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We introduce a fast, closed-form, simulation-free method to model and
forecast multiple asset returns and employ it to investigate the optimal en-
semble of features to include when jointly predicting monthly stock and bond
excess returns. Our approach builds on the Bayesian dynamic linear models
of West and Harrison (Bayesian Forecasting and Dynamic Models (1997)
Springer), and it can objectively determine, through a fully automated pro-
cedure, both the optimal set of regressors to include in the predictive system
and the degree to which the model coefficients, volatilities and covariances
should vary over time. When applied to a portfolio of five stock and bond
returns, we find that our method leads to large forecast gains, both in sta-
tistical and economic terms. In particular, we find that relative to a standard
no-predictability benchmark, the optimal combination of predictors, stochas-
tic volatility and time-varying covariances increases the annualized certainty
equivalent returns of a leverage-constrained power utility investor by more
than 500 basis points.

1. Introduction. The study of portfolio theory and its implications for the asset alloca-
tion decisions of investors has and continues to play a central role in financial economics.
Within this literature, a highly debated item over the years has been the question of whether
asset returns are predictable and the extent to which this predictability affects the investor’s
optimal allocation choices.

There is by now an extensive empirical literature that has found evidence for predictability
in stock and bond returns by means of valuation ratios, interest rates and macroeconomic
quantities.1 Prior to the turn of the century, much of this literature focused on identifying
variables that had significant and robust in-sample predictive power when forecasting re-
turns. However, thanks in part to evidence uncovered in studies such as Bossaerts and Hillion
(1999), Ang and Bekaert (2007) and Welch and Goyal (2008), in recent years the emphasis
has been gradually shifting from in-sample predictability of stock returns to out-of-sample
predictability. A similar pattern has been observed for bond returns, where Thornton and
Valente (2012) have shown that the information subsumed into forward rates and forward
spreads, while quite successful in-sample, does not generate systematic economic value to
investors out-of-sample.

The disparities between in-sample and out-of-sample evidence of return predictability can
be explained in part by the presence of model instability in return prediction models. Due
to the regular occurrence of a multitude of shocks to financial markets and the overall econ-
omy, investors are facing a constantly evolving, uncertain landscape and need to resort to
highly adaptive methods when building their forecasts. By now, it is clear that not a single
feature alone but an ensemble of features is required to cope with the resulting uncertainty
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1See, for example, Fama and Schwert (1977), Campbell and Shiller (1988), Lettau and Ludvigson (2001),
Lewellen (2004) and Ang and Bekaert (2007).
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and instability as well as to generate good predictions. This has been shown to be true for
stock returns (Johannes, Korteweg and Polson (2014)) as well as for bond returns (Gargano,
Pettenuzzo and Timmermann (2019)). In particular, features that satisfy these out-of-sample
needs include model and parameter uncertainty, time-varying volatility, time-varying param-
eters and economically motivated constraints.

While there is ample evidence backing said ensemble of features when modeling returns
on a single risky asset, no study has yet examined how time-varying parameters, predictors
and stochastic volatility interact when jointly forecasting the returns of multiple risky as-
sets. Yet, most investors hold many risky assets at once in their portfolios which makes this
an empirically relevant question. The primary contribution of this paper is to unify the fea-
tures highlighted in the aforementioned papers into a single, closed-form, computationally
friendly framework capable of jointly handling multiple risky assets from different classes.
Specifically, our framework builds on the Bayesian dynamic linear models (DLMs) of West
and Harrison (1997) and Gruber and West (2016) and examines a Bayesian agent who recur-
sively updates her prior beliefs as new data is observed, therefore mimicking the real time
decision making process of an investor.

The key element of our modeling approach is the ability to integrate a number of useful
features into a flexible yet computationally fast method. First, our approach is well suited
to integrate parameter uncertainty into the problem, as the DLMs yield predictive densities,
rather than point forecasts, for each asset return. Second, the DLM framework allows for
multivariate stochastic volatility. Both Johannes, Korteweg and Polson (2014) and Gargano,
Pettenuzzo and Timmermann (2019) find that stochastic volatility is a key feature to incor-
porate when modeling and forecasting stock and bond returns. The benefits of stochastic
volatility are particularly pronounced during periods of very high market turmoil, such as
the dot-com bubble as well as the most recent financial crisis. Given our emphasis on jointly
modeling multiple risky assets, the key adjustment herein is how we model time variation in
the cross-asset covariances. We provide two alternative approaches to handle this. Our first
method builds on the Wishart DLM (W-DLM, henceforth) of West and Harrison (1997). Two
key restrictions of the W-DLM are that, first, it forces all the assets in the system to share the
same vector of predictor variables, and second, that variances and covariances are modeled
in the same structure and must time-vary jointly. While in some settings this requirement
may be appropriate, it is likely not a desirable feature when working with returns from very
heterogeneous asset classes, such as equity and fixed income. Note that the first restriction
is needed to keep all filter equations in closed form. To alleviate these concerns, our second
approach builds on the simultaneous graphical DLM (SG-DLM, henceforth) of Gruber and
West (2016). The SG-DLM permits each asset to feature its own set of predictor variables.
In addition, the SG-DLM can easily be modified to allow for separate degrees of time vari-
ation for variances and covariances, which we find to be a very useful feature with financial
returns.

Most importantly, both DLM methods, as we present them, yield closed-form solutions for
all the moments of the posterior distributions and predictive densities and, hence, are compu-
tationally faster than the particle filter algorithm of Johannes, Korteweg and Polson (2014) or
the Markov chain Monte Carlo approaches of Gargano, Pettenuzzo and Timmermann (2019)
and others.2

Third, our models allow for time variation in the regression coefficients. It has been shown
extensively that the regression coefficients of asset return predictive regressions change over

2To have its forward filter be closed-form, SG-DLMs must assume an appropriate dependence structure across
the asset returns in the system. Details are given in Section 2.2.
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time (Viceira (1997); Pastor and Stambaugh (2001); Kim, Morley and Nelson (2005); Paye
and Timmermann (2006); Lettau and Van Nieuwerburgh (2008); Pettenuzzo and Timmer-
mann (2011)). Rather than allowing for discrete nonrecurring shifts, we let the regression
coefficients evolve over time by adopting a flexible time-varying parameters specification. In
this regard, our work is similar to Dangl and Halling (2012), who model and forecast the S&P
500 index and find that time-varying parameter models are strongly preferable to predictive
regression with constant coefficients.

Fourth, our approach controls for model uncertainty through model averaging. Specif-
ically, we combine forecasted densities from many models, as investigated by Rapach,
Strauss and Zhou (2010), Billio et al. (2013) and Pettenuzzo and Ravazzolo (2016). Thanks
to the computational savings afforded by our approach, we are able to consider in rea-
sonable computation time both the uncertainty regarding the degree to which parameters,
volatilities and covariances vary over time as well as which predictors should be included
in the model. We accomplish this by first fitting a separate DLM to each possible per-
mutation of predictors and degrees of time variation. Next, we compute the predictive
densities implied by each of these permutations and combine them together using both equal-
weighted and score-weighted combinations. The latter weights the different model permuta-
tions according to their historical statistical fit, as measured by their logarithmic predictive
scores.

Our secondary contribution is to empirically test the roles played by these features when
forecasting multiple stock and bond returns. More specifically, we evaluate the performance
of the W-DLM and SG-DLM models by jointly modeling the monthly excess returns on
the five- and 10-year treasury bonds, as well as the excess returns on the size-sorted small-,
mid- and large-cap stock portfolios. As for the predictors, we include the 15 variables studied
in Welch and Goyal (2008) as well as the three predictors for bond returns considered by
Gargano, Pettenuzzo and Timmermann (2019), namely forward spreads, the Cochrane and
Piazzesi (2005) factor and the Ludvigson and Ng (2009) factor. We then estimate a W-DLM
and a SG-DLM for each different combination of stock and bond predictors as well as com-
binations of different degrees of time variation in the regression coefficients, variances and
covariances. These individual DLMs are then averaged together in different groups to account
for the aforementioned model uncertainty.

We evaluate the predictive performance of the various models and features over the 1985–
2014 period against a simple no-predictability benchmark, and we find large statistical and
economic benefits from using the appropriate ensemble of features. Among the features we
consider, we find that W-DLMs and SG-DLMs with stochastic volatility bring the largest
gains in terms of statistical predictability. In terms of economic predictability, which we
quantify using certainty equivalent returns, we find that the optimal set of features includes
SG-DLMs with stochastic volatility and time-varying covariances. In particular, we find that,
when using the optimal set of features, our leverage-constrained power utility investor earns
over 500 basis points (on an annualized basis) more than if she relied on the no-predictability
benchmark.

Our paper relates to several branches of the literature. The papers most closely related to
ours are Dangl and Halling (2012), Johannes, Korteweg and Polson (2014) and Gargano, Pet-
tenuzzo and Timmermann (2019). All three papers focus on modeling and forecasting asset
returns (stocks in the first two cases, treasury bonds in the last case) using flexible model
specifications and building density forecasts that are robust to the presence of model instabil-
ity and model uncertainty. In particular, Dangl and Halling (2012) use a DLM that is similar
to what we employ here and allow for model uncertainty over different predictors and degrees
of time variation in the regression coefficients (but do not allow for stochastic volatility). In
contrast, Johannes, Korteweg and Polson (2014) and Gargano, Pettenuzzo and Timmermann
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(2019) allow for both time-varying regression coefficients and stochastic volatility but, be-
cause of their reliance on MCMC methods, are forced to set a priori the degree to which
parameters and volatility change over time. In addition, all three papers focus on univariate
models and forecast a single financial asset at a time.3 Relative to their setup, our approach
jointly models multiple risky assets and takes into account the model uncertainty that arises
from the availability of multiple predictors and from not knowing the degree of time variation
in the regression coefficients, variances and covariances.

There is a large literature on modeling/forecasting multiple stock returns. The big ad-
justment, when moving from modeling a single asset to multiple assets, is how to estimate
covariances. For example, Fan, Furger and Xiu (2016) break down the covariance of S&P
500 stocks into a factor model component and a block diagonal component, where the blocks
correspond to industry. However, the literature on forecasting multiple risky assets from dif-
ferent asset classes is more sparse. Brennan, Schwartz and Lagnado (1997) look at a portfolio
that includes a stock index, a bond index and cash, and forecast each asset return using a dis-
tinct predictor. This leads to a number of computational complexities, which they solve by
estimating partial differential equations numerically. Wachter and Warusawitharana (2009)
model the returns of both a stock index and a long-term bond using a single predictor variable
but, because of their specific setup, need to rely on MCMC methods. Gao and Nardari (2018)
model the returns of stocks, bonds, cash and commodities by fitting multiple models with
single predictors and averaging them with equal weights. They also allow for a time-varying
covariance matrix, which they implement via the dynamic conditional correlation method of
Engle (2002). Relative to these papers, ours provides the first attempt to objectively deter-
mine the optimal combination of predictability and time-variability features to include, when
modeling multiple risky assets at once, and does so by using a computationally efficient and
simulation-free approach.

The remainder of the paper is organized as follows. Section 2 introduces the W-DLM
and SG-DLM model specifications, the set of features we control for and our approach for
averaging across all permutations of predictors and model characteristics. Next, Section 3
describes the data and priors we adopted, while Section 4 summarizes our empirical analysis
and the results we obtain. Section 5 discusses the modeling choices we have made in light of
our desire for speedy computation. Finally, Section 6 provides some concluding remarks.

2. Our approach. In this section we introduce the approach we rely on to estimate and
forecast multiple risky asset returns. We begin by describing in Section 2.1 and Section 2.2
the two Bayesian dynamic linear models (DLMs) we work with, namely the Wishart dynamic
linear model and the simultaneous graphical dynamic linear model. Both methods allow the
regression coefficients, variances and covariances to vary over time and are therefore capable
of coping with the model instability that plagues the relationship between asset returns and
predictor variables. At the same time, both methods require the investor to know a priori
the degree of time variation in the model parameters as well as the right combination of
predictors to include in the regressions. In practice, the investor is likely unaware of what the
optimal predictive model may look like and is, therefore, facing uncertainty across all these
dimensions. In Section 2.3, we describe a fully-automated data-based approach that we use
to resolve this uncertainty.

3While the main focus in Gargano, Pettenuzzo and Timmermann (2019) is on univariate predictive regressions,
they include a small application where they extend their setup to forecasting multiple treasury bond returns (dif-
fering in their maturities) at once.
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2.1. Wishart dynamic linear model. One of the key advantages of DLMs, compared to
other Bayesian approaches, is that they feature closed-form solutions for all parameter up-
dates as well as model forecasts. This is accomplished by a simulation-free procedure, known
as a deterministic forward filter, which simulates how most people think, that is, modifying
their prior beliefs in real time as new data becomes available. More specifically, the posterior
distribution of all model parameters at time t − 1 becomes the prior at time t , and, once time
t data becomes available, a simple set of formulas merge time t priors and time t likelihood
into time t posteriors. As part of this process, real-time predictive densities and point fore-
casts can be obtained in a straightforward manner. This procedure is repeated throughout the
sample, thus yielding a sequence of posterior distributions and predictive densities.

