method. Section 2.1 contains
some heuristic arguments comparing the error of the numerical bootstrap to that of the m-
out-of-n bootstrap and subsampling. Section 3 studies the asymptotic coverage properties
of confidence intervals constructed using the numerical bootstrap for drifting sequences of
parameters. Section 4 validates the consistency of the numerical bootstrap for a class of M-
estimators that includes the maximum score estimator developed by [23] and whose asymp-
totics are derived in [20] and [11]. In Section 4.1, we allow the true parameter to lie on the
boundary of a constrained set, as in the setup of [17]. For the sample extremum counter exam-
ple in Section 4.2, subsampling works, but the numerical bootstrap does not. Section 5 reports
Monte Carlo simulation results comparing the numerical bootstrap to the standard bootstrap,
the perturbation bootstrap [14, 24], and the m-out-of-n bootstrap [6, 30]. The Supplementary
Material [18] contains more theoretical and simulation results on the differences between
the numerical bootstrap, the m-out-of-n bootstrap, and subsampling. Local asymptotics and
simulations results are presented for the LASSO estimator [33] in the one-dimensional mean
model. We also demonstrate how to consistently estimate the asymptotic distribution of sam-
ple size dependent statistics such as the Laplace-type estimators of [13] and [19]. Addition-
ally, we illustrate how the numerical bootstrap can be used to perform hypothesis testing in
partially identified moment inequality models (see, e.g., [2, 3, 8, 9]). We also discuss the role
of recentering in hypothesis testing and how to use the numerical bootstrap to estimate an
unknown polynomial convergence rate. A list of commonly used symbols and proofs of the
theorems are also included in the Supplementary Material.
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2. A generalized numerical bootstrap method. To motivate, we note that many esti-
mators and test statistics can be written as a functional of the empirical distribution θ(Pn)

with a population analog θ(P ). Typically, for an increasing function a(n) of the sample size
n, for a limiting distribution J (which can depend on P ), and using weak convergence nota-
tion,1 Ĵn ≡ a(n)(θ(Pn) − θ(P )) � J . This can be rewritten as

Ĵn ≡ a(n)

(
θ

(
P + 1√

n

√
n(Pn − P)

)
− θ(P )

)
� J .

Since it is often times the case that Ĝn = √
n(Pn − P) � G0 where G0 is a properly defined

Brownian bridge, we also expect that

a(n)

(
θ

(
P + 1√

n
G0

)
− θ(P )

)
� J .

If we take εn = 1√
n

, so that a(n) = a
(√

n
2
)

is replaced by a

(
1
ε2
n

)
, then we also anticipate

that for other εn ↓ 0,

a

(
1

ε2
n

)(
θ(P + εnG0) − θ(P )

)
� J .

The goal is to provide a consistent estimate of J , which approximates the left-hand side
above. To obtain such a consistent estimate, we need to estimate the unknown P and G0. In-
tuitively, P can be estimated by Pn, and G0 can be consistently estimated by the bootstrapped
empirical process Ĝ∗

n = √
n(P ∗

n −Pn). A popular choice for Ĝ∗
n is the multinomial bootstrap in

which Ĝ∗
n = √

n(P ∗
n −Pn) and P ∗

n = 1
n

∑n
i=1 Mniδi , where δi is the point mass on observation

i, and Mni, i = 1, . . . , n is a multinomial distribution with parameters (n−1, n−1, . . . , n−1).
Other common choices for Ĝ∗

n include the Wild bootstrap, where Ĝ∗
n = 1√

n

∑n
i=1(ξi − ξ̄ )δi for

ξ̄ = 1
n

∑n
i=1 ξi and ξi are i.i.d. variables with variance 1 and finite 3rd moment, and exchange-

able bootstrap schemes in [34] (Chapter 3.6). Other forms of Ĝ∗
n that consistently estimate G0

can also be used, such as Ĝ∗
n = √

mn(P
∗
mn

− Pn) where mn → ∞ as n → ∞ and P ∗
mn

is
a multinomial i.i.d. sample from Pn of size mn. A choice of mn/n → 0 and εn = 1/

√
mn

corresponds to the m-out-of-n bootstrap. Convolved subsampling (e.g., [32]) can be used to
handle time series data, but we focus on the i.i.d. case.

Under regularity conditions, Ĝ∗
n converges in distribution to G1 both conditionally on the

sample in probability, and unconditionally, where G1 is an independent and identical copy of
G0. To offset the noise of estimating P with Pn, the step size parameter εn is chosen such that√

nεn → ∞. Therefore, we propose a numerical bootstrap method that estimates J with

Ĵ ∗
n = a

(
1

ε2
n

)(
θ
(
Pn + εnĜ∗

n

) − θ(Pn)
)
.

To see why the numerical bootstrap might work, note that

Ĵ ∗
n = a

(
1

ε2
n

)(
θ

(
P + εn

(
Ĝ∗

n + Pn − P

εn

))
− θ(P )

)
− a

(
1

ε2
n

)(
θ(Pn) − θ(P )

)
.

In the above, we rewrite the second term as

a

(
1

ε2
n

)(
θ(Pn) − θ(P )

) = 1

a(n)
a

(
1

ε2
n

)
a(n)

(
θ(Pn) − θ(P )

)
.

1Xn � X in the metric space (D, d) if and only if supf ∈BL1
|E∗f (Xn)−Ef (X)| → 0 where BL1 is the space

of functions f : D 	→ R with Lipschitz norm bounded by 1.
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Since a(n)(θ(Pn) − θ(P )) � J and typically 1
a(n)

a( 1
ε2
n
) → 0 (e.g., when a(n) = nγ ) as

nε2
n → ∞, the second term vanishes asymptotically:

a

(
1

ε2
n

)(
θ(Pn) − θ(P )

) = oP (1).

Using conditional weak convergence notation,2 Ĝ∗
n

P�
W

G1 in the first term of Ĵ ∗
n . Addition-

ally, since
√

nεn → ∞, heuristically we expect that

Pn − P

εn

=
√

n(Pn − P)√
nεn

≈ G0√
nεn

p−→ 0.

Therefore, since G1 has the same distribution as G0, we also expect that

Ĵ ∗
n ≈ a

(
1

ε2
n

)(
θ(P + εnG1) − θ(P )

) P�
W

J .

Note that [15]’s rescaled bootstrap is a special case of the numerical bootstrap for estima-
tors that satisfy a(n) = √

n.

