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Abstract. We prove the non-equilibrium fluctuations for the one-dimensional symmetric simple exclusion process with a slow bond.
This generalizes a result of [Stochastic Process. Appl. 123 (2013) 4156–4185; Stochastic Process. Appl. 126 (2016) 3235–3242], which
dealt with the equilibrium fluctuations. The foundation stone of our proof is a precise estimate on the correlations of the system, and
that is by itself one of the main novelties of this paper. To obtain these estimates, we first deduce a spatially discrete PDE for the
covariance function and we relate it to the local times of a random walk in a non-homogeneous environment via Duhamel’s principle.
Projection techniques and coupling arguments reduce the analysis to the problem of studying the local times of the classical random
walk. We think that the method developed here can be applied to a variety of models, and we provide a discussion on this matter.

Résumé. Nous décrivons les fluctuations hors-équilibre du processus d’exclusion simple symétrique en dimension 1 avec des liens
lents. Ceci étend un résultat de [Stochastic Process. Appl. 123 (2013) 4156–4185; Stochastic Process. Appl. 126 (2016) 3235–3242],
qui traitait des fluctuations à l’équilibre. La pierre de touche de notre preuve est une estimée précise des corrélations du système, qui est
en elle-même une des nouveautés principales de cet article. Pour obtenir ces estimées, nous obtenons dans un premier temps une EDP
discrète en espace pour la fonction de covariance et nous la relions aux temps locaux d’une marche aléatoire dans un environnement
non-homogène, par le principe de Duhamel. Des techniques de projection et des arguments de couplage permettent de réduire l’analyse
à l’étude des temps locaux de la marche aléatoire classique. Nous pensons que cette méthode peut être appliquée à une variété de
modèles, et nous argumentons ce point.
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1. Introduction

One of the most challenging problems in the field of interacting particle systems is the derivation of the non-equilibrium
fluctuations around the hydrodynamic limit and up to now there is not a satisfactory and robust theory that one can
apply successfully. The main difficulty that one faces is to understand the precise asymptotic behaviour of the long range
correlations of the system. To be more precise, when letting the interacting system start from a general measure (typically
a non-invariant measure for which the hydrodynamic limit can be obtained), the correlations between any two sites are
not null, but decay to zero as the scaling parameter n grows.

In many situations a uniform bound on the correlation function of order O(1/n) is sufficient to obtain the non-
equilibrium fluctuations of the system (see [2,17] for instance). For the model that we are going to describe in the sequel,
the uniform bound on the correlation function happens to be of order O(logn/n), demanding new efforts both on the
derivation of such a bound and on the application of such a bound to the proof of the non-equilibrium fluctuations.

To be more specific, here we study the symmetric simple exclusion process (SSEP) evolving on Z when a slow bond
is added to it. The dynamics of this model is defined as follows. On Z, particles at the vertices of the bond {x, x + 1}
exchange positions at rate 1, except at the particular bond {0,1}, where the rate of exchange is given by α/n, with
α ∈ (0,+∞). Since the rate at the bond {0,1} is slower with respect to the rates at other bonds, the bond {0,1} coined
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the name slow bond. Particles move on the one-dimensional lattice according to those rates of exchange and they are not
created nor annihilated, being the spatial disposition of particles the object of interest.

The investigation on the behaviour of this process was initiated in [3] where the hydrodynamic limit was derived (see
also [5,8]). By this we mean that the density of particles of the system in the diffusive scaling converges to a function ρt (·)
which is a weak solution to a partial differential equation, called the hydrodynamic equation. For the choice of the rates
given above, the corresponding hydrodynamic equation is the one-dimensional heat equation with a boundary condition
of Robin type:⎧⎪⎨

