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Improved communication systems, shrinking battery sizes and the price
drop of tracking devices have led to an increasing availability of trajectory
tracking data. These data are often analyzed to understand animal behavior.

In this work, we propose a new model for interpreting the animal movent
as a mixture of characteristic patterns, that we interpret as different behaviors.
The probability that the animal is behaving according to a specific pattern, at
each time instant, is nonparametrically estimated using the Logistic-Gaussian
process. Owing to a new formalization and the way we specify the coregion-
alization matrix of the associated multivariate Gaussian process, our model is
invariant with respect to the choice of the reference element and of the order-
ing of the probability vector components. We fit the model under a Bayesian
framework, and show that the Markov chain Monte Carlo algorithm we pro-
pose is straightforward to implement.

We perform a simulation study with the aim of showing the ability of
the estimation procedure to retrieve the model parameters. We also test the
performance of the information criterion we used to select the number of
behaviors. The model is then applied to a real dataset where a wolf has been
observed before and after procreation. The results are easy to interpret, and
clear differences emerge in the two phases.

1. Introduction. Global Positioning System (GPS) telemetry is currently the
main tool used to remotely determine the position of an animal with high preci-
sion, and at time intervals that can be programmed by the researcher (Cagnacci
et al. (2010)). These data, which are often defined as “trajectory tracking data”,
take the form of a time series of coordinates. The large amount of data, gathered
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from GPS collars, facilitates a greater resolution in the study of habitat selection
(Hebblewhite and Merrill (2008)), spatio-temporal movements (Frair et al. (2010),
Morales et al. (2004)) and behavior (Anderson and Lindzey (2003), Merrill and
David Mech (2000)). For recent reviews, the reader may refer to Patterson et al.
(2017) and Hooten et al. (2017)

In this work, we propose a new statistical model for the analysis of trajectory
tracking data. The model can detect patterns in an animal’s movement, that are
here interpreted as consequence of different behaviors. The motivation for this
study arises from a dataset that was collected to study the behavior of a female
wolf, that was observed in the Abruzzo, Lazio and Molise National Park in the
central Apennines, Italy (Mancinelli, Boitani and Ciucci (2018)), before and after
reproduction.

Animal movement modeling has a long history and, starting from the dif-
fusion model of Brownlee (1911), a wide range of different approaches have
been proposed. These can be grouped into three categories: (i) point process
models (Brost et al. (2015), Johnson, Hooten and Kuhn (2013), Johnson et al.
(2008b)); (ii) continuous-time dynamic models (Blackwell (1997), Brillinger
(2010), Fleming et al. (2014b), Johnson et al. (2008a)); (iii) discrete-time dynamic
models (Jonsen, Flemming and Myers (2005), McClintock et al. (2012), Morales
et al. (2004)). Point process models require a numerical integration to compute
the likelihood (Cressie (1993)) that limit their use, while the approaches based on
continuous-time dynamics generally fail to model heterogeneity in the trajectory
over time; notable exceptions can be found in Hooten and Johnson (2017), Hooten
et al. (2018) and Blackwell et al. (2016). Our proposal is part of the discrete-time
dynamic framework.

In a discrete-time dynamic model, the joint distribution of the coordinates, or of
their appropriate transformation, is seen as a mixture process. Each component (or
regime) represents a different movement pattern that may be interpreted as a partic-
ular kind of behavior. Switching between behaviors is often assumed to be tempo-
rally structured (Houston and Mcnamara (1999), Morales et al. (2004)) and some-
times even spatially structured, as in Blackwell (2003), often ruled by a nonob-
served Markov process that leads to the class of hidden Markov models (HMMs)
in discrete (DT-HMM) (Zucchini and MacDonald (2009)) and continuous-time
(CT-HMM) (Blackwell (2018)).

Although HMMs have been widely adopted (see, e.g., Franke et al. (2006),
Langrock et al. (2012), Maruotti et al. (2015)), they require knowledge or assump-
tions on the switching process between states, needed to define the rate functions;
see, for example, Morales et al. (2004), Patterson et al. (2009) or Blackwell (2018),
among others. However, we believe that this approach may be too restrictive to
model animal trajectories. In this work, we present a discrete-time dynamic model,
where the latent temporal probability structure is estimated via a nonparametric
approach.
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We define a probability vector, also called compositional vector, for each time.
The elements of such vectors represent the probability that the animal is cur-
rently adopting a specific behavior. These vectors are modeled in a nonparametric
fashion, which does not require prior knowledge of the possible temporal evolu-
tion, it can easily accommodate covariate information, it allows dependence to be
achieved between and within the probability vectors, and it is easy to implement.

We assume that the compositional vectors follow, marginally, a Logistic-normal
distribution (LogitN). The LogitN has a representation in terms of normally dis-
tributed variables. Then, to introduce both serial dependence among the composi-
tional vectors at different times, and internal dependence among the components
of each vector, we envision these variables as a realization of a multivariate Gaus-
sian process (GP) based on the coregionalization approach (Gelfand et al. (2010)).
The Logistic-Gaussian process (LogitGP) is then defined.