2.1. Comparison of numerical bootstrap with m-out-of-n bootstrap and subsampling. In
situations where m-out-of-n bootstrap, subsampling, and the numerical bootstrap method can
be used, the numerical bootstrap can potentially offer a more accurate approximation to the
limiting distribution. Because the analysis is similar between subsampling and m-out-of-n
bootstrap, for brevity we focus on subsampling. Recall that subsampling [25] approximates
the limiting distribution J using the finite sample distribution of a(b)(θ(Pb)− θ(Pn)) which
in large samples is close to a(b)(θ(Pb) − θ(P )) whenever a(b)(θ(Pn) − θ(P )) = oP (1).
In turn, as b → ∞, a(b)(θ(Pb) − θ(P )) � J . To compare subsampling to the numerical
bootstrap, write the subsampling distribution as

a(b)
(
θ(Pb) − θ(Pn)

) = a(b)

(
θ

(
Pn + 1√

b

√
b(Pb − Pn)

)
− θ(Pn)

)
.

In the numerical bootstrap setup, subsampling is essentially using εn = 1√
b

as the step size

and using
√

b(Pb − Pn) to estimate G0 based on subsamples of size b. The numerical boot-
strap method is different and instead uses Ĝ∗

n ≡ √
n(P ∗

n − Pn) to estimate G0 based on the
entire sample of size n. In addition, G0 can also be approximated by a multivariate normal
distribution in finite dimensional situations.

For Xi
i.i.d.∼ (μ(P ), σ 2) and X̄n ≡ 1

n

∑n
i=1 Xi , consider the finite dimensional setup where

θ(P ) = φ(μ(P )) for some finite dimensional Hadamard directionally differentiable mapping
φ : Rd → R. Recall the following definition of first order Hadamard directional differentia-
bility:

DEFINITION 2.1. φ is first order Hadamard directionally differentiable at μ0 ≡ μ(P ) ∈
R

d tangentially to a set D0 ⊆ R
d if there is a continuous map φ′

μ0
: D0 → R such that for all

h ∈ D0,

lim
n→∞

∣∣∣∣φ(μ0 + tnhn) − φ(μ0)

tn
− φ′

μ0
(h)

∣∣∣∣ = 0

for all {hn} ⊂D and {tn} ∈R+ such that tn ↓ 0, hn → h as n → ∞ and μ0 + tnhn ∈ R
d .

2Xn
P�
W

X in the metric space (D, d) if and only if supf ∈BL1
|EWf (Xn) − Ef (X)| → 0 and EWf (Xn)∗ −

EWf (Xn)∗
p−→ for all f ∈ BL1, where BL1 is the space of functions f : D 	→ R with Lipschitz norm bounded

by 1 and EW denotes expectation with respect to the bootstrap weights W conditional on the data Xn.
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When the first order Hadamard directional derivative is degenerate, that is, φ′
μ0

(h) = 0 for
all h, it will be necessary to assume second order Hadamard directional differentiability.

DEFINITION 2.2. φ is second order Hadamard directionally differentiable at μ0 ∈ R
d

tangentially to D0 if it is first order Hadamard directionally differentiable and there is a con-
tinuous map φ′′

μ0
:D0 →R such that for all h ∈ D0,

lim
n→∞

∣∣∣∣φ(μ0 + tnhn) − φ(μ0) − tnφ
′
μ0

(hn)

1
2 t2

n

− φ′′
μ0

(h)

∣∣∣∣ = 0

for all {hn} ⊂D and {tn} ∈R+ such that tn ↓ 0, hn → h ∈ D0 as n → ∞ and μ0 + tnhn ∈ R
d .

Consider approximating the limiting distribution of
√

n(φ(X̄n) − φ(μ)) for any twice
Hadamard directionally differentiable function φ(·). It is known that φ′

μ(h) is positively ho-
mogeneous of degree 1. We demonstrate in the Supplementary Material that one dimensional
positively homogeneous functions of degree 1 have a piecewise linear representation: there
exists constants λ1, λ2 ∈ R such that φ′

μ(h) = λ1h
+ + λ2h

−. Using Taylor expansion argu-
ments detailed in the Supplementary Material, for λ1 ≥ 0 and λ2 ≥ 0,

P
(
Ĵ ∗

n ≤ x|Xn

) = 


(
x

λ1

)
+ 


(
x

λ2

)
− 1 + Op

(
1

εn

√
n

)
+ Op

(
1√
n

)
+ Op(εn).

In particular, when the second order directional derivative is nonzero and φ′
μ(·) is not a linear

function, then the error for the numerical bootstrap is Op

(
1

εn
√

n

)
+ Op

(
1√
n

)
+ Op(εn) =

Op

(
1

εn
√

n

)
+ Op(εn). The optimal choice of εn that balances the two terms satisfies εn =

O(n−1/4), leading to an error on the order of n−1/4. The error for subsampling is Op

(√
b
n

)
+

Op

(
1√
n

)
+ Op

(
1√
b

)
, so the optimal choice of b satisfies b = O

(
n1/2

)
, which also leads to

an error on the order of n−1/4.
If however, φ′

μ(·) is a linear function that is not degenerate at μ, then the error for the

numerical bootstrap is Op

(
1√
n

)
+ Op(εn), and is minimized by εn = O

(
1√
n

)
. In contrast,

subsampling’s error would still be Op(n−1/4) because of the additional error of Op

(√
b
n

)
introduced by estimating the distribution of

√
b(μ(Pb) − μ(Pn)) using the empirical distri-

bution of
√

b(μ(Pb,i) − μ(Pn)) over i = 1, . . . ,
(n
b

)
sub-blocks. The presence of the error of

Op

(√
b
n

)
is implied by Lemma A.2 in [27] and also demonstrated in Theorem 1 of [5] and

Theorem 3 of [4]. Finally, if the second order derivative is zero, then the error for the numer-
ical bootstrap is Op

(
1

εn
√

n

)
+ Op

(
1√
n

)
, and is smaller than Op

(
n−1/4

)
for all values of εn

satisfying
√

nεn → ∞ while subsampling’s error would still be Op

(
n−1/4

)
due to the error

of Op

(√
b
n

)
when estimating the distribution of

√
b (μ(Pb) − μ(P )). Therefore, the numer-

ical bootstrap should not have an error that is of larger order than subsampling and it may
outperform subsampling in some situations when the first derivative is linear and the second
order derivative is nonzero, or when the second order derivative is zero.