Our first approach builds on the Wishart DLM (W-DLM) of West and Harrison (1997)
which allows for time-varying regression coefficients as well as time-varying variances and
covariances. As its name suggests, the W-DLM assumes that the error covariance matrix
follows an inverse-Wishart distribution (IW , henceforth). This is paired with the additional
restriction that all the equations in the system share the same predictor variables.4

Let r t denote a q × 1 vector of log excess returns at time t (t = 1, . . . , T ) and xt−1 repre-
sent a p × 1 vector of lagged predictor variables, common to all q risky assets (throughout,
we use bold lower-case letters to represent vectors and bold capitalized letters to represent
matrices).5 The W-DLM can be written as

r t = B ′
txt−1 + vt vt |�t ∼N (0,�t ),(1)

where B t is the p × q matrix of time-varying regression coefficients, which evolve over time
according to pq random walk processes,

vec(B t ) = vec(B t−1) + ωt ωt |�t ∼N (0,�t ⊗ W t )(2)

with ωt denoting a pq × 1 vector of zero-mean normally distributed error terms, vec(·) is the
vectorization operator and ⊗ represents the Kronecker product.6,7

Next, the q × 1 error vector vt is independently and normally distributed over time with
variance-covariance matrix �t , given by

�t =

⎡⎢⎢⎢⎢⎣
σ 2

1,t σ12,t . . . σ1q,t

σ12,t σ 2
2,t . . . σ2q,t

...
...

. . .
...

σ1q,t σ2q,t . . . σ 2
q,t

⎤⎥⎥⎥⎥⎦ ,(3)

where both the variances (σ 2
1,t , . . . , σ

2
q,t ) and the covariances σij,t (i, j = 1, . . . , q , j > i) are

allowed to vary over time. Finally, the p × p matrix W t controls the degree of time variation
of the regression coefficient matrix B t , and we will specify its exact form below.

4The W-DLM is a generalization of the approach employed by Dangl and Halling (2012) to model and forecast
stock returns. Relative to Dangl and Halling (2012), the W-DLM allows a modeler to model multiple risky assets
at once and to include time varying variances and covariances. It is essentially a deterministic forward-filter analog
of the approach of Wachter and Warusawitharana (2009).

5xt−1 may or may not include a constant/intercept term.
6Specifically, the vectorization of an m × n matrix A, denoted vec(A), is the mn × 1 column vector obtained

by stacking the columns of the matrix A on top of one another.
7The W-DLM in (1) can also be written using the matrix-normal distribution, that is, Bt = B t−1 +�t , �t |�t ∼

MN (0,W t ,�t ). Here, �t follows a matrix-normal distribution MN with left variance matrix W t and right
variance matrix �t . This is the notation adopted by West and Harrison ((1997), Section 16.2). See also Dawid
(1981) for a description of the matrix-normal distribution and its properties.
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The model in (1)–(3) is completed by specifying the initial states for both the regression
coefficients and the variance-covariance matrix at time t = 0. These are given by the follow-
ing distributions, where D0 denotes the information set available at time t = 0:

vec(B0)|�0,D0 ∼ N
(
vec(M0),�0 ⊗ C0

)
,

�0|D0 ∼ IW(n0,S0).
(4)

Here, the p × q matrix M0 denotes the mean of the coefficient matrix B0, while the p × p

matrix C0 summarizes the degree of confidence in M0. Similarly, S0 represents an estimate
of the q × q error covariance matrix �0 which follows an inverse Wishart distribution with
n0 degrees of freedom. n0, in turn, can be interpreted as the effective sample size of the initial
state.

In practice, (4) can also be interpreted as the posterior distribution of the parameters at
time t = 0. We use this initial posterior in a process called evolution, where at any point in
time t (t = 1, . . . , T ) we use the posterior distribution from time t − 1 to compute the prior
distribution of the parameters at time t . This is given by

vec(B t )|�t ,Dt−1 ∼ N
(
vec(M t−1),�t ⊗ Ĉt

)
,

�t |Dt−1 ∼ IW(n̂t ,St−1),
(5)

where Ĉt and n̂t are modified versions of Ct−1 and nt−1 and are used as estimates of Ct and
nt . In particular, we set

Ĉt = 1

δβ

Ct−1(6)

and

(7) n̂t = δvnt−1,

where δβ ∈ (0,1] and δv ∈ (0,1] denote discount factors. δβ is incorporated into the model
(and hence we can control the degree of time variation of the regression coefficient matrix
B t ) by rewriting the p × p matrix W t in (2) as

W t = 1 − δβ

δβ

Ct−1,(8)

which suggests that the smaller the discount factor δβ is, the larger the elements of the co-
variance matrix W t will be, thus increasing the variance/uncertainty around time t regression
coefficients and allowing B t to move further away from B t−1. In the extreme case of δβ = 1,
we have that Ĉt = Ct−1 and W t = 0, which means that, when δβ = 1, the regression coeffi-
cient matrix B t does not vary over time. As for δv , note that (5) implies that

E(�t |Dt−1) = 1

n̂t − q − 1
St−1(9)

which means that the smaller δv is, the larger the expected value of all elements in the error
covariance matrix will be. Also, it can be shown that for large t , 0 < δv < 1 implies that the
posterior estimates of the variances and covariances across series essentially become expo-
nentially weighted moving averages of the past sample variances and sample covariances,
with weights that decay over time as a function of δv . This, in turn, suggests that the smaller
the discount factor δv is, the quicker �t can adapt to the new data and the more it can move
away from �t−1. Finally, in the extreme case of δv = 1, we obtain a model where there is
no discounting of the old data, and thus �t is assumed constant, that is, a constant volatility
model.
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With (5) in hand, it becomes possible to compute the predictive distribution of r t , condi-
tional on the information set available at time t − 1. In particular, we have that

(10) r t |δβ, δv,Dt−1 ∼ Tn̂t

(
M ′

t−1xt−1,St−1
(
1 + x′

t−1Ĉtxt−1
))

,

where Tn̂t
denotes a Student’s t-distribution with n̂t degrees of freedom.8 This implies that

the conditional forecast of the mean vector and variance-covariance matrix of r t will be given
by

E[r t |δβ, δv,Dt−1] = M ′
t−1xt−1,(11)

Cov[r t |δβ, δv,Dt−1] = n̂t

n̂t − 2
St−1

(
1 + x′

t−1Ĉtxt−1
)
.(12)

After observing the actual returns for time period t , we can update the prior for time t

from (5) into the posterior for time t . We provide the details of the closed-form updating
equations in Appendix A, where we show how from the initial states in (4), the sequence of
regression coefficients {B t }Tt=1 and variance-covariance matrices {�t }Tt=1 can be obtained by
a simple and very fast forward filter. Thus, the W-DLM deterministically gives the posterior
distribution of the model parameters at each time step, avoiding the need for computationally
expensive Markov chain Monte Carlo simulation methods.

While computationally very fast, the W-DLM presents three key drawbacks. First, very
much like Wachter and Warusawitharana (2009)’s model, the W-DLM uses the same predic-
tors for each asset. The severity of this restriction will depend on the particular assets being
modeled, but it is not hard to imagine situations where this restriction may not be desirable.
Second, the conjugate inverse Wishart prior, while computationally very convenient, is no-
toriously inflexible and may not adapt well to underlying data.9 Finally, by construction the
W-DLM features a single discount factor for the entire covariance matrix which means that
both the variances and covariances will be discounted in the same way. In the next section
we present a more general approach that will permit us to relax all three drawbacks of the
W-DLM.

2.2. Simultaneous graphical dynamic linear model. Our second approach builds on the
simultaneous graphical dynamic linear model (SG-DLM) of Gruber and West (2016). Rela-
tive to the W-DLM method described in the previous section, one of the key advantages of the
SG-DLM is that it can accommodate asset-specific regressors while still allowing for time-
varying regression coefficients, variances and covariances. This is accomplished through a
modeling strategy that “decouples” the joint dynamic system into separate univariate models
for each of the risky assets, taking into full account the contemporaneous dependencies across
assets. In turn, these univariate models can be updated with great computational speed, thus
preserving the closed-form forward filter nature of the algorithm. We begin by rewriting the
joint dynamic system for the q excess returns r t as follows:

r t =
⎛⎜⎝x′

1,t−1β1t
...

x′
q,t−1βqt

⎞⎟⎠ +
⎛⎜⎝r ′−1,tγ 1t

...

r ′−q,tγ qt

⎞⎟⎠ + νt νt |�t ∼ N (0,�t ),(13)

8Note that we have opted for a notation where we make explicit the dependence of the predictive distribution
for r t (and its moments) to the choices made with respect to the two discount factors, δβ and δv .

9See, for example, Barnard, McCulloch and Meng (2000) or Gelman and Hill (2006). One simple point is that
the inverse Wishart has only a single parameter governing the variability about all of its elements, thus, for a
distribution of a covariance matrix, your uncertainty about all the variances and covariances must be the same.
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where xj,t−1 (j = 1, . . . , q) denotes the pj × 1 vector of asset j ’s specific lagged predictors
(possibly including an intercept), while r−j,t represents the contemporaneous log excess re-
turns of all assets other than asset j . Similarly, βj t denotes the pj ×1 vector of the predictors’
coefficients while γ j t is the (q −1)×1 vector of coefficients capturing the contemporaneous
correlations between asset j ’s log excess return and the remaining q − 1 log excess returns.
Finally, �t = diag(σ 2

1t , . . . , σ
2
qt ) is a q × q matrix with the assets’ error variances on the

diagonal.
Note that relative to the W-DLM specification in (1), which models the contemporaneous

correlations across asset returns through the full variance-covariance matrix �t , the system
in (13) handles the contemporaneous correlations by introducing the γ j t parameters and the
r−j,t regressors (j = 1, . . . , q) while leaving all elements of the error term νt contempora-
neously uncorrelated, that is, νit ⊥ νjt for all i �= j . This modeling choice, as we will show
shortly, is what allows the SG-DLM to continue working with a closed-form forward filter,
even after relaxing the restrictions enforced by the W-DLM.

We proceed by combining all elements of γ 1t to γ qt into the q × q zero-diagonal matrix
�t as follows:

�t =

⎡⎢⎢⎢⎣
0 γ12,t . . . γ1q−1,t γ1q,t

γ21,t 0 . . . γ2q−1,t γ2q,t

...
...

. . .
...

...

γq1,t γq2,t . . . γqq−1,t 0

⎤⎥⎥⎥⎦(14)

which in turn allows us to rewrite (13) as

r t =
⎛⎜⎝x′

1,t−1β1t
...

x′
q,t−1βqt

⎞⎟⎠ + �tr t + νt νt |�t ∼ N (0,�t ).(15)

It is easy to show that we can further rearrange (15) to write

r t = (I − �t )
−1

⎛⎜⎝x′
1,t−1β1t

...

x′
q,t−1βqt

⎞⎟⎠ + ut ut |�t ∼N (0,�t ),(16)

where �t = (I − �t )
−1�t ((I − �t )

−1)′ is now a full variance-covariance matrix capturing
the contemporaneous correlations among the q assets. As shown by Gruber and West (2016),
the presence of the (I − �t )

−1 term in (16) significantly complicates the inference, as the
joint posterior of the parameters is now proportional to the determinant |I − �t | times the
product of q univariate normal densities, that is,

(17) p(r t |β1t , . . . ,βqt ,�t ,�t ) ∝ |I − �t |
q∏

j=1

p
(
rjt |βj t ,γ j t , σ

2
j t

)
.

