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Motivated by an empirical analysis of data from a genome-wide associa-
tion study on obesity, measured by the body mass index (BMI), we propose a
two-step gene-detection procedure for generalized varying coefficient mixed-
effects models with ultrahigh dimensional covariates. The proposed proce-
dure selects significant single nucleotide polymorphisms (SNPs) impacting
the mean BMI trend, some of which have already been biologically proven to
be “fat genes.” The method also discovers SNPs that significantly influence
the age-dependent variability of BMI. The proposed procedure takes into ac-
count individual variations of genetic effects and can also be directly applied
to longitudinal data with continuous, binary or count responses. We employ
Monte Carlo simulation studies to assess the performance of the proposed
method and further carry out causal inference for the selected SNPs.

1. Introduction. In genome-wide association studies (GWAS), hundreds of thousands
or millions of single nucleotide polymorphisms (SNPs) are explored for their associations
with phenotypes or traits of interest, such as body mass index (BMI), blood pressure, asthma
and many other complex traits. Traditional GWAS deal with cross-sectional phenotypic data,
focusing on a single point in time and primarily explore the mean/fixed effects of SNPs
on the phenotype of interest. The present work moves beyond this paradigm in two impor-
tant aspects. First, we consider longitudinally measured phenotypes, that is, traits measured
repeatedly from each individual over time which need not be normally distributed (e.g., bi-
nary, counts, etc). Second, we provide a framework for selecting both mean/fixed effects and
variance/random effects. In other words, we select SNPs that either affect the mean of the
phenotype or the variance of the phenotype. These extensions allow one to develop a much
deeper understanding of the temporal-genetic architecture of a complex trait.

The Framingham Heart Study1 (FHS) is a long-term longitudinal study whose aim is to
better understand the risk factors of heart disease. The study began in 1948 and is on its
third cohort of subjects. Using this study, we aim to identify genetic factors influencing BMI,
either through the mean or variance. Furthermore, we aim to understand how these effects
change as subjects age. We focus on the second cohort (children of the first cohort), who
were genotyped using the Illumina Omni5 platform, resulting in approximately five million
SNPs across approximately 2000 subjects. Repeated measurements include BMI, smoking
status and alcohol intake.

To model age-dependent associations, we consider generalized varying coefficient mod-
els (Hastie and Tibshirani (1993)). However, estimation of generalized varying coefficient
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models with ultrahigh dimensional covariates (such as millions of SNPs) becomes infeasi-
ble both methodologically and computationally. To reduce the dimensionality of such prob-
lems, marginal feature screening procedures serve as computationally efficient solutions to
pick potentially important subsets of SNPs. Fan and Lv (2008) developed a marginal sure
independence screening procedure (SIS) for ultrahigh dimensional linear models based on
Pearson correlations. Several subsequent feature screening procedures have been developed
for various models; see a brief review by Liu, Zhong and Li (2015) and references therein.
Liu, Li and Wu (2014) extended an SIS for varying coefficient models using conditional
Pearson correlations. Fan, Ma and Dai (2014) and Xia, Yang and Li (2016) proposed sure
independence screening procedures for varying coefficient models and generalized varying
coefficient models, respectively, by extending the B-spline techniques in Fan, Feng and Song
(2011) for additive models. Song, Yi and Zou (2014) extended the proposal of Fan, Ma and
Dai (2014) for longitudinal data with a continuous response. Chu, Li and Reimherr (2016)
further improved the proposal of Song, Yi and Zou (2014) by exploiting within-subject cor-
relation. Our empirical analysis of FHS shows that certain SNPs affect not only the mean
of BMI but also its variability. Furthermore, both mean and variance effects vary as subjects
age. None of the aforementioned works take into account the longitudinal genetic effects on
the variability of traits, despite this being an important goal for geneticists (Aschard et al.
(2013), Furlotte and Eskin (2015), Geiler-Samerotte et al. (2013), Paré et al. (2010), Soave
et al. (2015)).

In this paper we incorporate a mixed effects structure alongside a generalized varying
coefficient model so as to examine longitudinal genetic effects on the mean and variability of
traits. More specifically, the fixed effects in the models are responsible for the mean trajectory
of the phenotypes, while the random effects deal with the temporally-changing variance of
the phenotypes. We develop a new two-step screening procedure in which we first filter out
unimportant fixed-effect variables by ranking the deviance of the marginal model, and then
the random effects are screened based on the estimated variance of the corresponding random
effect term. In both steps, all terms are estimated using a B-splines expansion. Our proposed
procedure can be directly applied to longitudinal genetic data with continuous, binary or
count responses.

We apply the proposed procedure to FHS data. Several covariates—gender, smoking status
and alcohol intake—are incorporated in the model. After the two-step screening stage, 140
SNPs are retained, 70 with fixed effects and 70 with random effects. In the postscreening
variable selection and inference stage, we conduct a longitudinal group LASSO (Barber,
Reimherr and Schill (2017)) for further selection of fixed effects and forward regression for
random effects. The longitudinal effects of the final 52 fixed-effect SNPs, as well as the
covariates, are depicted via the corresponding coefficient curves over age.

Detecting the random effects, which is our biggest contribution in this paper, enables us
to discover the age trends of BMI variability due to the selected SNPs. The five chosen ran-
dom effects are illustrated via the variance function. These curves all display a significant
age-varying trend. Each covariate or SNP has its particular effect pattern, but some common-
alities are observed. For instance, age 40 to 60 is a special period for the covariates and many
SNP effects; some effects exhibit dramatic structural changes during this period while others
are more stable. A subset of SNPs selected by our method coincide with SNPs previously
identified in the literature that have been associated with obesity or certain diseases related
to obesity. Thus, the new SNPs discovered in our work are worthy of further scientific in-
vestigation. Moreover, according to our causal inference analysis, the SNPs selected by our
method have a much larger causal effect size than those previously found in literature.

For the rest of the paper, we introduce the necessary background material and provide some
descriptive statistics of the FHS data in Section 2. In Section 3 the statistical framework is
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studied, consisting of the model structure and the newly developed two-step mixed-effect
screening procedure. The analysis of the FHS data is discussed in Section 4—the two-step
screening, the postscreening variable selection are both conducted. Simulation studies are
provided in Section 5 to empirically verify the proposed methodology, including comparisons
with other related methods. A summary is provided in Section 6. A causal inference study is
given in the Supplementary Material (Chu et al. (2020)).

2. Background.

2.1. Obesity studies. Obesity is a significant risk factor for various chronic diseases, such
as cardiovascular diseases, diabetes, musculoskeletal disorders, etc. Based on the latest World
Health Organization (WHO) global estimates,2 the worldwide prevalence of obesity has more
than doubled since 1980. In 2014, over 600 million adults were obese, which composed about
13% of the world adult population, and this number was projected to reach 1.12 billion by
2030 if current trends continue unabated (Kelly et al. (2008)). While obesity was once con-
sidered a public health problem only in developed countries, the prevalence rates of obesity
in developing countries are rapidly catching up (Bell, Walley and Froguel (2005)). Such a
global pandemic of obesity is becoming a major concern to public health worldwide.