⎪⎩
∂tρ(t, u) = ∂2

uuρ(t, u) for u �= 0,

∂uρ(t,0+) = ∂uρ(t,0−) = α[ρ(t,0+) − ρ(t,0−)],
ρ(0, u) = ρ0(u),

(1.1)

where 0+ and 0− denote the side limits at zero from the right and from the left, respectively.
In fact, in [3] a more general choice for the rates was considered, and three different hydrodynamical behaviours were

obtained. There, the slow bond was taken as the bond {−1,0} instead of {0,1}, and the rate of exchange at that bond was
given by α

nβ , with β ≥ 0 and α as given above. The choice of the slow bond as {0,1} or {−1,0} is essentially a matter
of notation, having no special relevance. On the other hand, depending on the range of β , the boundary conditions of the
hydrodynamic equation can be of Neumann type (when β > 1), which corresponds to (1.1) with α = 0; or there is an
absence of boundary conditions (when β ∈ [0,1)). The model we approach here corresponds to the choice β = 1 in [3].

The effect of the slow bond at a microscopic level is obvious: it narrows down the passage of particles across it. At a
macroscopic level, its presence leads to boundary conditions in the partial differential equation. By looking at the hydrody-
namic equation (1.1), we see that the boundary conditions characterize the current of the system through the macroscopic
position u = 0. The boundary conditions state that the current is proportional to the difference of concentration of the
intervals (0,+∞) and (−∞,0) near the boundary, which is in agreement with Fick’s Law.

The equilibrium fluctuations for this model were presented in [4] and three different Ornstein–Uhlenbeck processes
were obtained, which again had the corresponding boundary conditions as seen at the hydrodynamical level. We extend
here the results of [4] by allowing the system to start from any measure and not necessarily from the stationary measure,
namely the Bernoulli product measure, as required in [4]. The choice of rates as described above is restricted to β = 1 so
that we are in the Robin’s regime.

As the main theorem, we prove the non-equilibrium fluctuations and show that they are given by an Ornstein–
Uhlenbeck process with Robin boundary conditions. By an Ornstein–Uhlenbeck process with Robin boundary conditions
it should be understood, in the same spirit as in [4], that these boundary conditions are encoded in the space of test func-
tions, see (2.6) below. Microscopically, the role of the boundary conditions at the level of the test functions is to force
some additive functionals that appear in the Dynkin martingale to vanish as n grows. If we do not impose the boundary
conditions of (2.6) on the test functions, then we would need some extra arguments to control those additive functionals.
This is left to a future work.

The proof’s structure is the standard one in the theory of stochastic processes: tightness for the sequence of density
fields together with uniqueness of limit points. Let us discuss next the features of the work, besides the non-equilibrium
result itself. And at same time we give the outline of the paper.

The biggest difficulty we face in our proof is undoubtedly the fact that the slow bond decreases the speed at which
correlations vanish. In the usual SSEP, where all bonds have rate one, correlations are of order O(1/n). In our case
however, correlations are of order O(logn/n), therefore bigger than in the usual SSEP. For sites on the same side of the
slow bond this fact is intuitive: correlations should actually increase since it is more difficult for particles to cross the slow
bond. Curiously, our proof shows that the same happens for sites at different sides of the slow bond, that is, correlations
are of order O(logn/n) on the entire line. An intuition of why this happens is given in Remark 4.3, and a discussion of
why the bound O(logn/n) is sharp is made in Section 4.3.

In Section 2 we define the symmetric simple exclusion process in the presence of a slow bond at {0,1}, we introduce
notations and we state the main results of the article. At the end of this section, three related open problems are presented.

In Section 4 we establish connections between the two-point correlation function and the discrete derivative with the
expected occupation time of a site of two-dimensional and one-dimensional random walks, respectively, in an inhomoge-
neous medium. This is one of the features: the way itself to estimate correlations via local times of random walks, which
we believe may be applied to different contexts. The idea behind that is actually simple. We express both the discrete
derivative and the correlation function as solutions to some discrete equations, then we use Duhamel’s Principle to write
each one of these solutions in terms of transition probabilities of random walks, in 1-d when looking at the discrete deriva-
tive and in 2-d when looking at the correlation function. Then, the local times of these random walks show up naturally
from these arguments and we need to establish optimal bounds for them.
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Since the necessary estimates for local times of random walks were not yet available in the literature, we derive
them in Section 3 by means of projection of Markov chains (also known as lumping) and couplings. The statements of
those estimates may look artificial at first glance, but they naturally appear when one looks for estimates on the discrete
derivative of the occupation average at a site and for the two-point correlation function, as aforementioned.

