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We consider a random geometric graph G(χn, rn), given by connecting
two vertices of a Poisson point process χn of intensity n on the d-dimensional
unit torus whenever their distance is smaller than the parameter rn. The model
is conditioned on the rare event that the number of edges observed, |E|, is
greater than (1 + δ)E(|E|), for some fixed δ > 0. This article proves that
upon conditioning, with high probability there exists a ball of diameter rn
which contains a clique of at least

√
2δE(|E|)(1 − ε) vertices, for any given

ε > 0. Intuitively, this region contains all the “excess” edges the graph is
forced to contain by the conditioning event, up to lower order corrections.
As a consequence of this result, we prove a large deviations principle for the
upper tail of the edge count of the random geometric graph. The rate function
of this large deviation principle turns out to be nonconvex.

1. Introduction. The random geometric graph is a simple stochastic model, first studied
in [20] in 1972, for generating a graph: given the parameters n and r , consider a Poisson point
process of intensity n on the d-dimensional unit torus, equipped with a translation-invariant
metric inherited from a norm ‖·‖ on Euclidean space (which may not be the Euclidean norm),
and declare an edge between any two vertices that are at distance ≤ r from each other.

Unlike the well-known Erdős–Rényi random graph, the random geometric graph’s defini-
tion leads to strong dependence between edges: if three vertices form a “V” shaped graph,
they are far more likely to have the third edge of the triangle than if no assumption were made
on the other edges, as a consequence of the triangle inequality.

Many properties of this graph model have been studied. The classic monograph of Mathew
Penrose [33] studies results pertaining to many graph-theoretical functions of random geo-
metric graphs, including (but not limited to) laws of large numbers and central limit theorems
for subgraph counts, independence number and chromatic number, as well as many proper-
ties connected to the giant component. Many of the results presented in this monograph have
been improved and generalized by Penrose and others in the years since its initial publication.
Besides this, there have been investigations into other probabilistic features, such as threshold
functions for cover times and mixing times [3] and thresholds for monotone graph functions
[18]. This list is far from comprehensive, of course, and the random geometric graph remains
an active object of research.

The random geometric graph is also closely related to the random connection continuum
percolation model. In that model, the vertex set is given by an (almost surely infinite) Poisson
point process of fixed intensity on Rd , and two points are connected with some probability
that varies (and usually decreases) with their distance. In particular, the special case in which
the radius of connection is deterministically fixed at 1 was the model that initiated the study of
this kind of random geometry, in the seminal paper of Gilbert [17]. The properties of interest
in this model are the existence of an infinite connected component, as well as the behavior
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of the subset of Rd that is at distance at most 1 from one of the vertices of the graph (the
so-called “Poisson blob”) and its complement (the “vacant set”). Continuum percolation is
treated in detail in a book-length monograph by Meester and Roy [30], as well as in the book
by Grimmett [19].

Most of the work done on random geometric graphs is concerned with either the behavior
of a typical graph—the graph we are likely to see for a given r as n goes to infinity—or typical
deviations from that behavior—that is, central limit theorems. In this paper, we are concerned
with the behavior of the model conditioned on a rare event. Specifically, we will study the
random geometric graph conditioned on having many more edges than is expected (a formal
description will follow). The large deviation regime of the upper tail of any subgraph count of
the random geometric graph is not well understood, though some bounds are available: Janson
[24] established concentration inequalities for U -statistics, a general class of statistics which
includes the subgraph counts we are interested in. These upper bounds work in very general
settings, but are not tight, even up to constants in the exponent. Large deviation principles
have been proven for functionals of random point processes in which the contribution of any
particular vertex is uniformly bounded [37], but no such bound is known for functionals with
possibly large influence, such as the edge count of the graph.

As motivation for this detailed study, we consider the problem in a more familiar context:
the “infamous upper tail” [26] of the triangle count T in the Erdős–Rényi random graph,
G(n,p). After many years of development of increasingly strong bounds, the first break-
through was made by Kim and Vu [27] and Janson et al. [25] independently, who proved
that, for any δ > 0 and whenever p � (logn)/n,

exp
[−c(δ)n2p2 log(1/p)

] ≤ P
[
T > (1 + δ)E[T ]] ≤ exp

[−C(δ)n2p2]
,

where c(·) and C(·) depend only on δ. Recently, there has been renewed interest in these type
of tail estimates. In 2010, Chatterjee [7] and Demarco and Kahn [12] (in independent works)
established the correct order of the upper tail of triangles and other small cliques by adding the
missing logarithmic term to the upper bound, without providing good control of the leading-
order constants. The work of Chatterjee and Dembo [10] on nonlinear large deviations proved
that the upper tail probability can be described in terms of a continuous variational problem
when p is vanishing sufficiently slowly—namely, when n−1/42 � p � 1. Generalizations
and expansions of the approach by Eldan [14] established the variational equivalence for
n−1/18 logn � p � 1; Cook and Dembo [11] proved the result for n−1/3 � p � 1, and
Augeri [2] did the same for n−1/2(logn)2 � p � 1. Lubetzky and Zhao [29] solved the
variational problem for triangles (Bhattacharya, Ganguly, Lubetzky and Zhao [5] did the
same for more general subgraphs), which thus calculated both the order and the leading-order
constant for the upper tail question in a certain regime of sparse Erdős–Rényi random graphs.
The main results and ideas from this body of work are summarized in the survey article [8].
Recently, Harel, Mousset and Samotij [21] used a combinatorial approach to prove that the
upper tail probability of the subgraph count of any fixed, regular graph can be expressed
in terms of the solution of a discrete variational problem for nearly all values of p where
localization is believed to hold. Unfortunately, all the papers described above are only valid
for functions of independent Bernoulli random variables, and are therefore not applicable to
the problem we are studying here.

In this work, we use the properties the random geometric graph inherits from the geometry
of Rd to evaluate the upper tail large deviation rate function. In addition, we provide a “struc-
ture theorem” to describe the graph-theoretical structure of the model conditioned on having
too many edges. Specifically, we show that such a conditional model exhibits localization.
Heuristically, this phenomenon can be described as a scenario in which a small number of
vertices will contribute almost all the extra edges that we require the graph to exhibit, while
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the edge count of the “bulk” of the graph will remain largely unchanged, in some weak sense.
Furthermore, we will show that the geometry of the localized region has the shape of a ball
in the given norm (we will make these two statements more precise at the end of the next
section). Outside of the aforementioned works of Lubetzky and Zhao [29], Bhattacharya et
al. [5] and Harel, Mousset and Samotij [21] in the Erdős–Rényi model, this work is the only
(as far as the authors are aware) to establish that the large deviation regime of a subgraph
count is (weakly) equivalent to planting a combinatorial structure in the usual, unconditional
graph.

The fact that large deviation events may be dominated by configurations with a small
number of very large contributions was known relatively early in the history of large devia-
tion theory: a survey by Nagaev [32], summarizing a series of papers written in the Soviet
Union in the 1960s and 70s, includes this observation for sums of i.i.d. random variables
with stretched-exponential tails. In our context, the natural combinatorial structure for cre-
ating many edges with a small number of edges is a “giant clique.” The clique number, the
(typical) size of the largest clique of the random geometric graph, falls under the general class
of scan statistics, and has been shown to focus on two values with high probability for certain
values of r (see [31, 34]); however, these works do not explore the large deviation regime.
Our work uses techniques from large deviations, concentration inequalities, convex analy-
sis and geometric measure theory. A key component in the proof is a technique for proving
localization that has previously appeared in [39] and [9].

2. Definitions and main results. Let χn be a Poisson point process of intensity n on
the d-dimensional unit torus T

d = [0,1]d . For any S ⊂ T
d , we denote the restriction of χn

to S by χn(S). Let N := |χn|. Recall that N is a Poisson random variable with mean n, and
conditional on N , χn is just a set of N points, each chosen independently and uniformly at
random. Let rn be a positive sequence that decreases to 0 as n → ∞, and ‖ · ‖ be some norm
on R

d that induces a translation-invariant metric on T
d . We define the random geometric

graph G(χn, rn) := (V ,E), where V = χn = {v1, . . . , vN }, enumerated arbitrarily, and E is
the set of unordered pairs {i, j} such that ‖vi −vj‖ ≤ rn. Figure 1 shows a particular instance
of G(χ150,0.1).

FIG. 1. An instance of the random geometric graph G(χ150,0.1), with respect to the Euclidean norm. The graph
has 148 vertices and 343 edges. The gray area is the white unit square translated, to show periodicity.
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Letting 1i,j be the indicator that there is an edge between vi and vj , we can calculate the
expected value of |E|, the number of edges in the graph

E
(|E|) = E

( ∑
1≤i<j≤N

1i,j

)
= E

[(
N

2

)
E(11,2 | N)

]

= n2

2
· P(‖v1 − v2‖ ≤ rn

)
.

Denoting Lebesgue measure on both R
d and T

d by λ(·), we define

ν := λ
[{

x ∈ R
d : ‖x‖ ≤ 1

}]
to be the volume of the unit ball in the norm ‖ ·‖. Then, by translation invariance of the metric
induced on T

d , P(‖v1 − v2‖ ≤ rn) is simply νrd
n , as long as rn is sufficiently small (to ensure

the ball on the torus has the same measure as the one in R
d )

μn := E
(|E|) = ν · n2rd

n

2
.

We can also compute the variance of |E|:

(2.1)

Var
(|E|) = E

[
Var

(|E| | N)] + Var
(
E

[|E| | N])
= E

[
E

( ∑
1≤i<j≤N,1≤i′<j ′≤n

(
1i,j − νrd

n

)(
1i′,j ′ − νrd

n

) | N
)]

+ (
νrd

n

)2 Var
[(

N

2

)]

= n2

2

(
νrd

n − ν2r2d
n

) +
(
n3 + n2

2

)
ν2r2d

n

= μn

(
1 + 2νnrd

n

)
,

where we note that (i, j) �= (i ′, j ′) implies that the indicators 1i,j and 1i′,j ′ are conditionally
independent. This implies that, as long as μn → ∞, Var(|E|) � μ2

n, and |E| concentrates
around its mean by Chebyshev’s inequality.

For the rest of the article, we suppose the existence of a fixed constant δ∗ > 0 such that,
for all sufficiently large n,

(2.2) n(δ∗−2)/d ≤ rn ≤ n−δ∗/d .

The lower bound ensures that the expected number of edges grows as a positive power of n;
the upper bound excludes the possibility of rn = n−o(1), that is, bounded above and below
by nε and n−ε , respectively, for any fixed ε > 0 and n ≥ n0, for some n0 depending on ε.
We will reuse the notation no(1) throughout the paper in this sense, and we will allow the
(implicit) ε to depend on any fixed parameter other than n. We define the parameter p as

(2.3) p := lim
n→∞

logμn

logn
,

implicitly assuming that the limit exists. This ensures that μn = f (n)np , where f (n) = no(1).
Notice that

(2.4) δ∗ ≤ p ≤ 2 − δ∗,
thanks to (2.2). We will say the random geometric graph is admissible if rn satisfies (2.2) and
the limit above exists.

The following theorem is the main result of the paper.
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THEOREM 2.1. Let G(χn, rn) be an admissible random geometric graph model on T
d

with respect to some norm ‖ · ‖. Define

τn := ν · (rn/2)d,

that is, τn is the volume of a ball of diameter rn. Fix δ > 0 and ε > 0, and let Fn(ε) be the
event that there exists a ball B of diameter rn such that:

(1) any convex set S ⊂ B satisfies∣∣∣∣ |χn(S)|√
2δμn

− λ(S)

τn

∣∣∣∣ < ε,

(2) for any convex set S′ ⊂ Bc such that diam(S′) ≤ rn and λ(S′) > ετn,

|χn(S
′)|√

2δμn

< ε · λ(S′)
τn

.

Then

lim
n→∞P

[
Fn(ε) | |E| > (1 + δ)μn

] = 1.

As a consequence of Theorem 2.1, we prove that the upper tail of the edge count of random
geometric graphs satisfies a large deviation principle. Recall that a sequence of nonnegative
random variables Xn satisfies an upper tail large deviation principle with speed s(n) and rate
function I (x) if, for any closed set F ⊂ (0,∞),

lim sup
n→∞

1

s(n)
logP

(
Xn −E[Xn]

E[Xn] ∈ F

)
≤ − inf

x∈F
I (x),

and for any open set G ⊂ [0,∞),

lim inf
n→∞

1

s(n)
logP

(
Xn −E[Xn]

E[Xn] ∈ G

)
≥ − inf

x∈G
I (x).

(For more on large deviation principles and their applications see, e.g., [13].) The following
theorem gives the upper tail large deviation principle for the number of edges in a random
geometric graph.

THEOREM 2.2. Let G(χn, rn) be an admissible random geometric graph model on the
d-dimensional torus, with the same assumptions as in Theorem 2.1. Define

I (x) :=
(

2 − p

2

)√
2x,

where p is defined as in (2.3). Then |E| satisfies an upper tail large deviation principle with
speed s(n) = √

μn logn and rate function I (x).

There are several important features to the two main theorems of this paper: first, both
describe models in which the number of edges significantly exceeds its mean. The lower tail
of the edge count—that is, events of the form {|E| < (1− δ)μn}—is likely to satisfy Poisson-
like statistics. Its large deviation principle is expected to hold with speed μn, and no special
combinatorial structure like the “giant clique” of Theorem 2.1 should appear.

Before we go on, let us comment on the precise properties of the giant clique given by our
two main theorems. Since the rate function of Theorem 2.2 is strictly increasing, we know
that, conditional on {|E| > (1 + δ)μn}, the event{(

1 + δ′)μn > |E| > (1 + δ)μn

}
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occurs with high probability (i.e., probability at least 1 − ε) for any δ′ > δ and n sufficiently
large. Now, if we set S = B in the first stipulation of Theorem 2.1, we see that the ball B

of diameter rn makes up a clique of at least
√

2δμn(1 − ε) vertices and, therefore, at least
δμn(1−2ε) edges. Since ε and δ′ − δ are arbitrarily close to zero, we find that the clique in B

has δμn + o(μn) edges, whereas the rest of the graph has μn + o(μn) edges. This formalizes
our earlier claim that “almost all extra edges in the conditional model are between points in
B .”

Theorem 2.1 also gives information about the internal geometry of the giant clique. If
we pick S to be a proper convex subset of the ball B , we find that |χn(S)| proportional to√

2δμn times the density of S in B (again, up to lower order corrections). We restricted
S to be convex in order to preclude pathological sets, such as sets which are sparse but of
large measure (e.g., generalized Cantor sets) or have boundaries that take up a large amount
of space. It should be possible to replace convexity with a weaker assumption. That being
said, probing the Poisson point process χn with convex S ⊂ B is enough to establish that the
conditional process, restricted to B , is distributed roughly uniformly, up to errors that vanish
in comparison to

√
μn.

Finally, we would like to say that there are no other large cliques in G(χn, rn) conditioned
on {|E| > (1+δ)μn}; unfortunately, Theorem 2.1 does not provide this result. Instead, we can
only be sure that every other clique outside of the “exceptional” set B has o(

√
μn) vertices,

that is, much smaller than the largest clique.

3. The s-graded model. Henceforth in the manuscript, we will suppress the subscript n

and write χ , μ, τ and r instead of χn, μn, τn and rn.
We now present an approximation of the random geometric model which allows us to

replace the Poisson point process with a sequence of independent Poisson random variables.
To do this, we first discretize space, and then produce a semimetric on the resulting “cells”
that approximates the norm ‖ · ‖ on the unit torus. We call this the s-graded model.

For a positive integer s, define

m := �s/r�,
so that

s

r
− 1 ≤ m ≤ s

r
.

This definition and (2.3) imply that

(3.1) md = n2−p+o(1),

where the constant in the o(1) depends on s. Let T = {1,2, . . . ,m}d . Pick I = (i1, i2, . . . ,

id) ∈ T , and define

AI =
[
i1 − 1

m
,
i1

m

]
× · · · ×

[
id − 1

m
,
id

m

]
.

The AI ’s partition the unit torus into md cubes (ignoring sets of measure 0), each of volume
1/md and, therefore, XI = |χ(AI )| is a Poisson random variable of mean

(3.2) D := n

md
.