Undoubtedly, environmental factors such as changes in dietary and lifestyle patterns dur-
ing globalization (i.e., increase in energy intake and decrease in physical activity) have con-
tributed to the global pandemic of obesity. However, environmental influences cannot explain
the considerable between-individual variation in body weight within a population sharing
the same environment (Wardle et al. (2008)). Studies have suggested a strong genetic con-
tribution to the between-individual variation in body weight with an estimated heritability
between 40–70% (Ramachandrappa and Farooqi (2011), Allison et al. (1996)). Tradition-
ally, inheritable obesity has been categorized as monogenic (i.e., caused by a single defective
gene), syndromic (i.e., inherited in either an autosomal or an X-linked pattern) or polygenic
(i.e., caused by the interaction between multiple genes and the environment) (Rankinen et al.
(2006)). Although many candidate genes involved in monogenic and syndromic forms of
obesity (e.g., Leptin gene) have been successfully identified over the past two decades, ge-
netic studies of the common and most complex polygenic obesity have been characterized by
relatively slow progress, and the genetics underlying common obesity has remained elusive
(Herrera, Keildson and Lindgren (2011)).

Obesity is defined as the total fat mass of an individual, which ideally is measured by
direct fat-measuring methods such as DEXA scans. However, for practical and economic
reasons one usually uses a surrogate measurement such as the body mass index (BMI =
weight/height2) or waist circumference (WC) (Fall and Ingelsson (2014)). In this analysis,
we examine BMI, and a person is considered obese if his/her corresponding BMI >30 kg/m2.
Another reason for using BMI is that it is highly correlated with body fat, and the WHO has
standard categories of it for monitoring populations worldwide. The scientific goal for this
paper is to detect significant SNPs that are associated with the developmental trajectory of
BMI, as well as its functionally-changing variability.

2.2. Data description. The Framingham Heart Study (FHS) is a long-term, ongoing car-
diovascular study that began in 1948 under the direction of the National Heart, Lung and
Blood Institute (NHLBI) on residents of the town of Framingham, Massachusetts.3 In this

2http://www.who.int/mediacentre/factsheets/fs311/en/
3https://en.wikipedia.org/wiki/Framingham_Heart_Study
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TABLE 1
Number of subjects for each wave of visit

Number of visits 7 6 5 4 3 2 1 Total #obs.: 12,632
Number of subjects 1453 286 85 44 38 12 6 Total: 1924

study, 913,854 SNPs from 24 chromosomes are genotyped from the second (offspring) co-
hort study with 1924 subjects. Let “A” and “a” stand for the major and minor allele of a SNP
and we code “AA,” “Aa” and “aa” into 0, 1 and 2. We use SNPs with a minor allele frequency
(MAF) greater than 5%, resulting in 718,867 SNPs.

Each subject participated in up to seven clinical visits where a variety of medical mea-
surements were recorded, including height, weight, age, etc, and survey questions such as
alcohol intake and smoking status. Table 1 tabulates the number of subjects that participated
in one, two, . . . , seven clinical visits. The elapsed time between the first and second waves is
eight years, with the remaining visits conducted every three–four years.

The histograms of BMI at the original and log scale are shown in the top panel of Figure 1,
and we adopt BMI∗ = log(BMI) so that the response variable has a bell-shaped histogram.

Subject age has an approximately normal distribution between five and 85 years old. In-
stead of using the original scale of age, we use its normalized rank (i.e., its rank dividing
by the sample size) to satisfy the assumption of B-spline regression. The histograms of age
before and after transformation are shown in the bottom panel of Figure 1.

Based on our preliminary analysis, gender, smoking and alcohol may have significant ef-
fects on BMI. Thus, three covariates are included in the model but are not subject to selection.

FIG. 1. Top panel are histograms for BMI on the original and log scale, and the bottom panel are histograms
for the age variable before and after transformation.
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FIG. 2. Histograms for smoking and alcohol covariates.

For gender, the sample consists of 873 men (reference level) and 1051 women. To evaluate
the impact of smoking behavior, we use “the number of cigarettes smoked per day” in the
survey questions, with the histogram shown in the left panel of Figure 2a, which suggest
converting the smoking status into a binary covariate, smoking vs. nonsmoking. The amount
of alcohol intake combines servings of beer, wine and spirits per week for each individual.
We use Alcohol∗ = log(Alcohol + 1) for further analysis to avoid an over-skewed distribu-
tion. The histograms of alcohol intake at the original and transformed scale are shown in the
middle and right panels of Figure 2b, respectively.

3. Statistical framework. In this section we develop the relevant statistical model for
the aforementioned scientific goal and propose the corresponding two-step screening proce-
dure.

3.1. Statistical model. To address the issue of dynamic effects of SNPs on BMI across
time (age), it is natural to consider the generalized time-varying coefficient model. To include
potential effects on the variability of BMI, we include random effects into the model.

Denote the observed sample at age t as {yi(t), zi (t),xi(t),ui(t), i = 1, . . . , n}. Here, n

denotes the sample size, yi(t) is the BMI for subject i at age t and zi (t) is the low-dimensional
predictor vector that is not subject to screening, specifically consisting of gender, smoking
status and alcohol intake in this empirical analysis of FHS data. The fixed-effect covariate
vector, xi (t), and the random effect covariate vector, ui (t), are ultrahigh dimensional, which,
in general, are allowed to depend on t , though in our application they are fixed as they refer
to SNPs. Under certain circumstances researchers may have prior knowledge about which
covariates affect the response mean and which affect the variance. However, in most cases
such information is not available in advance, thus xi (t) and ui(t) may be the same.

The generalized varying coefficient mixed effect model is described as follows:

(1) g
(
μi(t)

) = β0(t) +
q∑

l=1

βl(t)zil(t) +
p∑

k=1

γk(t)xik(t) +
r∑

m=1

bim(t)uim(t),

where μi(t) = E(yi(t)|bi (t),xi(t),ui(t)) and g(·) is a known link function that is commonly
taken to be the canonical link. For instance, the canonical links for normal, binomial and
Poisson distributions are the identity link g(μ) = μ, logit link g(μ) = logit(μ) and log link
g(μ) = log(μ), respectively. Moreover, {βl(t), l = 0,1, . . . , q} and {γk(t), k = 1, . . . , p} are
fixed-effect nonparametric smooth coefficient functions. The random coefficient functions
{bim(t),m = 1, . . . , r; i = 1, . . . , n} are assumed to be realizations of Gaussian processes
with mean zero and covariance function ζm(s, t) = cov(bim(s), bim(t)) and are independent
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between subjects. We define two index sets, Mf
0 and Mr

0, for the true fixed and random
effects, respectively,

(2) Mf
0 = {

1 ≤ k ≤ p : ‖γk‖2 > 0
}
, and Mr

0 = {
1 ≤ m ≤ r : E‖bim‖2 > 0

}
,

where ‖ · ‖2 is the functional L2 norm.