As aforementioned, the (slow) rate at the edge {−1,0} is taken to be α/n. For the cases α/nβ , with β < 1 (as in [4]),
we expect a fluctuation limit given by the usual Ornstein–Uhlenbeck as in the case β = 0 and α = 1, in the sense of [9].
For β > 1, we expect a fluctuation limit driven by a heat equation with Neumann boundary conditions at zero, meaning
that the system is split into two isolated components in the continuum limit. To adapt the present proof to these cases, it
would be necessary to get the above estimates for local times of random walks. For β > 1, the adaptation of the proof
seems to be straightforward, due to the fact that the estimates for β = 1 are actually deduced via estimates for a reflected
random walk, which naturally pops up in the case β > 1. On the other hand, the case β < 1 seems to be more delicate:
a necessary step in our proof is an estimate on the number of times a simple random walk crosses certain slow bonds.
These estimates most likely break down if β < 1. Thus, some further reasoning should be necessary in this case. Here we
decided to focus on the critical case β = 1 and we leave the other cases to a future work.

An additional feature is about uniqueness of the Ornstein–Uhlenbeck process with Robin boundary conditions in the
non-equilibrium setting, where the variance is governed by the PDE (1.1). Suitably adapting the proofs of [9,13], we
give a slightly more general version of uniqueness, which permits to consider more general starting measures than the
usual slowly varying product measure. The generalization here consists on supposing that the density field associated
to the initial measure does not necessarily converge to a Gaussian field, but only to some field. Moreover, this proof of
uniqueness has a pedagogical importance, since the original proof of uniqueness for the Ornstein–Uhlenbeck process in
the non-equilibrium setting, to the best of our knowledge, is not available in the literature.

Finally, in Section 5 we present the proof of the density fluctuations, which relies on the estimates of the discrete
derivative of expected occupation number at a site, and on the two-point correlation function. A small but important
detail is the fact that the estimate on the discrete derivative is sufficient for our purposes. In previous works ([2,17]), the
proof of non-equilibrium fluctuations was based on the convergence of the spatially discretized heat equation towards
the continuum heat equation. Such an approximation is quite good, of order O(n−2), and quite hard to adapt to the non-
homogeneous medium set up without some uniform ellipticity assumption as in [12]. On the other hand, the discrete
derivative estimate for the spatially discretized PDE is much easier to reach, as seen here. This idea on making use of the
discrete derivative first appeared in [7], but its utility becomes more evident now.

2. Statement of results

2.1. The model

We fix a parameter α > 0, and we consider the symmetric simple exclusion process {ηt : t ≥ 0} with a slow bound as

defined in [3]. More precisely, {ηt : t ≥ 0} is the Markov process with state space �
def= {0,1}Z, and infinitesimal generator

Ln acting on local functions f : � → R via

(Lnf )(η) =
∑
x∈Z

ξn
x,x+1

(
f
(
ηx,x+1)− f (η)

)
, (2.1)

where

ξn
x,x+1

def=
{

1 if x �= 0,
α
n

if x = 0.
(2.2)

Here, for any x ∈ Z, the configuration ηx,x+1 is obtained from η by exchanging the occupation variables η(x) and
η(x + 1), i.e.,

(
ηx,x+1)(y) =

⎧⎪⎨
⎪⎩

η(x + 1) if y = x,

η(x) if y = x + 1,

η(y) otherwise,

see Figure 1 for an illustration of the jump rates. Given η ∈ {0,1}Z, we then say that the site x ∈ Z is vacant if η(x) = 0
and occupied if η(x) = 1.
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Fig. 1. Jump rates. The bond {0,1} has a particular jump rate associated to it, which is given by α/n.