3. Local analysis. Consider the finite dimensional setup where θ(P ) = φ(μ(P )) for
some finite dimensional mapping φ : Rd → R that is Hadamard directionally differentiable
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at μ(P ) tangentially to D0 ⊆ R
d . Suppose we consider perturbing the data generating process

P so that we perform asymptotic analysis on drifting sequences of parameters given by

μ
(
P n) − μ(P ) = anc,

where an ↓ 0 is the rate of drift and c is the slackness parameter. Let μ̂n be a
√

n-consistent
estimator for μn = μ(P n) and μ̂∗

n its bootstrapped version.

ASSUMPTION 3.1. For rn ↑ ∞ and some tight limiting distribution G0 supported on D0,
√

n(μ̂n − μn) � G0,
√

n
(
μ̂∗

n − μ̂n

) P�
W

G0.

We first consider statistics Ĵn ≡ √
n(φ(μ̂n) − φ(μn)) that have the same rate of conver-

gence as μ̂n. Define ĉ∗
α to be the α-th quantile of Ĵ ∗

n ≡ 1
εn

(φ(μ̂n+εn

√
n(μ̂∗

n−μ̂n))−φ(μ̂n)).
In the following theorem, we describe the coverage properties under drifting sequences for

the following three kinds of confidence intervals: equal-tailed
[
φ(μ̂n) − ĉ∗

1−α√
n

,φ(μ̂n) − ĉ∗
α√
n

]
,

lower
[
φ(μ̂n) − ĉ∗

1−α√
n

,∞
)

, and upper
(
−∞, φ(μ̂n) − ĉ∗

α√
n

]
.

THEOREM 3.1. Let φ : Dφ 	→ R be a Hadamard directionally differentiable function
at μ0. Let μ̂n and μ̂∗

n satisfy assumption 3.1. If φ′
μ0

is linear, then equal-tailed and one-
sided confidence intervals are asymptotically exact for all an ↓ 0. If φ′

μ0
is nonlinear and

subadditive (superadditive), the lower (upper) confidence interval will be conservatively valid
for the following types of sequences: (i) an

√
n = 1, (ii) an

√
n → ∞ and an/εn → 0. Equal-

tailed and one-sided intervals are asymptotically exact for (i) an

√
n → 0 (ii) an

√
n → ∞

and an/εn → ∞.

The appendix in the Supplementary Material includes the proof of theorem 3.1 and a dis-
cussion of local asymptotics for the negative part of the mean example and for LASSO in the
one-dimensional mean model.

It is not surprising that the numerical bootstrap consistently estimates the limiting distribu-
tion of

√
n(φ(μ̂n)−φ(μn)) when φ′

μ0
is linear because linearity of φ′

μ0
amounts to Hadamard

differentiability (as opposed to directional differentiability) of φ. It is known that the standard
bootstrap is consistent when φ is Hadamard differentiable (see Theorem 3.9.11 in [34]), so it
should be the case that the numerical bootstrap is consistent as well. This property of shar-
ing the same asymptotic distribution as the standard bootstrap when the standard bootstrap is
consistent also applies to other bootstrap methods in the literature such as bootstrap bounding
methods [12, 22] and adaptive projection intervals [26].

4. Consistency of numerical bootstrap for M-estimators. In this section, we demon-
strate the asymptotic consistency of the numerical bootstrap for a class of M-estimators θ̂n

that converge at rate nγ for some γ ∈ (1
4 ,1). Our proofs in this section assume that the re-

searcher knows γ , but in practice, we can estimate an unknown γ using methods described
in the appendix in the Supplementary Material. Consider

θ̂n ≡ arg max
θ∈�

Pnπ(·, θ) = 1

n

n∑
i=1

π(zi, θ).

We approximate the limiting distribution of nγ
(
θ̂n − θ0

)
using the finite sample distribu-

tion of ε
−2γ
n

(
θ̂∗
n − θ̂n

)
, where θ̂∗

n ≡ arg maxθ∈�Z∗
nπ(·, θ), and Z∗

n = Pn + εnĜ∗
n is a linear
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combination between the empirical distribution and the bootstrapped empirical process. For
example, when Ĝ∗

n is the multinomial bootstrap, for each bootstrap sample z∗
i , i = 1, . . . , n,

θ̂∗
n = arg max

θ∈�

1

n

n∑
i=1

π(zi, θ) + εn

√
n

1

n

n∑
i=1

(
π

(
z∗
i , θ

) − π(zi, θ)
)
.

On the other hand, when Ĝ∗
n is the Wild bootstrap,

θ̂∗
n = arg max

θ∈�

1

n

n∑
i=1

π(zi, θ) + εn

√
n

1

n

n∑
i=1

(
ξi − ξ̄

)
π(zi, θ).

In the following theorem, we show that for a suitable choice of the step size εn,
nγ

(
θ̂n − θ0

)
and ε

−2γ
n

(
θ̂∗
n − θ̂n

)
converge to the same limiting distribution for a large class

of estimators that includes the typical
√

n consistent estimators like OLS and IV as well
as n1/3 consistent estimators like the maximum score estimator studied in [20, 23] and [1].
Other valid bootstrap methods for the maximum score estimator, such as [29], are available
in the literature. Recently, [10] propose to bootstrap the Gaussian process and estimate the
Hessian term in the quadratic limit separately in the context of M-estimation. Let X∗

n = o∗
P (1)

if the law of X∗
n is governed by Pn and if Pn(|X∗

n| > ε) = oP (1) for all ε > 0. Also define
M∗

n = O∗
p(1) (hence also Op(1)) if limm→∞ lim supn→∞ P(Pn(M

∗
n > m) > ε) → 0, ∀ε > 0.

THEOREM 4.1 (Consistency of Numerical Bootstrap for M-estimators). Define g(·, θ) ≡
π(·, θ) − π(·, θ0). Suppose the following conditions are satisfied for some ρ ∈ (0,3/2) and
for γ ≡ 1

2(2−ρ)
:

(i) Png
(
·, θ̂n

)
≥ supθ∈� Png (·, θ)−oP

(
n−2γ

)
and Z∗

ng
(
·, θ̂∗

n

)
≥ supθ∈�Z∗

ng (·, θ)−
o∗
P

(
ε

4γ
n

)
.