The obvious exception to this rule is the case where |I −�t | = 1. In this case, as we will show
in this paper, it becomes possible to derive the multivariate distribution of all assets using fast
(closed form) and reliable univariate forward filters similar to those introduced by West and
Harrison (1997). This is indeed the avenue we explore here.10

10In particular, we build on Zhao, Xie and West (2016), who present a forward filter algorithm for a dynamic lin-
ear system with a fully recursive triangular specification (where (14) is a triangular matrix), where the parameters
within each equation of the system are updated individually.
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In particular, we follow Primiceri (2005), Carriero, Clark and Marcellino (2019) and Koop,
Korobilis and Pettenuzzo (2019) and assume that the dynamic system in (13) is fully recur-
sive. This, in turn, implies that the �t matrix in (15) becomes lower triangular, still featuring
zeros on its main diagonal. Next, we write rjt , the log excess return of risky asset j at time t ,
as a linear combination of a pj × 1 vector of asset-specific lagged predictors xj,t−1 as well
as the contemporaneous log excess returns from the previous j − 1 assets, which we denote
with r<j,t ,

rjt = x′
j,t−1βj t + r ′

<j,tγ <j,t + νjt νjt ∼ N
(
0, σ 2

j t

)
,(18)

where γ <j,t is the (j − 1) × 1 vector of coefficients associated with the contemporaneous
excess returns r<j,t . We now specify the law of motion for the regression coefficients βj t

and γ <j,t , (
βj t

γ <j,t

)
=

(
βj,t−1
γ <j,t−1

)
+ ωj t ωj t ∼ N(0,W j t ),(19)

where ωj t is the (pj + j − 1) × 1 vector of evolution errors with covariance matrix W j t .
The SG-DLM is completed by specifying the initial states of the model parameters, that

is, regression coefficients βj t , contemporaneous returns coefficients γ <j,t , and variance term
σ 2

j t . For each asset j , we write(
βj0

γ <j,0

) ∣∣∣σ 2
j0,D0 ∼ N

(
mj0,

σ 2
j0

sj0
Cj0

)
,

σ−2
j0 |D0 ∼ G

(
nj0

2
,
nj0sj0

2

)
,

(20)

where mj0 is a (pj + j − 1) × 1 vector denoting the mean of the coefficients (β ′
j0,γ

′
<j,0)

′,
while Cj0 is a (pj + j − 1) × (pj + j − 1) covariance matrix factor summarizing the un-
certainty surrounding the mean estimates mj0. The initial error precision 1/σ 2

j0 follows a
gamma distribution with mean 1/sj0 and degrees of freedom nj0. nj0 can be interpreted as
the effective sample size of this initial posterior. We further abbreviate these two distributions
using the joint normal-gamma distribution(

βj0
γ <j,0

)
, σ 2

j0

∣∣∣D0 ∼NG(mj0,Cj0, nj0, sj0).(21)

As with the initial conditions for the W-DLM in (4), (21) can be interpreted as the posterior
distribution of the model parameters at time t = 0. Once this process is initialized, at any
given point in time t (t = 1, . . . , T ), we can use the posterior distribution from time t − 1 to
compute the prior distributions of the model parameters at time t . These are given by(

βj t

γ <j,t

)
, σ 2

j t

∣∣∣Dt−1 ∼ NG(mj,t−1, Ĉj t , n̂j t , sj,t−1),(22)

where Ĉj t and n̂j t are modified versions of Cj,t−1 and nj,t−1 and are used as estimates of
Cj,t and nj,t . In particular, we set

Ĉj,t =
[
Cββj,t−1/δβj Cβγj,t−1

Cγβj,t−1 Cγ γj,t−1/δγj

]
(23)

and

(24) n̂j t = δvjnj,t−1,
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where δβj ∈ (0,1], δγj ∈ (0,1] and δvj ∈ (0,1] denote asset-specific discount factors. In par-
ticular, as shown in (23), the updated variance term Ĉj,t features different blocks, separating
asset j ’s predictor coefficients βj t from asset j ’s correlation factors γ <j,t . In turn, this gives
the user the freedom to introduce, asset by asset, a separate discount factor for the corre-
lations (δγj ) and the predictor coefficients (δβj ), allowing each asset’s dynamic regression
coefficients and correlation factors to evolve over time at potentially different paces.11 It is
possible to show that

(25) W j t =

⎡⎢⎢⎢⎣
(

1

δβj

− 1
)
Cββj,t−1 0

0
(

1

δγj

− 1
)
Cγ γj,t−1

⎤⎥⎥⎥⎦
which suggests that the smaller the discount factors δβj and δγj are, the larger the elements
in the respective blocks of the covariance matrix W j t will be, thus increasing the chances
that βj t and γ <j,t will move further away from βj,t−1 and γ <j,t−1.12 As for δvj , much
like δv with the W-DLM, we have that small values of δvj lead to large variability (and
thus flexibility) in the volatilities, with σ 2

j t allowed to to move further away from σ 2
j,t−1. In

contrast, when δvj = 1, there is no discounting of past data and, as a result, σ 2
j t does not vary

over time.13

Once (22) is available, it becomes possible to derive the predictive distribution for r t ,
conditional on the information set available at time t − 1. Thanks to the fully recursive iden-
tification strategy we adopted, we can proceed sequentially through the q equations of the
dynamic system. Starting with the first asset in the system, we have that

E[r1t |δj ,Dt−1] = x′
1,t−1m1,t−1,(26)

Var[r1t |δj ,Dt−1] = n̂1t

n̂1t − 2

(
x′

1,t−1Ĉ1tx1,t−1 + s1,t−1
)
,(27)

where, as with the W-DLM forecasts, we have highlighted the dependence of these predictive
moments on the choices made regarding the discount factors, that is, δj = (δβj , δγj , δvj ). As
for the generic asset j in the system (1 < j ≤ q), we begin by separating the elements of the
coefficient mean vector mj,t−1 according to whether they relate to the lagged predictor vari-
ables or the contemporaneous returns, that is, mj,t−1 = (m′

βj,t−1
,m′

γ<j,t−1
)′.14 It then follows

that

E[rjt |δj ,Dt−1] = x′
j,t−1mβj,t−1 +E[r<j,t |δj ,Dt−1]′mγ<j,t−1,(28)

11This mimics the block discounting approach introduced by West and Harrison ((1997), Section 6.3.2).
12Note that the zero off-diagonal blocks in (25) represent an assumption (stemming from West and Harrison

((1997), Section 6.3.2)), namely, that the correlations between the predictor coefficients βj t and the correlation
factors γ <j,t are constant (but not zero). This assumption, in turn, leads to having no discount factors in the

denominators of the off-diagonal blocks of Ĉj,t in (23).
13We note that, while in principle the SG-DLM permits each asset to have its own degree of time variation

in coefficients, variances and covariances, it is also quite easy to introduce restrictions in the model setup. For
example, one could imagine a situation where all assets within a given class (e.g., bonds or stocks) share the same
discount factors, or even a situation where, as it was the case with the W-DLM, all the assets in the system share
the same discount factors.

14In particular, mβj,t−1 denotes the pj × 1 vector of coefficients for predictor variables xj,t−1, while mγ<j,t−1

is the (j − 1) × 1 vector of coefficients for the vector of contemporaneous returns r<j,t .
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Var[rjt |δj ,Dt−1] = n̂j t

n̂j t − 2

{
tr

(
Ĉγ<j,t

Cov[r<j,t |δj ,Dt−1]) + cjt + sj,t−1
}

(29)
+ m′

γ<j,t−1
Cov[r<j,t |δj ,Dt−1]mγ<j,t−1

and

Cov[rjt , r<j,t |δj ,Dt−1] = m′
γ <j,t−1

Cov[r<j,t |δj ,Dt−1],(30)

where E[r<jt |δj ,Dt−1] and Cov[r<j,t |δj ,Dt−1] are known, tr() stands for the trace of a
matrix and

cjt =
(

xj,t−1

E[r<j,t |δj ,Dt−1]
)′

Ĉj t

(
xj,t−1

E[r<j,t |δj ,Dt−1]
)

.(31)

Applied iteratively, equations (27) through (30) yield the mean vector and covariance matrix
of the predictive density of r t .

After observing the actual returns for time period t , we can update the prior for time t into
the posterior for time t . We provide the details of these updating formulas in Appendix B,
where we show how from the initial states (20), the sequence of regression coefficients and
variance-covariance matrices, can be obtained by a simple and very fast forward filter. Thus,
the SG-DLM, like the W-DLM, deterministically gives the posterior distribution of the model
parameters and the predictive densities of the q risky assets at each time step and avoids the
need for computationally expensive Markov chain Monte Carlo methods.

2.3. Model averaging. As we mentioned at the outset, both the W-DLM and the SG-
DLM require the investor to know a priori the degree of time variation in the model param-
eters as well as the right combination of predictors to include in the model. In practice, the
investor is unaware of what the optimal combination of these features may look like, and she
is therefore facing significant uncertainty along these dimensions. To address this issue, we
turn to model combinations.

For both the W-DLM and SG-DLM specifications, we estimate a different version of each
model for every possible combination of predictor variables and discount factors. We defer
the discussion of the predictors to the next section, where we will provide a detailed list of
all the stock and bond predictors we consider in this study. As for the discount factors for
the W-DLM, we consider values from two equally-spaced grids: δβ,∈ {0.98,0.99,1.0} and
δv ∈ {0.95,0.975,1.0}.15 For the SG-DLM, we consider values from three equally-spaced
grids, namely, δβ, δγ ∈ {0.98,0.99,1.0} and δv ∈ {0.95,0.975,1.0}. We have dropped the j

subscript here to indicate that, in our empirical application, all assets in a particular SG-DLM
will share the same discount factors.16

Next, at each point in time, we combine the forecast distributions obtained from all the
permutations of predictors and discount factors. We do this separately for both the W-DLM
and SG-DLM models. Note that, while we could have also chosen to combine the resulting

15While we could explore more of the model space by increasing the number of points used within these ranges,
three values of each suffice to demonstrate the effects of model averaging and time variation. We find no no-
table changes when increasing to 10 values within each grid. Likewise, Dangl and Halling (2012) use δβ ∈
{0.96,0.98,1.00} and find no notable changes by doubling the granularity to δβ ∈ {0.96,0.97,0.98,0.99,1.00}.

16As we mentioned before, the SG-DLM can allow each asset to have its own set of discount factors. However,
for the specific empirical application considered in this paper we have found that a model with separate discount
factors for each asset class does not outperform the simpler specification where the discount factors are constant
across assets. Therefore, in what follows we will restrict our attention to the special case where δβ1 = · · · = δβq ,
δγ 1 = · · · = δγ q and δv1 = · · · = δvq .
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predictive densities across the two model specifications, we have elected to keep the two
methods separated to better isolate the impact of the aforementioned W-DLM restrictions
and to empirically quantify the importance of relaxing such constraints with the SG-DLM
approach. Also, in an attempt to slightly ease the notation, below we will use Mi to denote
the model with the ith permutation of predictors and discount factors considered, where i =
1, . . . ,KW in the case of the W-DLMs and i = 1, . . . ,KSG in the case of the SG-DLMs,
and KW (KSG) denotes the total number of model permutations we consider. We will then
generally refer to the time t predictive mean and covariance matrix that come out of the ith
permutation of predictors and discount factors with E(r t |Mi ,Dt−1) and Cov(r t |Mi ,Dt−1).

We explore two alternative combination schemes, as both have seen empirical success in
the stock and bond predictability literatures. Our first combination scheme allows the weights
on individual forecasting models to reflect their past predictive accuracy and is, therefore, in-
spired by the optimal prediction pool approach of Geweke and Amisano (2011) and its good
performance in settings similar to ours, as documented by Pettenuzzo, Timmermann and
Valkanov (2014) and Gargano, Pettenuzzo and Timmermann (2019). Specifically, at each
point in time t , we compute model Mi’s weight (i = 1, . . . ,KW in the case of the W-DLMs
and i = 1, . . . ,KSG in the case of the SG-DLMs) by looking at its historical statistical per-
formance up through time t − 1, as determined by the multivariate log score

(32) wi,t ∝
t−1∑
τ=1

ln(Si,τ ).

Here, Si,τ denotes the recursively computed score for model i at time τ , which we ob-
tain by evaluating a Gaussian density with mean vector and covariance matrix equal to
E(rτ |Mi ,Dτ−1) and Cov(rτ |Mi ,Dτ−1) at the realized log excess returns rτ . This ap-
proach rewards the high-performing combinations of predictors and discount factors, assign-
ing them more weight in the model combination. Our second combination scheme is the
equal-weighted pool, which weight each of the KW (or KSG) models equally, and has been
shown by Rapach, Strauss and Zhou (2010) to work well, at least in the case of stock returns.

3. Data and priors.

3.1. Data. This section describes how we construct our portfolio of risky assets as well
as which predictors we consider in our analysis.

3.1.1. Asset returns. As for our pool of risky assets, we focus on a portfolio of monthly
stock and bond returns and, in particular, we consider: (i) the value-weighted return of the
largest 20% of firms listed on the Center for Research in Security Prices’s database (CRSP);
(ii) the value-weighted return of the CRSP firms in between the median and 80th percentile
in size; (iii) the value-weighted return of the smallest 50% of CRSP firms; (iv) the five-year
treasury bond return; (v) the 10-year treasury bond return. In addition, we collect data on the
one-month treasury bill rate (from Ibbotson Associates), which we use in our analysis to de-
note the returns of a risk-free investment strategy and to compute excess returns. All returns
are continuously compounded, and the stock returns come from the CRSP’s monthly cap-
based portfolios file.17 In contrast, monthly returns on five- and 10-year treasury bonds are
computed using the two-step procedure described in Gargano, Pettenuzzo and Timmermann
(2019). In particular, in the first step we start from the daily yield curve parameter estimates

17The T-bill rate comes from the research factors file which is made available by Kenneth French at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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of Gurkaynak, Sack and Wright (2007) and use them to reconstruct the entire yield curve at
the daily frequency. Next, focusing on the last day of each month’s estimated log yields, we
combine the interpolated log yields to generate nonoverlapping monthly bond returns for var-
ious maturities.18 Excess returns are obtained by subtracting the continuously compounded
monthly T-bill rate from the previously computed asset returns.