3.2. Two-step screening procedure. We propose the following two-step screening proce-
dure to screen both fixed and random effects:

Step 1: Fixed-effect screening
At the first step, we consider a marginal model for the kth x-variable,

(3) g
(
μi(t)

) = β∗
0k(t) +

q∑
l=1

β∗
lk(t)zil(t) + γ ∗

k (t)xik(t),

where {β∗
lk(t), l = 0,1, . . . , q} and γ ∗

k (t) are smooth coefficient functions and, thus, can be
well approximated by B-splines,

(4) β∗
lk(t) ≈

Mln∑
m=1

ψlmBlm(t) and γ ∗
k (t) ≈

Lkn∑
h=1

θkhBkh(t),

where Blm(·) and Bkh(·) are B-spline basis functions and Mln and Lkn are the numbers of
basis functions used for β∗

lk(t) and γ ∗
k (t), respectively. Therefore, model (3) approximately

becomes the following generalized linear model with working-independent covariance struc-
ture and can be fitted accordingly,

(5) g
(
μi(t)

) ≈
M0n∑
m=1

ψ0mB0m(t) +
q∑

l=1

Mln∑
m=1

ψlmBlm(t)zil(t) +
Lkn∑
h=1

θkhBkh(t)xik(t).

For the marginal model (3) and (5) with the kth x-variable, we use the deviance Gk that
compares the current fitted value μ̂i(t) with the observed yi(t) through the difference in log
likelihood of the fitted model and the saturated model. For normally distributed response with
identity link function, the deviance is computed as the residual sums of squares.

Smaller value of Gk typically indicates greater marginal importance of the kth covariate to
the response. Thus, we can obtain a subset index for fixed effects M̂f

τn by ranking {Gk, k =
1, . . . , p} in an increasing order:

(6) M̂f
τn

= {1 ≤ k ≤ p : Gk ranks among the first τn},
where τn is the data-driven threshold for the number of screened fixed-effect variables, typi-
cally less than the sample size n.

Step 2: Random-effect screening
In the second step, we carry out random effects screening. Based on the screened fixed

effects in (6), we consider the following generalized varying coefficient regression model,

(7) g
(
μi(t)

) = β�
0k(t) +

q∑
l=1

β�
lk(t)zil(t) + ∑

k∈M̂(f )
τn

γ �
k (t)xik(t),

and calculate the fitted linear predictor η̂�
i (t) as the estimates of the right-hand side of model

(7). Then, the following marginal model can be utilized to measure the importance of the mth
random-effect covariate uim(t):

(8) g
(
μi(t)

) = η̂�
i (t) + b∗

im(t)uim(t),
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where η̂�
i (t) enters the model as an offset and b∗

im(t) is a Gaussian process with mean zero and
covariance function ζ ∗

m(t, s). The marginal importance of the mth u-variable can be evaluated
via the magnitude of vm:

(9) vm =
∫

var
{
b∗
im(t)

}
u2

im(t) dt =
∫

E
{
b∗
im(t)2}

u2
im(t) dt.

To estimate vm in (9), we approximate b∗
im(t) using B-splines, with b∗

im(t) ≈ ∑Sm
s=1 αims ×

Bms(t); this transforms model (8) into a generalized linear mixed-effects model

(10) g
(
μi(t)

) ≈ η̂�
i (t) +

Sm∑
s=1

αimsBms(t)uim(t),

where (αim1, . . . , αimSm)T ∼ N(0,Dm) and αims’s are independent across subjects. Thus, vm

in (9) can be estimated by

(11) v̂nm = 1

n

n∑
i=1

[
J−1

i

Ji∑
j=1

Ê2{
b∗
im(tij )

}
u2

im(tij )

]
= 1

n

n∑
i=1

J−1
i tr

(
UmiD̂mUT

mi

)
,

where Ji is the number of visits for subject i, Umi = (Umi1, . . . ,UmiJi
)T , UT

mij = uim(tij ) ×
Bm(tij ), Bm(tij ) = (B1(tij ), . . . ,BSm(tij )), tij is the (transformed) age of subject i at the j th
visit, j = 1, . . . , Ji and D̂m is the maximum likelihood estimator of Dm. Thus, we sort v̂nm in
a decreasing order and define the screened random-effect index set as

(12) M̂r
ξn

= {1 ≤ m ≤ r : v̂nm ranks among the first ξn},
where ξn is the threshold number of screened random effects.

In short, we refer this two-step screening procedure for mixed-effect time-varying coeffi-
cient models as MEGS in this paper.

4. Framingham Heart Study data analysis. For the Framingham Heart Study (FHS)
data, we assume the full model to be

BMI∗ij = β0(ageij ) + β1(ageij )Genderi + β2(ageij )Smokeij + β3(ageij )Alcohol∗ij

+ β4(ageij )Alcohol∗2
ij +

p∑
k=1

γk(ageij )SNPik +
p∑

m=1

bim(ageij )SNPim + εij ,
(13)

where bim(ageij ) are random functions of transformed age, {SNPik, k = 1, . . . , p} are asso-
ciated with fixed effects, {SNPim,m = 1, . . . , p} with random effects and p = 718,867 as
discussed in Section 2.2. We add a quadratic term for alcohol, as Yeomans (2010) showed
that moderate amount of alcohol intake actually helps to control body weight but excessive
intake can contribute to obesity.

4.1. Screening. To reduce the ultrahigh dimensionality, we apply our feature screening
procedure from Section 3 to screen both fixed and random effects of SNPs. We first screen
through all the SNPs for associations with response mean functions based on the following
series of marginal models:

BMI∗ij = β0(ageij ) + β1(ageij )Genderi + β2(ageij )Smokeij + β3(ageij )Alcohol∗ij
+ β4(ageij )Alcohol∗2

ij + γk(ageij )SNPik + εij , k = 1, . . . , p.

All coefficient functions are approximated by cubic B-splines with equally spaced knots and
five basis functions. We adopt Gk to be the residual sum of squares (RSS), since the identity
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link function is involved, and select the top τn = [n0.8/ log(n0.8)] = 70 SNPs by (6). Here,
τn is chosen following the using a common recommendation from the literature (Liu, Li and
Wu (2014)).

At the second step, we proceed to screen random effects. Based on the SNPs remained
after the first-step screening, we compute the fitted value

η̂i(ageij ) = β̂0(ageij ) + β̂1(ageij )Genderi + β̂2(ageij )Smokeij + β̂3(ageij )Alcohol∗ij
+ β̂4(ageij )Alcohol∗2

ij + ∑
k∈M̂(f )

τn

γ̂k(ageij )SNPik.

The following marginal model is then constructed as

(14) BMI∗ij = η̂i(ageij ) + bim(ageij )SNPim + ε∗
ij

and approximated by

BMI∗ij ≈ η̂i(ageij ) +
Sm∑
s=1

αimsBms(ageij )SNPim(ageij ) + ε∗
ij ,

where (αim1, . . . , αimSm)T ∼ N(0,Dm) and Dm is assumed to be a diagonal matrix. We cal-
culate the marginal utility v̂nm as defined in (11) and keep the top ξn = 70 SNPs with index
set M̂(r)

ξn
in (12).