This is not the first construction that has used GPs to introduce dependence
over compositional vectors. Nevertheless, our formalization allows inference to
be performed in such a way that it enjoys two properties, which we believe are
essential in this setting: (i) invariance with respect to the choice of the reference
element; (ii) invariance with respect to the reordering of the labels that identify the
behaviors. These two points have often been overlooked in the literature (Brunsdon
and Smith (1998), Paci and Finazzi (2018)) while, in other cases, oversimplified
hypotheses have been imposed and this has resulted in a reduced flexibility of the
model (Martins, Bonat and Ribeiro (2016), Tjelmeland and Lund (2003)).

In the recent literature, the flexibility of GPs has often been exploited to model
trajectory tracking data with different aims. We mention, for example, Johnson
et al. (2008a), Fleming et al. (2014a, 2014b), Blackwell et al. (2016), Calabrese,
Fleming and Gurarie (2016), Fleming and Calabrese (2019), Gurarie et al. (2017),
Scharf et al. (2018). However, none of these references have any direct relationship
with the methodology proposed here, since they use a GP to directly model the
observed locations.

We fit the model under a Bayesian framework, and propose a Markov chain
Monte Carlo (MCMC) algorithm that is straightforward to implement. In order
to fit the model, the number of latent behaviors must be specified, and an off-
line procedure should then be used to select the best value. We suggest to use the
integrated classification likelihood (ICL) (Biernacki, Celeux and Govaert (2000))
and we test its performance in a simulation study, and show that it retrieves the
right number of latent states most of the time.

The model is applied to the dataset that motivated the study. It consists of a
series of GPS positions of a female wolf over two separate time windows, that cor-
respond to different phases of the animal’s life. In the first period, movements are
more erratic, while in the second, right after reproduction, movements are more
regular, and exhibit the classic star-shaped pattern around the den (Mech and Boi-
tani (2003)).
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Three behaviors are detected: one slow-speed behavior, which we call R (for
Resting), and two high speed behaviors with different characteristics (HE1 and
HE2, after Hunting/Exploring). Only R and HE1 are observed in the first time
window, while only R and HE2 are observed in the second time window. The tem-
poral characterization of the R behavior is also different for the two time windows,
since in the first it is more likely during daylight and in the second during the early
hours of the night. A biological interpretation of these behaviors is investigated.

The paper is organized as follows. Section 2 presents the motivating example
and a full description of the dataset that is analyzed. Section 3 describes the model,
while Section 4 gives more details on the LogitGP, its properties and its connec-
tions and differences from previous LogitGP-based models and CT-HMM. Sec-
tion 5 presents the results of the model fitted on the wolf data, and Section 6
concludes the paper. We provide implementation details in Appendix A, while
Appendix B presents the simulation study.

2. Data. We have recorded a time series of spatial locations following the
female wolf called F24 (2-3 years old), which was live-trapped in May 2009
in the Abruzzo, Lazio and Molise National Park (central Apennines, Italy) and
equipped with a Vectronic Pro Light-1 collar (Vectronic Aerospace GmbH, Berlin,
Germany). Details on the capturing and handling of the wolf are provided in
Mancinelli, Boitani and Ciucci (2018). During winter months (January—April), the
recording rate was scheduled for every 30 minutes, while it was every 3 hours for
the rest of the year. The higher acquisition rate during winter months was neces-
sary to estimate wolf kill rates through field investigations of GPS clusters (Sand
et al. (2010)).

When first captured, F24 was a member of the Villa pack, where it remained
for 7.9 months before leaving and establishing a new pack (the Bisegna pack) in
January 2010. The wolf gave birth in May 2010 and, using information derived
from its GPS locations, it was possible to determine the actual position of the den.
Between May 28 and June 4, F24 restricted its movements in the proximity to the
den. Therefore, we assumed that F24 entered the den on May 28 and gave birth
in the following days. Until collar failure occurred, on the 16th of June, it was
observed that F24 systematically revisited the den to feed and attend the cubs. In
order to detect the changes in behavior before and after wolf reproduction, we
use a subset of the data relative to the final period in which F24 settled down
with the Bisegna pack. The dataset is divided into two time windows, before and
after reproduction, which are described in Table 1. The trajectories are shown in
Figure 1, where it is possible to observe that the movements of F24 in the first
period are more nomadic, while the classic star-shaped pattern around the den,
which characterizes the wolf reproductive period (Mech and Boitani (2003)), can
be observed in the second.
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TABLE 1
Observed time windows—Temporal intervals, sample rates, number of observations and
missing data

Start End Interval Number of obs. Missing
03/01 00:00 03/1023:30 30 minutes 473 7
05/28 00:00 06/16 09:00 3 hours 138 18

2.1. Preliminaries and notation. It should be noted that the two time windows
have different recording rates and there is a temporal gap between the two. We de-
note 7; = (tlj e t%j) the set of equally spaced time instants, separated by 30
minutes, which covers the jth time window, and 7 = 77 U T;. The set of spatial
locations is denoted by s = {s;};c7, where each element s, = (s;.1, 5;,2)" is a lon-
gitude and latitude vector. The elements of s that are not observed are considered
missing.