2.2. Hydrodynamic limit

Fix a measurable density profile ρ0 : R → [0,1]. For each n ∈ N, let μn be a probability measure on �. We say that the
sequence {μn}n∈N is associated with the profile ρ0(·) if, for any δ > 0 and any continuous function of compact support
f : R→R, the following holds:

lim
n→∞μn

[
η :

∣∣∣∣1

n

∑
x∈Z

f

(
x

n

)
η(x) −

∫
f (u)ρ0(u) du

∣∣∣∣ > δ

]
= 0. (2.3)

Fix T > 0, and let D([0, T ],�) be the space of trajectories which are right continuous, with left limits and taking values
in �. Denote by Pμn the probability measure on D([0, T ],�) induced by the SSEP with a slow bond accelerated by
n2, i.e., the Markov process with generator n2Ln, and initial measure μn. With a slight abuse of notation, we also use
the notation {ηt : t ∈ [0, T ]} for the accelerated process. Denote by Eμn the expectation with respect to Pμn . In [3,5] the
hydrodynamical behaviour was studied. We note that the process there was studied in finite volume, i.e., the model was
considered on the discrete torus embedded into the continuous one-dimensional torus. However, since the extension to
infinite volume is just a topological issue, the statement below can be obtained via an adaptation of the original approach:

Theorem 2.1 ([3,5]). Suppose that the sequence {μn}n∈N is associated to the profile ρ0(·) in the sense of (2.3). Then, for
each t ∈ [0, T ], for any δ > 0 and any continuous function f :R→ R with compact support,

lim
n→+∞Pμn

[
η· :

∣∣∣∣1

n

∑
x∈Z

f

(
x

n

)
ηt (x) −

∫
R

f (u)ρ(t, u) du

∣∣∣∣ > δ

]
= 0,

where ρ(t, ·) is the unique weak solution of the heat equation with Robin boundary conditions given by⎧⎪⎨
⎪⎩

∂tρ(t, u) = ∂2
uuρ(t, u), t ≥ 0, u ∈R\{0},

∂uρ(t,0+) = ∂uρ(t,0−) = α[ρ(t,0+) − ρ(t,0−)], t ≥ 0,

ρ(0, u) = ρ0(u), u ∈ R.

(2.4)

Here, ρ(t,0+) and ρ(t,0−) denote the limit from the right and from the left at zero, respectively. The notation 0± will
be used throughout the article.

2.3. Space of test functions and semigroup

In this section we introduce a space of test functions, that is suitable for our purposes, and which, basically, coincides
with the one in [6]. Here, functions are continuous from the left at zero, while in [6] functions are continuous from the
right. This subtle difference is due to the choice of slow bond’s position, which is {0,1} here and {−1,0} in [6].

Definition 1. We denote by Sα(R) the space of functions f : R→R such that:

(i) f is smooth on R\{0}, i.e. f ∈ C∞(R\{0}),
(ii) f is continuous from the left at 0,

(iii) for all non-negative integers k, 
, the function f satisfies

‖f ‖k,
 := sup
u �=0

∣∣∣∣(1 + |u|
)dkf

duk
(u)

∣∣∣∣ < ∞. (2.5)
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(iv) for any integer k ≥ 0,

d2k+1f

du2k+1

(
0+) = d2k+1f

du2k+1

(
0−) = α

(
d2kf

du2k

(
0+)− d2kf

du2k

(
0−)). (2.6)

Moreover, S ′
α(R) denotes the topological dual of Sα(R).

In plain words, Sα(R) essentially consists of the space of functions in the Schwartz space S(R) that are not necessarily

smooth at the origin. It is a consequence of (2.5) that dkf

duk (0+) and dkf

duk (0−) exist for all integers k ≥ 0. As in [4], one
may show that Sα(R) is a Fréchet space (this fact was only used when showing tightness, see [16]). We recall below the
explicit formula for the semigroup that corresponds to the PDE (2.4).