4.2. Postscreening variable selection. The screening procedure retains 140 SNPs. We
then apply a longitudinal group LASSO (Barber, Reimherr and Schill (2017)) to further select
important SNPs that affect the mean response and apply a forward selection to select those
SNPs affecting variability.

(1) Group LASSO for fixed effects
Consider the following approximated linear model:

BMI∗ij =
M0n∑
m=1

ψ0mB0m(ageij ) +
M1n∑
m=1

ψ1mB1m(ageij )Genderi

+
M2n∑
m=1

ψ2mB2m(ageij )Smokeij +
M3n∑
m=1

ψ3mB3m(ageij )Alcoholij(15)

+
M4n∑
m=1

ψ4mB4m(ageij )Alcohol2ij + ∑
k∈M̂(f )

τn

Lkn∑
h=1

θkhBkh(ageij )SNPik + εij .

We apply group LASSO method to select important SNPs without penalizing on the intercept
function and coefficient functions of gender, smoke and alcohol terms. The tuning parameter
λ is chosen via fivefold cross-validation on minimizing the mean squared prediction error.

The detailed information of the finally selected 52 SNPs are listed in Table 2, where
“gene1/gene2” in the “Gene” column indicates that this SNP is intergenic between gene1 and
gene2 and the “MAF” column reports the corresponding minor allele frequencies (MAF).
The estimated coefficient functions with 95% point-wise confidence band for the baseline
predictors, and chosen SNPs are shown in Figures 3 and 4.

The shape of the intercept function in the first plot of Figure 3 shows that BMI increases
with age, and the sharpest increase occurs between 30 to 40 years old. Then, it becomes stable
between age 40 and 60 and starts to decrease after 60. Previous research has confirmed that
those aged 40–60 are most likely to be overweight (Becker et al. (2002), Rand and Kuldau
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TABLE 2
52 SNPs selected by group LASSO for BMI

SNP Chr. Position Gene Risk allele MAF SNP Chr. Position Gene Risk allele MAF

rs2788611 1 112356814 KCND3 G 48.28% rs17811806 10 109857751 – T 12.94%
rs12128031 1 185453884 HMCN1 A 41.76% rs17774576 10 49292414 C10ORF71 G 12.71%
rs490765 1 57565437 DAB1 T 8.03% rs592373 11 1890990 LSP1 C 35.32%
rs6701005 1 30644096 PTPRU/MATN1 C 6.11% rs661348 11 1884062 LSP1 C 42.18%
rs7604277 2 58677274 LINC01122 C 37.06% rs587961 11 1881256 LSP1 T 33.47%
rs12478317 2 234440320 – C 24.48% rs1891288 11 34795957 – C 6.34%
rs7584036 2 54994399 EML6 A 22.45% rs11068016 12 116401001 – G 15.23%
rs11903374 2 81639911 IL1B T 8.21% rs7977617 12 104747837 TXNRD1 G 13.49%
rs6552663 4 184524289 – T 40.9% rs7152364 14 39272372 LINC00639 G 31.65%
rs12641554 4 183381531 – A 30.54% rs8005907 14 96787747 ATG2B C 8.84%
rs17060468 4 175249433 CEP44 G 22.35% rs17648549 15 25047848 GABRB3 T 24.35%
rs17007095 4 141293852 – G 15.25% rs4785878 16 65955116 CDH5 G 24.97%
rs6879492 5 11205980 CTNND2 A 9.97% rs17760525 17 56749999 – A 45.61%
rs199253 6 143004059 LINC01277 C 49.9% rs2847297 18 12797695 PTPN2 G 33.99%
rs6914292 6 105559027 – T 45.95% rs6506838 18 78540074 – T 30.41%
rs10457128 6 105570101 – G 37.71% rs12966015 18 55768664 NFE2L3P1 T 29.39%
rs9446305 6 70888868 B3GAT2 T 22.04% rs17177666 18 70954324 – A 12.45%
rs13212642 6 71595571 B3GAT2 G 21.96% rs4891260 18 71144371 TSHZ1/C18ORF62 T 9.12%
rs17082113 6 120317976 – T 15.36% rs405722 18 12797695 MSH5 T 6.65%
rs2529753 7 20838951 SP8/RPL23P8 C 39.09% rs6510070 19 57450244 – A 40.18%
rs4722675 7 27243962 HOXA13/HOTTIP A 7.09% rs10415880 19 49685899 PRMT1 A 32.51%
rs7859884 9 77417406 TRPM6 T 35.89% rs12463356 19 50217136 CPT1C T 20.95%
rs1885167 9 17504515 C9ORF39 A 21.78% rs4814838 20 19319846 SLC24A3 G 43.63%
rs4244347 10 103452645 BTRC A 35.63% rs6053233 20 5242559 CDS2/UBE2D3P1 A 26.33%
rs11192397 10 107060568 SORCS3/YWHAZP5 G 14.84% rs6014998 20 56003684 RBM38/HMGB1P1 A 12.53%
rs180925 10 115734935 IL13 A 29.31% rs17624687 22 26178247 MYO18B T 13.15%
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FIG. 3. Fixed effect coefficients for the covariates and SNPs 1–25 selected by group LASSO for BMI.

(1990), Wang and Beydoun (2007), Ogden et al. (2012)). Examining the gender effect, recall
that men are the reference group; we see that women, on average, have a lower BMI than
men, but the gap steadily narrows down after age 40. The coefficient function for smoking
indicates that smoking before 40 increases BMI, but the effect decreases as subjects’ age;
after age 50, surprisingly, smoking is negatively associated with BMI. However, the effects
of smoking on BMI are not significant at most age ranges except for those between 50 and 70.
For alcohol, both linear and quadratic terms have significant time-varying effects. We select
five time points and show the alcohol effects in Figure 5. We observe that alcohol intake
consistently increases BMI when subjects are young (age 15), while the trend is completely
reversed for older subjects (age 60). For the middle-age groups (age 30, 40, 50), moderate (but
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FIG. 4. Fixed effect coefficients for SNPs 26–52 selected by group LASSO for BMI.

not excessive) alcohol intake could help to control BMI which coincides with the statements
in Yeomans (2010).

The coefficients for the selected 52 SNPs take various shapes. Some SNPs (rs11192397,
rs17007095, rs1891288, rs11903374, rs6510070, etc.) have significant positive effects on
BMI, and the effects increase over time, while some others (rs17060468, rs6701005,
rs11068016, rs199253, rs17648549, etc.) have larger impacts at younger ages, but the ef-
fects decrease as subjects get older. There are also SNPs that have relatively constant posi-
tive (rs6879492) or negative effects (rs10457128) over time. Interestingly, many SNP effects
(rs1885167, rs7152364, rs6053233, rs490765, rs180925, rs4722675, etc.) change drastically
from age 40 to 60, which is also observed in the linear and quadratic trend of alcohol. This
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FIG. 5. Effects of alcohol on BMI at different ages.

indicates potential interaction effects between genetic markers and individuals’ life style such
as drinking behavior.