As we’ve decided that �t from Equation 14 is to be lower triangular, the order in which
these assets are placed into the SG-DLM is not arbitrary. We proceed with the following
order: five-year bonds, 10-year bonds, large-cap stocks, mid-cap stocks, small-cap stocks.
As low-maturity bonds show the most predictability (Gargano, Pettenuzzo and Timmermann
(2019)) and historically have the lowest volatility (further demonstrated in Table 1 later), five
year bonds are the prime candidate to be estimated with the least uncertainty. The order of
the other assets follow similarly. This modeling choice and others are further described in
Section 5.

3.1.2. Predictors. As for the predictors considered in this analysis, we start by including
the equity predictors studied in Welch and Goyal (2008).19 These variables can be divided
into three groups, namely, stock, treasury and corporate bond market variables. Stock market
variables include the dividend-price ratio, dividend-payout ratio, stock variance, book-to-
market ratio and net equity expansion. Treasury market variables include the treasury bill
rate, long-term yield, term spread and inflation rate. Finally, the default yield spread incor-
porates information from the corporate bond market. We augment this list of variables with
the three predictors for bond returns considered by Gargano, Pettenuzzo and Timmermann
(2019). Specifically, we consider forward spreads, as proposed by Fama and Bliss (1987),
a linear combination of forward rates, as proposed by Cochrane and Piazzesi (2005) and a
linear combination of macro factors, as proposed by Ludvigson and Ng (2009). We give both
an equity and bond predictor to each DLM, which, for 15 stock predictors and three bond
predictors, yields 45 different combinations. Hence, we specify 45 DLMs per combination
of discount factors, yielding a total of 405 W-DLMs (due to 32 = 9 different combinations
of discount factors per each of the 45 predictor combinations) and 1215 SG-DLMs (from
33 = 27 combinations of discount factors).20

Once combined, our sample of monthly excess returns and predictors spans from January
1962 to December 2014, for a total of 636 observations (635 observations once we lag the
predictor values). We provide summary statistics for both excess returns and predictors in
Table 1.

3.2. Initial states. As we described in Section 2, we use D0 to denote the information set
that we rely on to initialize the W-DLM and SG-DLM forward filters. We set aside the first
120 months of data to initialize/train our models, hence D0 in our case denotes the time period

18Let n be the bond maturity in years. Time t +1 holding period bond returns are given by the following formula:

r
(n)
t+1 = ny

(n)
t − (n − h/12)y

(n−h/12)
t+1 ,

where y
(n)
t is the log yield of the time t bond with n periods to maturity. To obtain five- and 10-year bond returns,

we set n = 60 and n = 120, respectively.
19We refer to Welch and Goyal (2008) for a detailed description of the construction of the individual predictors

which are available at http://www.hec.unil.ch/agoyal/.
20To make the comparison across models easier, each equation in a predictive system/DLM will include the

same two predictors, that is, one bond and one stock predictor, together for all assets. This will be true regardless
of whether we work with the W- or SG-DLM methods. Also note that Fama and Bliss (1987) forward spreads are
maturity-specific, so both the five-year and 10-year variants are included in models with this as a predictor.

http://www.hec.unil.ch/agoyal/
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TABLE 1
Summary statistics

Mean StDev Min P25 P75 Max SR

Panel A: Excess returns
Five Year Bond 0.002 0.018 −0.089 −0.007 0.011 0.094 0.340
10 Year Bond 0.002 0.032 −0.119 −0.014 0.019 0.163 0.240
Large-Cap Stocks 0.004 0.043 −0.235 −0.019 0.031 0.153 0.293
Mid-Cap Stocks 0.005 0.052 −0.294 −0.023 0.040 0.200 0.348
Small-Cap Stocks 0.006 0.061 −0.342 −0.029 0.043 0.259 0.312

Panel B: Bond predictors
Cochrane–Piazzesi factor 0.079 0.701 −3.630 −0.276 0.381 4.691
Fama–Bliss spread, Five Year 0.145 0.134 −0.374 0.047 0.251 0.423
Fama–Bliss spread, 10 Year 0.183 0.160 −0.332 0.062 0.313 0.524
Ludvigson–Ng factor 0.106 0.468 −1.919 −0.201 0.354 3.037

Panel C: Stock predictors
Log dividend price ratio −3.582 0.403 −4.524 −3.919 −3.310 −2.753
Log dividend yield −3.577 0.403 −4.531 −3.914 −3.306 −2.751
Log earning price ratio −2.825 0.439 −4.836 −2.993 −2.584 −1.899
Log smooth earning price ratio −3.075 0.341 −3.911 −3.275 −2.855 −2.274
Log dividend payout ratio −0.757 0.319 −1.244 −0.939 −0.601 1.379
Book to market ratio 0.508 0.264 0.121 0.297 0.683 1.207
T-Bill rate 0.049 0.031 0.000 0.030 0.064 0.163
Long term yield 0.068 0.026 0.021 0.048 0.082 0.148
Long term return 0.006 0.030 −0.112 −0.010 0.023 0.152
Term spread 0.018 0.015 −0.036 0.007 0.031 0.045
Default yield spread 0.010 0.005 0.003 0.007 0.012 0.034
Default return spread 0.000 0.015 −0.098 −0.005 0.006 0.074
Stock variance 0.002 0.004 0.000 0.001 0.002 0.065
Net equity expansion 0.012 0.019 −0.058 0.003 0.025 0.051
Inflation 0.003 0.003 −0.018 0.002 0.005 0.018

This table provides summary statistics for the excess returns and predictors we consider in our analysis. Specif-
ically, for each series we report the mean, standard deviation, minimum, quartiles, maximum. In the case of the
excess returns, we also report the annualized Sharpe ratio. Panel A reports summary statistics for the stock and
bond excess returns. All returns are continuously compounded. Monthly data on the stocks come from CRSP
Cap-based portfolios file, where Large-cap stocks are the largest 20% of firms, Mid-cap are the 50th to 80th size
percentile of firms and Small-cap are the smallest half of firms. Monthly returns on five- and 10-year Treasury
bonds are computed using the two-step procedure described in Gargano, Pettenuzzo and Timmermann (2019).
Panel B reports summary statistics for the three bond predictors considered in Gargano, Pettenuzzo and Timmer-
mann (2019), namely, Fama and Bliss (1987) forward spreads for five- and 10-year maturities, the Cochrane and
Piazzesi (2005) factor and the Ludvigson and Ng (2009) macro factor. Finally, panel C provides summary statis-
tics for the 15 stock predictors considered in Welch and Goyal (2008). The sample period ranges from January
1962 to December 2014.

ranging from January 1962 to January 1972. We center the initial states for both the W- and
SG-DLM specifications on the models’ OLS estimates obtained over D0. Specifically, in the
W-DLM we set M0, the conditional mean of the initial state in (4), to the coefficient estimates
from an OLS multivariate predictive regression over the training dataset and set S0 to the
corresponding sample covariance matrix of the OLS residuals. Next, we specify C0 = 100Ip

which effectively renders the prior on the initial state B0 uninformative. Finally, we set the
degrees of freedom n0 to 10, therefore down-weighting the prior on �0 and rendering it flat
and uninformative.
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As for the SG-DLM, separately for each of the q equations in the system, we set the vectors
mj0 in (20) to the corresponding vectors of OLS estimates obtained over the training sample,
while we set sj0 to the sample variance obtained from the OLS residuals (j = 1, . . . , q).
Next, we let Cj0 = 100sj0Ipj+j−1, which renders the prior on Cj0 uninformative and also
guarantees that the implied prior moments on the initial SG-DLM regression parameters are
equivalent to those from the W-DLM. Lastly, as with the W-DLM, we set the degrees of
freedom nj0 to 10, effectively making the prior on σ−2

j0 flat and uninformative.

4. Empirical results. In this section we describe our empirical results. We will begin
with an investigation of the role played by the various key features of our approach, with a
particular emphasis on the importance of time variation in the first and second moments of
asset returns and the strength of the predictability stemming from the various regressors we
consider. Next, we will turn to examining the quality and accuracy of the W-DLM and SG-
DLM forecasts, with an eye towards both statistical and economic measures of predictability.
More specifically, we will evaluate the forecast accuracy of these models over the last 360
months of data in our sample, January 1985 through December 2014. In this way, we explic-
itly remove from the forecast evaluation sample the period of time characterized by the oil
shocks of 1973–1974 and the bond market experimentation of the early 1980’s.

4.1. A close look at the role of the various modeling features. As we discussed in Sec-
tion 2.3, one of the key advantages of our approach is the ability to take into account the
model uncertainty arising from both the availability of different predictor variables and the
presence of multiple discount factors controlling the time variation in regression coefficients,
variances and covariances. Thanks to the closed-form nature of the forward filters we rely on,
this can be accomplished in a very timely manner and without the need to resort on expensive
MCMC simulations. In this section we take a close look at the role of predictor uncertainty
and time variation in both the W-DLM and SG-DLM models.

In order to disentangle the relative importance of these features, for both the W-DLM
and SG-DLM models we compute four variations of the score-weighted and equal-weighted
model combinations described in Section 2.3. Our first model combination, which we label
LIN, constrains δβ = δv = 1 for the W-DLMs and δβj = δvj = δγj = 1 for the SG-DLMs (j =
1, . . . , q), thus completely removing time variation in both the regression coefficients and
variance-covariance matrix. In other words, the LIN specifications control for the uncertainty
arising solely from the choice of which predictors to include in the model. Our second variant,
which we denote as TVP to reference its time-varying parameters, is obtained by selectively
combining only the subset of W-DLMs or SG-DLMs with δv = 1 (as well as, in the case of
the SG-DLMs, δγ = 1) and δβ < 1. In this case we are focusing on all those models with
a constant variance covariance matrix, taking into account the uncertainty pertaining to the
choice of which predictors to include and how much the regression coefficients should be
allowed to vary over time.21 Our third variant, which we denote as SV to reference stochastic
volatility, is similarly obtained by selectively combining only the subset of models with δβ =
1 and δv < 1 (as well as, in the case of the SG-DLMs, either δv < 1 or δγ < 1). Thus, we
are removing altogether time variation in the regression coefficients while controlling for the
uncertainty arising from which predictors to include and how much time variation to afford
to variances and covariances. Lastly, our fourth model combination variant, which we denote
with TVP-SV, is obtained by combining all the W-DLMs or SG-DLMs that set δβ < 1 and
δv < 1 (as well as, in the case of the SG-DLMs, δγ < 1). This is, therefore, our most flexible

21In this sense we can think of the TVP variant of our model combinations as the multivariate extension of the
approach first proposed by Dangl and Halling (2012) to forecast stock returns.
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model combination scheme, where the regression coefficients, variances and covariances all
vary over time.

We start by looking at the importance of time variation in the first and second moments of
stock and bond returns. The score-based model combination weights in (32) are a combina-
tion of accuracy forecasting the first and second moments. To demonstrate how these weights
change over time, instead of plotting curves for all 405 W-DLMs and 1215 SG-DLMs (as
there are 45 different pairs of predictors matched with nine and 27 different combinations of
discount factors for the W-DLMs and SG-DLMs, respectively), we summarize by plotting
the percent of the total aggregate weight that a typical model from one of our model combi-
nations receives. This is simply calculated as the percent of total model weight assigned to
each one of the four groups (LIN/TVP/SV/TVP-SV) and dividing it by the total number of
models within that group. Figure 1 shows the evolution over time of these weights for our
four model combination variants of the W-DLMs (top panel) and SG-DLMs (bottom panel).
We also report, in the legend of both panels, the total number of models within each group. As
it can be seen from both panels, the assumption of constant variances/covariances appears to
be strongly rejected by the data, with the average model combination weights of the models
belonging to the LIN and TVP only receiving marginal support by the data. In contrast, allow-
ing for variation in the variances and covariances produces much larger model weights, with
the models within the SV and TVP-SV model combinations receiving, on average, weights
that are two to three times larger.

Next, Figure 2 and Figure 3 plot the time series of asset volatilities and cross-correlations
associated with the score-weighted LIN, TVP, SV and TVP-SV SG-DLM model specifica-
tions.22 For comparability, we have also included in each panel the (constant) sample volatil-
ity or correlation, computed over the 1972–2014 period and depicted with a thin black line.
For all five assets we see that the conditional volatilities of all five assets for the SV and
TVP-SV models vary significantly over time, with long spells of time characterized by above-
average volatility (see in particular the late 1980’s, early 2000’s and the most recent financial
crisis) as well as shorter periods with below-average volatilities. We can also recognize a
marked difference between the pattern of time-variation of the three equity returns and those
of the two bond returns, and strong similarities in the volatilities of the five- and 10-year
bond returns which are seen in the different magnitudes of the vertical axes. As for the cor-
relations, we see long stretches of time with conditional correlations that are either above or
below their average counterparts. Again, we observe different patterns of time variation in
the three equity returns from those of the two bond returns.