(ii) θ̂n
p→ θ0 and θ̂∗

n − θ̂n = o∗
P (1).

(iii) θ0 is an interior point of � ∈ R
d .

(iv) The class of functions GR = {g (·, θ) : |θ − θ0| ≤ R} is uniformly manageable with
envelope function GR(·) ≡ supg∈GR

|g(·)|.
(v) Pg (·, θ) is twice differentiable at θ0 with negative definite Hessian matrix −H .

(vi) �ρ(s, t) = limα→∞ α2ρ Pg
(
·, θ0 + s

α

)
g

(
·, θ0 + t

α

)
exists for each s, t in R

d .

(vii) limα→∞ α2ρ Pg
(
·, θ0 + t

α

)2
1

(∣∣∣g (
·, θ0 + t

α

)∣∣∣ > εα2(1−ρ)
)

= 0 for each ε > 0 and

t ∈ R
d .

(viii) There exists a R0 > 0 such that PG2
R = O

(
R2ρ

)
for all R ≤ R0.

(ix)
√

nεn → ∞ and εn ↓ 0.
(x) For some η > 0, there exists a K such that PG2

R1 (GR > K) < ηR2ρ for R → 0.

(xi) P |g(·, θ1) − g(·, θ2)| = O
(
|θ1 − θ2|2ρ

)
for |θ1 − θ2| → 0.

Then θ̂n − θ0 = Op

(
n−γ

)
and θ̂∗

n − θ0 = O∗
p

(
ε

2γ
n

)
. Furthermore, for Z0(h) a mean zero

Gaussian process with covariance kernel �ρ and nondegenerate increments,

Ĵn ≡ nγ
(
θ̂n − θ0

)
� J ≡ arg max

h

Z0(h) − 1

2
h′Hh,

Ĵ ∗
n ≡ ε−2γ

n

(
θ̂∗
n − θ̂n

)
P�
W

J and Ĵ ∗
n � J .
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The assumptions above are modeled after [20] but generalized so that results for both the√
n and n1/3 cases can be stated concisely.
To explain the intuition for the above theorem, note that for ĥn = nγ

(
θ̂n − θ0

)
,

ĥn = arg max
h∈nγ (�−θ0)

n2γ Png

(
·; θ0 + h

nγ

)

= n2γ− 1
2
√

n(Pn − P)g

(
·; θ0 + h

nγ

)
+ n2γ Pg

(
·; θ0 + h

nγ

)
.

(4.1)

Under the stated conditions, n2γ Pg
(
·; θ0 + h

nγ

)
→ −1

2h′Hh, and

n2γ− 1
2
√

n(Pn − P)g

(
·; θ0 + h

nγ

)
= nργGng

(
·; θ0 + h

nγ

)
� Z0(h).

The numerical bootstrap seeks to approximate the limiting distribution J with the distribution
of

ε−2γ
n

(
θ̂∗
n − θ̂n

)
= ε−2γ

n

(
θ̂∗
n − θ0

)
− ε−2γ

n

(
θ̂n − θ0

)
,

which will be valid if (1) ε
−2γ
n

(
θ̂n − θ0

)
= op(1) and (2) ε

−2γ
n

(
θ̂∗
n − θ0

)
P�
W

J . Part (1)

follows from
√

nεn → ∞ since ε
−2γ
n

(
θ̂n − θ0

)
= 1

(
√

nεn)
2γ nγ

(
θ̂n − θ0

)
= oP (1). For part

(2), write Z∗
ng (·, θ) = (Z∗

n − P)g (·, θ) + Pg (·, θ), so that

θ̂∗
n = arg max

θ∈�

Z∗
ng(·, θ) = (

Z∗
n − P

)
g(·, θ) − 1

2
(θ − θ0)

′(H + op(1)
)
(θ − θ0).

For the first term, note that (Z∗
n − P) = 1√

n

√
n(Pn − P) + εnĜ∗

n
P�
W

1√
n
G0 + εnG1 where G0

and G1 are independent copies of the same Gaussian process. Since εn >> 1√
n

, the second

term should dominate, so that (Z∗
n − P) ≈ εnG1. Consequently, we expect

θ̂∗
n ≈ arg max

θ∈�

εnG1g (·, θ) − 1

2
(θ − θ0)

′ H (θ − θ0)

= εnOp

(|θ − θ0|ρ) − 1

2
(θ − θ0)

′ H (θ − θ0) .

By the definition of θ̂∗
n , εnOp

(
|θ̂∗

n − θ0|ρ
)
+

(
θ̂∗
n − θ0

)′
H

(
θ̂∗
n − θ0

)
≥ 0, implying that |θ̂∗

n −
θ0|2−ρ ≤ Op(εn) and therefore |θ̂∗

n − θ0| ≤ Op

(
ε

1
2−ρ
n

)
= Op

(
ε

2γ
n

)
. To be more formal, let

ĥ∗
n = ε

−2γ
n

(
θ̂∗
n − θ0

)
. Then

ĥ∗
n = arg max

h∈ε
−2γ
n (�−θ0)

ε−4γ
n

((
Z∗

n − P
)
g
(·; θ0 + ε2γ

n h
) + Pg

(·; θ0 + ε2γ
n h

))
.

The second term ε
−4γ
n Pg

(
·; θ0 + ε

2γ
n h

)
→ −1

2h′Hh. It is shown in the Appendix that the
first term satisfies

ε−4γ
n

(
Z∗

n − P
)
g

(
·; θ0 + ε2γ

n h
)

≈ ε−4γ
n

(
1√
n
G0 + εnG1

)
g

(
·, θ0 + ε2γ

n h
)

and that for a suitable Gaussian process Z0 (as in [20]),

ε−4γ
n

(
1√
n
G0 + εnG1

)
g

(
·, θ0 + ε2γ

n h
)

≈ ε1−4γ
n

(
G1g

(
·, θ0 + ε2γ

n h
))

P�
W

Z0(h).
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Combining the first and second terms implies that ĥ∗
n

P�
W

J = arg maxhZ0(h)− 1
2h′Hh. Alto-

gether, parts (1) and (2) imply that Ĵ ∗
n ≡ 1

ε2γ (θ̂∗
n − θ̂n)

P�
W

J , which validates the consistency

of the numerical bootstrap method.
In a more conventional approach such as [19], J is approximated by J̄ ∗ =

arg maxh Ẑ0(h) − 1
2h′Ĥh where Ĥ

p−→ H and Ẑ0(h) is a Gaussian process with estimated

covariance kernel �̂ρ(s, t) for �̂ρ(s, t)
p−→ �ρ(s, t). Instead, the numerical bootstrap essen-

tially replaces

Ẑ0(h) − 1

2
h′Ĥh with ε−4γ

n Z∗
ng

(
·, θ̂n + εnh

)

since Ĵ ∗
n = ε

−2γ
n

(
θ̂∗
n − θ̂n

)
= arg max

h∈ε
−2γ
n (�−θ0)

ε
−4γ
n Z∗

ng
(
·, θ̂n + εnh

)
.