In addition, we looked through previous research results about the selected 52 SNPs. In
Table 3 we listed eight SNPs that have been studied in literature. Evidence suggests that the
diseases with which these SNPs are associated, such as breast cancer, hypertension and type 2
diabetes, are closely related to BMI and obesity (de Jongh et al. (2004), Weyer et al. (2001),
Kaklamani et al. (2008)). Therefore, future research may reveal the mechanisms by which
these SNPs influence BMI.

(2) Forward selection of random effects
Next, we apply forward selection to further identify SNPs that are associated with random

effects from the 70 SNPs in M̂(r)
ξn

obtained from random-effect screening. We start from
a model with the baseline covariates (gender, smoking and alcohol behavior) and the 52
selected fixed-effect SNPs (indexed by Î(f )). We then add SNPs from M̂(r)

ξn
, one at a time

which result in the largest increase in the restricted log-likelihood (REML). In this way,
we can obtain a series of models with random-effect index sets Mq , q = 1,2, . . . . We then
evaluate their mean prediction error using fivefold cross-validation, based on the following
model:

BMI∗ij = β0(ageij ) + β1(ageij )Genderi + β2(ageij )Smokeij + β3(ageij )Alcohol∗ij
+ β4(ageij )Alcohol∗2

ij + ∑
k∈Î(f )

γk(ageij )SNPik + ∑
m∈Mq

bim(ageij )SNPim + εij .
(16)

Detailed information about the finally selected five SNPs can be found in Table 4.
According to model (16), the age-varying variance of BMI is computed by the summation

over that of all five selected SNPs above, together with the constant variance of the random
noise. The estimated variance contribution by the selected five SNPs are depicted in Figure 6.
Overall, the effects of all five SNPs on BMI variance increase over age, leading to dramatic
rise of the total variance of BMI, and the rise becomes more rapid when people get older.
This is consistent with many scientific findings and common sense; BMI, and hence obesity
conditions, varies less for people in the early ages, while it diverges more in later life stages.
Individally, the contribution of variance by SNP rs4766797 remains steady before age 35
and between age 55–65, while it has a sharp jump around middle age. Thus it is worthwhile
studying this SNP for those subjects at age period 35–55. Other SNPs can be interpreted in
the similar fashion.

In a case when a replication study is desired, one way is to follow the refitted cross-
validation methodology (Fan, Guo and Hao (2012)). Specifically, split the original sample
into halves—one half for screening and variable selection, the other half for estimating coef-
ficient functions and drawing inferences; and flip the order. The final results are computed by
taking average of the two parts.

5. Simulation studies. We assess the finite sample performance of the proposed two-
step screening procedure, MEGS, by Monte Carlo simulation studies. We will consider three
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TABLE 3
Some previous findings about selected SNPs for BMI

SNP Chr. Position Gene Risk allele MAFa Rankingb

rs661348 11 1884062 LSP1 C 42.18% 1

– Breast cancer studies (Tapper et al. (2008)).
– Blood pressure studies (Johnson et al. (2011), Munroe, Barnes and Caulfield (2013)).

rs592373 11 1890990 LSP1 C 35.32% 3

– Breast cancer studies (Chen et al. (2015)).

rs10415880 19 49685899 PRMT1 A 32.51% 8

– Associated with arteriovenous fistula (AVF) malfunction
risk in male hemodialysis (HD) patients (Lee et al. (2015)).

rs7859884 9 77417406 TRPM6 T 35.89% 22

– Associated with type 2 diabetes mellitus (Nazıroğlu, Dikici and Dursun ()).

rs180925 10 115734935 IL13 A 29.31% 34

– Increase the pneumonitis risk following radiotherapy
treatment of nonsmall cell lung cancer (Hildebrandt et al. (2010)).

rs2847297 18 12797695 PTPN2 G 33.99% 37

– Associated with risk of Behçet’s disease (Wu et al. (2013)).
– Correlated with rheumatoid arthritis (RA) (Suzuki et al. (2013)).

rs405722 18 12797695 MSH5 T 6.65% 53

– Significantly associated with expression levels of MutS protein
homolog 5 (MSH5) gene in lung cancers (Nguyen et al. (2014)).

rs1150793 18 12797695 MSH5 C 6.37% 66

– Associated with susceptibility to Kawasaki disease
and coronary artery aneurysms (Hsieh et al. (2011)).
– Genetic marker for severe cutaneous adverse
reactions caused by allopurinol (Hung et al. (2005)).

a. Minor allele frequency in this study
b. SNP’s ranking in the screening procedure.

different scenarios: continuous response in linear regression, binary response in logistic re-
gression and count data response in Poisson regression.

In all situations, we set x- and u-predictors to be the same at the initial stage with p = 1000
dimensions. The sample size n is take to be 100 and 200. The number of observations per

TABLE 4
Five SNPs selected for random effects for BMI

SNP Chromosome Position Risk allele MAF

rs4766797 12 115534970 A 49.77%
rs10121765 9 27362053 A 48.78%
rs2153741 20 2126096–2126097 G 48.70%
rs12471128 2 172863964 A 49.45%
rs4908404 1 28564321 C 49.95%
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FIG. 6. Estimated variance functions for the selected five SNPs.

subject Ji ≡ J = 10. The covariate vector xi (tij ) = (xi1(tij ), . . . , xip(tij ))
T is generated in

the following fashion:

(17)
(
t∗ij ,x∗

ij

) ∼ Np+1(0,�x), tij = �
(
t∗ij

)
, and xi (tij ) = x∗

ij

for j = 1, . . . , J and i = 1, . . . , n. The (k1, k2)th element of �x is set to σxρ
|k1−k2|
x , where

ρx = 0.4,0.8 and σ 2
x is the variance of each x-predictor. �(·) is the cumulative distribution

function of the standard normal distribution. Therefore, tij is uniformly distributed on [0,1]
and correlated with xi (tij ). The baseline predictor zi is generated from a Bernoulli distribu-
tion with equal probability.

To evaluate the performance of the proposed method, we employ the following criteria as
used in Liu, Li and Wu (2014):

• Rk : The average of ranks of xk for fixed effects or um for random effects in terms of the
screening criterion based on 1000 replications.

• M : The minimum size of the submodel so that all true predictors can be selected. The 5%,
25%, 50%, 75% and 95% quantiles of M are reported based on 1000 replications.

• pa : The proportion of 1000 replications where all true predictors are being selected into
M̂(f )

τn for fixed effects and M̂(r)
ξn

for random effects.

• pk and pm: The proportion of xk being selected into the submodel M̂(f )
τn , and um being

selected into M̂(r)
τn over 1000 replications.

To calculate pa , pk and pm, we set the selected submodel size τn = ν[n/ logn] with ν =
1,2,3 (Fan and Lv (2008)) at both steps of screening.