We now define a semimetric on T , induced by the norm on torus:

(3.3) ρ(I, J ) = inf
x∈Ao

I ,y∈Ao
J

⌈
m‖x − y‖⌉

,
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where the circles indicate the interiors of the sets. Note that the ρ(·, ·) is always an integer.
Moreover, ρ(I, J ) = z if z is the smallest integer such that some point in Ao

I and some
point in Ao

J are less than z away, measured in units of 1/m, the side length of the cubes.
We force the points to be in the interior to prevent “trivialities,” such as two adjacent cells
being distance 0, since they share a boundary. Note that ρ(·, ·) does not satisfy the triangle
inequality, and hence is only a semimetric. To see this, consider T

5 under the Euclidean
norm, and the cells A1 = A(1,...,1), A2 = A(2,...,2) and A3 = A(3,...,3). Since A1 and A2 share
a corner, ρ(A1,A2) = 1, and the same holds for ρ(A2,A3). However, ρ(A1,A3) = √

5 >

1 + 1 = ρ(A1,A2)+ρ(A2,A3). But ρ does satisfy a modified triangle inequality of the form
ρ(I, J ) ≤ ρ(I,K) + ρ(K,J ) + Cd , where Cd depends only on the dimension and choice of
norm, though we never make explicit use of this fact.

We are now ready to define the s-graded random geometric graph. Let Gs(χ, r) = (V ,Es)

have the same vertex set as the original graph. For each vertex v, let Iv be the index in T

such that v ∈ AIv ; there is ambiguity on the boundary of the AI ’s, but that set has Lebesgue
measure 0 and, therefore, it has no vertices of χ , almost surely. We say (v,w) ∈ Es whenever
ρ(Iv, Iw) ≤ s. Heuristically, the s-graded model allows every point to wander inside a cubical
“cage” of side-length 1/m, and connects any two points that might be connected after we
allow this mobility. In this framework, it is clear that Es becomes smaller as s decreases.
In fact, for sufficiently large s, Es is identical to E; unfortunately, this s will be random. In
formulating Theorem 3.1, the main theorem of this section (which is proved in Section 5),
we will let s be an arbitrary positive integer, and discuss its asymptotic properties as n goes
to infinity. Later, in Sections 6 and 7, we will take s to sufficiently large, and show that the
resulting approximation is good enough for our purposes.

Having defined the s-graded model, we now need to compute several quantities related to
it, as we did for the random geometric graph in Section 2. We will denote s-graded model
variables with tildes, to distinguish them from similar variables defined by the continuous
geometry of the T

d . We will say Gs(χ, r) = (V ,Es) is admissible whenever the random
geometric graph G(χ, r) is admissible.

The major benefit of the s-graded model is that its edge count is very simple to express in
terms of XI , the number of points in each AI :

(3.4)

|Es | =
∑
I∈T

[(
XI

2

)
+ 1

2

∑
J :0<ρ(I,J )≤s

XIXJ

]

= 1

2

∑
I∈T

XI

[( ∑
J :ρ(I,J )≤s

XJ

)
− 1

]
.

This random variable is defined in terms of i.i.d. random variables, which eases the analysis
greatly. The geometric relations that define the edge count are now completely encoded by
ρ. Finally, each XI only appears in finitely many terms in this expression (i.e., the number of
terms involving XI is uniformly bounded in n). The “finite range” nature of the representation
will play a major role in the proof presented.

We quantify this fact as follows: for any I ∈ T , let

ÑI := {
J : ρ(I, J ) ≤ s

}
.

Thanks to translation invariance of ρ, the cardinality of this set is independent of the choice
of I . Using this parameter, we can compute the expected number of edges in the s-graded
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random geometric graph easily:

(3.5)

μ̃s := E
(|Es |)

= ∑
I∈T

E

[(
XI

2

)
+ 1

2

∑
J :0<ρ(I,J )≤s

E(XI )E(XJ )

]

= |ÑI |mdD2

2
= |ÑI |n2

2md
,

where we recall that D is the mean of XI , and the defining relation (3.2). The variance of |Es |
is also straightforward to calculate from the above representation, though the exact formula is
messy. Instead, we produce an upper bound: the variance of |Es | can be thought of as the sum
of (E[QI · QI ′ ] − E[QI ]2), where QI is the summand in (3.4) and I, I ′ ∈ T . This quantity
is maximized when I = I ′, and is zero if the two terms are independent. Thus, we find that

Var
[|Es |] ≤ ∑

I∈T

|S̃I | ·E
([(

XI

2

)
+ 1

2

∑
J :0<ρ(I,J )≤s

XIXJ − |ÑI |D2

2

]2)
,

where

S̃I := {J : ÑI ∩ ÑJ �= ∅}.
A straightforward (if elaborate) computation can show that this implies that

(3.6) Var
[|Es |] ≤ 16|S̃I ||ÑI |2md · max

{
D3,D2}

.

In Lemma 5.1 below, we will show that both |ÑI | and |S̃I | are uniformly bounded in n.
Together with (3.5) and (3.2), this implies that, for any s, Var[|Es |] � μ̃2

s , and hence |Es |
concentrates around its mean by Chebyshev’s inequality.

As before, we are interested in conditioning the s-graded model on the event {|Es | > (1 +
δ̃)μ̃s}. Following Theorem 2.1, we expect that such conditional measures will be concentrated
on configurations with many points on sets of diameter s and maximal cardinality. We call a
set of indices a maximal clique set if it is a subset of T with diameter ≤ s that achieves the
maximal cardinality of all such sets. We define

(3.7) τ̃s := max
{|I| : I⊂ T ,diam(I) ≤ s

}
,

that is, τ̃s is the cardinality of a maximal clique set. Clearly, τ̃s is increasing in s, and

(3.8) τ̃s ≥ τ̃1 ≥ 2d,

as the diameter of the set {I = (η1, . . . , ηn) : ηi ∈ {1,2}} under the semi-metric ρ(·, ·) is
exactly 1, as all the AI ’s share a corner. We will also need an approximate notion of this
geometric object: we say a set is a ε̃-almost maximal clique set if its diameter is bounded
above by s, and its cardinality is at least (1 − ε̃)τ̃s .

We can now state the equivalent to Theorem 2.1 for the s-graded model.

THEOREM 3.1. Let s be a positive integer. Consider Gs(χ, r), an admissible s-graded
random geometric graph. For any δ̃ > 0, define the event Ln(δ̃) by

Ln(δ̃) := {|Es | > (1 + δ̃)μ̃s

}
.

For any ε̃ > 0, let Gn,δ̃(ε̃) be the event there exists a pair of sets B and C in T such that:

(1) B is a ε̃-almost maximal clique set,
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(2) for all I ∈ B, ∣∣∣∣ τ̃sXI

(2δ̃μ̃s)1/2
− 1

∣∣∣∣ < ε̃,

(3) C satisfies

|C| < ε̃ · τ̃s and
∑
I∈C

XI < ε̃ · (2δ̃μ̃s)
1/2

and
(4) for all J ∈ (B∪ C)c,

τ̃sXJ

(2δ̃μ̃s)1/2
< ε̃.

There is a universal constant ε̃0 > 0 such that the following is true. Take any ε̃ ∈ (0, ε̃0),
any positive integer s, and any three numbers 0 < δ̃0 ≤ δ̃ ≤ 
̃0. Then there is an integer n0
depending only on s, ε̃, δ̃0 and 
̃0, such that whenever n ≥ n0,

P
[
Gn,δ̃(ε̃)

c ∩ Ln(δ̃)
]

≤ 3 exp
(
−(2δ̃μ̃s)

1/2
[
log

(
(2δ̃μ̃s)

1/2

τ̃s · D
)

− 1 + (ε̃/10)10/2
])

.

Because of its technical nature, Theorem 3.1 warrants a short explanation. It turns out that
it is possible to show that, for some η > 0,

P
[
Ln(δ̃)

] ≥ exp
(
−(2δ̃μ̃s)

1/2
[
log

(
(2δ̃μ̃s)

1/2

τ̃s · D
)

− 1
]

− Cnp/2−η

)
.

This bound comes from explicitly “planting” a maximal clique set where every cell includes
exactly �(2δ̃μ̃s)

1/2/τ̃s� vertices; we will not prove this fact, but Lemma 6.5 will show a very
similar computation for the edge count of the random geometric graph. In Lemma 5.1 below,
we will show that |ÑI | is uniformly bounded in n for any s > 0. Together with the fact that δ̃ is
uniformly bounded above and below in n, this implies that (2δ̃μ̃s)

1/2 = np/2+o(1) � np/2−η.
Therefore, Theorem 3.1 shows that, with high probability, the event Gn,δ̃(ε̃) occurs in the
conditional s-graded model.

The event Gn,δ̃(ε̃) produces a set B, which is very close to a maximal clique set, in which

each XI is very close to
√

2δ̃μ̃s/τ̃s—the value we would expect if we were to spread the√
2δ̃μ̃s vertices required to make a “giant” clique evenly among the τ̃s elements of a maximal

clique set. In addition, we allow for an “exceptional” set C, where some XI ’s may be much
larger than this average amount. However, this exceptional set is made up of few indices, and

includes few vertices of χ , when compared with
√

2δ̃μ̃s . Outside of these two sets, every XJ

is at most ε̃

√
2δ̃μ̃s/τ̃s—a lower order quantity when compared to the bounds on XI , I ∈ B.

When this event fires, the conditional s-graded model has a clique with approximately δ̃μ̃s

edges. We also know that the vertices are distributed roughly uniformly. Finally, we get a
quantitative estimate on the probability that the edge count of the s-graded model exceeds its
mean without the desired structure occurring. Note that the constants and 10th power of ε̃ that
appears in the quantitative bound are somewhat arbitrary—we made no attempts to optimize
them.

Suppose that ε̃ < (2τ̃s)
−1. In this case, Gn,δ̃(ε̃) would require |B| ≥ τ̃s − 1/2 and |C| ≤

1/2, that is, C is empty and B is a true maximal clique set. Thus, Theorem 3.1 can be used
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to show that the s-graded model conditioned on Ln(δ̃) will include a maximal clique set
housing a clique of at least δ̃μ̃s(1 − o(1)) edges. Unfortunately, the quantitative estimate on
the probability of Gn,δ̃(ε̃)

c ∩Ln(δ̃) in this case is not sufficiently good to deduce Theorem 2.1.
This is the reason for the introduction of the ε̃-almost maximal clique sets, which allow us to
deduce a stronger upper bound on the probability that Gn,δ̃(ε̃) does not occur—at the price of
dealing with more flexible geometric constructions.

4. Outline of the proof. Before embarking on a proper proof, we sketch the main
ideas required. We recall that δ∗ > 0 is a fixed positive number and that p is given by
limn→∞ logμ/ logn. We will define

a := δ∗

25
.

Later, we will also pick two positive real numbers α, β as some quantities depending on p

and a. All of these quantities will be fixed throughout the paper. We further note that, for
any admissible graph, r → 0 as n → ∞. For the remainder of the paper, we will take the
statement “n is sufficiently large” to imply that r is sufficiently small.

We begin by carefully analyzing the s-graded model. We order the indices I by the size
of XI , the point counts of the AI ’s. Explicitly, we pick a bijection from T to {1,2, . . . ,md}
such that

X1 ≥ X2 ≥ · · · ≥ Xmd .

For notational convenience, we set

q = (2δ̃μ̃s)
1/2, w = τ̃s · D .

Picking a as above, we set M = �D� · na , and let TM be the greatest I such that XI ≥ M .
We define

I= {1,2, . . . ,TM}, ordered by size as above,

to be the set of indices whose associated point counts XI exceed their mean (corrected for
integrality) by a fixed polynomial factor. Furthermore, define

YI := XI

(
log(XI/D) − 1

) + D,

and

Q(I) := 2

q2

∑
I∈I

[(
XI

2

)
+ 1

2

∑
J∈ÑI ∩I

J �=I

XIXJ

]

and

V (I) := 1

q

∑
I∈I

XI .

The first quantity is an appropriately chosen convex function of the XI ’s, while the second is
a scaled version of the number of edges with both endpoints in the AI ’s associated with I,
and the third controls the number of vertices in I.

Let ξ > 0 be a fixed constant independent of n. Consider the event

Hξ =
{
Q(I) ≥ 1 − ξ

logn

}
∩

{
1

q

∑
I∈I

YI ≤ log(q/w) − 1 + ξ

}
.
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The main probabilistic analysis of this paper occurs in two sections: the first uses large devi-
ation estimates to control sums of i.i.d. random variables, and the second employs concentra-
tion inequalities for more complicated functions. Together, this work allows us to show that,
for sufficiently large values of n and small values of ξ ,

P
[
H c

ξ ∩ Ln(δ̃)
] ≤ 3 exp

(
−q

[
log

(
q

w

)
− 1 + ξ/2

])
.

It turns out that, if we set ξ ≤ (ε̃/10)10, any I ⊂ T that satisfies both the quadratic lower
bound and the convex upper bound that define Hξ (as well as a mild bound on TM and
V (I)) contains in it a ε̃-almost maximal clique set B and an exceptional set C that satisfy the
four stipulations of Gn,δ̃(ε̃)! This nontrivial statement implies Gn,δ̃(ε̃)

c ⊂ H c
ξ , whenever ξ ≤

(ε̃/10)10 – and, in particular, {Gn,δ̃(ε̃)
c ∩Ln(δ̃)} ⊂ {H c

ξ ∩Ln(δ̃)}. This proves Theorem 3.1.
The proof of the above implication is not straightforward, and we will deduce it in several

steps. We emphasize that this is a completely deterministic property of configurations that
satisfy a certain set of inequalities. The next two paragraphs sketch the argument used to
prove this implication.

Set TV to be

TV := min
{
k : V ({1, . . . , k}) > 1 − 2ξ

logn

}
and T := {1, . . . ,TV }.

Careful use of minimality and Jensen’s inequality proves that

V (T) ≤ 1 + φ(TV ), Q(T) ≥ 1 − ψ(TV ),

where φ(·) and ψ(·) are explicit functions, bounded above by 1/(logn)1/2, that are nonin-
creasing in their arguments. One of the difficulties we encounter is that we do not have good
upper bounds on TV , and thus must have bounds that improve whenever the parameter grows.

We set TP to be the greatest integer I smaller than TV that satisfies XI > ξq/τ̃s . Setting
P = {1,2, . . . ,TP }, we now have a set of indices whose associated XI ’s are commensurate
with q . We proceed to show that the diameter of P cannot exceed s without violating either
the lower bound on Q(T) or the upper bound on V (T). Together with technical estimates that
force TP ≥ τ̃s(1 − ξ1/3), we find that P is an ξ1/3-almost maximal clique set. Moreover, a
quantitative version of Jensen’s inequality allows us to break P into B and C, the required
sets. Finally, we can show that XTP +1 vanishes sufficiently quickly to complete the proof of
Theorem 3.1.

We then move on to proving that Theorem 3.1 implies Theorem 2.1. To do so, we first
show that we can approximate any convex subset S of a ball of diameter r from both the
inside and the outside by a union of AI ’s using the tools of geometric measure theory. Next,
we use the classical isodiametric inequality to show that the AI ’s associated with a s−1/20-
almost maximal clique set approximate a ball of diameter r , in the sense of the Hausdorff
metric.

Next, we fix ε > 0, and show that, for sufficiently large s and δ̃ ∈ [(1−ε/16)δ, δ], the event
Gn,δ̃(s

−1/20) will imply Fn(ε). We then apply Theorem 3.1 with δ̃ as above and ε̃ = s−1/20

to get an upper bound on the probability of {Fn(ε)
c ∩ Ln(δ̃)}. Combining this bound with

a good lower bound on the probability of {|E| > (1 + δ)μ} (to be derived directly from the
Poisson point process) and a well-known correlation inequality gives Theorem 2.1.

The final section of the paper proves the large deviation principle of Theorem 2.2. We use
the first stipulation of Theorem 2.1 and the s-graded model to compute the upper bound.
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5. Analysis of the s-graded model. In this section, we analyze the s-graded model and
prove Theorem 3.1. At the very beginning, let us now fix a positive integer s and numbers
0 < δ̃0 ≤ δ̃ ≤ 
̃0. We will figure out the universal constant ε̃0 later. Throughout, whenever
we say “n sufficiently large,” we will mean “n ≥ n0 for some n0 that depends only on s, ε̃,
δ̃0, and 
̃0”.