There are two leading cases for Theorem 4.1: the smooth case and the cubic root case. In
the smooth case, ρ = 1 and γ = 1

2 , and the Gaussian process G0g(·; θ) is linearly separable
in θ . Typically there exists a multivariate normal random vector W0 ∼ N(0,�) such that
G0g(·; θ) = W ′

0(θ − θ0), and for an independent copy W1 of W0, G1g(·; θ) = W ′
1(θ − θ0).

The regular bootstrap is valid in this case due to linear separability, and corresponds to εn =
1/

√
n. In particular,

θ̂∗
n = arg max

θ∈�
Z∗

ng(·; θ) ≡ (
Z∗

n − Pn

)
g(·; θ) + (Pn − P)g(·; θ) + Pg(·; θ)

≈ W0 +W1√
n

(θ − θ0) − 1

2
(θ − θ0)

′H(θ − θ0),

since (Z∗
n − Pn)g(·; θ) ≈ W1/

√
n and (Pn − P)g(·; θ) ≈ W0/

√
n. Likewise the sample esti-

mate satisfies

θ̂n = arg max
θ∈�

Png(·; θ) = (Pn − P)g(·; θ) + Pg(·; θ)

≈ Ĝn√
n
g(·; θ) − 1

2
(θ − θ0)

′H(θ − θ0)

≈ W0√
n
(θ − θ0) − 1

2
(θ − θ0)

′H(θ − θ0).

Hence, if we let ĥ∗
n = √

n(θ̂∗
n − θ0) and ĥn = √

n(θ̂n − θ0), then ĥ∗
n

p→ H−1(W0 +W1) and

ĥn
p→ H−1W0, so that

√
n(θ̂∗

n − θ̂n) = ĥ∗
n − ĥn

p→ H−1W1 = N(0,H−1�H−1).

4.1. Constrained M estimation. A related application is to constrained M-estimators
when the parameter (in a correctly specified model) can possibly lie on the boundary of the
constrained set. In the following, we verify the consistency of the numerical bootstrap, under
conditions given in [17, 21], and in Theorem 4.1. Alternative approaches to similar problems
are provided in [28] and [7]. While the latter approach provides a closer tie between the nu-
merical bootstrap and the numerical delta method, the former approach seems more in line
with the convention in the statistics literature. To simplify notation when we make use of
results from [17], we consider arg min instead of arg max.

Following the previous notation, replace the parameter space � by a constrained subset C

such that for θ̂n ∈ C and θ̂∗
n ∈ C,

Pnπ(·, θ̂n) ≤ inf
θ∈C

Pnπ(·, θ) + oP

(
n−2γ )

,(4.2)

Z∗
nπ

(·, θ̂∗
n

) ≤ inf
θ∈C

Z∗
nπ(·, θ) + o∗

P

(
ε4γ
n

)
.(4.3)
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Let C be approximated by a cone TC(θ0) at θ0 in the sense of Theorem 2.1 in [17], which
implies (p. 2002 [17]) that for n → ∞,

(4.4) +∞1
(
δ /∈ nγ (C − θ0)

) e→ +∞1
(
δ /∈ TC(θ0)

)
.

Here,
e→ denotes epigraphical convergence as defined in [17], p. 1997. The difficulty of

practical inference lies in the challenge of estimating the approximating cone TC(θ0) [31],
which is easily handled by the numerical bootstrap method.

The following theorem combines the results in [17, 21] and Theorem 4.1. A restricted
version of Theorem 4.2 corresponding to ρ = 1 and γ = 1/2 can also be stated using only
Assumptions A–D, Lemma 4.1, and Theorem 4.4 in [17]. It also includes Theorem 4.1 as a
special case when TC(θ0) = Rd .

THEOREM 4.2. Assume θ0 uniquely minimizes Pπ(·, θ) over θ ∈ C. Let (4.4) and the
conditions except (i) and (iii) in Theorem 4.1 hold (and also replace (v) with a positive definite
H ). Also assume that

(4.5) J ≡ arg min
h∈TC(θ0)

Z0(h) + 1

2
h′Hh

is almost surely unique. Then Ĵn ≡ nγ (θ̂n − θ0) � J , Ĵ ∗
n ≡ ε

−2γ
n (θ̂∗

n − θ̂n)
P�
W

J , and Ĵ ∗
n ≡

ε
−2γ
n (θ̂∗

n − θ̂n) � J .

If θ0 is in the interior of C, then TC(θ0) = Rd and the proof of Theorem 4.1 can be applied.
In other special cases, the proof of Theorem 4.1 can also be applied without change to The-
orem 4.2, without having to appeal to the notion of epi-convergence. For example, it applies
when θ0 is on the boundary of C and C − θ0 already contains a cone at the origin, meaning
for any compact set K , ∃α > 0 such that TC(θ0) ∩ K ⊂ α(C − θ0) where C − θ0 is the tensor
product between a cone at the origin and an open set.

Theorem 4.2 is based on the M-estimation framework, but generalization to (correctly
specified) GMM models is immediate. In GMM models, θ̂n = arg minθ∈C nQ̂n(θ), where for
a positive definite W and Ŵ = W + oP (1)

Q̂n(θ) = π̂(θ)′Ŵ π̂(θ) and π̂(θ) = 1

n

n∑
i=1

π(zi, θ).

ASSUMPTION 4.1. 1. � is compact and π(θ) = Eπ(zi, θ). 2. π(θ) is four times contin-
uously differentiable. 3. {π(·, θ) : θ ∈ �} is a VC class of functions. 4. π(θ) = 0 if and only
θ = θ0 and θ0 ∈ C.