We also conduct the GVCM-SIS method proposed by Xia, Yang and Li (2016), which
deals with generalized varying coefficient models without longitudinal data structure, and
the feature screening procedure for ordinary time-varying coefficient models (Chu, Li and
Reimherr (2016)), denoted as TVCM-SIS. Note that these two methods cannot detect random
effects; thus, only the fixed effect results are compared. Furthermore, TVCM-SIS are not de-
signed for binary responses and count data; thus, only continuous-response case is considered
for this method. GVCM-SIS is designed for generalized varying coefficient model without
longitudinal data structure; thus, the within-subject correlation has to be overlooked when
implementing this method.

EXAMPLE 1 (Continuous response). We first consider continuous response and generate
yi(tij ) by

yi(tij ) = β0(tij ) + β1(tij )zi + ∑
k∈Mf

γk(tij )xik(tij ) + ∑
k∈Mr

bik(t)xik(tij ) + εi(tij ).

The random errors are drawn from N(0,1) independently within and across subjects, σx =
0.4. The indices for true fixed and random effects are set to Mf = {100,400,700,900} and
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Mr = {300,800}. The fixed coefficient functions are:

β0(t) = 0.01t2, β1(t) = 0.01t + 0.01t3, γ100(t) = 0.07 × 1(t > 0.35) + 0.14,

γ400(t) = 0.06 cos(2πt − π) + 0.15, γ700(t) = 0.07(1 − t)2 − 0.18,

γ900(t) = −0.06 sin(2πt) − 0.15.

The random effects are generated as follow:

bi300(t) = ai1(t)
(−0.08 cos(πt) − 0.36

)
, bi600(t) = ai2(t)

(
0.08 sin(2πt) + 0.3

)
,

where ai (t) = (ai1(t), ai2(t))
T ∼ N2(0,�a) with corr(ai (tij ),ai (tij ′)) = 0.4|j−j ′| and

�a =
(

1 0.1
0.1 1

)
.

Tables 5, 6 and 7 report the results. Table 5 consists of the rankings of fixed and random
effects for the truly active variables. The newly proposed MEGS performs well and outper-
forms both GVCM-SIS and TVCM-SIS in all cases, especially when n = 200 and ρx = 0.4:
All four fixed effects have average rankings less than 6, and both random effects have average
rankings less than 5. The findings imply the ranking consistency property (Zhu et al. (2011)).
While the other two methods fail to detect the truly important predictors due to the neglect of
within-subject correlation and random effects. When ρx increases from 0.4 to 0.8, the aver-
age rankings for fixed effects reasonably and slightly increase, but almost remain the same for
random effects. Table 6 shows the minimum number of predictors that is required to ensure
the inclusion of all truly active predictors. We observe that when sample size n = 200, fixed
effects ranked top seven and random effects ranked top five among the 1000 predictors in
more than 75% of the replications, indicating high accuracy of the screening procedure. The
selection proportions are reported in Table 7, and the conclusions are consistent. At sample
n = 200 and for predictors with both small and large correlations, all true fixed and random
effects are retained in more than 900 replications using threshold τn = 37.

EXAMPLE 2 (Count response). In this simulation study, we consider count response with
Poisson distribution. The fixed and random coefficient functions are generated in the same

TABLE 5
Average ranks Rj of the active predictors: continuous response

Fixed effects Random effects

ρx n Method x100 x400 x700 x900 x300 x800

0.4 100 GVCM-SIS 145.375 164.268 223.671 230.735 – –
TVCM-SIS 111.815 308.166 190.303 218.460 – –

MEGS 13.217 28.221 40.413 39.536 34.393 35.303

200 GVCM-SIS 41.582 45.546 94.339 110.527 – –
TVCM-SIS 33.542 197.033 58.437 67.695 – –

MEGS 2.082 3.536 4.602 5.791 4.525 3.670

0.8 100 GVCM-SIS 144.280 169.260 226.535 229.090 – –
TVCM-SIS 126.656 325.510 183.042 230.505 – –

MEGS 16.744 35.364 43.884 46.349 32.646 26.950

200 GVCM-SIS 43.134 49.412 109.050 118.953 – –
TVCM-SIS 31.152 203.887 66.340 66.946 – –

MEGS 2.667 6.374 8.316 8.924 4.251 4.262
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TABLE 6
Quantiles of M : continuous response

Fixed effects Random effects

ρx n Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

0.4 100 GVCM-SIS 87.95 229.75 418.00 665.25 895.05 – – – – –
TVCM-SIS 119.95 310.25 451.00 669.75 910.20 – – – – –

MEGS 5.00 15.00 43.00 113.25 372.10 2.00 5.00 16.00 63.00 317.15

200 GVCM-SIS 14.00 53.75 139.00 301.00 663.40 – – – – –
TVCM-SIS 20.85 58.25 183.00 391.75 735.00 – – – – –

MEGS 4.00 4.00 4.00 7.00 33.00 2.00 2.00 2.00 3.25 29.05

0.8 100 GVCM-SIS 91.00 232.00 414.00 646.50 917.15 – – – – –
TVCM-SIS 139.00 321.50 515.50 676.75 890.95 – – – – –

MEGS 8.00 22.00 51.00 133.00 434.05 2.00 5.00 15.00 52.00 262.05

200 GVCM-SIS 20.00 62.00 154.00 333.25 682.15 – – – – –
TVCM-SIS 14.01 76.56 211.01 415.53 741.34 – – – – –

MEGS 5.00 7.00 11.00 17.00 43.05 2.00 2.00 3.00 5.00 20.00

way as Example 1. The data are generated via

log
(
μi(tij )

) = β0(tij ) + β1(tij )zi + ∑
k∈Mf

γk(tij )xik(tij ) + ∑
k∈Mr

bik(t)xik(tij ).

Table 8 reports the average rankings for all active predictors in different settings, by com-
paring MEGS and GVCM-SIS. For MEGS, both the fixed and random effects have high
average rankings, especially at sample size 200. The minimum model sizes in Table 9 show
that the 95% quantiles for both fixed and random effects sets are relatively large around 30
and 46, indicating unstable performance for a few replications. But for most of the simu-
lation replications, the screening procedure can select true predictors with relatively small
model sizes. The selection rates reported in Table 10 confirm previous observations: the fixed
and random effects are retained into the subset with proportions very close to 1 at sample
size 200 using threshold 16. The screening procedure performs slightly but reasonably worse
at large correlation (ρx = 0.8) scenarios, especially for fixed effect x900. Again, GVCM-SIS
fails to identify most important predictors by ignoring the within-subject correlation.

EXAMPLE 3 (Binary response). Logistic regression is a commonly used tool for model-
ing binary response. We consider the binary outcome with the following time-varying coeffi-
cient mixed effects model:

log
(

μi(tij )

1 − μi(tij )

)
= β0k(tij ) + β1(tij )zi + ∑

k∈Mf

γk(tij )xik(tij ) + ∑
k∈Mr

bik(t)xik(tij ).

The fixed coefficient functions are:

β0(t) = 0.01t2, β1(t) = 0.01t + 0.01t3, γ100(t) = 0.14 × 1(t > 0.35) + 0.28,

γ400(t) = 0.12 cos(2πt − π) + 0.3, γ700(t) = 0.14(1 − t)2 − 0.36,

γ900(t) = −0.12 sin(2πt) − 0.3.