5.1. Controlling the natural parameters of the s-graded model. The geometric properties
of the s-graded model are not quite comparable to those of the random geometric graph; most
obviously, the s-graded model has a discrete geometry induced by the semi-metric ρ(·, ·) on
T . We begin with a very useful lemma, which tells us that the parameters of the s-graded
model are close to their appropriate equivalents on T

d . To do so, we define three operators:
first, let U send a set of indices to the union of their associated AI ’s, that is, for any I⊂ T ,

(5.1) U(I) := ⋃
I∈I

AI .

In the other direction, we must be more careful. Let K ⊂ T
d , we define R(K) and O(K) to

be the maximal (resp., minimal) subsets of T such that

(5.2) U
(
R(K)

) ⊂ K and K \ K ′ ⊂ U
(
O(K)

)
,

where K ′ is some subset of K of Lebesgue measure 0; this modification allows us to not deal
with certain trivialities. We note that R(K) may be empty, and O(K) may be T , even when
K or T \ K are nonempty. Alternatively, we may define O(K) by

O(K) := {
I ∈ T : λ(

K ∩ U(I )
)
> 0

}
.

We recall several definitions: μ = E(|E|), μ̃s = E(|Es |) and τ = ν(r/2)d . We set |ÑI | to
be the number of indices satisfying ρ(I, J ) ≤ s, and S̃I = {J : ÑI ∩ ÑJ �= ∅}. Finally, τ̃s is
the cardinality of a maximal clique set (as defined in (3.7)).

LEMMA 5.1. We have E ⊂ Es , and there exist constants C, s0 and n0 depending only
on the dimension and the chosen norm of the torus, such that, if s ≥ s0 and n ≥ n0, then

μ ≤ μ̃s ≤ μ

(
1 + C

s

)

and

mdτ ≤ τ̃s ≤ mdτ

(
1 + C

s

)
.

Furthermore, |ÑI |, |S̃I | and τ̃s are uniformly bounded in n.

In this section, we will only use this lemma to establish that certain quantities are uniform
in n; in Section 6, we will strongly use the fact that the estimates become tight as s grows.

PROOF. Pick an arbitrary I and consider U(ÑI ). By definition of ρ(·, ·) and s, this set
includes a ball of radius r around any point in AI . Therefore, any pair (v,w) ∈ E must also
be in Es , giving the first stipulation. Since this inclusion holds for any configuration of the
underlying Poisson point process, this also gives μ ≤ μ̃s .

Now, define ς to be the diameter of the unit cube under the norm ‖ · ‖—that is,

(5.3) ς := sup
x,y∈[0,1]d

‖x − y‖.
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Fix I , and let x and y be two fixed points in AI and U(ÑI ), respectively. Letting J be an
index for which y ∈ AJ , we pick arbitrary points z and w in AI and AJ , respectively. Then
the triangle inequality for ‖ · ‖ implies that

‖x − y‖ ≤ ‖x − z‖ + ‖z − w‖ + ‖w − z‖ ≤ ‖z − w‖ + 2ς

m
,

where we bound the first and last terms by ς/m using scaling of the norm. Since z and w are
arbitrary, we can take an infimum over all choices of z and w in A◦

I and A◦
J , respectively, and

conclude that

‖x − y‖ ≤ s + 2ς

m
≤ (s + 2ς)r

s − r
,

where we use that m ≥ s/r − 1, by definition. Therefore, U(ÑI ) is contained in a ball of
radius r(1 + 3ς/s) around any point in AI , for sufficiently large value of s and n (recalling
that r is vanishing in n). Since each AI is of measure of m−d , we deduce that

|ÑI | = mdλ
(
U(ÑI )

) ≤ νmdrd

(
1 + 3ς

s

)d

≤ νmdrd

(
1 + 6dς

s

)
,

where the final inequality follows because (1 + x)d ≤ 1 + (2d)x for all sufficiently small x.
Substituting this into the definition of μ̃s produces the desired inequality on μ̃s . Repeating
a similar analysis will show that the set U({J : ÑI ∩ ÑJ �= ∅}) is a subset of some ball of
radius 2r(1 + 3ς/s), and thus

|S̃I | ≤ νmd(2r)d
(

1 + 6dς

s

)
.

Next, we wish to control τ̃s . For the lower bound, let B ⊂ T
d be an arbitrary ball (in ‖ · ‖)

of diameter r . Consider O(B). By minimality, λ(AI ∩B) > 0 for every I ∈ O(B). Therefore,

max
I,J∈O(B)

[
inf

x∈Ao
I ,y∈Ao

J

‖x − y‖
]
≤ r,

which implies, by the definition of ρ(·, ·), that the diameter O(B) is at most s. Meanwhile,
by inclusion, and the fact that λ(AI ) = 1/md for every I ,∣∣O(B)

∣∣ > mdλ(B) = mdτ,

completing the lower bound.
For the upper bound, pick any W ⊂ T such that

λ
(
U(W)

) ≥ τ

(
1 + C

s

)
.

Applying the isodiametric inequality for finite dimensional normed spaces [6], page 93, and
choosing C and s0 sufficiently large gives

diam
(
U(W)

) ≥ r

(
1 + C

s

)1/d

≥ r

(
1 + 4ς

s − r

)
.

This implies that the diameter of W is at least s + 1. Therefore, any set W of diameter at
most s must satisfy λ(U(W)) < τ(1 + c/S), and

|W| = md · λ(
U(W)

) ≤ mdτ

(
1 + C

s

)
,

as required.
The uniform bounds on |ÑI |, |S̃I |, and τ̃s follow from md ≤ sd/rd and the above formulae.

�

An immediate corollary to this theorem is that, assuming (2.3), μ̃s = np+o(1).
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5.2. Large deviation estimates. The probabilistic bounds we need in this work are di-
vided into two parts. The first involves good control on the deviation of sums of i.i.d. random
variables. Our main tools here will be Chernoff bounds, as well as exact lower bounds.

Recall from Section 4 that q = (2δ̃μ̃s)
1/2, w = τ̃s · D and Ln(δ̃) = {|Es | > (1 + δ̃)μ̃s}.

By our assumptions on δ̃, (3.2), (3.5) and Lemma 5.1, we have that q = np/2+o(1) and w =
np−1+o(1). Since p/2 > p−1 for any admissible s-graded model, we can increase n to ensure
that q > 3w. We will assume this inequality for the rest of the paper.

We begin by recalling some classical bounds on the Poisson distribution (for proof, see
[13], page 35, e.g.).

LEMMA 5.2. Let XI be a Poisson random variable with mean D . Then, for any t > D ,

P[XI ≥ t] ≤ exp
(−t

[
log(t/D) − 1

] − D
)
,

and for any t < D ,

P[XI ≤ t] ≤ exp
(−t

[
log(t/D) − 1

] − D
)
.

These bounds, which are given by explicitly computing exponential moment generating
functions, are tight up to polynomial factors, and will be very important in the nearly exact
computations we do in the proceeding lemmas.

We now define a random ordering of T according to the XI . Specifically, we pick a bijec-
tion from T to {1,2, . . . ,md} such that

X1 ≥ X2 ≥ · · · ≥ Xmd .

This bijection is not unique, as each XI is integer-valued, and there may be many I ’s whose
associated XI ’s are equal. However, all the statements will be true independently of the par-
ticular choice of bijection. Next, fix a = δ∗/25, and define M by

(5.4) M := �D� · na.

The number M is defined so to be a threshold of density for XI —if XI < M , we say it is in
the bulk of the graph. We expect that, even conditional on Ln(δ̃), most indices I will be in
the bulk. To formalize this, we let

TM := max{I : XI ≥ M}.
The next proposition controls the tail of TM .

PROPOSITION 5.3. Let

α = min{1 − p/2 − a/2,p/2 − a/2}.
Let A be the event {TM ≥ nα}. Then, for all sufficiently large n,

P[A ] ≤ exp
(−np/2+a/3)

.

The number α will remain fixed to the value above for the remainder of the paper. We note
that α < 2 − p for any admissible s-graded model and, therefore, nα � md (using (3.1)).
Thus, we find that, with very high probability, the complement of the bulk takes up a vanish-
ing proportion of T .

PROOF OF PROPOSITION 5.3. The event A implies the existence of some W ⊂ T such
that, for all I ∈ W, XI > M , and |W| > �nα�. By the union bound,

P[A ] ≤
(

md

�nα�
)

· P[XI > M]nα

.
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Using the upper tail bound in Lemma 5.2 and the brutal bound
(m
k

)
< mk , this implies that

P[A ] ≤ md(nα+1) · exp
(−nαM

[
log(M/D) − 1

])
≤ exp

(
d
(
nα + 1

)
logm − nα+a�D�).

Since logm is bounded above by C logn for some uniform constant C (by Lemma 5.1), we
can increase n to ensure that

P[A ] ≤ exp
(
−nα+a · �D�

2

)
.

If D ≤ 1, then the ceiling function is 1 and α = p/2 − a/2. Increasing n until np/2+a/2/2 >

np/2+a/3 completes this case. If D > 1, then we bound �D� by D itself. By definition,

Dnα+a = nmin{3p/2−1+a/2,p/2+a/2}+o(1).

In the case p ≥ 1, the exponent is always minimized by the second choice. This completes
the proof. �

The second estimate of this section will be used to control the behavior of the elements
outside the bulk. Define

YI = XI

(
log(XI/D) − 1

) + D,

with the convention that 0 · log 0 = 0. Note that YI = I (XI ), where I is the rate function
of a Poisson random variable of mean D . This implies that YI ≥ 0 and vanishes only at D .
I is a convex function, and thus we can bound the sum of the YI ’s by a function of the sum
of the XI ’s, using Jensen’s inequality. Furthermore, P[YI > t] should vanish as exp(−t), by
“inverting” the rate function. We formalize this notion in the lemma below.

LEMMA 5.4. For any D , and any positive λ < 1,

E
[
exp(λYI )

] ≤ 1 + λ

1 − λ
.

PROOF. The function I (x) = x[log(x/D) − 1] + D is not invertible, but is piecewise
invertible. First, let

g1(x) : [0,D] → [0,D] be a function such that (I ◦ g1)(x) = x.

Note that this function is decreasing, with g1(0) = D and g1(D) = 0. For any x > D , we say
that g1(x) = −∞. We define g2, the second inverse, similarly, except its domain is defined to
be (D,∞). This inverse is strictly increasing. Thus,

P[YI ≥ t] = P
[
XI ≤ g1(t)

] + P
[
XI ≥ g2(t)

]
.

By appealing to the two bounds of Lemma 5.2, we find that both the probabilities above
are bounded above by exp(−t); in fact, if t > D , the first probability is identically zero.
Regardless, it will suffice to use the bound P[YI > t] < 2e−t . Thus, for any λ < 1,

E
[
exp(λYI )

] = 1 +
∫ ∞

1
P

[
YI >

log t

λ

]
dt

≤ 1 + 2
∫ ∞

1
t−1/λ dt

= 1 + λ

1 − λ
,

as required. �
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We now uses the lemma to control the upper tail of the sum of the YI ’s over any sufficiently
small subset of T . We will only apply the proposition below on the set {1,2, . . . ,TM} (which
will be small with good probability from Proposition 5.3), but it is actually more straightfor-
ward to consider the existence of a subset with bad properties, in order to avoid conditional
probabilities.

PROPOSITION 5.5. Let YI as above, and α as in Proposition 5.3. Define the event

Bξ :=
{
∃W⊂ T , |W| ≤ nα such that

∑
I∈W

YI > q
(
log(q/w) − 1

) + ξq

}
.

Then, for all sufficiently large n,

P[Bξ ] ≤ exp
(−q

[
log(q/w) − 1 + ξ/2

])
.

PROOF. Set t = q(log(q/w)−1+ξ). Fix W⊂ T with cardinality at most nα . By Cheby-
shev’s inequality,

P

[ ∑
I∈W

YI > t

]
≤ (exp(λYI ))

nα

exp(λt)

≤
(

1 + λ

1 − λ

)nα

· e−λt ,

where the second inequality is Lemma 5.4.
We now set λ = 1 − nα/t , noting that, for sufficiently large n, λ > 0 (since nα � q). This

turns the above estimate into

P

[ ∑
I∈W

YI > t

]
≤ (

2t/nα)nα · e−t+nα

≤ exp
(−t + Cnα logn

)
.

The final step is to apply the union bound:

P[B] ≤
�nα�∑
k=1

(
md

k

)
· e−t+Cnα logn

≤ nα

(
md

nα

)
· e−t+Cnα logn

≤ md(nα+1) · e−t+Cnα logn.

Recalling Lemma 5.1, we see that the combinatorial term in the final inequality is bounded
above by exp(Cnα logn) for some (probably different) C. Since q � nα logn, the entire
positive contribution can be bounded above by ξq/2. This completes the proof. �

5.3. Concentration inequalities. This section will prove concentration of the edge count
of the random geometric graph restricted to the bulk. Explicitly, let

X̂I := XI · 1XI <M

and ˆ|Es | be the define analogously with |Es | by replacing XI with its truncated version (recall
that M = �D� · na). In other words, ˆ|Es | is the version of the edge count of Gs obtained after
deleting all vertices lying in AI ’s that satisfy XI ≥ M .
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For the rest of the paper, fix

β = p − 2a.

Consider the event

C = {|Ês | − μ̃s > nβ}
.

We control the probability of C in two regimes. We begin by assuming that D < logn.
Our strategy for proving an upper bound on C in this regime relies on Talagrand’s convex

concentration inequality [38], Theorem 4.1.1. First, let us define the setting: let � = ∏N
i=1 �i ,

where �i are all probability spaces and the measure P on � is the product measure. For a set
A ⊂ �, define the set

UA(x) := {{si} ∈ {0,1}N : ∃y ∈ A, si = 0 =⇒ xi = yi

}
.

Let VA(x) be the convex hull of UA(x), and dc(A,x) is the �2 distance of VA(x) to the origin.
For any set A, we denote At be the t blowup of A with respect to this metric, that is,

At := {
x ∈ � : dc(A,x) ≤ t

}
.

We can now state the inequality.

THEOREM 5.6 (Talagrand’s inequality [38]). If �, P[·], A and At are as above, then

P[A](1 − P[At ]) ≤ e−t2/4.

We will not apply this theorem directly; instead, we use a corollary of this theorem fre-
quently used in discrete settings [1], Theorem 7.7.1. To do so, we consider a random variable
X defined on the space �, and a function f from the natural numbers to the natural num-
bers. We say that f is a witness function for X if, whenever X(ω) ≥ t , there exists I ⊂ [n]
with |I | ≤ f (t), such that every ω′ that agrees with ω in all i ∈ I has X(ω′) ≥ t . Further-
more, we assume that X(ω) is K-Lipschitz with respect to the Hamming distance, that is,
|X(ω) − X(ω′)| ≤ K whenever ω and ω′ differ in at most one coordinate.

THEOREM 5.7 ([1]). Let � be a product space, and X a real valued function on � with
Lipschitz constant K with respect to the Hamming distance. If f is witness function for X as
above, then, for any b and t ,

P
[
X > b + tK

√
f (b)

]
P[X ≤ b] ≤ exp

(−t2/4
)
.

With this preliminary complete, we will prove the following lemma.

LEMMA 5.8. Let C be as above, and assume that D < logn. Then, for all sufficiently
large n,

P[C ] ≤ exp
(−n2β−p−6a)

.

PROOF. Thanks to our assumption on D , M < na logn. We now apply Theorem 5.7
to X = ˆ|Es |, considered as a function of the XI ’s. Since each coordinate is bounded above
by na logn, X is Lipschitz with K ≤ |ÑI |n2a log2 n. The function f (w) = 2w is a witness
function for ˆ|Es |; to see this, note that ˆ|Es | is the edge count of the s-graded geometric
random graph, after we remove any XI with very high density. As such, we can “witness”
the existence of w edges by finding at most 2w vertices; the flexibility of the setup allows
us to pick these vertices judiciously, avoiding all the isolated ones. Finding 2w vertices will
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require at most 2w distinct coordinates, if each one of them vertices lies in a distinct AI . Note
that this bound may be very loose—whenever 2w > md , we can easily just check every AI

to witness ˆ|Es | > w.
We apply the theorem with b = μ̃s + nβ/ logn and

t = nβ(1 − 1/ logn)

|ÑI |n2a log2 n · [2μ̃s + 2nβ/ logn]1/2
.