Proposition 2.2 ([4]). Denote by geven and godd the even and odd parts of a function g :R→ R, respectively. That is, for
u ∈R,

geven(u) = g(u) + g(−u)

2
and godd(u) = g(u) − g(−u)

2
.

The solution of (2.4) with initial condition g ∈ Sα(R) is given by

T α
t g(u) = 1√

4πt

{∫
R

e− (u−y)2

4t geven(y) dy

+ e2αu

∫ +∞

u

e−2αz

∫ +∞

0

[(
z − y + 4αt

2t

)
e− (z−y)2

4t +
(

z + y − 4αt

2t

)
e− (z+y)2

4t

]
godd(y) dy dz

}
,

for u > 0, and

T α
t g(u) = 1√

4πt

{∫
R

e− (u−y)2

4t geven(y) dy

− e−2αu

∫ +∞

−u

e−2αz

∫ +∞

0

[(
z − y + 4αt

2t

)
e− (z−y)2

4t +
(

z + y − 4αt

2t

)
e− (z+y)2

4t

]
godd(y) dy dz

}
,

for u < 0.

The next proposition connects T α
t with the space of test functions Sα(R).

Proposition 2.3 ([6]). The operator T α
t defines a semigroup T α

t : Sα(R) → Sα(R). That is, for any given g ∈ Sα(R) and
any time t > 0, the solution T α

t g of the PDE (2.4) starting from g also belongs to Sα(R).

Definition 2. Let �α : Sα(R) → Sα(R) be the Laplacian on Sα(R), i.e., for any f ∈ Sα(R),

�αf (u) =
{

∂2
uuf (u) if u �= 0,

∂2
uuf (0+) if u = 0.

(2.7)

The definition of the operator ∇α : Sα(R) → C∞[0,1] is analogous.

2.4. Discrete derivatives and covariance estimatives

Fix an initial measure μn on �. For x ∈ Z and t ≥ 0, let

ρn
t (x)

def= Eμn

[
ηt (x)

]
. (2.8)

A simple computation shows that ρn
t (·) is a solution of the discrete equation

∂tρ
n
t (x) = (

n2Anρ
n
t

)
(x), x ∈ Z, t ≥ 0, (2.9)
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where the operator An acts on functions f : Z →R as

(Anf )(x) := ξn
x,x+1

(
f (x + 1) − f (x)

)+ ξn
x−1,x

(
f (x − 1) − f (x)

)
, ∀x ∈ Z, (2.10)

with ξn
x,x+1 as defined in (2.2).

Definition 3. For x, y ∈ Z, and t ∈ [0, T ], define the two-point correlation function

ϕn
t (x, y)

def= Eμn

[
ηt (x)ηt (y)

]− ρn
t (x)ρn

t (y). (2.11)

We now state two results that are fundamental for the study of density fluctuations, which are interesting by themselves.

Theorem 2.4 (Discrete derivative estimate). Assume that there exists a constant c > 0 that does not depend on n such
that

sup
x∈Z

∣∣∣∣ρn
0 (x) − ρ0

(
x

n

)∣∣∣∣ ≤ c

n
. (2.12)

Then, there exists c = c(T ,α,ρ0) > 0 such that, for all t ∈ [0, T ], and all n ∈ N,

∣∣ρn
t (x + 1) − ρn

t (x)
∣∣ ≤

{
c
n

if x �= 0,

c if x = 0.

Note that the second inequality above is obvious, but we kept in the statement of the theorem for the sake of clarity.