Define G0 = ∂
∂θ

π(θ0), and let 1√
n

∑n
i=1 π(zi, θ0) � Z = N(0,�). Also define �n =

G0W
1√
n

∑n
i=1 π(zi, θ0), �0 = G0WZ, and H = G0WG′

0. It is known (e.g., [13]) that As-
sumption 4.1 implies the following identification condition and quadratic expansion of the
objective function Q̂n(θ):

(4.6) ∀δ > 0,∃ε > 0 s.t. lim supP
(

inf|θ−θ0|≥δ
Q̂n(θ) − Q̂n(θ0) ≥ ε

)
= 1

and for Rn(θ) = nQ̂n(θ) − nQ̂n(θ0) − �′
n

√
n(θ − θ0) − n(θ − θ0)

′ H
2 (θ − θ0),

(4.7) ∀δn ↓ 0, sup
|θ−θ0|≤δn

|Rn(θ)|
1 + √

n|θ − θ0| + n|θ − θ0|2 = oP (1).
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Under (4.7), which also holds for most M-estimators, nQ̂n(θ) is locally approximated by a
quadratic function:

nQ̃n(θ) = 1

2

(√
n(θ − θ0) + H−1�n

)′
H

(√
n(θ − θ0) + H−1�n

) − 1

2
�′

nH
−1�n.

This leads to the asymptotic distribution

Ĵn = √
n(θ̂n − θ0)

� J = arg min
h∈TC(θ0)

(
h + H−1�0

)′
H

(
h + H−1�0

)
.

(4.8)

Each of the three unknown components can be consistently estimated. (1) Let Ĝ be ei-
ther ∂

∂θ
1
n

∑n
i=1 π(zi; θ̂n) or a numerical derivative analog, and let Ĥ = ĜŴ Ĝ′. (2) Let

�̂ = 1
n

∑n
i=1 π(zi; θ̂n)π(zi; θ̂n)

′. Then let Ẑ∗
n = N(0, �̂) be such that Ẑ∗

n
P�
W

Z, �̂∗
n = ĜWẐ∗

n

so that �̂∗
n

P�
W

�0. (3) Since TC(θ0) is the limit of
√

n(C − θ0), we can also estimate TC(θ0)

by ε−1
n (C − θ̂n). Therefore we define, with Ĝ

∗
n = −Ĥ−1�̂∗

n,

Ĵ ∗
n = arg min

h∈ε−1
n (C−θ̂n)

(
h − Ĝ

∗
n

)′
Ĥ

(
h − Ĝ

∗
n

)
.(4.9)

If C = {θ : θ ≥ 0}, then {h ∈ ε−1
n (C − θ̂n)} = {h ≥ −ε−1

n θ̂n}.
In the regular M-estimator problem where Q̂n(θ) = 1

n

∑n
i=1 π(zi, θ), we typically have

Ĥ = 1
n

∑n
i=1

∂2

∂θ∂θ ′ π(zi; θ̂n) or a numerical derivative analog, and �̂∗
n ∼ N(0, �̂), where �̂ =

1
n

∑n
i=1

∂
∂θ

π(zi; θ̂n)
∂
∂θ

π(zi; θ̂n)
′, or a numerical derivative analog.

THEOREM 4.3. Given (4.4), under (4.6) (implied by Assumption 4.1) and (4.7), (4.8)

holds, and Ĵ ∗
n

P�
W

J .

Theorem 4.2 allows for more general nonstandard asymptotics with γ = 1/3. Theorem 4.3
is only confined to the regular case of γ = 1/2, but can be easier to implement since the
objective function (h − Ĝ

∗
n)

′Ĥ (h − Ĝ
∗
n) is convex whenever Ĥ is positive semi-definite. In

particular, if C is a polyhedron, then the problem can be solved by quadratic programming.
If an unconstrained estimate θ̄n = arg minθ∈� Q̂n(θ) with θ0 ∈ int(�) is available, it is well

known that
√

n(θ̄n − θ0) = −H−1�n + oP (1) � −H−1�0, and that the bootstrap estimate

θ̄∗
n = arg minθ∈� Q̂∗

n(θ) also satisfies
√

n(θ̄∗
n − θ̄n)

P�
W

−H−1�0. Therefore, we can replace

Ĝ
∗
n = −Ĥ−1�̂∗

n with Ĝ
∗
n = √

n(θ̄∗
n − θ̄n). The proof of Theorem 4.3 goes through verbatim

with this replacement. Furthermore, a direct application of the numerical bootstrap in the
GMM setup approximates the distribution of

√
n(θ̂n − θ0) by that of ε−1

n (θ̂∗
n − θ̂n), where

θ̂∗
n = arg min

θ∈C
ε−2
n Q̂∗

n(θ), Q̂∗
n(θ) = π̂∗(θ)′Wπ̂∗(θ),(4.10)

π̂∗(θ) = Z∗
nπ(zi, θ) = (

Pn + εnĜ∗
n

)
π(zi, θ),(4.11)

and where Ĝ∗
n can be the multinomial bootstrap or the wild bootstrap or other schemes that

consistently estimate the limiting Gaussian process G0.

THEOREM 4.4. Under Assumption 4.1, Ĵ ∗
n = (θ̂∗

n−θ̂n)

εn

P�
W

J , for J defined in (4.8).
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4.2. Sample extremum: A counter example. We now provide a counter example in which
both the bootstrap and the numerical bootstrap fail, but subsampling and the m-out-of-n boot-
strap are valid. Let P ∼ U(0,1),

θ(P ) = inf
(
t : F(t) ≥ 1

) = 1,

θ(Pn) = inf
(
t : Fn(t) ≥ 1

) = max(X1, . . . ,Xn).

It is well known that for a(n) = n and E a standard exponential,

a(n)
(
θ(Pn) − θ(P )

)
� J = −E,(4.12)

which is also the limit of the subsampling distribution. In this one-dimensional example, G0
is the standard Brownian bridge B(t) on t ∈ (0,1) with covariance function min(s, t)− st for
0 ≤ s, t ≤ 1. Consider now

a

(
1

ε2
n

)(
θ(P + εnG0) − θ(P )

) = 1

ε2
n

(
θ(P + εnG0) − θ(P )

)
,(4.13)

where, since F(t) = t , G0 = B,

Tn ≡ θ(F + εnG0) ≡ inf
(
t : t + εnB(t) ≥ 1

) = inf
(
t : B(t) = 1 − t

εn

)
.