We conclude this section with a look at the relative importance of the predictor variables
we consider in this study. Figure 4 depicts the evolution over time of the score-based model
combination weights in (32) aggregated across time-varying features, for both the W- and SG-
DLM over the evaluation period, January 1985 through December 2014. More specifically,
the left panels of the figure focus on the equity predictors from Welch and Goyal (2008),
and the right panels of the figure repeat the same calculations for the three bond predictors
from Gargano, Pettenuzzo and Timmermann (2019). The weights all sum to 100%, and the
height of a section reflects its weight at a given point in time. Starting with the left panels
of the figure, we see that the SG-DLM diversifies the weights more than the W-DLM. SG-
DLM weights at the end of the period range from 5.7% to 7.6%, while W-DLM’s range
from 6.3% to 7.3%. We observe that among all the equity predictors, the stock variance,
default yield spread and default return spread take turns having the largest weight in the
model combinations and are always among the most important variables. Conversely, the log
earning/price ratio predictor appears to not be favored in the model combination, consistently

22We provide similar plots for the four W-DLM model combination variants in Appendix C.
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FIG. 1. Time series of score-based weights by feature set. This figure shows the evolution over time of the
score-based model combination weights for the four variants of the W-DLM (top panel) and SG-DLM (bot-
tom panel) models, namely, LIN, TVP, SV and TVP-SV. At each point in time t , we compute model Mi ’s
weight (i = 1, . . . ,KW in the case of the W-DLM models and i = 1, . . . ,KSG in the case of the SG-DLM mod-
els) by looking at its historical statistical performance up through time t − 1, as determined by the log score
wi,t ∝ ∑t−1

τ=1 ln(Si,τ ), where Si,τ denotes the recursively computed score for model i at time τ , which we ob-
tain by evaluating a Gaussian density with mean vector and covariance matrix equal to E(rτ |Mi ,Dτ−1) and
Cov(rτ |Mi ,Dτ−1) at the realized log excess returns rτ . Next, we normalize the model weights across all mod-

els such that
∑KW

i=1 wi,t = 1 for W-DLMs and
∑KSG

i=1 wi,t = 1 for SG-DLMs. Then, models are aggregated to the
appropriate feature set, whether it be LIN, TVP, SV or TVP-SV. The curve shown here is the mean model weight
as a percentage of the aggregate model weight over time, where the mean is taken over a given feature set. The
evaluation period is January 1985–December 2014.

scoring among the lowest weights. Moving on to the right panel of the figure and the bond
predictors, we find that the Fama–Bliss spreads are highly favored early in the evaluation
period, but the three predictors largely balance out over time. The lack of dominance of
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FIG. 2. Time series of predicted volatilities for SG-DLM models. The figure shows the time series of predicted
volatilities of excess returns for the four variants of the SG-DLM score-based model combinations, namely, LIN,
TVP, SV and TVP-SV. Each panel represents a different asset, as labeled. Note that the scales of the vertical
axes are different for each asset in order to compare patterns of change over time, as opposed to comparing the
magnitude of volatilities across assets. The solid black line represents the LIN model; the dotted red line tracks
the TVP model; the solid green line depicts the SV model, while the blue dotted line displays the TVP-SV model.
In each panel we also display, as a reference, the level of the unconditional standard deviation of each asset,
computed over the whole evaluation period, January 1972–December 2014.

the Ludvigson–Ng macro factor at first appears to be contradicting the results in Gargano,
Pettenuzzo and Timmermann (2019), but this is due to the fact that our combination weights
are driven by the predictors’ relative log scores, and as Gargano, Pettenuzzo and Timmermann
(2019) show (see their Figures 6 and 7) the advantage of the Ludvigson–Ng macro factor
is particularly apparent when focusing on point predictability. The general patterns in the
score weights over time for W- and SG-DLMs are largely similar, showing that the relative
importance of the variables holds regardless of DLM type.

4.2. Out-of-sample performance. We now turn to evaluating the relative predictive accu-
racy of the various W-DLM and SG-DLM specifications over the period spanning from Jan-
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FIG. 3. Time series of predicted correlations for SG-DLM models. The figure shows the time series of predicted
correlations of excess returns for the four variants of the SG-DLM score-based model combinations, namely, LIN,
TVP, SV and TVP-SV. Each panel represents a different pair of asset returns, as labeled. The solid black line
represents the LIN model; the dotted red line tracks the TVP model; the solid green line depicts the SV model,
while the blue dotted line displays the TVP-SV model. In each panel we also display, as a reference, the level
of the unconditional correlation between each pair of asset returns, computed over the whole evaluation period,
January 1972–December 2014.

uary 1985 to December 2014. Throughout, our benchmark model will be a no-predictability
SG-DLM with constant mean and constant variance-covariance matrix (i.e., the specification
in (13) with xj,t−1 = 1 and δβj

= δγj = δvj = 1, for all j ), in line with what is customary
in both the stock and bond return predictability literatures. We will provide results separately
for each of the five risky assets on which we are focusing as well as jointly for the whole
system of equations.

4.2.1. Measures of predictive accuracy. Starting with the point forecast accuracy, for
each of the five asset returns we summarize the precision of the point forecasts for model i,
relative to that from the benchmark model, by means of the ratio of mean-squared forecast
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FIG. 4. Time series of score-based weights by predictor. This figure shows the evolution over time of the
score-based model combination weights for the various stock (left panels) and bond (right panels) predictors.
The top two panels display results for the W-DLM models, while the bottom panels show the model combinations
of the SG-DLM models. At each point in time t , we compute model Mi weight (i = 1, . . . ,KW in the case of
the W-DLMs and i = 1, . . . ,KSG in the case of the SG-DLMs) by looking at its historical statistical performance
up through time t − 1, as determined by the log score: wi,t ∝ ∑t−1

τ=1 ln(Si,τ ), where Si,τ denotes the recursively
computed score for model i at time τ , which we obtain by evaluating a Gaussian density with mean vector and
covariance matrix equal to E(rτ |Mi ,Dτ−1) and Cov(rτ |Mi ,Dτ−1) at the realized log excess returns rτ . Next,

we normalize the model weights across all models such that
∑KW

i=1 wi,t = 1 for W-DLMs and
∑KSG

i=1 wi,t = 1 for
SG-DLMs. Then, models are aggregated according to the predictors included in each model, and the heights of the
colored sections on the plots reflect these aggregated weights. Predictors are sorted by aggregated model weight
in the final month. The evaluation period is January 1985–December 2014.

errors (“MSFEs”)

(33) MSFEij =
∑T

τ=t e
2
ij,τ∑T

τ=t e
2
bcmk,j,τ

,

where t denotes the beginning of the out-of-sample period, i refers to the W-DLM
or SG-DLM model under consideration (i.e. LIN, TVP, SV, TVP-SV), eij,τ = rjτ −
E(rjτ |Mi ,Dτ−1) and ebcmk,j,τ = rjτ −E(rjτ |Mbcmk,Dτ−1) are the forecast errors of asset
return j at time τ associated with model i and the benchmark model, respectively. Values of
MSFEij below one suggest that for asset j , model i produces more accurate point forecasts
than the no-predictability benchmark.

We also measure the point-forecast accuracy of the various method by looking jointly at
all five assets. Following Christoffersen and Diebold (1998), we compute the ratio between
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the weighted multivariate mean squared forecast error (WMSFE, also known as the squared
Mahalanobis distance) of model i and the no-predictability benchmark as follows:

(34) WMSFEi =
∑T

τ=t e
′
iτ [Ĉov(r t )]−1eiτ∑T

τ=t e
′
bcmk,τ [Ĉov(r t )]−1ebcmk,τ

,

where eiτ = (ei1,τ , . . . , eiq,τ )
′ and ebcmk,τ = (ebcmk,1,τ , . . . , ebcmk,q,τ )

′ are the q × 1 vectors

of forecast errors at time τ associated with model i and the benchmark model, while Ĉov(r t )

denotes the sample estimates of the asset returns unconditional variance-covariance matrix,
computed over the evaluation period.23

As for the quality of the density forecasts, we compute the average log score (ALS) differ-
ential between model i and the no-predictability benchmark,

(35) ALSij = 1

T − t + 1

T∑
τ=t

(
ln(Sij,τ ) − ln(Sbcmk,j,τ )

)
,

where Sij,τ (Sbcmk,j,τ ) denotes model i’s (benchmark’s) log score at time τ , which we
obtain by evaluating a univariate Gaussian density with mean vector E(rjτ |Mi ,Dτ−1)

(E(rjτ |Mbcmk,Dτ−1)) and variance Var(rjτ |Mi ,Dτ−1) (Var(rjτ |Mbcmk,Dτ−1)) at the re-
alized excess returns rjτ . Positive values of ALSij indicate that model i produces on average
more accurate density forecasts for variable j than the benchmark. Finally, we consider the
multivariate average log score differentials (MVALS) between model i and the benchmark,

(36) MVALSi = 1

T − t + 1

T∑
τ=t

(
ln(Si,τ ) − ln(Sbcmk,τ )

)
,

where Si,τ (Sbcmk,τ ) are computed as described in Section 2.3.24

4.2.2. Results. We begin by inspecting the point and density forecast predictability of
both W-DLM and SG-DLM models on an asset-by-asset basis, as summarized by the MSFE
and ALS metrics. Table 2 reports the MSFE ratios of the LIN, SV, TVP and TVP-SV vari-
ants of the W-DLM and SG-DLM models, individually for the five asset returns and relative
to the no-predictability benchmark. Across the columns of the table, we report the average
predictive improvements obtained by either relying on the equal-weighted or score-weighted
combinations. As for the three equity returns, we see that stochastic volatility plays a small
role in improving the SG-DLM predictions, while time-varying parameters hurt both W- and
SG-DLMs. In fact, the TVP and TVP-SV specifications do worse at point prediction than the
benchmark. Results for the two bond returns are stronger with ample and widespread evi-
dence of point-predictability. This appears to be true regardless of the combination scheme

23The role of this covariance matrix is to standardize the distances in multivariate space and weight the assets’
forecast errors differently depending on the variability of the underlying assets and correlation across assets. All
things equal, there will be less penalty for the forecast errors of a highly volatile asset than from those of a less-
volatile asset but also less reward when accurate. At the same time, there will be more penalty for forecast errors
in directions not implied by the correlations in the empirical sample covariance matrix, meaning higher penalties
for forecast errors in opposite directions for correlated assets and high penalties for forecast errors in the same
direction for negatively correlated assets.

24This measure penalizes wrong return predictions based on the variance of the prediction. If the model is highly
confident in an inaccurate prediction, it scores very low. If highly confident and correct, it receives a high score.
If the model is unconfident in the prediction and, hence, has high variance and a relatively flat pdf, then there is
little penalty for being wrong but also little bonus for being correct.
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and the set of features considered, though time-varying parameters are again never prefer-
able. This widespread predictability is consistent with the findings of both Thornton and
Valente (2012) and Gargano, Pettenuzzo and Timmermann (2019). Next, Table 3 inspects the
asset-specific density forecast predictability of the same models depicted in Table 2. Here,
in line with the results reported in Figure 1, we find that for all five assets’ SG-DLMs, the
SV and TVP-SV model combinations always lead to the most accurate predictive densities.
However, we see this does not hold for W-DLMs on mid- and small-cap stocks, where LIN
is best. Furthermore, the mid- and small-cap stocks see large drops in performance when
adding time-varying parameters, which benefit 10-Year bonds, across models and weighting
schemes.

Next, we turn to the joint point and density forecast predictability, as measured by the
WMSFE and MVALS metrics. Starting with Table 4, we find that in term of point forecast
accuracy the best performing models feature constant coefficients; adding time-varying pa-
rameters to the model set appear to slightly increase the forecasting error across the board.
Moving on to the joint accuracy of the density forecasts, Table 5 reports the average (mul-
tivariate) log score improvements that are brought in by the different sets of feature and
model combination schemes. The SV and TVP-SV feature sets lead to the largest gains in
accuracy, with the largest gains being associated with the SG-DLM TVP-SV model. Interest-
ingly, the comparison of log scores between W-DLM and SG-DLM seem to favor the latter
model specification when volatilities and correlations are stochastic, while, when constant,
the DLM types are comparable. To shed further light on where the SV and TVP-SV model
are most successful, Figure 5 plots the cumulative sum of the multivariate log score differen-
tials, CSMVLSDit = ∑t

τ=t (ln(Si,τ ) − ln(Sbcmk,τ )) for SG-DLMs with different feature sets.
The figure clearly shows how, starting around the mid 1990’s and continuing all the way to
the end of the sample, the SV and TVP-SV models consistently generate significantly more
accurate density forecasts than all the alternative model specifications. Furthermore, we note
that TVP-SV gains a step over SV during the housing bubble which persists through the end
of the sample.