We define ¢+ to be the element that follows ¢ in T}, for every ¢ € 7; but the last
one. Similarly, we define #— to be the element that precedes ¢ in 7}, forevery ¢ € T;
but the first one. We define y; = (y;.1, y.2)/, for r € 7}\{tlj, t%j}, as the rotated
vector of the coordinate increments, expressed in Km, between times ¢ and 74, so
that y; 1 is the projection of s;+ — s; onto the direction of the previous increment
s; — s;— (see Figure 2). The values of y, with ¢ € {tlj , t%j} are considered to be
missing. A classic approach for animal behavior modeling involves the analysis
of the following variables: the step-length r, € R™, which is a proxy of the speed
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FI1G. 1. Trajectories in the two time windows.
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FIG. 2. A graphical example of the relation between sy;, (ry;, 0;,) and yy; .

of the animal, and the turning-angle 6; € [0, 2mr), which describes how the animal
turns. These variables are transformations of y;, as described in Figure 2. The
explicit relation is r, = ||y;|| and 6, = atan*(y; 2, y;.1), where atan* is the two-
arguments arctangent, which is a quadrant-specific inverse of the tangent function
(Mardia and Jupp (2000)).

The trajectory, within each time window, can then be described as

(D Ss+=8+Ri_;yy = yi= Rt__l,,(st+ —S),

where R;_ ; is the rotation matrix based on the angle 6,_. The variable y, contains
all the information needed to describe the trajectory without losing any relevant
properties.

3. The model. The coordinate increments y = {y;};e7 are hypothesized to
follow a mixture-type model with conditionally independent data following a bi-
variate normal distribution, also called emission-distribution in this context, with
parameters that depend on the mixture component; each component of the mixture
represents a different kind of behavior. The clustering is encoded into a discrete
(latent) random variable z = {z;};c7, a membership variable that takes values in
{1,2,..., K} =K, where z; = k indicates that the behavior at time ¢ is the one
identified as k. The latent variable z; is distributed according to a discrete distribu-
tion with probabilities w; = {n; 1, ..., 7; k}. These probabilities are realizations
of a (latent) LogitGP, which is the main contribution of this paper. The latent
vary over time and are temporally correlated. Their distribution is described sepa-
rately in Section 4. Schematically, the model is defined in the following way:

2 f(Y|Z» &, Szk}keIC) = l_[ ]_[ &2(y: 1&g, Qk)ﬂk(m)’

teT kek
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z; ~ Discrete(r;),
3) 7 (t) ~ LogitGP(A, u(t), C(h)),

where &, and €, are the mean vector and covariance matrix of the bivariate normal
density ¢;(-) for component k, I;(a) is the indicator function, which assumes a
value of one when a = b, and zero otherwise. The probabilities m; = {7 x }kek
are discrete-time observations of an underlying and nonobserved continuous-time
process 7 (¢), which is described in Section 4. For the moment, it is enough to say
that 7 () is constructed from a K -dimensional GP with a coregionalization matrix
A, a mean function w(¢) and a vector of correlation functions C (), where £ is a
temporal distance.

In practice, given the latent variables z; (the behavior), the observations y; are
independent and normally distributed, with parameters that depend on the current
behavior (z;). The model described in (2) assumes that all the observations (y;)
follow the same distribution, which is only reasonable if the temporal distances
between consecutive observations are fixed. This is the reason why we consider a
time grid with fixed increments, as stated in Section 2. The fixed time difference
between the element of 7 forces us to estimate a large number of missing obser-
vations. Although this increases the computational time, it is necessary to model
the two time windows together and compare them.

It should be noted that a bivariate normal distribution on y; induces a projected
normal distribution on the turning-angle (Wang and Gelfand (2013)), which is one
of the most flexible distributions for circular data (see, e.g., Mastrantonio, Jona
Lasinio and Gelfand (2016), Mastrantonio, Maruotti and Jona-Lasinio (2015)).
Unfortunately, no closed form is available for the step-length.

4. LogitN distribution and LogitGP. Aitchison (1986) proposed the LogitN
distribution to model compositional data as an alternative to the Dirichlet distribu-
tion. Although it has a closed form, we prefer to introduce it by using its construc-
tive definition.

The vector n; is defined as

ewt,k
4) Tk=—g - kel ... K,
r L e®ri
j=1
where w; ; are real valued variables. It should be noted that adding a constant
to each wy ; produces the same vector of probabilities, and an identifiability con-
straint is therefore needed; without loss of generality, the Kth element is set to
zero (w;, xk = 0) and is treated as the reference element. If w; = {w,’k}f;ll 18 nor-
mally distributed, then m; is said to be LogitN distributed (Aitchison (1986)). It
is possible to introduce dependence between the compositional vectors, while pre-
serving the LogitN as the marginal distribution, by envisioning @; as a realization
of a K — 1 dimensional GP w(?).
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Several proposals, that directly define all the elements of w; as a (K — 1)-variate
GP exist (see, e.g., Martins, Bonat and Ribeiro (2016), Paci and Finazzi (2018),
Pawlowsky and Burger (1992), Tjelmeland and Lund (2003)). Unlike those pro-
posals, we introduce an auxiliary K-dimensional GP y (¢), with coregionalization
matrix A which we require to be nonnegative definite and symmetric, with mean
function u(¢) and a vector of correlation functions C (k). From y (), we construct
w(t) as

&) wi (1) =y (1) — yk (1),
(6) y(®) =pnt)+Ay @),
(7 Vi () ~ GP(0, Cy(h)).