In other words, Tn is the first passage time of the standard Brownian bridge over the linear
barrier 1−t

εn
. It is known that B(t) has the same (joint) distribution as (1 − t)W( t

1−t
) where

W(·) is a standard Brownian motion. Therefore, Tn is equivalent in distribution to

Tn = inf
(
t : (1 − t)W

(
t

1 − t

)
= 1 − t

εn

)
= inf

(
t : W

(
t

1 − t

)
= 1

εn

)
.

This can be rewritten as Tn = τn

1+τn
, where τn = inf

(
t : W(t) = 1

εn

)
. It is a standard result that

P(τn ≤ t) = 2P

(
W(t) ≥ 1

εn

)
= 2 − 2


(
1

εn

√
t

)
.

Transforming τn monotonically to Tn,

P(Tn ≤ t) = 2 − 2


⎛
⎝ε−1

n

√
1 − t

t

⎞
⎠ .

Finally, consider Yn = 1
ε2
n
(Tn − 1) ∈ (−∞,0). For y > 0, as εn ↓ 0, we obtain a limit distri-

bution different from the exponential limit distribution.

P(Yn ≤ −y) = 2 − 2


⎛
⎜⎜⎝ 1

εn

√
−ε2

ny+1
ε2
ny

⎞
⎟⎟⎠ = 2 − 2


⎛
⎜⎜⎝ 1√

−ε2
ny+1
y

⎞
⎟⎟⎠ −→ 2 − 2
(

√
y).

Intuitively, what makes the limit distributions in (4.12) and (4.13) differ seems to be too much
dependence on the tail of G0(t) in (4.13). In particular, for Ĝn = √

n(Pn − P), let

θ(Pn) = θ

(
P + Ĝn√

n

)
= θ

(
P + Ĝn − G0√

n
+ G0√

n

)
.

We would expect that Ĝn − G0 = Op

(
1√
n

)
. In general, this should be smaller than G0 in

order of magnitude. However, in the sample extremum example, θ(P + εnG0) depends on a
point t∗ of G0(t) such that G0(t

∗) = Op

(
1√
n

)
. This makes Ĝn − G0 and G0 similar in order

of magnitude. The difference in the limit distributions of (4.12) and (4.13) results from the
non-negligible error in Ĝn − G0. In other words, we expect the numerical bootstrap method
to be valid whenever the error in Ĝn − G0 is small in comparison with G0.



408 H. HONG AND J. LI

TABLE 1
Standard and perturbation bootstrap equal-tailed coverage frequencies

Standard bootstrap Perturbation bootstrap

θ0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.488 0.494 0.500 0.514 0.504 0.490 0.497 0.500 0.509 0.504
(1.487) (1.495) (1.511) (1.533) (1.502) (1.548) (1.546) (1.548) (1.582) (1.552)

n = 500 0.552 0.585 0.572 0.543 0.589 0.606 0.621 0.620 0.604 0.635
(1.129) (1.096) (1.125) (1.114) (1.127) (1.339) (1.293) (1.317) (1.331) (1.331)

n = 1000 0.597 0.560 0.589 0.595 0.595 0.683 0.643 0.673 0.679 0.677
(0.922) (0.940) (0.925) (0.921) (0.957) (1.135) (1.143) (1.134) (1.123) (1.171)

n = 5000 0.638 0.627 0.625 0.636 0.674 0.751 0.738 0.752 0.755 0.780
(0.562) (0.566) (0.565) (0.576) (0.570) (0.721) (0.728) (0.727) (0.734) (0.729)

n = 10,000 0.644 0.664 0.645 0.638 0.665 0.763 0.763 0.770 0.763 0.782
(0.453) (0.459) (0.450) (0.459) (0.453) (0.578) (0.581) (0.584) (0.588) (0.579)

5. Monte Carlo simulations. We investigate the performance of the numerical boot-
strap for a modal estimator that is similar to example 3.2.13 in [34]. Let X1, . . . ,Xn be i.i.d.
random variables drawn from N(θ0,2). Define θ̂n = arg maxθ

1
n

∑n
i=1 1(θ − 5 ≤ Xi ≤ θ + 5),

the center of an interval of length 10 that contains the largest possible fraction of the ob-
servations. [34] shows that n1/3(θ̂n − θ0) converges in distribution to the maximizer of a
Gaussian process plus an additional quadratic term. We investigate the empirical coverage
frequencies of nominal 95% confidence intervals constructed using the standard bootstrap,
the perturbation bootstrap [14, 24], the numerical bootstrap with εn ∈ {n−1/3, n−1/4, n−1/6},
the m-out-of-n bootstrap [6, 30] with m ∈ {n2/3, n1/2, n1/3}, and subsampling [25] with
b ∈ {n2/3, n1/2, n1/3}. We consider several values of θ0 ∈ {−n−1/4,0, n−1, n−1/2,2} and sev-
eral values of n ∈ {100,500,1000,5000,10,000}. We use 1000 Monte Carlo simulations and
5000 bootstrap iterations. Tables 1 through 4 show the two-sided equal-tailed coverage fre-
quencies along with the average widths of the confidence intervals (in parentheses).

We can see that the standard bootstrap confidence intervals severely undercover for all
values of θ0. The perturbation bootstrap improves upon the standard bootstrap but still under-
covers for all θ0. The m-out-of-n bootstrap performs better than the perturbation bootstrap

TABLE 2
m-out-of-n and numerical bootstrap equal-tailed coverage for m = n2/3 and εn = n−1/3

m-out-of-n bootstrap Numerical bootstrap

θ0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.669 0.667 0.679 0.685 0.675 0.766 0.773 0.760 0.780 0.769
(1.806) (1.809) (1.798) (1.821) (1.807) (2.998) (3.004) (3.010) (3.012) (3.006)

n = 500 0.762 0.785 0.776 0.772 0.795 0.855 0.890 0.880 0.849 0.880
(1.322) (1.305) (1.295) (1.311) (1.303) (1.645) (1.633) (1.635) (1.640) (1.634)

n = 1000 0.791 0.814 0.806 0.817 0.803 0.895 0.866 0.872 0.886 0.872
(1.064) (1.063) (1.059) (1.067) (1.069) (1.254) (1.255) (1.254) (1.254) (1.253)

n = 5000 0.843 0.826 0.839 0.840 0.850 0.900 0.876 0.880 0.878 0.900
(0.625) (0.625) (0.623) (0.623) (0.625) (0.678) (0.677) (0.676) (0.677) (0.679)