The random effects are generated as follow:

bi300(t) = ai1(t)
(−0.16 cos(πt) − 0.72

)
, bi600(t) = ai2(t)

(
0.16 sin(2πt) + 0.6

)
,
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TABLE 7
Selection proportion pj of the active predictors: continuous response

Fixed effects Random effects

ρx n τn & ξn Method p100 p400 p700 p900 p
(f )
a p300 p800 p

(r)
a

0.4 100 21 GVCM-SIS 0.270 0.213 0.159 0.134 0.000 – – –
TVCM-SIS 0.288 0.021 0.135 0.167 0.000 – – –

MEGS 0.898 0.748 0.710 0.717 0.339 0.740 0.736 0.553

42 GVCM-SIS 0.358 0.297 0.218 0.183 0.002 – – –
TVCM-SIS 0.387 0.035 0.210 0.272 0.000 – – –

MEGS 0.937 0.833 0.807 0.801 0.498 0.814 0.821 0.674

63 GVCM-SIS 0.407 0.362 0.261 0.234 0.003 – – –
TVCM-SIS 0.501 0.076 0.277 0.282 0.001 – – –

MEGS 0.955 0.885 0.850 0.856 0.620 0.867 0.870 0.754

200 37 GVCM-SIS 0.654 0.633 0.430 0.370 0.060 – – –
TVCM-SIS 0.721 0.252 0.480 0.568 0.049 – – –

MEGS 0.997 0.995 0.985 0.982 0.959 0.978 0.986 0.964

74 GVCM-SIS 0.769 0.733 0.531 0.494 0.151 – – –
TVCM-SIS 0.798 0.334 0.627 0.695 0.112 – – –

MEGS 0.998 0.999 0.996 0.989 0.982 0.989 0.993 0.982

111 GVCM-SIS 0.809 0.793 0.609 0.570 0.228 – – –
TVCM-SIS 0.848 0.387 0.726 0.766 0.211 – – –

MEGS 1.000 0.999 0.997 0.994 0.990 0.993 0.998 0.991

0.8 100 21 GVCM-SIS 0.243 0.188 0.140 0.116 0.000 – – –
TVCM-SIS 0.273 0.032 0.111 0.116 0.000 – – –

MEGS 0.874 0.699 0.662 0.659 0.242 0.768 0.780 0.585

42 GVCM-SIS 0.324 0.262 0.207 0.181 0.000 – – –
TVCM-SIS 0.344 0.045 0.191 0.178 0.000 – – –

MEGS 0.929 0.809 0.772 0.780 0.449 0.839 0.851 0.712

63 GVCM-SIS 0.381 0.319 0.263 0.226 0.001 – – –
TVCM-SIS 0.412 0.085 0.309 0.196 0.000 – – –

MEGS 0.949 0.863 0.827 0.832 0.561 0.877 0.901 0.785

200 37 GVCM-SIS 0.630 0.593 0.373 0.332 0.032 – – –
TVCM-SIS 0.735 0.264 0.482 0.331 0.081 – – –

MEGS 0.999 0.987 0.981 0.970 0.937 0.986 0.989 0.976

74 GVCM-SIS 0.735 0.707 0.502 0.467 0.113 – – –
TVCM-SIS 0.826 0.366 0.617 0.521 0.094 – – –

MEGS 1.000 0.997 0.994 0.992 0.983 0.992 0.995 0.987

111 GVCM-SIS 0.785 0.766 0.564 0.536 0.182 – – –
TVCM-SIS 0.879 0.422 0.711 0.663 0.151 – – –

MEGS 1.000 0.999 0.995 0.995 0.989 0.996 0.997 0.993

where ai (t) = (ai1(t), ai2(t))
T ∼ N2(0,�a) with corr(ai (tij ),ai (tij ′)) = 0.4|j−j ′| and

�a =
(

2 0.2
0.2 2

)
.

Tables 11, 12 and 13 show the results using the evaluation criteria aforementioned. We
focus on MEGS, as GVCM-SIS suffers from the same drawback as before. At sample size
n = 100 in Table 11, the random effects have better ranking results than the fixed effects;
when n increases to 200, both fixed and random effects have excellent average rankings.
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TABLE 8
Average ranks Rj of the active predictors: Poisson regression

Fixed effects Random effects

ρx n Method x100 x400 x700 x900 x300 x800

0.4 100 GVCM-SIS 120.348 156.401 221.250 223.256 – –
MEGS 14.522 34.366 42.952 33.993 27.263 21.509

200 GVCM-SIS 39.794 48.215 86.206 109.687 – –
MEGS 2.166 4.771 5.189 7.088 6.816 5.80

0.8 100 GVCM-SIS 127.993 162.958 225.539 226.079 – –
MEGS 15.801 37.947 45.937 42.978 24.283 22.775

200 GVCM-SIS 41.119 50.452 95.871 114.736 – –
MEGS 3.443 80 9.820 10.225 8.382 6.548

Table 12 shows the same pattern as that in Table 7, where the minimum model sizes to
include all random effects are small at all quantiles and are slightly larger for fixed effects.
High correlations among predictors give slightly worse results, but the differences are not
significant. The selection proportions for each active predictor and the true model are reported
in Table 13, where the selection rates are all close to 1 at sample size 200. Thus, our two-step
approach performs very well in selecting both fixed and random effects for binary outcome
using logistic regression with time-varying coefficients.

6. Summary. In this work we proposed a two-step screening procedure for time-varying
coefficient mixed-effects models. We applied our procedure to analyze data from Framing-
ham Heart Study and used body mass index (BMI) to study the genetic and environmental
effects on obesity. We further selected fixed-effect SNPs by group LASSO and random-effect
SNPs using forward regression. Many of the selected SNPs had previously been identified in
the literature, and we observed some novel time-varying patterns for both fixed and random
effects. We also applied causal inference techniques and compared the causal effect estimates
of the SNPs by our method with those in literature. Results show that the SNPs we found have
a stronger causal influence on BMI than those that are previously identified. As future work,
the interaction between fixed and random effects can be further explored by including the

TABLE 9
Quantiles of M : Poisson regression

Fixed effects Random effects

ρx n Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

0.4 100 GVCM-SIS 74.80 231.00 388.00 613.25 870.00 – – – – –
MEGS 5.00 14.00 40.00 113.00 422.05 2.00 3.00 12.00 42.25 214.10

200 GVCM-SIS 12.95 54.75 142.50 306.75 642.00 – – – – –
MEGS 4.00 4.00 4.00 7.00 39.05 2.00 2.00 2.00 4.00 46.00

0.8 100 GVCM-SIS 84.90 236.00 415.00 624.25 895.20 – – – – –
MEGS 9.00 22.00 54.50 137.00 392.10 2.00 4.00 11.00 42.00 205.15

200 GVCM-SIS 19.00 66.00 146.50 309.75 673.20 – – – – –
MEGS 5.00 8.00 11.00 17.00 57.05 2.00 2.00 3.00 6.00 44.10
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TABLE 10
Selection proportion pj of the active predictors: Poisson regression