The previous tables and figures indicate that time-varying volatility and correlation play
a very important role in generating sharp density forecasts. This appears to be true both at
the individual asset level as well as when focusing on all stock and bond returns jointly. To
offer additional insights on the mechanics behind this result, Figure 6 shows the heat map
of the joint density forecast accuracy, as measured by the MVALS metric, for all the possible
combinations of discount factors considered, both for the W-DLMs (top left panel) and the
SG-DLMs (remaining panels).25 This plot permits to pinpoint exactly the mix of features
that lead to the largest predictive gains in our model combinations and to provide further
clarity on the drivers of the results summarized in Tables 2 through 5. Starting with the W-
DLM case, we observe that the most successful models feature a large degree of variation
across the board, in volatilities, correlations and regression coefficients. This demonstrates
why there are high score values for the TVP-SV model in Table 5, as it is the only feature
set incorporating models from this lower left quadrant. The remaining three panels show that
the best performing SG-DLM models include high degrees of time variation in the volatili-
ties, moderate degrees of time-variation in correlations and ambivalence toward the degree of
movement in the regression coefficients (compared to the W-DLMs). Note specifically, how-
ever, that the ideal degree of time variation in the correlations (δγ ≈ 0.986) is much higher
than that of volatility (δv ≤ 0.95). This further validates the importance of allowing for a

25In particular, each point in the heat maps corresponds to the average MVALS associated to a given combination
of discount factors, averaged over all 45 permutations of predictors (in the case of the SG-DLMs also averaged
over all possible values of the discount factor not shown on the axes).
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TABLE 2
Mean-squared forecast errors of W-DLM and SG-DLM models by asset

W-DLM SG-DLM

Features Equal Score Equal Score

Panel A: Large-cap
LIN 0.998 0.998 0.998 0.997
TVP 1.008 1.007 1.009 1.007
SV 0.998 0.997 0.993 0.993
TVP-SV 1.008 1.007 1.008 1.007

Panel B: Mid-cap
LIN 0.991 0.993 0.991 0.993
TVP 1.015 1.013 1.016 1.014
SV 0.991 0.993 0.986 0.987
TVP-SV 1.015 1.013 1.015 1.014

Panel C: Small-cap
LIN 0.989 0.993 0.990 0.993
TVP 1.016 1.015 1.016 1.015
SV 0.989 0.993 0.986 0.987
TVP-SV 1.016 1.014 1.016 1.015

Panel D: 5-year bonds
LIN 0.962 0.970 0.962 0.968
TVP 0.965 0.970 0.965 0.968
SV 0.962 0.964 0.962 0.963
TVP-SV 0.965 0.966 0.965 0.965

Panel E: 10-year bonds
LIN 0.965 0.970 0.965 0.968
TVP 0.981 0.988 0.981 0.987
SV 0.965 0.966 0.967 0.967
TVP-SV 0.981 0.987 0.981 0.983

This table reports, for each of the five asset returns we considered, the ratio of mean-squared forecast errors
(“MSFEs”) between a given model and the no-predictability benchmark, computed as

MSFEij =
∑T

τ=t e2
ij,τ∑T

τ=t e2
bcmk,j,τ

,

where t denotes the beginning of the out-of-sample period, i refers to the model under consideration (i.e.,
LIN, TVP, SV, TVP-SV W-DLMs or SG-DLMs), eij,τ = rjτ − E(rjτ |Mi ,Dτ−1) and ebcmk,j,τ = rjτ −
E(rjτ |Mbcmk,Dτ−1) are the forecast errors of asset return j at time τ associated with model i and the benchmark
model, respectively. Values of MSFEij below one suggest that for asset j , model i produces more accurate point
forecasts than the no-predictability benchmark. Bold-faced values indicate the best performing models within each
asset class and DLM type, while “Equal” and “Score” denote, respectively, equal-weighted and score-weighted
model combinations. The evaluation period is January 1985–December 2014.

different degree of variation in the on- and off-diagonal elements of the variance covariance
matrix.

4.3. Portfolio analysis. We now turn to evaluating the portfolio implications and eco-
nomic predictability implied by the W-DLM and SG-DLM predictive densities that we de-
rived.

4.3.1. Framework. We focus on the problem of a Bayesian investor endowed with power
utility (see, among others, Gao and Nardari (2018), Gargano, Pettenuzzo and Timmermann
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TABLE 3
Average log score differentials of W-DLM and SG-DLM models by asset

W-DLM SG-DLM

Features Equal Score Equal Score

Panel A: Large-cap
LIN 0.007 0.006 0.006 0.006
TVP 0.006 0.005 0.006 0.005
SV 0.016 0.015 0.012 0.010
TVP-SV 0.014 0.014 0.010 0.007

Panel B: Mid-cap
LIN 0.009 0.007 0.008 0.007
TVP 0.002 0.002 0.002 0.001
SV 0.007 0.004 0.014 0.015
TVP-SV −0.002 −0.002 0.006 0.006

Panel C: Small-cap
LIN 0.010 0.008 0.008 0.006
TVP 0.003 0.002 0.002 0.001
SV 0.005 0.001 0.017 0.019
TVP-SV −0.006 −0.007 0.008 0.010

Panel D: 5-year bonds
LIN 0.016 0.016 0.016 0.016
TVP 0.014 0.015 0.014 0.015
SV 0.095 0.093 0.078 0.091
TVP-SV 0.094 0.094 0.077 0.089

Panel E: 10-year bonds
LIN 0.018 0.018 0.018 0.019
TVP 0.018 0.018 0.018 0.019
SV 0.062 0.061 0.058 0.070
TVP-SV 0.062 0.063 0.059 0.070

This table reports, for each of the five asset returns we considered, the average log score (ALS) differential between
model i and the no-predictability benchmark,

ALSij = 1

T − t + 1

T∑
τ=t

(
ln(Sij,τ ) − ln(Sbcmk,j,τ )

)
,

where Sij,τ (Sbcmk,j,τ ) denotes model i’s (benchmark’s) log score at time τ , which we obtain by evaluat-
ing a univariate Gaussian density with mean vector E(rjτ |Mi ,Dτ−1) (E(rjτ |Mbcmk,Dτ−1)) and variance
Var(rjτ |Mi ,Dτ−1) (Var(rjτ |Mbcmk,Dτ−1)) at the realized excess returns rjτ . Positive values of ALSij in-
dicate that model i produces on average more accurate density forecasts for variable j than the benchmark.
Bold-faced values indicate the best performing models within each asset class and DLM type, while “Equal” and
“Score” denote, respectively, equal-weighted and score-weighted model combinations. The evaluation period is
January 1985–December 2014.

(2019), Johannes, Korteweg and Polson (2014)). At each point in time, the investor chooses
her optimal asset allocations by distributing her total wealth between q (equity and bond)
risky assets and one risk-free asset, under the constraint that the sum of her long and short
positions does not exceed 300% of her wealth or fall below −200% of her wealth, and that
none of her individual positions (including the weight on the risk-free asset) falls outside the
same range.26 Assuming that the excess returns on the q risky assets are jointly log-normally

26Similarly, Gao and Nardari (2018) consider an investor who is constrained and will not be allowed to short
risky assets and/or borrow more than a certain amount of cash.
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TABLE 4
Weighted mean-squared forecast errors of W-DLM and SG-DLM models

W-DLM SG-DLM

Features, weighting: Equal Score Equal Score

LIN 0.989 0.991 0.989 0.991
TVP 1.004 1.006 1.004 1.006
SV 0.989 0.990 0.990 0.990
TVP-SV 1.004 1.006 1.004 1.004

This table reports the ratio between the weighted multivariate mean squared forecast error (WMSFE, also known
as the squared Mahalanobis distance) between model i and the no-predictability benchmark, computed as follows:

WMSFEi =
∑T

τ=t e′
iτ [Ĉov(r t )]−1eiτ∑T

τ=t e′
bcmk,τ [Ĉov(r t )]−1ebcmk,τ

,

where eiτ = (ei1,τ , . . . , eiq,τ )′ and ebcmk,τ = (ebcmk,1,τ , . . . , ebcmk,q,τ )′ are the q × 1 vector of forecast errors

at time τ associated with model i and the benchmark model, while Ĉov(r t ) denotes the sample estimates of the
asset returns unconditional variance-covariance matrix, computed over the evaluation period. Values of WMSFEi

below one suggest that model i produces more accurate point forecasts than the no-predictability benchmark.
Bold-faced values indicate the best performing models within DLM type, while “Equal” and “Score” denote,
respectively, equal-weighted and score-weighted model combinations. The evaluation period is January 1985–
December 2014.

distributed, we can follow Campbell, Chan and Viceira (2003) and approximate rp,it , the log
return of the portfolio implied by model i at time t , with the following formula:

rp,it = rf,t−1 + ω′
i,t−1(r t − rf,t−11) + 1

2
ω′

i,t−1 diag(�̂i,t |t−1)

− 1

2
ω′

i,t−1�̂i,t |t−1ωi,t−1,

(37)

TABLE 5
Multivariate average log score differentials of W-DLM and SG-DLM models

W-DLM SG-DLM

Features, weighting: Equal Score Equal Score

LIN 0.043 0.040 0.042 0.040
TVP 0.066 0.069 0.066 0.069
SV 0.266 0.255 0.271 0.289
TVP-SV 0.265 0.266 0.279 0.296

This table reports the multivariate average log score differentials (MVALS) between model i and the benchmark,

MVALSi = 1

T − t + 1

T∑
τ=t

(
ln(Si,τ ) − ln(Sbcmk,τ )

)
,

where Si,τ (Sbcmk,τ ) are computed as described in Section 2.3. Values of MVALSi above zero suggest that model
i produces more accurate density forecasts than the no-predictability benchmark. Bold-faced values indicate the
best performing models within DLM type, while “Equal” and “Score” denote, respectively, equal-weighted and
score-weighted model combinations. The evaluation period is January 1985–December 2014.
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FIG. 5. Cumulative sum of the multivariate log score differentials for W-DLM and SG-DLM models. This figure
plots the cumulative sum of the multivariate log score differentials, CSMVLSDit = ∑t

τ=t (ln(Si,τ ) − ln(Sbcmk,τ ))

over time, where Si,τ (Sbcmk,τ ) denote the model i’s (benchmark’s) log score and is computed as described in
Section 2.3. The log score measures how accurate the multivariate distribution forecasts are given the realized
observations. Within each panel, the solid black line represents the LIN model; the dotted red line tracks the TVP
model; the solid green line depicts the SV model, while the blue dotted line displays the TVP-SV model. The
evaluation period is January 1985–December 2014.

where ωi,t−1 is a vector of portfolio weights, �̂i,t |t−1 = Cov(r t |Mi ,Dt−1) denotes the risky
assets’ forecasted variance-covariance matrix at time t based on the estimates given by model
Mi and conditional on the information set at time t − 1, rf,t−1 represents the continuously
compounded risk-free rate and 1 is a vector of ones the same length as r t . Let A denote
the investor’s relative degree of risk aversion, then the optimal weights on the q risky assets
implied by model i are given by the solution of the following constrained maximization
problem:

arg max
ωi,t−1

ω′
i,t−1

(
μ̂i,t |t−1 + 1

2
diag(�̂i,t |t−1)

)
− A

2
ω′

i,t−1�̂i,t |t−1ωi,t−1

s.t. ω′
i,t−11 ∈ [−2,3],

ωij,t−1 ∈ [−2,3], j = 1, . . . , q

,(38)

where μ̂i,t |t−1 = E(r t |Mi ,Dt−1) is the mean of the predictive density of the vector of risky
assets r t , computed using the information set available at time t − 1 and under model Mi .

We next use the sequence of portfolio weights {ωi,t−1}Tt=t computed under the various
W- and SG-DLM models as well as under the benchmark model to compute the investor’s
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FIG. 6. Heat map of multivariate average log scores for different discount factors. This figure shows the mul-
tivariate average log scores (MVALS) of 100 different combinations of discount factors. The smaller a discount
factor (δ) is, the more dynamic a feature is over time. δv controls the degree to which volatility is stochastic. δγ
controls the degree to which correlations may time-vary. δβ controls the time-variation in the regression coeffi-
cients. In order to create a two-dimensional plot, each SG-DLM pane model-averages over one the three discount
factors The evaluation period is January 1985–December 2014.

certainty equivalent returns (CERs), which can be further expressed in percentage annualized
terms as

CERi = 100 ×
([

1

T − t + 1

T∑
t=t

Ŵ 1−A
it

] 12
1−A

− 1

)
,(39)

where Ŵit = exp(rp,it ) denotes the realized wealth at time t , as implied by model i.