n = 10,000 0.864 0.864 0.859 0.853 0.865 0.880 0.877 0.879 0.878 0.884
(0.495) (0.494) (0.494) (0.496) (0.496) (0.524) (0.525) (0.525) (0.526) (0.526)
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TABLE 3
m-out-of-n and numerical bootstrap equal-tailed coverage for m = n1/2 and εn = n−1/4

m-out-of-n bootstrap Numerical bootstrap

θ0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.710 0.729 0.724 0.722 0.724 0.822 0.817 0.820 0.824 0.823
(1.861) (1.872) (1.861) (1.878) (1.864) (3.068) (3.072) (3.077) (3.083) (3.077)

n = 500 0.783 0.796 0.777 0.781 0.798 0.922 0.946 0.927 0.914 0.930
(1.299) (1.285) (1.284) (1.287) (1.289) (1.793) (1.784) (1.789) (1.786) (1.786)

n = 1000 0.783 0.815 0.792 0.812 0.808 0.950 0.935 0.938 0.947 0.941
(1.048) (1.049) (1.046) (1.053) (1.048) (1.397) (1.396) (1.397) (1.396) (1.396)

n = 5000 0.849 0.827 0.837 0.856 0.864 0.955 0.945 0.949 0.958 0.956
(0.636) (0.634) (0.634) (0.633) (0.633) (0.772) (0.771) (0.770) (0.771) (0.771)

n = 10,000 0.879 0.887 0.865 0.873 0.879 0.962 0.954 0.945 0.957 0.953
(0.506) (0.506) (0.506) (0.506) (0.507) (0.595) (0.595) (0.595) (0.595) (0.595)

but still gives coverage less than the nominal frequency for all values of m. For each εn, the
numerical bootstrap outperforms the m-out-of-n bootstrap with m = ε−2

n .
We next use a version of the double bootstrap algorithm described in [12] and ref-

erences therein to find the optimal choice of εn for n = 1000. Many other possibilities
for choosing εn exist, and an extensive discussion of the theoretical properties of each
method is beyond the scope of the paper. Starting from the smallest value in a grid of
εn ∈ {n−1/2, n−1/3, . . . , n−1/15}, the algorithm draws B1 = 5000 bootstrap samples and com-
putes bootstrap estimates θ̂

(b1)
n . Conditional on each of these bootstrap samples, the algorithm

draws B2 = 5000 bootstrap samples and computes bootstrap estimates θ̂
(b1,b2)
n . The algorithm

then computes the empirical frequency with which equal tailed intervals centered at θ̂
(b1)
n

cover θ̂n. If the current value of εn achieves coverage at or above the nominal frequency, then
it picks that value as the optimal εn. Otherwise, it increments εn to the next highest value in
the grid and repeats the steps above.

Table 5 shows the double bootstrap coverage frequencies for εn ∈ {n−1/2, n−1/3, . . . ,

n−1/11} and θ0 ∈ {−n−1/4,0, n−1, n−1/2,2}. The coverage frequencies for the other values
of εn are all less than the nominal frequency. We see that the smallest value of εn for which

TABLE 4
m-out-of-n and numerical bootstrap equal-tailed coverage for m = n1/3 and εn = n−1/6

m-out-of-n bootstrap Numerical bootstrap

θ0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.719 0.729 0.736 0.726 0.730 0.835 0.830 0.832 0.833 0.842
(1.823) (1.828) (1.817) (1.839) (1.827) (2.944) (2.947) (2.948) (2.947) (2.950)

n = 500 0.715 0.722 0.734 0.727 0.728 0.945 0.961 0.942 0.940 0.947
(1.186) (1.179) (1.176) (1.180) (1.182) (1.793) (1.789) (1.790) (1.792) (1.789)

n = 1000 0.694 0.721 0.705 0.715 0.733 0.969 0.963 0.964 0.967 0.963
(0.954) (0.958) (0.955) (0.957) (0.959) (1.433) (1.433) (1.432) (1.433) (1.434)

n = 5000 0.750 0.724 0.735 0.771 0.761 0.982 0.982 0.974 0.981 0.978
(0.592) (0.593) (0.591) (0.590) (0.591) (0.839) (0.839) (0.839) (0.839) (0.838)

n = 10,000 0.791 0.793 0.774 0.775 0.811 0.983 0.986 0.988 0.982 0.978
(0.481) (0.481) (0.481) (0.481) (0.481) (0.662) (0.662) (0.662) (0.662) (0.663)
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TABLE 5
Double bootstrap equal-tailed coverage frequencies

θ0/εn n−1/2 n−1/3 n−1/4 n−1/5 n−1/6 n−1/7 n−1/8 n−1/9 n−1/10 n−1/11

0 0.8754 0.9838 0.9816 0.9556 0.9482 0.9502 0.9502 0.8692 0.8650 0.8732
1/n 0.8754 0.9838 0.9816 0.9572 0.9502 0.9510 0.9454 0.8668 0.8732 0.8528
1/

√
n 0.8796 0.9820 0.9830 0.9582 0.9510 0.9464 0.9470 0.8744 0.8528 0.8598

n−1/4 0.8754 0.9838 0.9816 0.9556 0.9482 0.9502 0.9502 0.8668 0.8732 0.8528
2 0.8754 0.9838 0.9816 0.9556 0.9482 0.9502 0.9502 0.8692 0.8650 0.8732

the coverage exceeds the nominal frequency is n−1/3. However, at this value, the coverage
is around 0.98 for all θ0, which is much higher than the nominal frequency of 0.95. It might
make more sense to choose a value of εn for which the coverage is closer to the nominal
frequency, for example n−1/5.

Due to space constraints, results for subsampling and one-sided confidence intervals are
in the Supplementary Material. Simulation results for the LASSO estimator in the one-
dimensional mean model are also in the Supplementary Material.
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SUPPLEMENTARY MATERIAL

Supplement to “The numerical bootstrap” (DOI: 10.1214/19-AOS1812SUPP; .pdf).
The supplement contains a list of commonly used symbols, proofs of the theorems, further
discussion of local asymptotics, and additional simulation results. Also included is a discus-
sion of sample size dependent statistics, the role of recentering in hypothesis testing, estimat-
ing an unknown polynomial convergence rate, and inference for partially identified models.
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