Theorem 2.5 (Correlation estimate). Let V := {(x, y) ∈ Z × Z : y ≥ x + 1}. Assume that there exists a constant c > 0
that does not depend on n such that

sup
(x,y)∈V

∣∣ϕn
0 (x, y)

∣∣ ≤ c

n
. (2.13)

Moreover, assume that (2.12) is satisfied. Then, there exists ĉ = ĉ(T ,α,ρ0) > 0 such that for all n ∈N,

sup
t≤T

sup
(x,y)∈V

∣∣ϕn
t (x, y)

∣∣ ≤ ĉ logn

n
. (2.14)

Remark 2.6. Note that by the symmetry of the correlation function, Theorem 2.5 immediately implies (2.14) for x �= y.
We state (2.14) in this form to highlight the set V , which plays a special role in the proof of (2.14).

2.5. Ornstein–Uhlenbeck process

Let ρ(t, ·) be the unique solution of the hydrodynamic equation (2.4). In what follows, D([0, T ],S ′
α(R)) (resp.

C([0, T ],S ′
α(R))) denotes the space of càdlàg (resp. continuous) S ′

α(R) valued functions endowed with the Skorohod
topology. We also denote by χ the static compressibility defined by χ(ρ) = ρ(1 − ρ). Denote by 〈·, ·〉ρt (·) the inner
product with respect to L2

�t
(R), where the measure �t(du) is given by

�t(du)
def= 2χ

(
ρt (u)

)
du + 1

α

[
ρt

(
0−)(1 − ρt

(
0+))+ ρt

(
0+)(1 − ρt

(
0−))]δ0(du), (2.15)

where δ0(du) denotes the Dirac measure at zero. More precisely, for f,g ∈ Sα(R),

〈f,g〉ρt (·) =
∫
R

2χ
(
ρt (u)

)
f (u)g(u)du + 1

α

[
ρt

(
0−)(1 − ρt

(
0+))+ ρt

(
0+)(1 − ρt

(
0−))]f (0)g(0).

Proposition 2.7. There exists a unique (in distribution) random element Y taking values in the space C([0, T ],S ′
α(R))

such that the following two conditions hold:
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(i) For every function f ∈ Sα(R), the stochastic processes Mt (f ) and Nt (f ) given by

Mt (f ) = Yt (f ) −Y0(f ) −
∫ t

0
Ys(�αf )ds, (2.16)

Nt (f ) = (
Mt (f )

)2 −
∫ t

0
‖∇αf ‖2

ρs(·) ds (2.17)

are Ft -martingales, where for each t ∈ [0, T ], Ft := σ(Ys(f ); s ≤ t, f ∈ Sα(R)).
(ii) Y0 is a random element taking values in S ′

α(R) with a fixed distribution.
Moreover, if (i) and (ii) hold, then:
• for each f ∈ Sα(R), conditionally to Fs with s < t , the distribution of Yt (f ) is normal of mean Ys(T

α
t−sf ) and

variance
∫ t

s
‖∇αT α

r f ‖2
ρr (·) dr .

• If Y0 is a Gaussian field, then the stochastic process {Yt (f ); t ≥ 0} will be Gaussian indeed.

In other words, if Y1 and Y2 are two random elements taking values on C([0, T ],S ′
α(R)) and satisfying the martingale

problem described above by (i) and (ii), then Y1 and Y2 must have the same distribution.
It is common in the literature to write the martingale problem stated above as a formal solution of some generalized

stochastic partial differential equation. We discuss it with no mathematical rigour, aiming only at giving some intuition
on the fluctuations’ global behaviour.

We call the random element Y defined via Proposition 2.7 a generalized Ornstein–Uhlenbeck process which takes
values in C([0, T ],S ′

α(R)) and it is the formal solution of

dYt = �αYt dt + ∇α dWt , (2.18)

where:
• The operators �α and ∇α have been given in Definition 2 and are usually referred to as the characteristics of the

Ornstein–Uhlenbeck process.
• W is a space–time white noise with respect to the measure �s(du), i.e., W is a mean-zero Gaussian random element

taking values in the dual space of L2
�([0,∞) ×R) with covariances given by

E
[
W(F )W(G)

] =
∫ ∞

0

∫
R

F(s,u)G(s,u) d�(s,u), ∀F,G ∈ L2
�

([0,∞) ×R
)
,

where d�(s,u) = d�s(u) × ds, and �s has been defined in (2.15).
• For f ∈ Sα(R), we define Wt (f ) := W(f 1[0,t]). In particular, {Wt (f ) : f ∈ Sα(R)} is a Gaussian process with

covariance given on f,g ∈ Sα(R) by

E
[
Wt (f )Wt (g)

] =
∫ t

0
〈f,g〉ρs(·) ds.