We deduce that

(5.5)

P[C ] · P[ ˆ|Es | ≤ μ̃s + nβ/ logn
]

≤ exp
(
− n2β [1 − 1/ logn]2

8|ÑI |2n4a log4 n[μ̃s + nβ/ logn]
)

≤ exp
(−n2β−p−5a)

,

where the final inequality holds for sufficiently large n, using the fact that μ̃s = np+o(1) �
nβ/ logn and the fact that |ÑI | is uniformly bounded in n.

To complete the proof, we must show that P[ ˆ|Es | ≤ μ̃s +nβ/ logn] is not too small. Since
the mean of ˆ|Es | is strictly smaller than the mean of |Es |, it is enough to show that

P
[ ˆ|Es | −E

[ ˆ|Es |] ≥ nβ/ logn
]
< ε.

We will produce a very crude bound on the variance of ˆ|Es |: let ẐI = X̂I (
∑

J∈ÑI
X̂J − 1).

Then, clearly,

Var
[ ˆ|Es |] = ∑

I,J

E
[(

ẐI −E[ẐI ])(ẐJ −E[ẐJ ])]

≤ ∑
I

|S̃I | ·E[(
ẐI −E[ẐI ])2]

.

A straightforward computation will show that, for some constant C independent of n,

E
[(

ẐI −E[ẐI ])2] ≤ C
(
D2 + D4)

.

Since D < logn and |S̃I | is uniformly bounded in n (from Lemma 5.1), this implies that
Var[ ˆ|Es |] < np+o(1), and Chebyshev’s inequality gives that

P
[ ˆ|Es | −E

[ ˆ|Es |] ≥ nβ/ logn
] ≤ np−2β+o(1).

For any admissible value of p, this function vanishes as n increases, and P[ ˆ|Es | ≤ μ̃s +
nβ/ logn] > 1 − ε. Substituting this into (5.5) gives us

P[C ] ≤ exp
(−n2β−p−6a)

,

completing the proof. �

Next, assume that D ≥ logn. In this regime, we replace Talagrand’s inequality with the
celebrated Azuma–Hoeffding inequality.

THEOREM 5.9 (Azuma–Hoeffding inequality [4, 22]). Let {Z0,Z1, . . . ,Zn} be a mar-
tingale sequence with |Zk − Zk−1| < ck for all k. Then

P
[|Zn − Z0| > t

] ≤ 2 exp
(
− t2

2
∑n

k=1 c2
k

)
.
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We wish to prove the following lemma, bounding the probability of the event C .

LEMMA 5.10. Assume that D ≥ logn. Then, for all n sufficiently large,

P[C ] ≤ exp
(
− n2β

mdD3n6a

)
.

We note that a naive application of Azuma–Hoeffding to the martingale given by condi-
tioning on the value of X̂I would give a bound on the probability of C which depends on the
fourth power of D−1, not the third as in the lemma—an inferior bound. Thus, we need to be
more careful in this analysis.

PROOF. We partition AI into sets of measure 1/n; formally, let {FI,t }, for natural t ≤
�D� be a collection of disjoint subsets of AI such that λ(FI,t ) = 1/n for every t ≤ �D� − 1,
and ⋃

t

FI,t = AI .

Note that the measure of the final FI,t will be strictly smaller than 1/n, unless D is an integer.
We define WI,t = |χ(FI,t )|.

Clearly,
∑

t WI,t = XI . Define |Es | as (yet another!) truncation of |Es |. Specifically, let
WI,t = WI,t · 1WI,t<na/2, and define |Es | by replacing each XI in the definition of |Es | by∑

t WI,t . Note that |Es | is a function of md�D� independent random variables. Letting F ′
�

be the σ -algebra generated by the first � WI,t ’s (enumerated arbitrarily), we once again have
a martingale sequence Z′

� = E[|Es | | F ′
�]. We also have that∣∣Z′

� − Z′
�−1

∣∣ ≤ |ÑI | · �D�n2a.

Thus, Azuma–Hoeffding implies that

P
[|Es | − μ̃s > nβ/2

] ≤ P
[|Es | −E

[|Es |] > nβ/2
]

≤ 2 exp
(
− n2β

8md�D�3|ÑI |2n4a

)
,

where the first line follows since μ̃s > E[|Es |]. Using the uniform bound on |ÑI |, we deduce
that

P
[|Es | − μ̃s > nβ/2

] ≤ exp
(
− n2β+o(1)

mdD3n4a

)

≤ exp
(
− n2β

mdD3n5a

)
.

By partitioning,

(5.6) P[C ] ≤ P
[|Es | − μ̃s > nβ/2

] + P
[
C , |Es | − μ̃s < nβ/2

]
.

The second event on the right-hand side implies the event

E := {|Ês | − |Es | > nβ/2
}
.

The lemma will follow if we can produce a good upper bound on the probability of the
event E .
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The difference between the random variables |Ês | and |Es | is given by configurations in
which at least WI,t is larger than na/2. In fact,

ˆ|Es | − |Es | <
∑
(I,t)

[
(WI,t · 1WI,t>na/2) · ∑

J :ρ(I,J )≤s

(XJ · 1XJ <�D�na )

]
.

While the random variables in the expression above are far from independent, we can replace
the second sum over the XJ ’s by |ÑI | · �D�na , the upper bound imposed on it by the indicator
random variables involved. Therefore,

P[E ] ≤ P

[∑
(I,t)

(WI,t · 1WI,t>na/2) >
Cnβ

Dna

]
.

To bound this final probability, we can directly bound the exponential moment of WI,t ·
1WI,t>na/2:

E
[
exp(WI,t · 1WI,t>na/2)

] ≤ 1 + ∑
k>na/2

ek

k! ≤ 1 + exp
(−na)

.

The first inequality follows because WI,t is a Poisson random variable of mean 1 (or possibly
less than 1, if we pick the small WI,t in each I ), while the second can deduced by using
Stirling’s approximation and explicitly summing.

Applying a Chernoff strategy, we find that

P

[∑
(I,t)

(WI,t · 1WI,t>na/2) >
Cnβ

Dna

]
≤ (

1 + exp
(−na))md(D+1) · exp

(
−Cnβ

Dna

)
.

Using the standard approximation (1 + x) ≤ ex , we find that the prefactor is bounded by 2
for all n sufficiently large.

Substituting the bounds into (5.6) gives

P[C ] ≤ exp
(
− n2β

mdD3n5a

)
+ 2 exp

(
−Cnβ

Dna

)
.

The first term vanishes like exp(−n1−9a+o(1)), whereas the second vanishes as
exp(−n1−7a+o(1)). Therefore, we conclude that

P[C ] ≤ exp
(
− n2β

mdD3n6a

)
,

as required. �

5.4. Reducing to deterministic inequalities. The final probabilistic step of this proof in-
volves bounding the probability of a rather complicated set of simultaneous inequalities.
Luckily, instead of dealing with the event itself, we will control it using the events A , Bξ ,
and C , whose probability we controlled previously.

Recall that

V (W) = 1

q

∑
I∈W

XI .

We also recall from the outline that, for any W ⊂ T , we set

(5.7) Q(W) := 2

q2

∑
I∈W

((
XI

2

)
+ 1

2

∑
J∈ÑI ∩W

J �=I

XIXJ

)
.
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This counts the number of edges with both endpoints in AI ’s with I ∈ W, normalized b
q2/2; this choice will avoid many unnecessary factors in our later analysis. This immediately
implies that, for any W⊂ T ,

Q(W) ≤ [
V (W)

]2
.

Using this notation, we can formulate Jensen’s inequality in the following way.

LEMMA 5.11. For any W⊂ T ,

1

q

∑
I∈W

YI ≥ V (W)

[
log

(
q

w

)
+ logV (W) − log

( |W|
τ̃s

)
− 1

]
.

PROOF. This is a direct application of Jensen’s inequality to the convex function YI =
XI(log(XI/D) − 1) + D . It implies that

∑
I∈W

YI ≥ qV (W)

[
log

(
qV (W)

|W|D
)

− 1
]

+ D |W|.

Dividing through by q , using the definition of w, and ignoring the positive additive term
D |W|/q gives the bound above. �

We now begin the part of the analysis where we will obtain the universal constant ε̃0 in the
statement of Theorem 3.1. For that, we first introduce a parameter ξ > 0. We will eventually
define ε̃ in terms of ξ . In the following, wherever we say “ξ sufficiently small,” we mean
“ξ ≤ ξ0 for some universal constant ξ0.” The meaning of “n sufficiently large” will remain as
it is.

Recall that TM := max{I : XI ≥ M}, and let I := {1,2, . . . ,TM}. Given ξ > 0 and a
constant C which does not depend on n, we define Hξ to be the event that the following four
inequalities hold:

TM < nα,(5.8)

1

q

∑
I∈I

YI ≤ log(q/w) − 1 + ξ,(5.9)

V (I) < C,(5.10)

Q(I) ≥ 1 − ξ

logn
.(5.11)

PROPOSITION 5.12. Define Hξ as above. Then, for all n sufficiently large and ξ suffi-
ciently small,

P
[
H c

ξ ∩ Ln(δ̃)
] ≤ 3 exp

(−q
[
log(q/w) − 1 + ξ/2

])
.

PROOF. Suppose that A c ∩ Bc
ξ ∩ C c ∩ Ln(δ̃) implies Hξ . If this were true, then the

union bound would imply that

P
[
H c

ξ ∩ Ln(δ̃)
] ≤ P[A ] + P[Bξ ] + P[C ].

The right-hand side of the proposition above can be expressed as e−np/2+o(1)
. Therefore, for

all sufficiently large n, Proposition 5.3 implies that

P[A ] · exp
(
q
[
log(q/w) − 1 + ξ/2

]) ≤ exp
(−np/2+a/3 + np/2+o(1)) < 1,
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where the final inequality follows because the first exponent is larger than p/2 for all admis-
sible values of p. Similar analysis of exponents and Lemma 5.8 tell us that, if D < logn and
n is large,

P[C ] · exp(q
[
log(q/w) − 1 + ξ/2

] ≤ exp
(−n2β−p−6a + np/2+o(1)) < 1.

When D > logn, P[C ] < exp(−n1−10a−o(1)) by Lemma 5.10, and, for all n sufficiently large,

P[C ] · exp
(
q
[
log(q/w) − 1 + ξ/2

]) ≤ exp
(−n1−10a + np/2+o(1)) < 1.

Finally, Proposition 5.5 bounds the probability of Bξ by the right-hand side. We conclude
that, if A c ∩ Bc

ξ ∩ C c ∩ Ln(δ̃) implies Hξ ,

P
[
H c

ξ ∩ Ln(δ̃)
] ≤ 3 exp

(−q
[
log(q/w) − 1 + ξ/2

])
.

For the remainder of this proof, we condition on the event A c ∩Bc
ξ ∩C c ∩Ln(δ̃). The event

A c automatically implies (5.8). With this bound on TM , (5.9) is immediate from Bc
ξ . Next,

we apply Lemma 5.11 to the sum of the YI ’s over I ∈ I to deduce that

V (I)

[
log

(
qτ̃s

w · TM

)
− 1

]
+ V (I) logV (I) ≤ log(q/w) − 1 + ξ.

If V (I) ≤ 1, we have a (much better than needed) bound on V (I). Otherwise, V (I) logV (I)

is positive, and we conclude that

V (I) ≤ log(q/w) − 1 + ξ

log(qτ̃s/(w · TM)) − 1
.

By (5.8) and the definitions of the variables q , w and α,

(5.12)
qτ̃s

w · TM

≥ na/2+o(1).

Therefore, the denominator grows at least as a constant multiple of logn. Meanwhile, q/w ≤
n1−p/2+o(1). This proves (5.10).

For the final stipulation, we use the event Ln(δ̃) ∩ C c. By C c,

(5.13)
(
q2/2

) · Q(
Ic) − μ̃s ≤ nβ.

By the occurrence of Ln(δ̃),

q2

2

(
Q(I) + Q

(
Ic)) +

(∑
I∈I

∑
J∈ÑI ∩Ic

XIXJ

)
≥ (1 + δ̃)μ̃s,

where the first term counts edges with both endpoints either in or outside the bulk, whereas
the sum counts the number of edges with exactly one endpoint in the bulk. Using the upper
bound on Q(Ic) given by (5.13), we deduce that

(5.14) Q(I) + 2

q2

(∑
I∈I

∑
J∈ÑI ∩Ic

XIXJ

)
≥ 1 − 2nβ

q2 .

By definition, XJ ≤ M whenever J /∈ I and, therefore,

2

q2

(∑
I∈I

∑
J∈ÑI ∩Ic

XIXJ

)
≤ 2|ÑI |M

q
· V (I).

Recalling (5.4), we see that

M

q
= nmax{a−p/2+o(1),p/2−1+a+o(1)}.
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The exponent is always negative and, therefore, for any admissible s-graded model, M/q <

ξ/(2C logn) for sufficiently large n. By (5.10) and Lemma 5.1, V (I) and |ÑI | are uni-
formly bounded in n. Similarly, we can increase n sufficiently to ensure that (2nβ)/q2 is
also bounded above by ξ/(2 logn) (which is possible thanks to the definition of β). Substi-
tuting the bounds into (5.14) shows that A c ∩ Bc

ξ ∩ C c ∩ Ln(δ̃) implies Hξ , completing the
proof. �

5.5. Controlling the linear sum. The rest of the section is dedicated to analyzing config-
urations in Hξ . We will condition on this event, that is, assume that the four inequalities in
the definition hold, and show that subsets with certain properties exist. We emphasize that
the statement will hold for any positive integer s, asymptotically in n. The number ξ will be
chosen to be sufficiently small for certain estimates to hold.

Define TV by

(5.15) TV := min
{
k : V ({1, . . . , k}) > 1 − 2ξ

logn

}
.

A priori, the set T := {1,2, . . . ,TV } may include some elements of the bulk. The next lemma
proves that not only are all these indices away from bulk, but, in fact, restricting our attention
to T does not force us to ignore too many edges.

LEMMA 5.13. Define T as above, and assume that Hξ holds. Then, for all n sufficiently
large and ξ sufficiently small, the following holds:

τ̃s

(
1 − ξ1/2) ≤ TV ≤ TM,

Q(T) ≥ 1 − ψ(TV )

and

1 − 2ξ

logn
≤ V (T) ≤ 1 + φ(TV ),

where

φ(x) = min
{
C[log(x/τ̃s) + ξ ]

logn
,

2

x

}

and

ψ(x) = min
{
C[1 + log(x/τ̃s)]

logn
,
C′

x

}
+ ξ

logn

for some constants C and C ′ independent of n.

The exact forms of φ and ψ are chosen to make the proof more transparent. The important
feature of the functions are that φ and ψ decrease for large x, providing better bounds when-
ever TV is large. Since we have no a priori bound for this cardinality, this will be crucial for
later analysis. Furthermore, for any positive x and sufficiently large value of n,

(5.16) max
{
ψ(x),φ(x)

} ≤ 1√
logn

.

PROOF OF LEMMA 5.13. Since Q(I) ≥ 1 − ξ/ logn (by (5.11)), we know that

V (I) ≥ √
Q(I) ≥ 1 − ξ/ logn,
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which immediately implies TV ≤ TM . Since YI ≥ 0, the upper bound (5.9) in the definition
of Hξ can be applied to elements of T. Applying Lemma 5.11 to this set, we deduce that

(5.17) V (T)

[
log

(
q

w

)
+ logV (T) − log

(
TV

τ̃s

)
− 1

]
≤ log

(
q

w

)
+ ξ − 1.

By definition, V (T) is at least 1 − 2ξ/ logn. Noting that

log
(

1 − 2ξ

logn

)
≥ −4ξ

logn

for all sufficiently large n, we can conclude that

−
(

1 − 2ξ

logn

)
log

(
TV

τ̃s

)
≤ ξ + 2ξ log(q/w)

logn
+ Cξ

logn
.