Matrix A introduces dependence between the elements of y (¢), since ¥ = AA’ is
the covariance of y (¢). The explicit relation between A and X is

(8) A=AZ2A/,

where A and E are the matrix of the eigenvectors of ¥ and the diagonal matrix of
the eigenvalues, respectively. The above definition makes A the unique symmetric
and nonnegative square root of X. By stating that

9) 7 (t) ~ LogitGP(A, (1), C(h)),

as in equation (3), we mean that x (¢) is constructed according to equations (4)—(8).
We use this approach to avoid specifying a predefined functional form of 7 () and
to estimate () nonparametrically, using a GP, as is generally done for Bayesian
nonparametric inference; see, for example, Muller (2017).

Equations (4)—(7) introduce a serial correlation between vectors m;, which is
required if the aim is to make a behavior persist over time. It should be noted that
(1) is a linear combination of GPs and it is therefore a GP itself.

Equation (5) implicitly defines the reference element as the K th since, by con-
struction, wg (t) = yk (t) — yx (t) = 0. From (5), it is also possible to see that the
mean function w(¢) is not identifiable, unless an identification constraint is intro-
duced, and we set the component of u(¢) relative to the reference element to zero:
ng (1) =0.

It is important to highlight that y (¢) is not identifiable and any inference about
m; is in fact made by looking at @, through equation (4). The advantage of intro-
ducing y (¢) can be seen by replacing (5) in (4):

eV k—Vi.K eV k

Z;(:l eVt VLK - Zle eV.j ’

(10) Ttk = kel,...,K.

With respect to (4), where w; g must be set to zero, the right hand side of (10)
has a more symmetric form, since all the components of &, are written in terms of
exponentials of y4(¢) and there is no reference element.



NEW FORMULATION OF THE LOGISTIC-GAUSSIAN PROCESS 2491

4.1. Invariances. A desirable property of a general model is that it should not
depend on any arbitrary choice. In particular, it is desirable to have:

e invariance from the choice of the reference element;
e invariance with respect to the reordering of the labels.

In order to demonstrate the first property, it is sufficient to observe that the right
hand side of equation (10) does not depend on the choice of the reference element.

The second property means that there exists a reparameterization of the model
that maintains the likelihood invariant with respect to the reordering of the labels.
It is well known that, when labels in & () are permuted, the likelihood function
remains invariant, if the parameters are permuted accordingly. It is therefore suffi-
cient to show that, when (9) holds and if P is a permutation matrix,

P (1) ~ LogitGP(PAP’, Pu(r), PC (h)).

In order to understand this, let us consider the vector of the independent GPs y*(¢)
with the correlation vector PC (). The new vector y*(¢) has the same distribution
as the reordered vector Py *(¢) from equation (6). Moreover, if we apply the core-
gionalization matrix A = PAP’ to y*(¢) and add the vector of the reordered means
Pu(t), we obtain y =Pu(t) + Ay *(t), which has the same distribution as Py ().
It should be pointed out that the covariance matrix of Py (¢) is ¥ =PIP =AA/,
and that A is symmetric and nonnegative definite. In short, if we construct 7 (¢)
from Py (¢) according to equation (10), we obtain P (¢).

Finally, it should also be pointed out that the standard choice for a coregion-
alization matrix in geostatistics, that is, the Cholesky decomposition, suffers from
some drawbacks in this setting: it is in fact well know that it introduces an ordering
between the processes (Rothman, Levina and Zhu (2010)). The triangular structure
of coregionalization matrix A is not preserved under a (nondiagonal) permutation
matrix P: if A is triangular, PAP’ is no longer triangular, and it cannot therefore be
the coregionalization matrix of the process Py ().

4.2. The log-ratio mean and variance. The nature of compositional vectors
makes the interpretability of the moments difficult. In fact, the sum-to-one con-
straint restricts the domain to the simplex and induces negative correlations among
the variables (see Aitchison (1986)). More consistent definitions of the moments,
based on the log-ratios between the components, were proposed in Aitchison
(1986). These definitions are particularly easy to compute under our model speci-
fication:

(11) pik(t, 1) =E<log

Tt,i

) = E(Vt,i - Vt’,k),
T k

7Tt" 7[[’, :
7 k(t,1') = Cov(log =", log —
Ttk Ty k

=Cov(Vri — Viks Vi, j — Vi k)

(12)
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Let A;; be the (7, j)-th element of matrix A, it is then possible to write (11) and
(12) in closed form:

pik(t, 1) =i — p i,

Tijk(t, 1) = A Ci(|t" — t])(Aji + Aki)
+AjCi (|t —t)(Aij + Axj)
+ Akak(|t/ — t‘)(ZAkk —Aik — Ajk).

Important properties of the compositional vectors () can be established by
imposing analogous properties on GP y(¢). For example, if the components of
y (¢) are independent (A is diagonal), then the components of & (¢) are subcompo-
sitionally independent (see Aitchison (1986), Property 10.3), and the log-ratios are
uncorrelated (see Aitchison (1986), Section 5.9), since 7;; k (¢, t) takes the partic-
ular expression

(13)

2A7 +2A%k fori=jandi#K,

Tjj t$t =
U,K( ) 2A%{K forl;é.]andl,,];éK

Moreover, if the components of vector y(¢) are independent and identically dis-
tributed, we obtain A;; = A;; and p; ;(t,1) =0fori, j =1,..., K, which is the
requirement of having m (¢) subcompositionally independent and with elements
identically distributed (Aitchison (1986)). The latter property can be seen immedi-
ately from (10).