2.6. Non-equilibrium fluctuations

We define the density fluctuation field Yn as the time-trajectory of a linear functional acting on functions f ∈ Sα(R) via

Yn
t (f )

def= 1√
n

∑
x∈Z

f

(
x

n

)(
ηt (x) − ρn

t (x)
)
. (2.19)

For each n ≥ 1, let Qn be the probability measure on D([0, T ],S ′
α(R)) induced by the density fluctuation field Yn and a

measure μn. We now state the main result of this paper:

Theorem 2.8 (Non-equilibrium fluctuations). Consider the Markov processes {ηt : t ≥ 0} starting from a sequence of
probability measures {μn}n∈N associated with a profile as in (2.3), and assume:

(A) Conditions (2.12) and (2.13) on mean and covariance, respectively.
(B) There exists a S ′

α(R)-valued random variable Y0 such that Yn
0 converges in distribution to Y0, whose law we denote

by L.
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Then, the sequence of processes {Yn
t }n∈N converges in distribution, as n → +∞, with respect to the Skorohod topology

of D([0, T ],S ′
α(R)) to a random element Y in C([0, T ],S ′

α(R)), the generalized Ornstein–Uhlenbeck which is a solution
of (2.18), and Y0 has law L.

It is of worth to give examples of sequences {μn}n∈N of initial measures satisfying assumptions (A) and (B). Next, we
present two examples of such initial measures and we leave an open question on the subject.

The first example we present is the standard one for non-equilibrium fluctuations: take {μn}n∈N as the slowly varying
Bernoulli product measure {νn

ρ0(·)}n∈N associated with a smooth profile ρ0 :R→ [0,1], that is, νn
ρ0(·) is a product measure

on {0,1}Z such that

νn
ρ0(·)

{
η ∈ {0,1}Z : η(x) = 1

} = ρ0

(
x

n

)
.

Obviously, (A) is satisfied. The proof that (B) holds is just an adaptation of the analogous result for the SSEP, being
included in Proposition B.1 for the sake of completeness.

The second example we discuss is somewhat artificial, but, in any case, illustrates the existence of a sequence of non-
product measures satisfying (A) and (B). Let μn be the measure on � induced by the distribution at the time rn2, where
r > 0 is fixed, of the (homogeneous) one-dimensional SSEP started from the slowly varying measure νn

ρ0(·) defined above.
From the propagation of local equilibrium for the SSEP (see [13] and references therein), one can check that condition

(2.12) holds. Besides that, it is well known that the SSEP has longe range correlations of order O(1/n), giving (2.13).
Thus, assumption (A) is satisfied. From the non-equilibrium fluctuations for the homogeneous SSEP (see [2,17]) one can
deduce that (B) is satisfied, where the law L is determined by the distribution of the Ornstein–Uhlenbeck process at time
r > 0.

We now debate the issue of which properties a sequence of initial measures should have in order to satisfy (A) and (B).
Assume, for the moment, that the initial measures {μn}n∈N for the Markov processes {ηt : t ≥ 0} satisfy:

(i) Condition (2.12) holds.
(ii) For each n ∈N, the correlation at the initial time is of order O(1/n) times a bounded profile ζ n, that is,

ϕn
0 (x, y) = ζ n( x

n
,

y
n
)

n
, ∀x, y ∈ Z,∀n ∈ N,

where the sequence of functions ζ n : R × R → R+ converges uniformly to a bounded continuous function ζ : R ×
R→ R+ as n → ∞. Note that this implies (2.13).