We recall that q/w ≤ n1−p/2+o(1), and therefore there exists a constant C such that

− log
(

TV

τ̃s

)
≤ Cξ.

Inverting the negative logarithm gives

TV ≥ τ̃s exp(−Cξ) ≥ τ̃s(1 − Cξ) ≥ τ̃s

(
1 − ξ1/2)

,

where the final inequality holds for all sufficiently small ξ , as required.
We prove the upper bound on V (T) by proving a bound that holds for all values of TV ,

and then improving it in the case TV < logn. We observe that the definition of the ordering
of the XI ’s implies that XTV

is equal to the minimum of the set {X1,X2, . . . ,XTV
}, and thus

(5.18)
XTV

q
≤ V (T)

TV

.

Furthermore, by minimality of TV ,

V
(
T \ {XTV

}) ≤ 1 − 2ξ

logn
.

Recall that τ̃s ≥ 2d (from (3.8)) and, therefore, TV > (1 − ξ1/2)τ̃s implies that TV ≥ 2 for
any ξ sufficiently small. Since V (T) = V (T \ {XTV

}) + XTV
/q , we deduce that

V (T) ≤ 1 − (2ξ)/(logn)

1 − 1/TV

≤ 1 + 2

TV

− 2ξ

logn
.

Ignoring the negative contribution 2ξ/ logn gives the desired bound.
Whenever TV ≥ logn, an explicit computation will show that φ(TV ) = 2/TV for all suf-

ficiently large n. Thus, to complete the bound on V (T), we may assume that TV < logn. We
now return to (5.17). If V (T) ≤ 1, we are done. Otherwise, V (T) logV (T) is positive, and
thus

V (T) ≤ log(q/w) − 1 + ξ

log(q/w) − log(TV /τ̃s) − 1

= 1 + log(TV /τ̃s) + ξ

log(q/w) − log(TV /τ̃s) − 1

≤ 1 + C[log(TV /τ̃s) + ξ ]
logn

,
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where we use the upper bound TV ≤ TM and (5.12) to ensure that the denominator is
bounded below by [(a/3) logn − 1] > (a/4) logn for all sufficently large n. This gives half
the desired upper bound on V (T) under the assumption TV < logn.

The lower bound on Q(T) will follow a similar strategy. We begin by noting that an alge-
braic manipulation will prove that, for any set W⊂ T ,

Q(W) = 1

q2

( ∑
I∈W

XI

[ ∑
J∈ÑI ∩W

XJ

])
− V (W)

q
.

Let Z = I \T, and observe that

Q(I) − Q(T) ≤ 1

q2 ·
(∑

I∈I
XI

[ ∑
J∈ÑI ∩I

XJ

]
− ∑

I∈T
XI

[ ∑
J∈ÑI ∩T

XJ

])

= 1

q2 ·
(∑

I∈Z
XI

[ ∑
J∈ÑI ∩I

XJ

]
+ ∑

I∈T
XI

[ ∑
J∈ÑI ∩Z

XJ

])
.

We decompose the first sum into

∑
I∈Z

XI

[ ∑
J∈ÑI ∩I

XJ

]
= ∑

I∈Z
XI

[ ∑
J∈ÑI ∩Z

XJ

]
+ ∑

I∈Z
XI

[ ∑
J∈ÑI ∩T

XJ

]

= ∑
I∈Z

XI

[ ∑
J∈ÑI ∩Z

XJ

]
+ ∑

I∈T
XI

[ ∑
J∈ÑI ∩Z

XJ

]
,

where we can flip the order of summation in the final equality thanks to the symmetry of ρ.
Substituting this in, we find that

(5.19) Q(I) − Q(T) ≤ 2

q2

(∑
I∈I

XI

[ ∑
J∈ÑI ∩Z

XJ

])
.

By ordering of the XI ’s, we have that XI ≤ XTV
for any I ∈ Z. Therefore,

1

q

∑
J∈ÑI ∩Z

XJ ≤ |ÑI |V (T)

TV

,

where we reuse (5.18). Substituting this into (5.19), we see that

Q(I) − Q(T) ≤ 2|ÑI |V (I) · V (T)

TV

.

Thanks to Hξ , V (I) is uniformly bounded in n (by (5.10)) and Q(I) ≥ 1 − ξ/ logn (by
(5.11)). The uniform bound on |ÑI | from Lemma 5.1 proves half of the lower bound on
Q(T).

Again, if TV ≥ logn, ψ(TV ) = C′/TV + ξ/ logn for all sufficiently large n. Thus, we
may assume that TV < logn for the rest of the proof. Suppose that we were given the bound
V (Z) ≤ C[1 + log(TV /τ̃s)]/ logn. From (5.19), we know that

Q(I) − Q(T) ≤ 2V (I) · V (Z) ≤ C[1 + log(TV

τ̃s
)]

logn
,

where we use (5.10) to replace V (I) by a uniform constant. Thus, it is sufficient to prove the
upper bound on V (Z).
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To do so, we return to (5.11), and apply Lemma 5.11 to T without ignoring the contribution
of elements of Z. This allows us to deduce that

(5.20)
V (T)

[
log

(
q

w

)
+ logV (T) − log

(
TV

τ̃s

)
− 1

]
+ 1

q

∑
I∈Z

YI

≤ log(q/w) − 1 + ξ.

Thanks to the upper bound on TV , we know that the bracketed term is positive and increasing
in V (T). Since V (T) ≥ 1−2ξ/ logn, some careful calculations imply that, for all sufficiently
large n and sufficiently small ξ ,

V (T)

[
log

(
q

w

)
+ logV (T) − log

(
TV

τ̃s

)
− 1

]

≥ log(q/w) − 1 − log
(

TV

τ̃s

)
− 3ξ

logn
− 3ξ log(q/w)

logn
.

Substituting this into (5.20) gives that

1

q

∑
I∈Z

YI ≤ ξ + 3ξ

logn
+ log

(
TV

τ̃s

)
+ 3ξ log(q/w)

logn

≤ Cξ + log
(

TV

τ̃s

)
,

for some uniform C and all sufficiently large n. Another application of Lemma 5.11—this
time, to Z—implies that

V (Z) log
(

qτ̃s

w · TM

)
+ V (Z)

(
logV (Z) − 1

) ≤ Cξ + log
(

TV

τ̃s

)
,

where we bound |Z| by TM . The function x[log(x) − 1] is bounded below by −1 for any
positive x; applying this bound to V (Z)[logV (Z)−1] and rearranging the previous inequality
algebraically, we find that, for all sufficiently large n,

V (Z) ≤ Cξ + log(TV

τ̃s
) + 1

log[qτ̃s/(w · TM)] ≤ Cξ + log(TV

τ̃s
) + 1

(a/3) · logn
≤ C[1 + log(TV

τ̃s
)]

logn
,

where use (5.12) to get the penultimate bound. This completes the proof. �

Recall that, for any W ⊂ T , Q(W) ≤ V (W)2. In a sense, the content of Lemma 5.13 is
that this bound is nearly right for T. To make this precise, we define

PI (W) := 1

q

∑
J∈W,ρ(I,J )>s

XJ .

Note that the sum is over indices whose distance exceeds s.

COROLLARY 5.14. Assume Hξ holds, and that TV and T are defined as above. Then,
for all n sufficiently large and ξ sufficiently small,

1

q

∑
I∈T

XIPI (T) ≤ 3φ(TV ) + ψ(TV ),

where φ(·) and ψ(·) are defined as in Lemma 5.13.
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PROOF. We observe that

V (T)2 − Q(T) = 1

q

∑
I∈T

XIPI (T) + V (T)

q
,

where the additive factor of V (T)/q comes from the fact that n2 −2
(n
2

) = n. By Lemma 5.13,
we conclude that

1

q

∑
I∈T

XIPI (T) ≤ V (T)2 − Q(T)

≤ (
1 + φ(TV )

)2 − (
1 − ψ(TV )

) ≤ 3φ(TV ) + ψ(TV ).

This completes the proof. �

5.6. Removing lower order terms. Before proceeding, consider the situation in which we
assume that both φ and ψ vanish, and that ξ = 0. This implies that PI (TV ) must be zero
for every I ≤ TV , since the sum in Corollary 5.14 is made up of nonnegative terms. Thus,
T would have diameter at most s. Thanks to the lower bound on TV in Lemma 5.13, the set
would be a maximal clique set.

Of course, φ, ψ , and ξ are nonzero, so we cannot apply this argument to T directly. We
further truncate the set to deal with this difficulty. Define

(5.21) TP := max
{
k ≤ TV : Xk ≥ ξq

τ̃s

}
,

where we set TP = 0 if the set on the right is empty. We denote the set {1, . . . ,TP } by P.
The following lemma establishes bounds on V (P) and the sum of the YI ’s in P. At the end
of this section, we will use these bounds to deduce some geometric properties of P.

LEMMA 5.15. Assume that Hξ holds, and define TP and P as above. Then, for suffi-
ciently small ξ and sufficiently large n,

1 − ξ1/2 < V (P) ≤ 1 + φ(TV )

and

1

q

∑
I∈P

YI < V (P)
(
log(q/w) − 1

) + ξ1/2.

The stipulation on the sum of the YI ’s in P is a slight (but essential) improvement on the
naive inclusion bound given by (5.9) in the definition of Hξ .

PROOF. The upper bound on V (P) follows from the inclusion P ⊂ T and Lemma 5.13.
Define

L1 :=
{
I ∈ T : XI <

ξq

τ̃s log(TV )

}

and

L2 :=
{
I ∈ T : ξq

τ̃s log(TV )
≤ XI <

ξq

τ̃s

}
.

Clearly, L1, L2 and P form a partition of T. Proving the lemma is tantamount to proving
good upper bounds on V (L1) and V (L2), as well as good lower bounds on the sum of the
YI ’s in both sets.
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To bound V (L1), we first need to bound PI (L1) from below for any I ∈ T. The worst case
scenario is that the distance restriction removes the |ÑI | largest elements of L1. Therefore,

PI (L1) ≥ V (L1) − 1

q
|ÑI |

(
max
J∈L1

XJ

)
> V (L1) − ξ |ÑI |

τ̃s log(TV )
.

Since PI (W) ≤ PI (W
′) whenever W ⊂ W′, we see that Corollary 5.14 implies that

1

q

∑
I∈T

XIPI (L1) ≤ 3φ(TV ) + ψ(TV ).

Replacing PI (L1) with its minimum and recalling that |ÑI | and τ̃s are uniformly bounded in
n (by Lemma 5.1), we see that(

V (L1) − Cξ

log(TV )

)
V (T) < 3φ(TV ) + ψ(TV ).

Using the (very suboptimal) lower bound of 1/2 for V (T) (which follows from Lemma 5.13
and n sufficiently large), we conclude that

(5.22) V (L1) < 6φ(TV ) + 2ψ(TV ) + Cξ

log(TV )
,

for some C independent of n. Repeating this analysis with L2 yields the inequality

V (L2) < 6φ(TV ) + 2ψ(TV ) + Cξ.

Since both φ(x) and ψ(x) are bounded above by 1/(logn)1/2 (from (5.16)) and TV > (1 −
ξ1/2)τ̃s (by Lemma 5.13), we get

(5.23) max
{
V (L1),V (L2)

}
< Cξ.

Combining the previous bounds and the lower bound on V (T) from Lemma 5.13, we find
that, for all sufficiently small values of ξ ,

(5.24)

V (P) = V (T) − V (L1) − V (L2)

≥ 1 − 2Cξ − 2ξ

logn

≥ 1 − ξ1/2.

This establishes the lower bound on V (P).
We now turn to bounding

∑
I∈P YI . Suppose that

(5.25)
1

q

∑
I∈Li

YI > V (Li )
(
log(q/w) − 1

) − 2ξ2/3.

We observe that (5.24) and Lemma 5.13 imply that

V (P) + (2ξ)/ logn ≥ 1 − V (L1) − V (L2).

By inclusion, we may apply (5.9) to T, partition the elements into P, L1 and L2 and substitute
the above bounds to get the following set of deductions:

1

q

∑
I∈P

YI ≤ (
log(q/w) − 1

) + ξ − 1

q

∑
I∈L1∪L2

YI

<
(
1 − V (L1) − V (L2)

)(
log(q/w) − 1

) + 4ξ2/3 + ξ

< V (P)
(
log(q/w) − 1

) + 2ξ

logn

(
log(q/w) − 1

) + 5ξ2/3

< V (P)
(
log(q/w) − 1

) + ξ1/2,

where the final inequality holds for sufficiently small ξ . Thus, we only need to show (5.25).
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By applying Lemma 5.11 to Li , we know that

(5.26)
1

q

∑
I∈Li

YI ≥ V (Li )
(
log(q/w) − 1

) + V (Li ) logV (Li ) − V (Li ) log
(|Li |),

where we ignored the positive term V (Li ) log τ̃s . Using (5.23), we find that V (Li ) logV (Li )

is bounded below by Cξ log[Cξ ] > −ξ2/3.
Controlling V (L1) log(|L1|) is quite straightforward: since inclusion implies that |L1| ≤

TV , we can use (5.22) to see that, for sufficiently large n,

V (L1) log
(|L1|) ≤

(
6φ(TV ) + 2ψ(TV ) + Cξ

log(TV )

)
log(TV )

≤ max
2≤x≤TM

{
logx · (

6φ(x) + 2ψ(x)
)} + Cξ,

where we use the fact that 2 ≤ τ̃s(1 − ξ1/2) ≤ TV ≤ TM . Recalling the definitions of φ and
ψ , we have that

6φ(x) + 2ψ(x) = min
{

6C[log(x/τ̃s) + ξ ]
logn

,
12

x

}

+ min
{

2C[1 + log(x/τ̃s)]
logn

,
2C′

x

}
+ ξ

logn
,

and thus, it can be shown that, for some (different) uniform constant C,

logx · (
6φ(x) + 2ψ(x)

) ≤ C · min
{

logx(1 + logx)

logn
,

logx

x

}
+ ξ logx

logn
.

We wish to prove a uniform, x-independent bound on the minimum above (for any x ≥
2). The first function in the minimum is increasing; meanwhile, the second function in the
minimum is larger than the first one on [2, e] (for all sufficiently large n), and is a decreasing
function of x on (e,∞). Thus, for any 2 ≤ x ≤ TM , the minimum is bounded above by
logy(1 + logy)/ logn for any y that satisfies (1 + logy)/ logn ≥ 1/y. The value y = logn

is one such value. Combining the two estimates gives

logx · (
6φ(x) + 2ψ(x)

) ≤ C[log logn + (log logn)2]
logn

+ ξ logx

logn
.

Thus, we find that

(5.27)

max
2≤x≤TM

log(x) · (
6φ(x) + 2ψ(x)

)

≤ C[log logn + (log logn)2]
logn

+ ξ logTM

logn
.

Using (5.8) to bound TM , we deduce that, for all sufficiently large n, V (L1) log(|L1|) < Cξ

for some uniform constant C; this, in turn, is bounded by ξ2/3 for all sufficiently small ξ .
To control V (L2) log(|L2|), we must be slightly more careful. For any I ∈ L2, we know

that

PI (L2) ≥ 1

q

∑
J∈L2,ρ(I,J )>s

(
min
J∈L2

XJ

)

≥ ∑
J∈L2,ρ(I,J )>s

ξ

τ̃s log(TV )

≥ ξ(|L2| − |ÑI |)
τ̃s log(TV )

,
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where we use the lower bound defining L2. By inclusion, PI (L2) < PI (T), and Corol-
lary 5.14 allows us to conclude that

V (T)

[
ξ(|L2| − |ÑI |)

τ̃s log(TV )

]
≤ 1

q

∑
I∈T

XIPI (L2)

≤ 3φ(TV ) + ψ(TV ).

Solving for |L2|, we deduce that

|L2| ≤ |ÑI | + τ̃s

ξ
· log(TV ) · (

6φ(TV ) + 2ψ(TV )
)
,

where we bound V (T) from below by 1/2 by Lemma 5.13. Referring back to (5.27), we see
that

|L2| ≤ |ÑI | + Cτ̃s · [log logn + (log logn)2]
ξ logn

+ τ̃s logTM

logn
.