4.3. Relationship with other definitions of the LogitGP. A Bayesian nonpara-
metric approach, based on a GP, was also adopted in previous works. Most of the
the existing constructions are derived from equation (4), where a GP has been used
to directly model wy (7). As already mentioned, identifiability requires that a ref-
erence element, here the K'th, is chosen. The corresponding component w; g is
set to zero, and its definition is hence deterministic and the covariance function of
the reference element therefore vanishes. Unless special care is taken, changing
the reference element can affect the structure of the log-ratio covariance of 7 (¢),
measured by (13). In fact, if any of the indices i, j, k is equal to K in equation
(13), only two correlation functions appear in the expression instead of three. To
compensate for this effect, and to keep the expression of t;; x invariant, it would be
necessary to correspondingly adjust the other correlation functions in a nontrivial
way, or to make some other ad-hoc assumptions. Our method provides a way of
keeping this invariance in a natural way and in a very general framework.

In Paci and Finazzi (2018), the GPs w(¢) with k € {1--- K — 1}, are assumed
to be independent. However a different choice of the reference element is equiv-
alent to using another set of GP @'(r) = Lw(¢) for a suitable nondiagonal matrix
L (Aitchison (1986)). The new processes w; (t) are correlated and no longer sat-
isfy the same assumptions. On the other hand, in Tjelmeland and Lund (2003) and
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in Martins, Bonat and Ribeiro (2016), the problem is circumvented by addition-
ally assuming that there is a single correlation function that is common to all the
components. This makes the model invariant, but at the price of introducing a re-
strictive constraint. Only GPs of the VARMA family are considered in Brunsdon
and Smith (1998). Changing the reference element is again equivalent to intro-
ducing the transformation @’ () = Lw(¢) mentioned above. Such a transformation
preserves the fact that the new processes are in the VARMA family. Nevertheless
it does not preserve the structure of the log-ratio covariances and, therefore, it does
not make the resulting inference about the 7 () invariant. A completely different
proposal, which is not based on a coregionalization but on the co-kriging approach,
can be found in Pawlowsky and Burger (1992) and in Lark and Bishop (2007).

4.4. Differences from and similarities with the CT-HMM. One of the main
competitors of the here proposed model is the CT-HMM of Blackwell et al. (2016).
However, the two approaches are somewhat different. To make the comparison
straightforward, we still consider equation (2) valid, but interpret the membership
variable z; as a discretely observed continuous-time Markov chain z(¢), whose
transition rates is A;;(¢). In Blackwell et al. (2016), the number of behaviors and
the transition rates are established in advance, and are considered as part of the
model. The transition rates between behaviors depend on some parameters that are
inferred from data. For example, a simplified version of the wild boar example in
Blackwell et al. (2016) assumes that three behaviors exist: resting, foraging and re-
turning. The animal repeats these behaviors each day in the given fixed sequence.
There exists a preferred time for each transition, making the Markov chain nonho-
mogeneous. The transition rates follow a parametric function of time that needs to
be specified in advance. We are in the framework of parametric inference.

On the other hand, in our approach, the framework is nonparametric and there is
one more level in the hierarchical structure. Given a realization of 7 (¢), the z; are
independent of each other. Since we do not want to give a predefined functional
form to 7 (¢), we interpret it as a realization of an unobserved LogitGP, in analogy
with what is done, for example, in nonparametric regressions (see Muller (2017),
Chapter 4.3.3). We then let Bayesian inference reveal the a posteriori distribution
of ().

5. Wolf data. We now present the application of the proposed method to the
dataset described in Section 2.

In order to fully specify the model, we assume that each iy is a piecewise con-
stant function whose value is i (#) = Bk.1 + x2(¢) Bk.2, where 2 is a function that
takes the value O if ¢ belongs to the first time window and 1 otherwise. Moreover,
we assume that the correlation functions Cy are all exponential: Cy(h) = e Vilhl
Under this assumption, the GP is Markovian and this makes computation much
faster. Other choices are possible, but since the GP has to be evaluated over a large
number of temporal points, a geostatistical approximation is needed to avoid the
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so-called “big N problem” (Jona Lasinio, Mastrantonio and Pollice (2013)). For a
general review of the methods that can be exploited, see Heaton et al. (2019).

The model parameters are therefore (X, {Bk.1, ,Bk,z}f:_ll, (&1, 2, Wk},le),
where ¥ = AA’, and a prior distribution must be specified for each of them.
We assume independence between the parameters: &, ~ N2(0, 100I,) and 4 ~
IW(@3,1I,) are used for the likelihood parameters, v ~ U (0.3, 6) for the tem-
poral decays, B ; ~ N(0,100), j = 1,2, for the regression coefficients, and
Y ~IW(K + 1,Ik) for the variance parameter of the LogitN process, where
IW (b, B) stands for the inverse Wishart distribution with b degrees of freedom
and scale matrix B.

We compare our proposal with models based on the same likelihood but with
different dynamics for z;, in other words with a DT-HMM and a CT-HMM. We
follow Blackwell et al. (2016) for the CT-HMM, and the rate function from state i
to j is defined as follows:

Vi, j
vi,j(t mod 1—1) )

Aij =

1+4+e

while the probability of switching from the ith state to the jth, in the DT-HMM,
is given by m; ;. As prior distributions, we use a U (0, 1) for all the to i while,
following Blackwell (2018), we set vg; /48 ~ Beta(1, 1), where 48 is the number
of time points in a day. The vector (771, ...7; k)’ follows a Dirichlet distribution,
with all the parameters equal to 1.