4.3.2. Results. Table 6 presents the annualized CERs over the whole out-of-sample pe-
riod for the various W-DLM and SG-DLM model combinations for an investor with power
utility and coefficient of relative risk aversion A = 5. In particular, the table reports the CER
gains relative to the no-predictability benchmark model, that is, CERi − CERbcmk (as a ref-
erence point, the annualized CER for the benchmark model over the same period is equal to
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TABLE 6
Annualized certainty equivalent returns of W-DLM and SG-DLM models

W-DLM SG-DLM

Features, weighting: Equal Score Equal Score

LIN 4.608 3.804 4.526 3.814
TVP 0.361 0.262 0.513 0.460
SV 5.429 4.623 5.944 5.892
TVP-SV 2.940 2.628 3.772 3.947

This table reports the annualized CERs (in percentage terms) over the whole out-of-sample period for the various
W-DLM and SG-DLM model combinations for an investor with power utility and coefficient of relative risk aver-
sion A = 5. In particular, the table reports the CER gains relative to the no-predictability benchmark model,that
is, CERi − CERbcmk, where

CERi = 100 ×
([

1

T − t + 1

T∑
t=t

Ŵ1−A
it

] 12
1−A

− 1

)

and where Ŵit = exp(rp,it ) denotes the realized wealth at time t , as implied by model i (the CER of the bench-
mark model, 5.896, is computed in an analogous manner). Bold-faced values indicate the best performing models
within DLM type, while “Equal” and “Score” denote, respectively, equal-weighted and score-weighted model
combinations. The evaluation period is January 1985–December 2014.

5.896%.) As it can be inferred from the table, all feature sets and all model averaging weight-
ing schemes produce higher CERs than the no-predictability benchmark. This is true regard-
less of whether we focus on the W- or SG-DLM models. In addition, we make the following
observations. First, as it was the case with the log score measures, the largest gains in CERs
occur when volatility is allowed to vary over time. Across the board, the inclusion of stochas-
tic volatilities and correlations always lead to larger CERs, and this is true whether or not one
also allows for time variation in the regression coefficients. That is, SV produces higher CERs
than LIN and so does TVP-SV compared to TVP. In particular, we find that the SV model
combination of SG-DLMs produces CER gains of about 5.9% over the benchmark. The role
of SV in the case of the W-DLM models is slightly less pronounced, with the improvements
ranging from 4.6% to 5.4%. We attribute this difference to the additional restrictions that the
W-DLM models impose, most notably the requirement that a single discount factor must con-
trol the degree of time variation in both variances and covariances. Second, the inclusion of
time-varying coefficients in the model always decreases CERs. Third, equal weighting holds
a slight edge over the comparable score-weighted models, except for TVP-SV SG-DLMs.
While the differences between the two weighting schemes are only marginal, this result goes
in the opposite direction of what we found in Table 5 when focusing on the log score dif-
ferentials and is likely due to the way we computed the model combination weights in (32).
Fourth, SG-DLMs improve over the comparable W-DLMs, except for the equal-weighting
LIN specification. Again, we believe this result is particularly due to the added flexibility
that the SG-DLMs bring to the SV dynamics, and this is consistent with the largest differ-
ences between W- and SG-DLMs occurring when the SV feature is included in the model
set.

For Figure 7 only, we depart from annualized CERs in favor of the more graphically-
friendly, cumulative continuously-compounded CERs, which simplifies to

CERiτ =
τ∑

t=t

log(Ŵit /Ŵbenchmark,t ),
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FIG. 7. Cumulative continuously compounded cumulative CER differentials. This figure shows the cumulative
continuously compounded certainty equivalent return (CER) differentials over time. We follow Pettenuzzo, Tim-
mermann and Valkanov (2014) and compute these as, essentially, the sum of the log utility ratio (and, hence, log
wealth ratio) from the beginning of the evaluation sample, January 1985, to time t , where the utility ratio is the
utility of a feature set’s forecast divided by that of the prevailing-mean benchmark. The evaluation period runs
from 1985 through 2014. Each color shown is for is a score-weighted averaged model.

as per Pettenuzzo, Timmermann and Valkanov (2014). These are given as CER differen-
tials over time, relative to the prevailing-mean benchmark. As seen in Table 6, at the end
of the evaluation period the TVP model struggles while the TVP-SV and SV models thrive.
However, Figure 7 shows that the model with the best CER is dependent on the window
in time that is analyzed. The TVP models performed well until the two recent market dis-
asters in 2000 and 2008. When market bubbles burst, volatilities change drastically, hence
SV is needed to safely account for volatility changes. TVP, without SV, incorrectly absorbs
information and assumes incorrect changes in the relationships between predictors and re-
turns, particularly in the bursting of the bubbles. Visually, we reach the same conclusion as
with the end-of-term numbers from Tables 5 and 6, namely, that predictors and stochastic
volatility are desirable features in your model, but time-varying coefficients alone is likely
not.

As with our investigation of the joint statistical predictability of the W- and SG-DLM mod-
els, we conclude this section with a closer look at how exactly the various model features help
achieve large CERs. In particular, Figure 8 shows the heat map of the CER gains associated
with all the possible combinations of discount factors considered, both for the W-DLMs (top
left panel) and the SG-DLMs (remaining panels). Starting with the W-DLM case, we observe
that there are two regions of highly profitable models. The first features a modest degree of
time variation in the volatilities and correlations and very little variation in the regression
coefficients. The second features no time variation in the regression coefficients to go along
with high degrees of time variation in the covariance matrix elements. As for the more flexi-
ble SG-DLMs, the remaining three panels show that the best performing models also feature
minimal (but some) variation in the regression coefficients, combined with as much time
variation in the volatilities and correlations as we will allow. While the differences between
W- and SG-DLM’s optimal combinations for CER performance are not as stark as those for
score, we do see that the magnitude of the SG-DLM CER noticeably exceed those of the
W-DLM.

5. Discussion on modeling choices and computational efficiency. It is important at
this point to reiterate that the methods we describe here operate exclusively in closed form,
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FIG. 8. Heat map of certainty equivalent returns for different discount factors. This figure shows the certainty
equivalent return differentials of 100 different combinations of discount factors. The smaller a discount factor (δ)
is, the more dynamic a feature is over time. δv controls the degree to which volatility is stochastic. δγ controls the
degree to which correlations may time-vary. δβ controls the time-variation in the regression coefficient parameters.
In order to create a two-dimensional plot, each SG-DLM pane model-averages over one the three discount factors.
The evaluation period runs from 1985 through 2014.

deterministic equations. These equations are detailed in Appendix A for the W-DLM and in
Appendix B for the SG-DLM. There are no Markov chain Monte Carlo (MCMC) or sim-
ilar methods in our computations. Instead, in our empirical example in Section 4, we run
thousands of these DLMs in a matter of minutes. It is this desire for computational ease that
informs our choices of models.27

The choice to avoid sampling methods has not sacrificed the abilities of this model to
reproduce similar results to other papers with more computationally-taxing methods when it

27In regards to how the models scale for larger datasets, for SG-DLMs, Gruber and West (2016) recommend
choosing a more sparse �t . For example, one could use an early subsample to find which five assets are most
predictive of a specific asset and, thus, have only five nonzero elements per row of �t . In regards to scaling,
W-DLMs have no matrix inverses in the forecast and updating equations, so computation scales reasonably.
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TABLE 7
Multivariate average log score differentials of the all-permutations-SGDLM

W-DLM SG-DLM AP-SG-DLM

Features, weighting: Equal Score Equal Score Equal Score

LIN 0.043 0.040 0.042 0.040 0.044 0.042
TVP 0.066 0.069 0.066 0.069 0.067 0.069
SV 0.266 0.255 0.271 0.289 0.258 0.272
TVP-SV 0.265 0.266 0.279 0.296 0.266 0.280

This table adds to Table 5 the multivariate average log score differentials of the SG-DLM averaged over all
possible permutations of asset orderings, where the differentials are as defined in Table 5.

comes to univariate/single-asset forecasting. Note that, in a univariate/single-asset case, our
DLMs are the same algorithm as Dangl and Halling (2012)’s DLM. Johannes, Korteweg and
Polson (2014) find strong evidence of the need for stochastic volatility in modeling a stock
index in the form of increased CERs, as do we, in separate univariate/single-asset forecasting
results that we have not included in the paper. Gargano, Pettenuzzo and Timmermann (2019)
find strong evidence of the need for stochastic volatility, and some evidence of time-varying
parameters, when modeling five-year treasury bonds, and we do too.

Closed-form posterior distributions here require conjugate priors. This eliminates the pos-
sibility of using certain heavy-tailed priors, like a mixture of Gaussians. This also brings the
restriction that W-DLM uses to the same regressors for each asset. While we could force ze-
ros in the matrix Bt to remove the connection between a particular regressor and a particular
asset, this would also break the deterministic nature of the modeling equations and require
MCMC or other sampling methods which would take starkly more computation time than
our current forward filter that operates in deterministic, closed form.

For the SG-DLM, we made three modeling choices we’d like to discuss futher. First, we
chose �t to have a lower triangular structure to, again, maintain closed-form deterministic
equations for our forward filter and avoid computationally-taxing sampling methods (as per
description between equations 16 and 18). In other words, we deal explicitly with the reduced
form model and not the structural form of the model. Second, we chose to have the SG-DLM
use the same predictors for each asset (though it need not to) so that the results about our two
DLM methods were comparable in that dimension and yet different in the other modeling
choices.

TABLE 8
Annualized certainty equivalent returns of the all-permutations-SGDLM

W-DLM SG-DLM AP-SG-DLM

Features, weighting: Equal Score Equal Score Equal Score

LIN 4.608 3.804 4.526 3.814 4.633 4.131
TVP 0.361 0.262 0.513 0.460 0.390 0.380
SV 5.429 4.623 5.944 5.892 5.273 5.108
TVP-SV 2.940 2.628 3.772 3.947 3.065 3.320

This table adds to Table 6 the annualized CERs of the SG-DLM averaged over all possible permutations of asset
orderings, relative to the no-predictability benchmark, as defined in Table 6.
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The third choice to discuss is our choice of the order of assets for the SG-DLM. Because
we assume �t is lower triangular, the assets have different total amounts of estimation uncer-
tainty as their forecast variances depend on differing numbers of estimated variables. Instead
of choosing a specific order, we could “simply” average over all permutations of assets in
order to account for the uncertainty therein. With five assets we have 5! = 120 permutations
to account for, meaning an all-permutations-SG-DLM (AP-SG-DLM) does begin to take
hours instead of minutes to fit all of the individual DLMs and average across them. We do
just this, and, in Tables 7 and 8, we see no change in the patterns of features’ performance.
Score-weighted TVP-SV models dominate scores for the AP-SG-DLM, just as it did for
the W-DLM and SG-DLM. The same holds for equal-weighted SV models when it comes
to CERs. Outside of the maxima, the other measures have similar patterns for each type of
DLM.

We do see that the AP-SG-DLM variants with the LIN feature set (no time variation)
outperform SG-DLMs in both CER and score but underperform when employing stochastic
volatility. Hence, the peak performances across DLMs (in terms of both score and CER) stay
with the TVP-SV and SV variants of the original SG-DLM respectively. This implies our
choice of asset ordering for the SG-DLM was a relatively wise one: first five-year bonds,
then 10-year bonds, followed by large-cap, mid-cap and small-cap stocks. This essentially
goes from least volatile (five-year bonds) to most volatile (small-cap stocks). Again, Gargano,
Pettenuzzo and Timmermann (2019) show that the shorter the maturity, the more predictable
the bond is. So, for building SG-DLMs like ours, we would recommend ordering the assets
from least volatile/most predictable to most volatile/least predictable.

We now turn to answer the question of what benefit the SG-DLM is actually providing, as
it does require more computation time, yet our empirical results do not see as sharp a contrast
between SG- and W-DLM as one might think. For example, in the following simulation
study, the W-DLM runs over 500 time periods with three predictors (including the intercept
term) and five assets in 0.077 seconds, while an SG-DLM takes 0.214 seconds (using 2015
Macbook Pro). Though slower, we illustrate in Table 9 the additional flexibility offered by
the SG-DLM. The simulation data is generated from either the W-DLM or the SG-DLM,
and we will thus expect the W-DLM to outperform the SG-DLM when modeling the data it
generated, and vice versa.

TABLE 9
Simultation study: W-DLM vs. SG-DLM

Generated by

True model’s features W-DLM SG-DLM

LIN −1.238 0.076
TVP 1.129 0.692
SV −1.022 0.210
TVPSV 0.631 0.332

This table presents the difference in average log scores fits for the two models,
namely, SG-DLM scores minus W-DLM scores. One of our generative models
(equations 1–2 for the W-DLM or equations 16 and 19) is used to generate
simulated data for 500 time periods, then the W- and SG-DLM are each fit
separately to the data. Positive values reflect superior performance of the SG-
DLM and negative values for the W-DLM. All discount factors are set the
same during model fitting, δβ = δγ = δσ = 0.99.
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We first simulate data from a W-DLM, namely, equations 1–2, and impose varying types
of time variation in the data generating process. TVP is implemented via random walk. SV is
implemented via regime shifts, specifically a new covariance matrix every 100 time periods.
We also generate data from a SG-DLM, equations 16 and 19. Here, TVP is also implemented
via random walk, as are the time-varying correlations. The volatilities time vary via regime
shift, such that there are new volatilities every 100 time periods.