Using (5.8) and Lemma 5.1 to bound |ÑI | and τ̃s from above, this proves that |L2| is uni-
formly bounded in n. Appealing to (5.23) a final time,

V (L2) log
(|L2|) < Cξ < ξ2/3.

This completes the proof. �

As promised, we now show that P has the desired geometric properties.

LEMMA 5.16. For all n sufficiently large and ξ sufficiently small,

diam(P) ≤ s and TP > τ̃s

(
1 − ξ1/3)

,

that is, the set P is a ξ1/3-almost maximal clique set.

PROOF. Assume that there exists a pair of indices I ∗, J ∗ ∈ P such that ρ(I ∗, J ∗) > s.
Then

1

q

∑
I∈T

XIPI (T) ≥ XI∗XJ ∗

q2 ≥ ξ2

τ̃ 2
s

,

where the final bound is from the definition of P. By Corollary 5.14, we know the left-hand
quantity cannot exceed 3φ(TV ) + ψ(TV ), which is bounded above by 4/(logn)1/2—a clear
contradiction for all sufficiently large n. Thus, the diameter P is at most s.

Combining Lemmas 5.11 and 5.15 give

V (P)
(
log(q/w) − 1

) + V (P)

(
logV (P) − log

(
TP

τ̃s

))

< V (P)
(
log(q/w) − 1

) + ξ1/2

and, therefore,

TP > τ̃s · V (P) exp
(
− ξ1/2

V (P)

)
> τ̃s · V (P)

(
1 − ξ1/2

V (P)

)

using the standard estimate e−x ≥ 1−x. Combining this with the lower bound on V (P) from
Lemma 5.15 forces

TP > τ̃s

(
1 − ξ1/3)

for all sufficiently large values of n and small values of ξ . �
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5.7. Convex analysis. We are nearly done with the proof: all that remains is to show that,
for most I ∈ P, XI is close to q/τ̃s , and then to formally prove the theorem. The essential
additional information we are now armed with is an upper bound on TP —namely, τ̃s , as P
has diameter at most s, and τ̃s is the largest possible cardinality for such a set of indices.

LEMMA 5.17. Let P be as above, and assume that Hξ holds. Define

B :=
{
I :

∣∣∣∣XI τ̃s

q
− 1

∣∣∣∣ < ξ1/5
}

and C = P \B.

Then, for all sufficiently large n and ξ sufficiently small,

|B| > (
1 − 10ξ1/10)

τ̃s , |C| < 9ξ1/10τ̃s and V (C) < 10ξ1/10.

PROOF. We consider the Taylor expansion of YI around the value q/τ̃s . Explicitly, we
let f (x) = x(log(x/D) − 1) + D , and by Taylor’s theorem,

YI = f (XI ) = f

(
q

τ̃s

)
+ f ′

(
q

τ̃s

)(
XI − q

τ̃s

)
+ f ′′(L(XI ))

2

(
XI − q

τ̃s

)2
,

where L(XI ) is some number between XI and q/τ̃s . Differentiating f (x) explicitly and
simplifying algebraically, we see that

YI = D − q

τ̃s

+ XI log(q/w) + 1

2L(XI )

(
XI − q

τ̃s

)2
.

Next, we sum over P and use the upper bound on
∑

I∈P YI from Lemma 5.15 to deduce that

1

q

∑
I∈P

[
D − q

τ̃s

+ XI log(q/w) + 1

2L(XI )

(
XI − q

τ̃s

)2]

≤ V (P)
(
log(q/w) − 1

) + ξ1/2.

We ignore the positive term D on the left-hand side. From Lemma 5.16, the diameter of P is
at most s, and hence TP ≤ τ̃s . Thus,

(5.28)
1

q

∑
I∈P

1

2L(XI )

(
XI − q

τ̃s

)2
≤ TP

τ̃s

− V (P) + ξ1/2 ≤ 2ξ1/2,

where the final inequality follows thanks to the lower bound on V (P) from Lemma 5.15.
Now, define

W1 := {
I ∈ P : XI ≥ (

1 + ξ1/5)
q/τ̃s

}
and

W2 := {
I ∈ P : XI ≤ (

1 − ξ1/5)
q/τ̃s

}
.

We recall that C = P \B= W1 ∪W2. On W1, the function 1/L(XI ) is bounded below by
1/XI . Thus, (5.28) implies that

|W1|
q

· min
I∈W1

{
1

2XI

(
XI − q

τ̃s

)2}
≤ 2ξ1/2.

The function x �→ (x − q/τ̃s)
2/(2x) is strictly increasing on the interval [(q/τ̃s)(1 +

ξ1/5),∞), and always convex. Using the first fact, we find that

|W1| ·
(

ξ2/5

2τ̃s · (1 + ξ1/5)

)
≤ 2ξ1/2.
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This implies that |W1| < 5ξ1/10τ̃s . To control V (W1), we apply (the standard version of)
Jensen’s inequality to the convex function x �→ (x−q/τ̃s)

2/(2x). Algebraically manipulating
the resulting expression gives

1

2V (W1)

(
V (W1) − |W1|

τ̃s

)2
≤ 1

q

∑
I∈W1

1

2XI

(
XI − q

τ̃s

)2
≤ 2ξ1/2,

where the final bound follows from (5.28). Since the left-hand side is increasing in V (W1)

whenever V (W1) ≥ |W1|/τ̃s , we can conclude that

V (W1) ≤ |W1|/τ̃s + 2ξ1/4 < 6ξ1/10.

For W2, we can bound 1/L(XI ) from below by τ̃s/q . A final appeal to (5.28) gives that

|W2|
q

· min
I∈W2

{
τ̃s

2q

(
XI − q

τ̃s

)2}
≤ 2ξ1/2.

We can bound the minimum from below by assuming that some XI realizes the upper bound
that defines W2. In this case, it is immediate that |W2| ≤ 4ξ1/10τ̃s . Finally, XI ≤ q/τ̃s for
each I ∈W2 and, therefore, V (W2) < 4ξ1/10. Putting these terms together, we find that

V (C) = V (W1) + V (W2) < 10ξ1/10.

We also see that

|C| = |W1| + |W2| < 9ξ1/10τ̃s .

The lower bound on |B| follows from

|B| = TP − |C| > τ̃s

(
1 − ξ1/3) − 9ξ1/10τ̃s > τ̃s

(
1 − 10ξ1/10)

,

where the penultimate inequality was proved in Lemma 5.16. �

We have completed the proof of the difficult assertion in Theorem 3.1; all that is left is to
ensure the second stipulation holds.

PROOF OF THEOREM 3.1. We recall the definition of Gn,δ̃(ε̃): there must a pair of sets
B and C such that

(a) B is ε̃-almost maximal clique set such that I ∈ B implies∣∣∣∣ τ̃sXI

q
− 1

∣∣∣∣ < ε̃,

(b) C satisfies

|C| < ε̃τ̃s and V (C) < ε̃,

and
(c) whenever J ∈ (B∪ C)c,

XJ <
ε̃ · q
τ̃s

.

We set ξ = (ε̃/10)10. Then, whenever Hξ holds, the sequence of assertions given by Lem-
mas 5.13, 5.15, 5.16 and 5.17 assure us that, for n sufficiently large and ε̃ sufficiently small
(interpreted according to our stated conventions), the sets B and C of Lemma 5.17 satisfy the
first and second conditions of Gn,δ̃(ε̃).
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To show the final condition holds, we must show that all elements of T \ P are small.
If TV > TP , then XTP +1 < ξq/τ̃s < ε̃q/τ̃s . This implies the upper bound holds for every
element outside of P, thanks to the ordering of the elements.

We are left with the scenario in which TV = TP . By definition (recall (5.15) and (5.21)),
this means that P = T and, therefore, TV ≤ τ̃s . Formally, it is still possible that XTV +1 ≥
ξq/τ̃s . By Lemma 5.11 and Lemma 5.13, we deduce that

1

q

∑
I∈T

YI ≥ V (T)

(
log(q/w) + log

(
V (T)

) − log
(

TV

τ̃s

)
− 1

)

≥
(

1 − 2ξ

logn

)(
log(q/w) − 1 − 3ξ

logn

)
,

where the contribution of the term including the logarithm of TV is nonnegative, and thus can
be safely ignored. Note that, since we assumed q > 3w, the right-hand side above is positive
for all sufficiently large n. Therefore, (5.9) implies that

1

q

∑
I∈I\T

YI ≤ [
log(q/w) − 1 + ξ

] −
(

1 − 2ξ

logn

)[
log(q/w) − 1 − 3ξ

logn

]

≤ 4ξ log(q/w)

logn
+ ξ

≤ Cξ.

As before, the final inequality follows because log(q/w) ≤ C logn for some C.
Suppose XTV +1 ≥ ε̃q/τ̃s = 10ξ1/10q/τ̃s . Then we find that

YTV +1 = XTV +1
(
log(XTV +1/D) − 1

) + D

≥ ξq
(
log(q/w) + log

(
10ξ1/10) − 1

) + D .

If we divide through by q , we find that this expression still grows with n, whereas the earlier
upper bound is uniformly bounded. This is a contradiction, and we get the upper bound
XTV +1 < ε̃q/τ̃s .

The above computation implies that any configuration in H(ε̃/10)10 is also in Gn,δ̃(ε̃). Tak-

ing complements and intersecting with Ln(δ̃), we conclude that

P
[
Gn,δ̃(ε̃)

c ∩ Ln(δ̃)
] ≤ P

[
H c

(ε̃/10)10 ∩ Ln(δ̃)
]

≤ 3 exp
(−q

[
log(q/w) − 1 + (ε̃/10)10/2

])
,

where the final inequality is Proposition 5.12. �

6. Moving from discrete to continuous. This section has three parts: first, we prove
several estimates that show the discrete setting of the s-graded model approximates the con-
tinuous geometry of Td . We then prove a proposition relating the random geometric graph
structural event Fn(ε) with Gn,δ̃(ε̃), given by the structure Theorem 3.1 on the s-graded
model, with appropriately chosen parameters. The second part is probabilistic, where we find
a tight lower bound on the event that the number of edges in the random geometric graph
exceeds its mean. We then assume Theorem 3.1 and deduce Theorem 2.1 by choosing δ̃ and
ε̃ judiciously and employing a correlation inequality.
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6.1. Geometric lemmas. Recall that (as in (5.2)), for any K ⊂ T
d , we define R(K) and

O(K) to be the maximal (resp., minimal) subsets of T such that

(6.1) U
(
R(K)

) ⊂ K and K \ K ′ ⊂ U
(
O(K)

)
,

where K ′ is some subset of K of Lebesgue measure 0. Recall that λ(·) will be used to denote
Lebesgue measure of sets. We begin by showing that this operation does not alter the measure
of convex subsets S of diameter at most r by very much. Formally, we have the following.

PROPOSITION 6.1. Fix ε > 0, and let S be a convex subset of diameter at most 2r . Then
there exists an s0 that depends only on ε, the dimension and the choice of norm, such that
whenever s > s0, the inner hull R(S) satisfies

λ(S) − ε2τ

64
< λ

(
U

(
R(S)

)) ≤ λ(S).

Similarly, the corresponding inequality

λ(S) ≤ λ
(
U

(
O(S)

))
< λ(S) + ε2τ

64

hold for the outer hull O(S).

Note that, for any fixed S, this result follows from the continuity of Lebesgue measure.
The essential part of this proposition is that the choice of s0 is uniform for all convex subsets
S that satisfy the assumptions of the proposition.

Instead of proving the proposition directly, we consider the following minor modification.

LEMMA 6.2. Let S be a convex set as in Proposition 6.1. Define

(∂S)l := {
y : ‖∂S − y‖ ≤ l

}
,

where ‖B − x‖ is shorthand for infb∈B ‖b − x‖ for any set B . Then there exists an s0, de-
pending on ε, the dimension, and the norm, such that s > s0 implies

λ
(
(∂S)ς/m

)
<

ε2τ

64
,

where ς is the diameter of a unit square (as in (5.3)).

This lemma implies Proposition 6.1, since

S ⊂ U
(
R(S)

) ∪ (∂S)ς/m

and

U
(
O(S)

) ⊂ S ∪ (∂S)ς/m.

Taking the Lebesgue measure of both sides and using subadditivity gives the two nontrivial
bounds in Proposition 6.1.

PROOF OF LEMMA 6.2. Heuristically, the volume of (∂S)ς/m should be commensurate
with the product of ς/m with the surface area of S. Since S has diameter at most 2r and
is a convex set (and, therefore, its boundary cannot be too convoluted), this surface area
ought to be bounded above by Crd−1. To formalize this loose heuristic, we turn to the tools
of geometric measure theory. Although this approach is standard in that field, we include a
detailed proof for completeness.
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Consider a function f : Rd → R that is Lipschitz with respect to the Euclidean distance,
and a Borel set A. The Euclidean coarea formula [15], page 248, states that, with the functions
as above, ∫

A

∥∥Df (x)
∥∥

2 dx =
∫ ∞
−∞

Hd−1(
A ∩ f −1(y)

)
dy,

where ‖ · ‖2 is the Euclidean norm, and Hd−1 is the Hausdorff measure on the surface (effec-
tively the surface area) and Df is the gradient of f , which exists since f is almost everywhere
differentiable.

The natural choice for our analysis is f (x) = ‖∂S − x‖. We begin by proving that f is
Lipshitz with respect to the Euclidean norm. We recall the classical fact that all norms are
equivalent in finite dimensional space, that is, there exists two positive constants c and C

such that, for all x and y,

c‖x − y‖ ≤ ‖x − y‖2 ≤ C‖x − y‖.
Pick two points x and y, and let a ∈ ∂S be the point such that f (x) = ‖x − a‖ (this point
exists because ∂S is closed). Then

f (y) − f (x) ≤ ‖y − a‖ − ‖x − a‖ ≤ ‖x − y‖ ≤ C‖x − y‖2.

Similarly, f (x) − f (y) ≤ C‖x − y‖2.
Thus, f is differentiable almost everywhere. Pick an x where the function is differentiable,

and let a be as before. Then, for any t ∈ (0,1),

f
(
x + t (a − x)

) ≤ f (x) − t‖a − x‖,
by the properties of norms. Subtracting f (x) from both sides, dividing by t and letting t → 0,
we get

〈a − x,Df 〉 ≤ −‖a − x‖,
where 〈·, ·〉 is the Euclidean inner product (or in this case, the directional derivative). Apply-
ing the Cauchy–Schwarz inequality, we conclude that

‖a − x‖ ≤ ‖a − x‖2‖Df ‖2,

which implies, by the equivalence of norms, that

‖Df ‖2 ≥ ‖a − x‖
‖a − x‖2

≥ c.

Letting A = {x : f (x) ≤ ς/m}, we apply the Euclidean coarea formula to deduce that

(6.2) λ
[
(∂S)ς/m

] ≤ C

∫ ς/m

0
Hd−1({

y : ‖∂S − y‖ = z
})

dz,

where C is some (possibly different) universal constant. Note that, for sufficiently small z

and T convex, the set {y : ‖∂T − y‖ = z} has two connected components: one inside T and
the other outside of it. We wish to show that both are boundaries of convex sets. The outer
one is the boundary of the affine sum of S and the ball of radius z, which is known to be
convex. The internal one is the boundary of

S(z) := {
x : x ∈ S,‖∂S − x‖ ≥ z

}
.

We claim that this set is also convex: if it were not, we could find x, y ∈ S(z) such that
w = tx + (1 − t)y /∈ S(z) for some t ∈ (0,1). Let v be the minimal length vector such that
w + v ∈ ∂S. Then, since ‖v‖ < z by definition, we can find an ε sufficiently small such that



LOCALIZATION IN RANDOM GEOMETRIC GRAPHS 609

w + (1 + ε)v /∈ S, while x + (1 + ε)v, y + (1 + ε)v are both in S, contradicting convexity
of S.

We complete the proof using Cauchy’s surface area formula [28], page 55: for any con-
vex S,

Hd−1(∂S) = Cd

∫
u∈Sd−1

λd−1
(
S|u⊥)

du,

where Sd−1 is the d −1-dimensional unit ball in R
d , λd−1 is the d −1-dimensional Lebesgue

measure, S|u⊥ is the projection of S onto the d − 1 dimensional subspace perpendicular to
u, and Cd is a constant used to ensure the Hausdorff and Lebesgue measures are compatible.