We test K € {2, ..., 6} for all the models. The choice of the number of compo-
nents is essential in applications involving mixtures. Since the models are defined
via a latent variable z;, we use the ICL, proposed by Biernacki, Celeux and Go-
vaert (2000). For a thorough review of the methods that can be used to perform
model selection, the reader may refer to Pohle et al. (2017). The MCMC is im-
plemented with 1,000,000 iterations, burnin 70,000 and thinning equal to 6, which
results in 5000 posterior samples. The models are implemented on the Bari ReCaS
Data Center (Antonacci et al. (2017)).

5.1. The results. Table 2 shows the ICL for all the tested models. The results
of each model suggest the presence of three different behaviors (K = 3), and our

TABLE 2
ICLs of the tested models. The best model is in bold. Numbers are rounded to the closest integer

Model K=2 K =3 K=4 K =5 K=6
HMM —12,527 —14,926 —13,984 —11,941 —10,312
CT- HMM —13,511 —15,034 —14,871 —12,951 —10,801

LogitGP —13,831 —-15,925 —14,129 —12,010 —10,210
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TABLE 3
Real data—Posterior means and 95% Cls of the parameters of the proposed model with K =3

k=1 k=2 k=3
[&:11 —-0.014 0.386 —0.543
(CDnH (—=0.017 —0.004) (0.251 0.531) (—1.4110.081)
[Ex]2 0.001 0.061 0.048
(C1) (—0.005 0.008) (—0.070 0.121) (—1.291 1.235)
(2111 0.003 0.661 0.38
(CI (0.003 0.004) (0.533 0.819) (0.176 0.635)
(2112 0.000 0.052 0.001
(@)} 00 (—0.044 0.153) (—0.032 0.030)
(2412 0.002 0.513 0.381
(CDhH (0.002 0.004) (0.403 0.637) (0.169 0.639)
Br1 7.395 4.252
(CI) (6.764 8.94) (1.848 6.932) 0O
B2 —0.382 —7.476
(CDH (—0.879 0.153) (—11.352 —4.796) 0
Y 6.746 12.276 5.221
(CDhH (4.8879.187) (6.135 14.862) (0.909 11.179)
(2 1kk 143.95 1.785 1.731
(CI) (40.475 371.745) (0.221 8.715) (0.027 11.549)
[Z]12 [Z]13 [Z]23
—4.418 —5.877 1.408
(CT) (—38.881 19.974) (—43.148 13.200) (0.146 9.337)

proposal is the one with the lowest ICL (the model with the best goodness-of-
fit). The posterior estimates, means and 95% credible intervals (Cls) of the chosen
model can be seen in Table 3, while Figure 3 shows the posterior estimates of the
probability vector time series. Figure 4 shows the observed spatial locations with
the associated classification and predictive densities of the step-length and turning-
angle. As in the Introduction, we indicate the first behavior with R, the second one
with HE1 and the third one with HR2.

5.2. Behavior description.

First behavior (R). From Figure 4(c) and (d), it is possible to observe that the
speed in the first behavior is very close to zero, and the circular distribution, even
though it has a mode at around r, has a high variability, thus showing that there is
not a clear preferred direction. The means of the associated GP in both windows
(Table 3) are larger then the ones of the other behaviors, thus indicating that it is
the one with the highest (mean) probability, as it is confirmed in Figure 3, where
it is evident that the probability values are often equal to 1. This behavior may be
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FIG. 3. Posterior estimates of the probability vector time series. The solid lines represent the pos-
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described as a slow-movement behavior, which represents a variety of activities,
such as resting, feeding, social interacting and, in the second window, attending
cubs during the reproduction period. It should be noted that the occurrences of this
behavior, in the second time window, are spatially localized over a relatively small
area, which can reasonable be identified as the den; see Figure 4(b).

Second behavior (HE1). As far as the second behavior is concerned, the speed
increases and the circular distribution has a well-defined mode around zero, thus
indicating that the wolf tends to move in a straight line; see Figure 4. This behavior
is relevant in the first time window while it almost disappears in the second, as can
be seen from the associated regressive coefficients. This behavior represents the
nomadic phase of wolf movement patterns during winter, when the main activities
are hunting and patrolling the territory (Mech and Boitani (2003)). Moreover, F24
established her home range in March 2010, and these high speeds may also repre-
sent the need to control and mark the territory, as newly formed pairs are the ones
with the highest marking rates in wolf populations (Rothman and Mech (1979)).

Third behavior (HE2). As far as the third behavior is concerned, the predic-
tive distribution of the step-length is similar to that of the second behavior (Fig-
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ure 4(d)). The turning-angle has a mode at approximately 2 and limited variability,
thus indicating that the animal moves in an anticlockwise direction. This behav-
ior is almost absent in the first temporal window, while it represents the main
movement type in the second one. This pattern seems to correctly estimate the
star-shaped movements of wolves in the presence of cubs at dens (Mech and Boi-
tani (2003)). This is in line with the tendency of breeding females to restrict their
movements to a smaller portion of the territory during the period of reproduction,
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compared to other times of the year (Jedrzejewski et al. (2001)). The counter-
clockwise tendency may be related to the necessity of exploiting different por-
tions of the home range to locate vulnerable prey. Since wolves have a spatial map
of resources within their territory (Peters (1979)), varying their hunting routes to
surprise prey could improve their hunting success (Jedrzejewski et al. (2001)),
and this could result in a rotational use of the home range (Demma and Mech
(2011)).