Fixed effects Random effects

ρx n τn & ξn Method p100 p400 p700 p900 p
(f )
a p300 p800 p

(r)
a

0.4 100 21 GVCM-SIS 0.290 0.219 0.135 0.135 0.000 – – –
MEGS 0.880 0.730 0.770 0.714 0.354 0.787 0.824 0.631

42 GVCM-SIS 0.371 0.310 0.206 0.213 0.006 – – –
MEGS 0.930 0.820 0.826 0.815 0.517 0.863 0.881 0.750

63 GVCM-SIS 0.433 0.363 0.254 0.250 0.012 – – –
MEGS 0.952 0.873 0.860 0.864 0.621 0.894 0.910 0.806

200 37 GVCM-SIS 0.685 0.632 0.461 0.411 0.074 – – –
MEGS 0.997 0.985 0.985 0.971 0.945 0.972 0.969 0.941

74 GVCM-SIS 0.781 0.732 0.590 0.525 0.167 – – –
MEGS 0.999 0.993 0.993 0.988 0.977 0.982 0.982 0.964

111 GVCM-SIS 0.827 0.778 0.651 0.580 0.230 – – –
MEGS 1.000 0.996 0.995 0.993 0.986 0.988 0.991 0.979

0.8 100 21 GVCM-SIS 0.242 0.203 0.122 0.117 0.000 – – –
MEGS 0.851 0.687 0.718 0.637 0.248 0.784 0.821 0.620

42 GVCM-SIS 0.358 0.286 0.199 0.184 0.004 – – –
MEGS 0.929 0.789 0.795 0.759 0.422 0.857 0.891 0.751

63 GVCM-SIS 0.426 0.342 0.238 0.234 0.008 – – –
MEGS 0.948 0.837 0.837 0.830 0.541 0.896 0.915 0.812

200 37 GVCM-SIS 0.659 0.583 0.409 0.361 0.038 – – –
MEGS 0.998 0.985 0.967 0.964 0.923 0.966 0.979 0.945

74 GVCM-SIS 0.765 0.696 0.527 0.497 0.115 – – –
MEGS 0.999 0.991 0.982 0.990 0.966 0.980 0.988 0.968

111 GVCM-SIS 0.803 0.759 0.600 0.568 0.186 – – –
MEGS 0.999 0.997 0.986 0.994 0.980 0.984 0.992 0.976

TABLE 11
Average ranks Rj of the active predictors: Logistic regression

Fixed effects Random effects

ρx n Method x100 x400 x700 x900 x300 x800

0.4 100 GVCM-SIS 167.077 175.549 244.828 265.104 – –
MEGS 31.228 42.946 74.052 40.094 32.295 23.339

200 GVCM-SIS 53.170 56.677 116.959 130.558 – –
MEGS 3.029 5.173 11.145 3.763 3.121 2.738

0.8 100 GVCM-SIS 166.537 191.909 252.176 274.457 – –
MEGS 33.515 51.361 72.886 36.448 26.001 18.655

200 GVCM-SIS 60.623 67.873 121.443 146.156 – –
MEGS 4.942 8.145 16.517 6.599 2.992 2.990
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TABLE 12
Quantiles of M : Logistic regression

Fixed effects Random effects

ρx n Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

0.4 100 GVCM-SIS 106.9 274.0 471.5 687.0 918.0 – – – – –
MEGS 7.00 30.25 81.50 193.00 534.55 2.00 4.00 10.00 49.00 256.55

200 GVCM-SIS 20.00 78.00 178.00 359.25 721.10 – – – – –
MEGS 4.00 4.00 5.00 10.00 55.00 2.00 2.00 2.00 3.00 12.00

0.8 100 GVCM-SIS 105.90 276.75 514.00 712.25 921.00 – – – – –
MEGS 12.00 35.00 79.00 187.75 493.20 2.00 4.00 12.00 38.00 195.65

200 GVCM-SIS 28.00 87.75 191.00 384.00 779.40 – – – – –
MEGS 5.00 8.00 13.00 23.00 76.00 2.00 2.00 2.00 4.00 12.00

TABLE 13
Selection proportion pj of the active predictors: Logistic regression

Fixed effects Random effects

ρx n τn & ξn Method p100 p400 p700 p900 p
(f )
a p300 p800 p

(r)
a

0.4 100 21 GVCM-SIS 0.194 0.145 0.109 0.074 0.000 – – –
MEGS 0.775 0.671 0.555 0.702 0.185 0.773 0.813 0.634

42 GVCM-SIS 0.285 0.223 0.174 0.129 0.001 – – –
MEGS 0.841 0.792 0.668 0.788 0.332 0.842 0.860 0.726

63 GVCM-SIS 0.335 0.295 0.220 0.169 0.002 – – –
MEGS 0.872 0.836 0.718 0.839 0.419 0.881 0.896 0.794

200 37 GVCM-SIS 0.579 0.546 0.371 0.310 0.032 – – –
MEGS 0.992 0.976 0.947 0.991 0.908 0.990 0.989 0.980

74 GVCM-SIS 0.695 0.678 0.471 0.435 0.096 – – –
MEGS 1.000 0.993 0.979 0.998 0.971 0.995 0.998 0.993

111 GVCM-SIS 0.760 0.744 0.543 0.508 0.153 – – –
MEGS 1.000 0.998 0.986 0.998 0.981 0.996 1.000 0.996

0.8 100 21 GVCM-SIS 0.165 0.168 0.095 0.079 0.000 – – –
MEGS 0.744 0.635 0.537 0.690 0.150 0.780 0.834 0.650

42 GVCM-SIS 0.256 0.232 0.153 0.129 0.000 – – –
MEGS 0.817 0.744 0.654 0.811 0.308 0.863 0.888 0.761

63 GVCM-SIS 0.310 0.283 0.202 0.169 0.005 – – –
MEGS 0.866 0.795 0.716 0.856 0.430 0.911 0.925 0.840

200 37 GVCM-SIS 0.530 0.519 0.326 0.261 0.015 – – –
MEGS 0.990 0.969 0.921 0.976 0.861 0.995 0.990 0.986

74 GVCM-SIS 0.651 0.639 0.452 0.388 0.065 – – –
MEGS 0.999 0.989 0.965 0.993 0.946 0.998 0.996 0.994

111 GVCM-SIS 0.714 0.701 0.522 0.461 0.120 – – –
MEGS 0.999 0.994 0.975 0.996 0.965 0.998 0.998 0.997
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products between the fixed-effect SNPs and random-effect SNPs in the model. The interac-
tion terms are also random that account for variance of BMI. In addition, interaction terms
between the behavioral variables, such as smoking, and SNPs can reveal the mediation effects
of these behavioral variables. All simulation results indicate the capability of this two-step
screening approach for effectively reducing feature dimensions that are associated with both
fixed and random effects. It is of interest to establish sure screening property of the proposed
feature screening procedure, but it seems to be very challenging and out of scope of this
paper. This might be a good research topic for future research.
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