We apply this formula to the two convex sets (S)z and S(z) (discussed above) whose bound-
aries give the two connected components of {y : ‖∂S − y‖ = z}. The projection of either set
onto a d − 1-dimensional subset has diameter at most 2(r + z) and, therefore, by the triangle
inequality, is included in some ball of diameter 4(r + z). Thus, inclusion implies that

λd−1
(
(S)z|u⊥) ≤ Cd(r + z)d−1 and λd−1

(
S(z)|u⊥) ≤ Cd(r + z)d−1

for some constant Cd . Substituting this into (6.2) gives

λ
[
(∂S)ς/m

] ≤ C

∫ r+(ς/m)

r
ud−1 du = C

[
(r + ς/m)d − rd]

.

Increasing s, we can ensure that [1 + ς/(rm)]d < 1 + (2dς)/(rm) and, therefore,

λ
[
(∂S)ς/m

] ≤ Crd−1

m
≤ Cτ

rm
<

Cτ

s − r
,

where the value of C may change from one inequality to the next. Increasing s, we get the
desired result. �

Next, we prove a lemma that proves that almost maximal clique sets are, essentially, dis-
cretized versions of balls of diameter r .

LEMMA 6.3. Fix ε > 0. Then there exists s0 such that, for any s > s0, r sufficiently small
and s−1/20-almost maximal clique set B in the s-graded model, there exists a set of indices
H⊂ T with |H| < ε · τ̃s and B , a ball of diameter r in T

d , such that

B ⊂ U(B∪H) and U(B) ⊂ (B)εr .

The choice of the term s−1/20 is somewhat arbitrary—the above result will follow for any
function which vanishes as s grows. We framed the lemma as we did since the function s−1/20

is used in the proof of Theorem 2.1 below.

PROOF. To prove this lemma, we go through the abstract framework of Hausdorff con-
vergence of subsets of a metric space. Consider an abstract metric space X imbued with
metric ι, and, for any S ⊂ X, define the l-fattening of S as before, using the metric ι to
measure distance. For any two A,B ⊂ X, the Hausdorff distance is defined as

ιH (A,B) := inf
{
l : A ⊂ (B)l,B ⊂ (A)l

}
.

If X is compact in the topology defined by ι, the space of closed subsets of X makes a
compact space with respect to this metric [36], page 294.

Recall that Ts = {1,2, . . . ,m}d is a set of indices, where we add the subscript s to empha-
size the dependence on this variable. Let {Bs}s≥2 be a sequence of s−1/20-almost maximal
clique sets, where Bs ⊂ Ts . Define A to be some ball of radius r(1 + 2ς) in T

d . For any
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set S of diameter of at most r(1 + 2ς), there exists a translate of S which lies completely in
A—this can be done by simply translating any point of S to the center of A. Thus, there is a
translate of U(Bs) that is a subset of A, since

diam
(
U(Bs)

) ≤ r + 2ς

m
≤ r

(
1 + 2ς

s − r

)
< r(1 + 2ς),

whenever s is sufficiently large and r sufficiently small.
Let Ã and B̃s be the sets A and the translate of U(Bs) that are inside A, scaled by 1/r

and embedded in R
d (which is possible as long as r is sufficiently small to not “notice” the

torroidal geometry of Td ). Thus, Ã is a ball of radius 1 + 2ς . By Lemma 5.1, we know that

diam(B̃s) ≤ 1 + C

s
and λ(B̃s) ≥ τ(1 − s−1/20)

rd
= ν(1 − s−1/20)

2d
,

with the final inequality being the definition of τ .
Since all the B̃s are closed sets embedded in a single compact metric space (namely, Ã),

we can extract a subsequence B̃sk which converges to some set B̃ in the Hausdorff metric.
Passing to the limit, we see that B̃ must have diameter of at most 1 and measure at least ν/2d .
Quoting the isodiametric inequality again [6], page 94,

λ(B̃) ≤ ν

(
diam B̃

2

)d

,

where equality holds if and only if B̃ is a ball. This implies that B̃ is, in fact, the ball of
diameter 1 (up to sets of measure zero). Indeed, if we take an arbitrary subsequence of {B̃s},
we can extract a convergent sub-subsequence whose limit will have diameter 1 and measure
ν/2d—meaning any sub-subsequential limit is some ball of diameter 1. Letting B be the set
of all balls of diameter in A, we find that

lim
s→∞ inf

B̃∈B
ιH (B̃s, B̃) = 0.

Therefore, there is an s0, such that, for any s > s0, there exists some ball B̃ ∈ B such that

ιH (B̃s, B̃) < ε/(16d).

Scaling by r , we find that, for any s > s0, there is a ball B of diameter r in T
d , such that

B ⊂ (
U(Bs)

)
εr/(16d) and U(Bs) ⊂ (B)εr/(16d).

The second statement implies the required inclusion of U(B) in a (B)εr . For the other di-
rection, we note that (U(Bs))εr/(16d) ⊂ (B)εr/8d . Set H = O(Bεr/8d) \Bs . Since (B)εr/8d is
convex, we can use Proposition 6.1 and Lemma 5.1 to ensure that

∣∣O(
(B)εr/8d

)∣∣ ≤ md · τ
[(

1 + ε

4d

)d

+ ε2/64
]

< τ̃s(1 + ε/2),

where the final inequality holds for sufficiently large s and sufficiently small ε. Bs has car-
dinality at least τ̃s(1 − s−1/20); if s0 is sufficiently large to ensure s−1/20 < ε/2, we find that
|H| < ετ̃s , and inclusion guarantees that

B ⊂ U(Bs ∪H).

This completes the proof. �
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6.2. Relating the s-graded model and random geometric graph structure theorems. Us-
ing the geometric information derived in the previous section, we wish to prove the following
proposition.

PROPOSITION 6.4. There is some ε0 > 0 such that the following holds for any ε < ε0.
Take any δ > 0 and δ̃ ∈ [(1 − ε/16)δ, δ]. Let Fn(ε) and Gn,δ̃(s

−1/20) be the events described
in Theorems 2.1 and 3.1, respectively. Then there exist n0 and s0 depending only on ε and δ,
such that if n ≥ n0 and s ≥ s0, then

Gn,δ̃

(
s−1/20) ⊂ Fn(ε).

PROOF. Set ε̃ = s−1/20 and s0 and n0 to be the sufficiently large to ensure that Lemma 5.1
holds for any s > s0 and n ≥ n0 (further conditions on s may be imposed on later in the
proof). Assume Gn,δ̃(ε̃) occurs, and let B and C be the sets described in Theorem 3.1. Then,
by definition, ∣∣∣∣ τ̃sXI

q
− 1

∣∣∣∣ < ε̃ ∀I ∈ B,(6.3)

|C| < ε̃ · τ̃s and
∑
I∈C

XI < ε̃q,(6.4)

and

(6.5) XI <
ε̃q

τ̃s

∀I /∈ B∪ C.

Since the above bounds are in terms of q , whereas Fn(ε) is defined using
√

2δμ, we begin
by bounding

√
2δμ/q from above and below. δ̃ ≤ δ by definition, and μ ≥ μ̃s(1 + C/s)−1

by Lemma 5.1. Therefore,
√

2δμ

q
=

√
δμ

δ̃μ̃s

≥
(

1 + C

s

)−1/2
≥ (1 − ε̃),

where the final inequality holds for all s sufficiently large. Similarly, μ ≤ μ̃s and δ̃ > δ(1 −
ε/16) implies that

√
2δμ

q
=

√
δμ

δ̃μ̃s

≤
(

1 − ε

16

)−1/2
≤ 1 + ε/8.

Putting this together, we see that, for all sufficiently large s,

(6.6) (1 − ε̃) ≤
√

2δμ

q
≤ 1 + ε/8.

We now set s to be sufficiently large so that, when we apply Lemma 6.3 to B to produce B ,
a ball of radius r , and H⊂ T with B ⊂ U(B∪H), we can be certain that |H| < (ε/8) · τ̃s and
that B⊂ (B)(νε2r)/(d·2d+3) (the slightly odd constants are chosen to make later computations
simpler). We also require that ε̃ < ε2/16. Our goal is to show that B will satisfy the conditions
of Fn(ε).

For any S ⊂ T
d , it is straightforward to see that∑

I∈R(S)

XI ≤ ∣∣χ(S)
∣∣ ≤ ∑

I∈O(S)

XI .
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To prove the first condition of Fn(ε), it is sufficient to show that, for any convex S ⊂ B ,

∑
I∈R(S)

XI >

(
λ(S)

τ
− ε

)√
2δμ and

∑
I∈O(S)

XI <

(
λ(S)

τ
+ ε

)√
2δμ.

For the upper bound, we use Proposition 6.1 and Lemma 5.1 to see that

∣∣O(S)
∣∣ = mdλ

(
U

(
O(S)

))
<

(
λ(S)

τ
+ ε2

64

)
mdτ ≤

(
λ(S)

τ
+ ε2

64

)
τ̃s .

We also know that, for any W ⊂ T ,

(6.7)
∑
I∈W

XI ≤ ∑
I∈C

XI + |W| · max
I /∈C XI <

(
ε̃ + |W|(1 + ε̃)

τ̃s

)
q,

using (6.3), (6.4) and (6.5). Applying this to O(S) gives that

∑
I∈O(S)

XI <

[
ε̃ +

(
λ(S)

τ
+ ε2

64

)
(1 + ε̃)

]
q

≤
[

ε̃

1 − ε̃
+

(
λ(S)

τ
+ ε2

64

)
· 1 + ε̃

1 − ε̃

]√
2δμ,

where the final inequality is (6.6). Since λ(S)/τ ≤ 1 (as S ⊂ B) and ε̃ < ε2/16, the right-hand
side is smaller than [λ(S)/τ + ε]√2δμ for all ε sufficiently small, as required.

To get a lower bound on the sum of the XI ’s in R(S), we observe that S ⊂ B implies that
R(S) ⊂ B∪H and, therefore,∣∣R(S) ∩B

∣∣ ≥ ∣∣R(S)
∣∣ − |H|

>

(
λ(S)

τ
− ε2

64

)
mdτ − ε · τ̃s

8

≥
(

λ(S)

(1 + ε̃)τ
− ε2

64(1 + ε̃)
− ε

8

)
τ̃s ,

using Proposition 6.1 and Lemma 5.1. By definition, XI ≥ [q(1 − ε̃)]/τ̃s for any I ∈ B and,
therefore, ∑

I∈R(S)

XI >
∑

I∈R(S)∩B
XI

>
1 − ε̃

1 + ε̃

[
λ(S)

τ
− ε2

64
− ε

4

]
q

>
1 − ε̃

(1 + ε̃)(1 + ε/8)

[
λ(S)

τ
− ε2

64
− ε

4

]√
2δμ.

Reusing the bounds λ(S) ≤ τ and ε̃ < ε2/16 gives that, for all ε sufficiently small, the final
lower bound is smaller than [λ(S)/τ − ε]√2δμ, as required.

Next, let S′ be a convex set disjoint from B with diameter at most r and λ(S′) > ετ . A
slightly more involved version of (6.7) gives that∑

I∈O(S′)
XI <

∑
I∈C

XI + ∣∣O(
S′) ∩B

∣∣ · max
I∈B XI + ∣∣O(

S′) ∩ (B∪ C)c
∣∣ · max

I∈(B∪C)c
XI

≤
[
ε̃ + |O(S′) ∩B| · (1 + ε̃)

τ̃s

+ |O(S′) ∩ (B∪ C)c| · ε̃
τ̃s

]
q.
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Since S′ ∩ B = ∅, we know that U(R(S′)) ∩ B = ∅. We have assumed above that B ⊂
(B)(νε2r)/(d·2d+3) and, therefore,

U
(
R

(
S′) ∩B

) ⊂ (B)(νε2r)/(d·2d+3) \ B.

Taking the measure of both sides and multiplying by md to get cardinality bounds, we find
that

∣∣R(
S′) ∩B

∣∣ ≤ mdrd

[(
1 + νε2

d2d+3

)d

− 1
]

<
ε2mdτ

4
≤ ε2τ̃s/4.

Thus, ∣∣O(
S′) ∩B

∣∣ ≤ ∣∣O(
S′) \R(

S′)∣∣ + ∣∣R(
S′) ∩B

∣∣ ≤ (
ε2/32 + ε2/4

)
τ̃s <

(
ε2/2

)
τ̃s ,

using Proposition 6.1 to bound the difference between the inner and outer hulls of the convex
set S′. Bounding |O(S′) ∩ (B ∪ C)c| by |O(S′)|, using inequality (6.6) to move from q to√

2δμ, and appealing to Proposition 6.1 one final time, we find that

∑
I∈O(S′)

XI <

[
ε̃ + ε2(1 + ε̃)

2
+

(
λ(S′)

τ
+ ε2

32

)
ε̃

]
q

≤
[

ε̃τ

λ(S′)
+ 2ε2τ

3λ(S′)
+

(
1 + ε2τ

32λ(S′)

)
ε̃

]
(1 − ε̃)−1 · λ(S′) · √2δμ

τ
.

Since λ(S′) > ετ by assumption, and ε̃ < ε2/16, the product of bracketed term and (1− ε̃)−1

is bounded by ε for all sufficiently small values of ε. This completes the proof. �

6.3. Theorem 3.1 implies Theorem 2.1. The next lemma establishes a lower bound on
the event {|E| > (1 + δ)μ}—the conditioning event in Theorem 2.1.

LEMMA 6.5. Fix δ > 0, and let Hn(δ) := {|E| > (1 + δ)μ}. Then, setting z =
max{p/4,3p/4 − 1/2}, there exists n0 such that n > n0 implies that

P
[
Hn(δ)

] ≥ exp
(
−√

2δμ

[
log

(√
2δμ

n · τ
)

− 1
]

− Cnz logn

)
,

where C is an absolute constant independent of n and δ.

PROOF. Fix B , a ball of diameter r , and let H ′ be the event that there are at least
�√2δμ + nz� vertices in B . Since the number of vertices in B is a Poisson random vari-
able of mean nτ , we can get very straightforward lower bounds on the probability of H ′:

P
[
H ′] ≥ P

[
Poisson(nτ) = ⌈√

2δμ + nz⌉]

= exp(−nτ) · (nτ)�
√

2δμ+nz�

(�√2δμ + nz�)! .

By Stirling’s approximation, it follows that, for sufficiently large n,

P
[
H ′] ≥ exp

[
−nτ − ⌈√

2δμ + 2nz⌉(
log

[�√2δμ + nz�
nτ

]
− 1

)
− C logn

]
,

for some universal constant C. Thanks to our judicious choice of z, nτ � nz logn � √
2δμ;

therefore, by increasing n we can find a C independent of n that guarantees

(6.8) P
[
H ′] ≥ exp

(
−√

2δμ

[
log

(√
2δμ

n · τ
)

− 1
]

− Cnz logn

)
.
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If H ′ occurs, there exists a clique with at least δμ + nz
√

δμ edges in it (since 0 < z < p/2,
this quantity is a lower bound for the number of edges in a clique of �√2δμ+nz� vertices for
all sufficiently large n). Conditional on H ′, Hn(δ) occurs if the number of edges with at most
one endpoint in B exceeds μ − nz

√
δμ. Let |E|′ be the number of edges with no endpoints

in B . Letting 1i,j be the indicator of an edge between vertices i and j , we can see that

E
(|E|′) = E

[(
N

2

)
E(11,2 · 1v1,v2 /∈B | N)

]

= n2

2
P

({‖v1 − v2‖ ≤ r
} ∩ {v1, v2 /∈ B}),

where N is the total number of point in the torus, as before, and the probability measure in
the second equality is given by the uniform process. For notational convenience, let 1B

i,j be

the indicator of the event {‖vi − vj‖ ≤ r} ∩ {vi, vj /∈ B}, and μB be its expectation under the
measure of the uniform process (by symmetry, this is independent of the indices i and j ). If
v1 is at a distance greater than r from B , the second condition holds trivially. For a fixed B ,
the probability that v1 is within distance r of B is a constant multiple of rd . Thus,

μB ≥ (
1 − Crd)

νrd,

for some C that depends only on the norm and the dimension. Thus, the expected value of
|E|′ is bounded below by μ(1 − Crd). Therefore, by definition of z, we have the inequality

(6.9) μ − √
δμ · nz ≤ E

[|E|′] −
√

δμ · nz

4
.