It is possible to see from the off-diagonal elements of X (Table 3) that there
could be dependence; it should be recalled that independence between the elements
of the compositional vectors requires a diagonal X. To better analyze the depen-
dence structure we look at the temporal evolution of the “correlation”. There is no
unique or generally accepted way of evaluating the temporal correlation of compo-
sitional data (see, e.g., Filzmoser and Hron (2009) or Long and Wang (2013)), but
since we are here mainly interested in the temporal evolution of the dependence,
the log-ratio covariance, equation (12), is divided by its value when ¢t = ¢’ (at lag
0), thus showing how dependence changes over time. These log-ratio correlations,
indicated with v, are shown in Figure 5.

It is interesting to note that v11 7 and vy 3, being the correlation functions of the
second and third behaviors with respect to the first one, are indistinguishable, thus
highlighting that the difference is mostly due to the direction of movement (the
turning-angle). In Figure 5(b), which shows the cross-correlations, only vp3 1 has
95% CIs that does not contain zero. Moreover, dependence almost disappears for
a lag of 12 hours (all the correlation values are close to zero) and it is numerically
zero after 24 hours. From a biological point of view, this means that the probability
of following a particular behavior at time ¢ is influenced to a great extent by the
probabilities and behaviors of the 12 previous hours, is slightly influenced by the
12 to 24 previous hours, but what the animal did the day before shows no influence.
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FIG. 5. Plots of the log-ratios as a function of the temporal distance (expressed in days). The solid
lines represent the posterior means, while the dotted lines are the limits of the 95% Cls.
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5.3. Time window description.

First time window. 1In the first window, the slow-movement behavior (R) has a
high probability of occurring during daylight hours, whereas the HR1 seems to be
more likely during the night (Figure 3(a)). This complementary pattern is in line
with the circadian activity of wolves in human-modified environments, where they
are mainly nocturnal to avoid disturbances from human activities during the day
(Ciucci et al. (1997), Theuerkauf (2009)).

Second time window. In the second window, the slow-movement regime has a
probability close to one during the first days, because F24 likely entered the den
and gave birth during that time. According to previous research on wolf reproduc-
ing behavior, breeding females are stationary on the day of birth, and with limited
movements during the following period (Alfredeén (2006)). During the days after
reproduction occurred, the slow-movement regime is often concentrated around
dusk and during the first hours of the night. Instead, the star-shaped moving regime
is concentrated during daylight hours, and shows two or more peaks at different
times of the day (Figure 3(b)). This result can be interpreted as a reduction in the
nocturnal activity of this wolf due to the presence of cubs, which is also accompa-
nied by a relative increase in diurnality. During the reproduction period, breeding
females spend most of the time at their den and rendezvous sites (Ayres, Gard-
ner and Foster (1991), Harrington and Mech (1982)). Since other wolves from the
pack usually ensure the feeding of breeding females during this time (Mech, Wolf
and Packard (1999)), females do not have to maintain an activity pattern based on
hunting which, in our study area, may be nocturnal due to the presence of humans.
This situation may have led F24 to mainly leave the den during the day, when sun-
light can help keep the unattended cubs warm, and other large carnivores (such as
Apennine brown bears) are less active (Vila (1995)).

It should be noted that, since the temporal evolution of & is modeled nonpara-
metrically, we found the daily-temporal patterns in Figure 3 without introducing
any constraint into our model or introducing factors that can be used to model it
directly.

6. Final remark. Motivated by our dataset, in which a female wolf is ob-
served over two time windows, we have proposed a novel approach to analyze tra-
jectory tracking data. This approach is aimed at defining the posterior distribution
of the clustering probabilities, where the clusters are representative of different be-
haviors that the animal exhibits, and at describing the trajectory conditionally on
the particular behavior by characterizing the associated step-length and turning-
angle.

Our model is based on a Bayesian nonparametric approach, where the time
varying probabilities 7 (¢) are modeled through a LogitGP. Our model is invariant
with respect to the arbitrary choices of the reference element and the reordering of
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the labels. We have proposed fitting the model under a Bayesian framework and
the number of latent behaviors through ICL, which is one of the most frequently
used information criterion.

We fitted the model on the wolf data. The results we obtained are easy to in-
terpret and give insight into wolf behavior, both in terms of movement metrics (in
particular, step-length and turning-angle) and the time evolution.

The advantage of a nonparametric approach is that even though some features
of the data are not modeled explicitly, posterior inference may reveal them after-
wards. An example is the attractive effect of the unknown location of the den. The
distribution of the turning-angle in HE2 has a peak close to 7, which may be in
fact interpretable as the effect of such an attraction (Parton and Blackwell (2017)).
A second example is the seasonality of the components of i (#) which is discussed
in detail in Section 5.

The model we have proposed was motivated by a trajectory tracking dataset,
but it could be employed in different contexts, in particular in the case of environ-
mental sciences, where spatial information can be incorporated in the probability
dependence structure, so that the response variable behaves in a similar way in
locations that are close in space. This aspect will be investigated in the future.

Another issue that deserves further attention is the estimation of the unknown
number of clusters. For the moment, we decided to fit the model with different
numbers of components, and then use a model-fit measure to select the best one.
A fully Bayesian analysis, where a prior distribution is defined for the number of
components, would also be very interesting.