This produces eight datasets, each a multivariate time series of generated returns. The
simulated datasets are each fit with both the W-DLM and SG-DLM, using small amounts of
variance discounting (δβ = δγ = δσ = 0.99). The difference between average log scores of
the two models are given in Table 9. We see that for W-DLM-generated data, the presence
TVP changes the preferred model. Data generated with no time variance in the regression
coefficients is better modeled by the W-DLM, and vice versa. For all datasets generated by
the SG-DLM, the SG-DLM has better average scores than the W-DLM. Hence, the SG-DLM
is a better model if time variance may exist in the regression coefficients (TVP), regardless
of either data generating process.

6. Conclusion. In this paper we build on the Wishart dynamic linear model (W-DLM) of
West and Harrison (1997) and the simultaneous graphical dynamic linear model (SG-DLM)
of Gruber and West (2016) to introduce a flexible approach to model and forecast multiple
asset returns. This approach allows us to integrate a number of useful features into a predic-
tive system, namely, model and parameter uncertainty, time-varying parameters, stochastic
volatility and time-varying covariances. We combine these DLM methods with a fully au-
tomated data-based model-averaging procedure to objectively determine the optimal set of
said features and employ it to jointly forecast monthly stock and bond excess returns. This is
made possible by the computational speed of the DLMs.

When evaluated over the January 1985–December 2014 period, we find large statistical
and economic benefits from using the appropriate ensemble of features in predicting stock
and bond returns. In particular, we find that W-DLMs and SG-DLMs, with stochastic volatil-
ity and time-varying covariances, bring the largest gains in terms of statistical predictability,
and that time-varying parameters can enhance the ensemble when forecasting distributions,
though not for point predictions. Lastly, SG-DLM models with predictors, stochastic volatil-
ity and time-varying correlations lead to the largest economic gains. We show that, when
using this optimal set of features, a leverage-constrained power utility investor earns over
500 basis points (on an annualized basis) more than if she relied on the no-predictability
benchmark.

APPENDIX A: THE WISHART DLM

In this appendix we describe our implementation of the W-DLM model of West and Har-
rison ((1997), Section 16.4).

A.1. Basic equations. For convenience, we reproduce here the key equations of the
model. The W-DLM can be written as

r t = B ′
txt−1 + vt vt |�t ∼N (0,�t ),(A.1)

where B t is the p × q matrix of time-varying regression coefficients and νt is a q × 1 error
vector, independent over time. The regression coefficients B t vary over time according to pq

random walk processes,

vec(B t ) = vec(B t−1) + ωt ωt |�t ∼ N (0,�t ⊗ W t ),(A.2)
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where ωt is a pq × 1 vector of zero-mean normally distributed error terms. The initial con-
ditions are given by

vec(B0)|�0,D0 ∼ N
(
vec(M0),�0 ⊗ C0

)
,

�0|D0 ∼ IW(n0,S0).
(A.3)

A.2. Evolution. To begin the W-DLM forward filter, start at t = 1 such that the posterior
distribution in step 1 below is the initial state of the filter based on Dt−1 = D0, the training
dataset. After the three steps of the filter below are fulfilled for time t = 1, repeat the steps
for t = 2, . . . , T , where T is the last time period in the data.

1. Evolve posterior of time t − 1 to prior of time t

Given the posterior distribution of the parameters at time t − 1

vec(B t−1)|�t−1,Dt−1 ∼ N
(
vec(M t−1),�t−1 ⊗ Ct−1

)
,

�t−1|Dt−1 ∼ IW(nt−1,St−1),
(A.4)

which we abbreviate as

(A.5) B t−1,�t−1|Dt−1 ∼ NIW(M t−1,Ct−1, nt−1,St−1),

we evolve forward to create a prior for time t ,

(A.6) B t ,�t |Dt−1 ∼ NIW(M t−1, Ĉt , n̂t ,St−1),

where, due to our choice of W t in (8), Ĉt = 1
δβ

Ct−1 and n̂t = δvnt−1, for chosen values of
δβ, δv ∈ (0,1].

2. Forecast response variable at time t

As shown in equations (10)–(12), the predictive distribution of r t , based on time t − 1 data,
is given by

(A.7) r t |δβ, δv,Dt−1 ∼ Tn̂t

(
M ′

t−1xt−1,St−1
(
1 + x′

t−1Ĉtxt−1
))

,

with mean and covariance matrix given by

E[r t |δβ, δv,Dt−1] = M ′
t−1xt−1,(A.8)

cov[r t |δβ, δv,Dt−1] = n̂t

n̂t − 2
St−1

(
1 + x′

t−1Ĉtxt−1
)
.(A.9)

3. Update prior for time t into posterior for time t based on forecast error
After observing r t , compute time t posterior distribution for B t and �t :

(A.10) B t ,�t |Dt ∼ NIW(M t ,Ct , nt ,St ).

In particular, we have that:

Posterior mean matrix M t = M t−1 + ate
′
t ,(A.11)

Posterior covariance matrix factor Ct = Ĉt − qtata
′
t ,(A.12)

Posterior degrees of freedom nt = n̂t + 1,(A.13)

Posterior residual covariance estimate St = n−1
t

(
n̂tSt−1 + q−1

t ete
′
t

)
,(A.14)

where

1-step ahead forecast error et = r t − M ′
t−1xt−1,(A.15)

1-step ahead coefficient variance factor qt = 1 + x′
t−1Ĉtxt−1,(A.16)

Adaptive coefficient vector at = q−1
t Ĉtxt−1.(A.17)
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APPENDIX B: THE SIMULTANEOUS GRAPHICAL DLM

In this appendix, we describe our implementation of the SG-DLM of Gruber and West
(2016).

B.1. Basic equations. For convenience, we reproduce here the key equations of the SG-
DLM. For j = 1, . . . , q , we write

rjt = x′
j,t−1βj t + r ′

<j,tγ <j,t + νjt νjt ∼ N
(
0, σ 2

j t

)
,(B.1)

where (
βj t

γ <j,t

)
=

(
βj,t−1

γ <j,t−1

)
+ ωj t ωj t ∼ N(0,W j t )(B.2)

and the initial conditions are given by(
βj0

γ <j,0

) ∣∣∣σ 2
j0,D0 ∼ N

(
mj0,

σ 2
j0

sj0
Cj0

)
,

σ−2
j0 |D0 ∼ G

(
nj0

2
,
nj0sj0

2

)
.

(B.3)

B.2. Evolution. To begin the SG-DLM forward filter, begin with t = 1 such that the
posterior distribution in step 1 below is the initial state of the filter based on Dt−1 = D0, the
training dataset. After the three steps of the filter are fulfilled for time t = 1, repeat the steps
for t = 2, . . . , T , where T is the last time period in the data.

1. Evolve posterior of time t − 1 to prior of time t

Given the posterior at time t − 1:(
βj,t−1

γ <j,t−1

) ∣∣∣σ 2
j,t−1,Dt−1 ∼ N

(
mj,t−1,

σ 2
j,t−1

sj,t−1
Cj,t−1

)
,(B.4)

σ−2
j,t−1|Dt−1 ∼ G

(
nj,t−1

2
,
nj,t−1sj,t−1

2

)
,(B.5)

which we abbreviate as(
βj,t−1

γ <j,t−1

)
, σ 2

j,t−1

∣∣∣Dt−1 ∼NG(mj,t−1,Cj,t−1, nj,t−1, sj,t−1),(B.6)

we evolve it to create a prior for time t ,(
βj,t

γ <j,t

)
, σ 2

j,t

∣∣∣Dt−1 ∼ NG(mj,t−1, Ĉj t , n̂j t , sj,t−1),(B.7)

where, due to our choice of W t in (25), Ĉj t = [Cββj,t−1/δβj Cβγj,t−1

Cγβj,t−1 Cγ γj,t−1/δγj

]
and n̂j t = δvjnj,t−1,

where Cββj,t−1 and Cγ γj,t−1 are, respectively, the covariance matrix factors for βj,t−1 and
γ j,t−1.

2. Forecast response variable at time t

We calculate the moments of forecast returns one asset at a time, according to the order of
dependence. Similarly derived forecasting steps for this type of model can be found Zhao,
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Xie and West (2016), Appendix B. As it does not depend on other assets’ returns, the forecast
for the first asset is given by

(B.8) r1t |δj ,Dt−1 ∼ Tn̂1t

(
x′

1,t−1m1,t−1,x
′
1,t−1Ĉ1tx1,t−1 + s1,t−1

)
with mean and variance that are equal to:

E[r1t |δj ,Dt−1] = x′
1,t−1m1,t−1,(B.9)

Var[r1t |δj ,Dt−1] = n̂1t

n̂1t − 2

(
x′

1,t−1Ĉ1tx1,t−1 + s1,t−1
)
,(B.10)

where δj = (δβj , δγj , δvj ). Now, all other assets’ forecast moments can be found sequentially
(j = 2, . . . , q). Similarly, their conditional distributions follow Student’s t-distribution, with
predictive moments given by:

E[rjt |δj ,Dt−1] = x′
j,t−1mβj,t−1 +E[r<j,t |δj ,Dt−1]′mγ<j,t−1,(B.11)

Var[rjt |δj ,Dt−1] = n̂j t

n̂j t − 2

{
tr

(
Ĉγ<j,t

Cov[r<j,t |δj ,Dt−1]) + cjt + sj,t−1
}

[−8pt](B.12)

[−8pt] + m′
γ<j,t−1

Cov[r<j,t |δj ,Dt−1]mγ<j,t−1,

and

Cov[rjt , r<j,t |δj ,Dt−1] = m′
γ <j,t−1

Cov[r<j,t |δj ,Dt−1],(B.13)

where E[r<jt |δj ,Dt−1] and Cov[r<j,t |δj ,Dt−1] are known, tr() stands for the trace of a
matrix, and

cjt =
(

xj,t−1

E[r<j,t |δj ,Dt−1]
)′

Ĉj t

(
xj,t−1

E[r<j,t |δj ,Dt−1]
)

.(B.14)

3. Update prior for time t into posterior for time t based on forecast error
After observing r t , time t posterior distribution for βj,t , γ <j,t and σ 2

j,t (j = 1, . . . , q) are
given by

(B.15)

(
βj,t

γ <j,t

)
, σ 2

j,t

∣∣∣Dt ∼NG(mj,t ,Cj,t , nj,t , sj,t ).

In particular, we have that:

Posterior mean vector mj t = mj,t−1 + aj t ej t ,(B.16)

Posterior covariance matrix factor Cj t = (
Ĉj t − aj ta

′
j tqjt

)
zjt ,(B.17)

Posterior degrees of freedom njt = n̂j t + 1,(B.18)

Posterior residual variance estimate sjt = zjt sj,t−1,(B.19)

where:

1-step ahead forecast error ejt = rjt −
(
xj,t−1

r<j,t

)′
mj,t−1,(B.20)
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1-step ahead forecast variance factor qjt = sj,t−1 +
(
xj,t−1

r<j,t

)′
Ĉj t

(
xj,t−1

r<j,t

)
,(B.21)

Adaptive coefficient vector aj t = Ĉj t

(
xj,t−1

r<j,t

)
/qjt ,(B.22)

Volatility update factor zjt = (
n̂j t + e2

j t /qjt

)
/(n̂j t + 1).(B.23)

APPENDIX C: ADDITIONAL RESULTS

FIG. 9. Time series of predicted volatilities for W-DLM models. The figure shows the time-series of predicted
volatilities of expected excess returns for the four variants of the W-DLM score-based model combinations, namely
LIN, TVP, SV, and TVP-SV. Each panel represents a different asset, as labeled. Note that the scales of the vertical
axes are different for each asset in order to compare patterns of change over time, as opposed comparing the
magnitude of volatilities across assets. The solid black line represents the LIN model; the dotted red line tracks
the TVP model; the solid green line depicts the SV model, while the blue dotted line displays the TVP-SV model.
In each panel we also display, as a reference, the level of the unconditional standard deviation of each asset,
computed over the whole evaluation period, January 1985–December 2014.
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FIG. 10. Time series of predicted correlations for W-DLM models. The figure shows the time-series of predicted
correlations of expected excess returns for the four variants of the W-DLM score-based model combinations,
namely LIN, TVP, SV and TVP-SV. Each panel represents a different pair of asset returns, as labeled. The solid
black line represents the LIN model; the dotted red line tracks the TVP model; the solid green line depicts the
SV model, while the blue dotted line displays the TVP-SV model. In each panel we also display, as a reference,
the level of the unconditional correlation between each pair of asset returns, computed over the whole evaluation
period, January 1985–December 2014.
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