We now need a variance estimate for |E|′:
Var

(|E|′) = E
(
Var

(|E|′ | N)) + Var
(
E

(|E|′ | N))
.

We have already calculated the expectation of |E|′ given N above; since μB does not depend
on N , we deduce that

Var
(
E

(|E|′ | N)) = (
μB)2 Var

[(
N

2

)]
.

A standard calculation will show that the variance of
(N

2

)
is n3 + n2/2. Meanwhile,

μB ≤ P
(‖v1 − v2‖ ≤ r

) = νrd.

Combining these facts gives

Var
(
E

(|E|′ | N)) ≤ Cr2dn3,

for some universal constant C.
Next, we estimate the expression E(Var(|E|′ | N)). We can write this variance as

Var
(|E|′ | N) = E

[( ∑
1≤i<j≤N

[
1B
i,j − μB])2 ∣∣∣ N

]
.

We now decompose this sum into three sums by distributing the square: one sum over pairs of
the form (i, j), (k, l) with four distinct indices, one with pairs of the form (i, j), (i, k) where
one index repeats and the final over perfect squares of terms involving (i, j). The expectation
of the first one is zero, as the event that i, j form an edge with both endpoints outside of B

is completely independent of the same event occurring over distinct vertices k, l. For a fixed
choice of (i, j) and (i, k), we can bound

E
[
1B
i,j · 1B

i,k

] ≤ P
[‖vi − vj‖ ≤ r,‖vi − vk‖ ≤ r

] = (
νrd)2

,
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where the first inequality follows by removing the requirement that the vertices lie outside of
B , and thus increasing the probability. There are N(N − 1)(N − 2) ways to choose a pair of
indices that overlap in exactly one entry. Thus,∑(

1B
i,j − μB)(

1B
i,k − μB) = ∑(

1B
i,j · 1B

i,k − (
μB)2) ≤ C′r2dN3,

for some universal constant C′. Again, this overestimates the value of this sum dramatically,
but is sufficient for our purposes. Finally, the contribution of terms of the form (1B

i,j − μB)2

to the sum is exactly
(N

2

)
(μB − μ2

B), which is bounded above by C′′rdN2. Combining these
results, taking expectations over N , and then adding the contribution of the variance of the
expectation from before, we conclude that

(6.10) Var
(|E|′) ≤ C′′′(rdn2 + r2dn3)

,

for yet another universal constant C′′′. rdn2 grows as np+o(1), while r2dn3 grows as
n2p−1+o(1). Thus, the variance of |E|′ is np+o(1) if p ≤ 1, and n2p−1+o(1) when p > 1.

By Chebyshev’s inequality and (6.9),

P
[|E|′ < μ − √

δμ · nz] ≤ P

[
|E|′ < E

[|E|′] −
√

δμ · nz

4

]

≤ 16 Var(|E|′)
δμ · n2z

.

Regardless of the value of p, this quantity vanishes as n−p/2+o(1) and, therefore, with proba-
bility 1 − ε, |E|′ exceeds μ − √

δμ · nz for all sufficiently large n.
To conclude, we note that

P
[
Hn(δ)

] ≥ P
[
Hn(δ)|H ′] · P[

H ′]
≥ P

[|E|′ ≥ μ − √
2δμ · nz] · P[

H ′]
≥ (1 − ε)P

[
H ′].

Substituting (6.8) completes the proof. �

PROOF OF THEOREM 2.1. Fix δ, ε ∈ (0,1). In this proof, whenever we say “s suffi-
ciently large”, we mean “s ≥ s0 for some s0 that depends only on δ and ε, and the universal
constant ε̃0 from Theorem 3.1”, and whenever we say “n sufficiently large,” we mean “n ≥ n0
for some n0 that depends only on ε, δ, and our choice of s.”

Let δ̃0 = (1 − ε/16)δ and 
̃0 = δ. Define δ̃ to satisfy

δ̃μ̃s = δμ
(
1 − 1/(logn)2)

.

Although δ̃ will depend on n, we have that δ̃0 ≤ δ̃ ≤ 
̃0 for s and n sufficiently large (where
we use Lemma 5.1 to bound μ/μ̃s from above and below). This allows us to apply Theo-
rem 3.1. We also define

Dn := {|Es | − |E| > (1 + δ̃)μ̃s − (1 + δ)μ
}

=
{
|Es | − |E| > μ̃s − μ − δμ

(logn)2

}
.

The definitions are chosen in such a way that {Dn ∩ Hn(δ)} imply the event Ln(δ̃).
Let Fn(ε) be the event described in the statement of Theorem 2.1, that is, the existence of

a ball B housing the giant clique. Our goal is to prove that

lim
n→∞P

[
Fn(ε)

c|Hn(δ)
] = 0.
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By Proposition 6.4, Gn,δ̃(s
−1/20) implies the event Fn(ε) whenever δ̃ ∈ [(1 − ε/16)δ, δ], n

and s are sufficiently large, and ε is sufficiently small. Then, taking complements, we find
that

P
[
Fn(ε)

c|Hn(δ)
] ≤ P

[
Fn(ε)

c ∩ Dn|Hn(δ)
] + P

[
Dc

n|Hn(δ)
]

≤ P[Gn,δ̃(s
−1/20)c ∩ Dn ∩ Hn(δ)]
P[Hn(δ)] + P

[
Dc

n|Hn(δ)
]

≤ P[Gn,δ̃(s
−1/20)c ∩ Ln(δ̃)]
P[Hn(δ)] + P

[
Dc

n|Hn(δ)
]
.

We begin with the second term. To analyze it, we will use an instance of the celebrated FKG
correlation inequality. First stated in the context of finite lattice systems [16], we will use a
version that first appears in [23]. There is a natural partial ordering on configurations of χ :
we say ω ≺ ω′ if ω ⊂ ω′, that is, every point of ω is also in ω′. An event A is increasing with
respect to this ordering if ω ≺ ω′ and ω ∈ A implies ω′ ∈ A. Heuristically, A is increasing
adding points to the configuration only makes A more likely to occur.

LEMMA 6.6 (The FKG inequality [23]). Let A and B increasing events. Then

P[A|B] ≥ P[A].

It is clear that Hn(δ) is an increasing event. In addition, we can write |Es | − |E| as a sum
over pairs of points in the Poisson point process whose distance exceeds r , but whose corre-
sponding indices satisfy ρ(I, J ) ≤ s. Thus, Dn is also an increasing event, and Lemma 6.6
allows us to deduce that

P
[
Dn|Hn(δ)

] ≥ P[Dn].
Taking complements, we find that

P
[
Fn(ε)

c|Hn(δ)
] ≤ P[Gn,δ̃(s

−1/20)c ∩ Ln(δ̃)]
P[Hn(δ)] + P

[
Dc

n

]
.

It is easy to see that {|Es | > μ̃s − δμ/[2(logn)2]} and {|E| < μ + δμ/[2(logn)2]} imply Dn

and, therefore, the union bound tells us that

P
[
Dc

n

] ≤ P

[
|Es | ≤ μ̃s − δμ

2 log2 n

]
+ P

[
|E| ≥ μ + δμ

2 log2 n

]
.

Recalling (2.1) and (3.6), we can see that

Var
[|E|] = μ

(
1 + 2νnrd) = max

{
np+o(1), n2p−1+o(1)},

Var
[|Es |] ≤ 16|S̃I ||ÑI |2md · max

{
D2,D3} = max

{
np+o(1), n2p−1+o(1)},

where we use the fact that nrd = np−1+o(1) (which follows from (2.3)) for the first line, and
equations (3.1), (3.2) and the bounds on |S̃I | and |ÑI | from Lemma 5.1 to get control of the
variance of |Es |. Thus, Chebyshev’s inequality gives that

P
[
Dc

n

] ≤ 4 log4 n(Var[|E|] + Var[|Es |])
δ2μ2 = nmax{−p,−1}+o(1).

As n grows, this vanishes for all admissible p.
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To complete the proof, we must show that, for s sufficiently large,

lim
n→∞

P[Gn,δ̃(s
−1/20)c ∩ Ln(δ̃)]
P[Hn(δ)] = 0

as n grows. We will now use Theorem 3.1, which holds since δ̃ is bounded above and below
by δ(1 − ε/16) and δ, respectively. Reusing the convention q = (2δ̃μ̃s)

1/2 and w = τ̃s · D ,
the quantitative bound of Theorem 3.1 and Lemma 6.5 gives us

P[Gn,δ̃(s
−1/20)c ∩ Ln(δ̃)]
P[Hn(δ)] ≤ exp

(
−q

[
log

(
q

w

)
− 1

]
− q

2

(
1

10 · s1/20

)10

+ √
2δμ

[
log

(√
2δμ

n · τ
)

− 1
]

+ Cnz logn

)
.

Here, the choice δ̃μ̃s = δμ(1 − 1/(logn)2) becomes essential. Careful algebra will show that
the first order terms, that is, those of order

√
2δμ · logn will cancel perfectly. In fact,

√
2δμ

[
log

(√
2δμ

n · τ
)

− 1
]

− q

[
log

(
q

w

)
− 1

]
= q log

(
w

nτ

)
+ q log

(√
2δμ

q

)

+ (
√

2δμ − q) log
(√

2δμ

enτ

)
.

By the choice of δ̃,
√

2δμ/q = (1 − 1/(logn)2)−1/2, and hence, the bound log(1 − x) ≥ −2x

for all sufficiently small x implies that

log
(√

2δμ

q

)
= −1

2
log

(
1 − 1

(logn)2

)
≤ 1

(logn)2 ,

for all sufficiently large n. Similarly,
√

2δμ − q ≤ 2q/(logn)2 for all sufficiently large n and
s. Since

√
2δμ/enτ = n(2−p)/2+o(1) (which follows from (2.3)), we conclude that

√
2δμ

[
log

(√
2δμ

n · τ
)

− 1
]

− q

[
log

(
q

w

)
− 1

]
≤ q

[
log

(
w

nτ

)
+ 3 − p

2 logn

]
.

Recalling that w/(nτ) = τ̃s/(m
dτ), we are left with

(6.11)

P[Gn,δ̃(s
−1/20)c ∩ Ln(δ̃)]
P[Hn(δ)]

≤ exp
(
q

[
log

(
τ̃s

mdτ

)
− 1

2 · 1010s1/2 + 3 − p

2 logn

]
+ Cnz logn

)
.

From Lemma 5.1, we can see that τ̃s/(m
dτ) ≤ (1 + C/s), and thus, for sufficiently large

values of s,

log
(

τ̃s

mdτ

)
− 1

2 · 1010s1/2 ≤ C

s
− 1

2 · 1010s1/2 ≤ − 1

4 · 1010s1/2 .

For all sufficiently large s and n, we now see that the bracketed term of (6.11) will be negative.
Since z < p/2, we now see that the exponent approaches negative infinity as n grows, and
we deduce that

lim
n→∞

P[Gn,δ̃(s
−1/20)c ∩ Ln(δ̃)]
P[Hn(δ)] = 0,

as required. �
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7. Proof of the upper tail large deviation principle. We now prove Theorem 2.2,
which claims that the function

I (x) :=
(

2 − p

2

)√
2x

is the upper tail rate function for the random variable |E| with speed s(n) = √
μ logn. Recall

that we restrict our attention to subsets of the interval (0,∞), as our result only holds for
events in which |E| exceeds its expectation.

Instead of proving Theorem 2.2 directly, we will prove the following proposition instead.

PROPOSITION 7.1. Recall that, for any δ > 0,

Hn(δ) = {|E| > (1 + δ)μ
} =

{ |E| − μ

μ
> δ

}
.

Then, for any δ > 0 fixed,

(7.1) lim
n→∞

logP[Hn(δ)]√
μ logn

= −I (δ).

The equivalence of this proposition to Theorem 2.2 is standard, but its proof is straightfor-
ward and we include it for completeness.

PROOF THAT PROPOSITION 7.1 IMPLIES THEOREM 2.2. Pick F to be a closed subset of
(0,∞), and let aF > 0 be its leftmost endpoint. Since I (x) is increasing, its infimum over F

occurs at aF . Furthermore, F ⊂ [aF ,∞) and, therefore, for any ε > 0 satisfying (aF −ε) > 0,

P

[ |E| − μ

μ
∈ F

]
≤ P

[ |E| − μ

μ
∈ (aF − ε,∞)

]
= P

[
Hn(aF − ε)

]
.

Taking the logarithm, dividing by
√

μ logn, applying (7.1) and letting ε go to zero gives the
upper bound for F .

Next, take G open in (0,∞) and pick b ∈ G. For some ε > 0, we know that (b− ε, b] ∈ G.
Therefore,

P

[ |E| − μ

μ
∈ G

]
≥ P

[ |E| − μ

μ
∈ (b − ε, b

]
] = P

[
Hn(b − ε)

] − P
[
Hn(b)

]
.

Applying (7.1) twice, we deduce that, for any ε̃ > 0, there is an n sufficiently large to ensure
that

P

[ |E| − μ

μ
∈ G

]
≥ exp

(−(1 + ε̃) · I (b − ε) · √μ logn
)

− exp
(−(1 − ε̃) · I (b) · √μ logn

)
.

Picking ε̃ sufficiently small (as a function of ε) ensures that the second term is smaller than
half the first term. Taking logarithms, dividing by

√
μ logn, and taking ε to zero establishes

the lower bound on the probability of {(|E| − μ)/μ ∈ G}, and establishes Theorem 2.2. �

PROOF OF PROPOSITION 7.1. The statement that, for any ε > 0, there exists n suffi-
ciently large to ensure that

logP[Hn(δ)]√
μ logn

> −(1 + ε)I (δ)

is a direct consequence of Lemma 6.5. Thus, it will be sufficient an upper bound on the
probability of Hn(δ).
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Fix ε > 0. For an arbitrary pair of events A and B , assume that, conditional on A, the event
B occurs with probability at least 1 − ε. This implies that

P[A] ≤
(

1

1 − ε

)
P[B].

By Theorem 2.1, there exists a sufficient large n such that conditioning on Hn(δ) implies
that the random geometric graph has a clique of size at least

√
2δμ(1 − ε) with probability

at least 1 − ε. This means that, for any s, the s-graded model includes a maximal clique set
P ⊂ T with at least as many vertices as the clique of the random geometric graph. Since
every maximal clique set has τ̃s indices, there can be at most mdτ̃s distinct maximal clique
sets; this is an egregious overcount, but we have no need for finer control. Thus, by the union
bound, the probability that there exists a maximal clique set with

√
2δμ(1 − ε) vertices is

bounded above by mdτ̃s times the probability that a single one has the same property. The
number of vertices in a maximal clique set is distributed as a Poisson random variable of
mean τ̃s · D = w. Therefore, the chain of implication allows us to conclude that

P
[
Hn(δ)

] ≤
(

mdτ̃s

1 − ε

)
P

[
Poisson(w) >

√
2δμ(1 − ε)

]
.

Let v := √
2δμ(1 − ε). Applying the Chernoff bounds of Poisson random variables (see

Lemma 5.2) to the right-hand side above gives

P
[
Hn(δ)

] ≤
(

mdτ̃s

1 − ε

)
exp

(
−v

[
log

(
v

w

)
− 1

]
− w

)

≤ exp
(
−(1 − 2ε)

√
2δμ log

[√
μ

w

])
,

where the second inequality follows for all sufficiently large n by noting that all the miss-
ing terms vanish in comparison to

√
μ · logn, and can therefore be absorbed at the cost of

changing ε to 2ε. By the definitions of μ, p and w,
√

μ

w
= n(2−p)/2+o(1).

Therefore, for any η > 0, there exists an n sufficiently large to ensure that

1√
μ logn

logP
[
Hn(δ)

] ≤ −(1 − 2ε)

(
2 − p

2
+ η

)√
2δ.

Since ε and η are arbitrary, we conclude the desired upper bound. �
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