Future lines of research include the extension of the present model to multi-
animal trajectories. The generalization of the model proposed in this work would
be an extension of the hidden Markov models proposed in Langrock et al. (2014),
with relation to the continuous-time approach of Niu, Blackwell and Skarin
(2016).

APPENDIX A: MCMC IMPLEMENTATION

The MCMC implementation is straightforward. Given a value of the entire mul-
tivariate GP, its parameters can be simulated as in the usual GP framework. In
details, we update all the parameters at the same time using a Metropolis step,
according to algorithm 4 of Andrieu and Thoms (2008). Before applying the algo-
rithm, it is necessary to transform the parameters so that they belong to R. Then, we
take the logarithm of the decay parameters and in order to eliminate the constraints
over the parameters of the nonnegative definite matrix X, we re-express it using
the Bartlett decomposition (Anderson (2003)), which is based on random variables
that are normally and chi-squared distributed; the latter is then transformed using
the logarithm. Given the probabilities = and the data y, the parameters and the
latent variable z are simulated as in a mixture model using Gibbs steps. In or-
der to simulate the GP elements, we use the novel approach of Polson, Scott and
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Windle (2013) and its extension, as proposed in Linderman, Johnson and Adams
(2015).

When the missing y are simulated, we have to ensure that their values are “co-
herent”, meaning that y have to define a trajectory s that goes through the ob-
served locations. Equation (1) shows that having a realization of s we can easily
compute y. However, it is easier to simulate s since the animal trajectory follows
an ARMA-type model. Therefore, the missing observations are obtained by first
simulating the missing s and then deriving the corresponding y; in this way, the
uncertainty implicit in the presence of missing data is automatically incorporated
in the inferential method.

All codes are available from the first author, upon request.

APPENDIX B: SIMULATED EXAMPLES

In this section, we show that the MCMC is able to estimate the parameters in
a satisfactory way and, moreover, that ICL retrieves the right number of latent
classes.

We simulate data with K = 3, and three different number of observations
T =250, 500, 1000 over a time window of length 20. The time-lag between ob-
servations is assumed constant and therefore t; — t,_1 = 20/ T ; in other words, the
intervals between the observations decrease as 7' increases. The parameters are
£, =(0,0,&=(3,0),6;=(0,-3)" and

10 1 1272 2 —05
91:(0 3>’ 92:(1.272 2 ) 523:<—0.5 0.5>'

We also assume
5 =20
¥=1-2 5 3],
0 3 5

and use exponential correlation functions with decay parameters equal to 1, 0.8
and 1.5, respectively. We assume 111(t) = B1o + P11t and w1 (¢) = Bao + B21t with
B1o0=0, B11 = =5, Bro =3, P21 = —7 for the mean function of the GPs.

We simulate 100 datasets for each 7', and we perform inference by fixing K
to values between 2 and 6. To ensure that three separate clusters can be identi-
fied, datasets with a cluster composed of less than 5% of the total sample size are
discarded. Model choice is performed using the ICL.

We assume &, ~ N2(0;, 100I,) and £; ~ IW(3,1,) as prior distributions for
the likelihood parameters, U (0.3, 6) for the temporal decays, the regression co-
efficients are normally distributed with a mean of 0 and a variance of 100 while
Y ~IW(K +1,1Ik). The MCMC is implemented with 1,000,000 iterations, burnin
70,000 and thin 6, which results in 5000 posterior samples.
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TABLE 4
Simulated Example—Posterior means and 95% Cls under K =3

k=1 k=2 k=3
(11 0.043 2.953 —0.234
(@) (—=0.165 0.277) (2.745 3.236) (=0.441 -0.112)
[£¢]n —0.098 —0.124 —2.897
(CI (—0.467 0.301) (—0.3640.117) (=3.001 —2.791)
(2111 1.446 1271 2.076
(@) (1.074 1.886) (1.015 1.625) (1.764 2.427)
(2112 —0.004 1.464 ~0.539
(@) (—0.373 0.356) (1.151 1.841) (—0.706 —0.389)
(2122 3.338 2351 0.635
el (2.518 4.182) (1.887 2.916) (0.519 0.771)
Bro 0.580 2.206
(@) (—1.955 3.169) (0.764 3.721) 0
Bri —2.508 —5.09
(@) (—6.743 1.463) (=7.724 —2.649) 0
Vi 0.987 2.247 2.89
(ChH (0.563 1.639) (0.422 5.361) (0.652 5.208)
[Z* ik 3.889 0.78 1.979
(@) (0.358 8.784) (0.143 3.579) (0.549 5.001)
(X112 [Z]13 [Z]23
—0.118 0.557 0.338
(@) (—1.072 1.479) (—1.292 3.684) (—0.891 3.150)

The ICL selects K = 3 95% of the times with T = 250, 99% with T = 500
and 100% if T = 1000. In order to obtain a better insight into this result, we ran-
domly selected one dataset with 7 = 1000, and we show the parameter estimates
in Table 4, trajectory and y are shown in Figure 6, while the posterior estimates of
the compositional vector time series, with the associated 95% Cls, are depicted, in
Figure 7, for the first behavior. The “true” compositional vector time series. From
these it is possible to see that most of the true values of the parameters are inside
the associated 95% Cls, as well as the true compositional vector time series.
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