Under (i) and (ii), condition (A) holds. Moreover, under (i) and (ii), and following the same steps of Section 5.2, one
can obtain tightness of {Yn

0 }n∈N. Hence, in order to achieve (B), it is only missing the convergence in distribution of the
sequence of initial density fields {Yn

0 }n∈N. Let f,g ∈ Sα(R). By simple calculations,

Eμn

[
Yn

0 (f )Yn
0 (g)

] = 1

n

∑
x∈Z

f

(
x

n

)
g

(
x

n

)
Eμn

[(
η0(x)

)2]+ 1

n

∑
x �=y

x,y∈Z

f

(
x

n

)
g

(
y

n

)
ϕn

0 (x, y).

Above η̄ denotes the centered random variable η: η̄t (x) := ηt (x) − ρn
t (x). Under (i) and (ii), it is easy to check that

expression above converges to∫
R

χ
(
ρ0(u)

)
f (u)g(u)du +

∫
R

∫
R

ζ(w, r)f (w)g(r) dw dr

as n → ∞. Note that the limit above indicates that 1/n is the right order on the decay of correlations in order to exist
a limiting non zero effect on the distribution of initial density field Y0. However, convergence of means and decay of
correlations do not suffice to assure that Yn

0 (f ) actually converges in distribution: some special central limit theorem is
required here. This CLT is not an easy subject due to the slow decay of correlations and due to the fact that for each n,
the random variables η0(x) may have different distributions. We therefore leave it as an open question:

Open Question 1. Given assumption (A) of Theorem 2.8, which additional hypotheses are necessary for (B) to hold?

Without going into details, we affirm that a natural strategy to prove current/tagged particle fluctuations relies on a
decay of correlations of order O(1/n), see [11]. However, the correlations of the non-equilibrium SSEP with a slow
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bond here considered are of order O(logn/n), see Theorem 2.5. Moreover, the current/tagged particle fluctuations for
the equilibrium scenario with a slow bond are already understood, see [4]. This leads us to:

Open Question 2. How to prove current/tagged particle fluctuations for the non-equilibrium SSEP with a slow bond?
May (or must) a different scaling be considered?

Finally, naturally inspired by [4], we state:

Open Question 3. Consider β > 0 with β �= 1. How to prove non-equilibrium fluctuations for the one-dimensional SSEP
with a slow bond of rate αn−β?

We believe that this last open problem shall be solved by the methods of this paper, and we leave it for a future work.
For the first two problems, we have no clear strategy to solve them.

3. Estimates on local times

In this section we derive estimates on the local times of a random walk with inhomogeneous rates, which will be later
used in Section 4 in the proofs of Theorems 2.4 and 2.5. In the sequel, given any Markov chain Z and a set A, we denote
by Lt(A) the local time of Z in A until time t :

Lt(A)
def=

∫ t

0
1{Zs∈A} ds. (3.1)

3.1. Estimates in dimension two

We denote by {(Xt ,Yt ); t ≥ 0} the random walk on the set V = {(x, y) ∈ Z×Z : y ≥ x + 1} with generator Bn acting on
local functions f : V → R via

(Bnf )(u)
def=

∑
v∈V

cn(u, v)
[
f (v) − f (u)

]
, ∀u ∈ V. (3.2)

Here, the rates are defined as pictured in Figure 2. More precisely, for u = (u1, u2) and v = (v1, v2) such that the L1-
norm1 satisfies ‖u − v‖1 = 1, we define

cn(u, v)
def=

{
α
n

if (u, v) ∈ U ,

1 if u /∈ U or v /∈ U

Fig. 2. Sets V , D and U and U . Sites of V are the ones laying on the light gray region. Sites in D lay on the dotted line and sites of U are marked as
gray balls. Elements of U are edges marked with a thick black segment having jump rate equal to α/n (slow bonds). Any other edges have rate 1.

1We write ‖ · ‖1 for the L1-norm on Z
2, that is, ‖(u1, u2)‖1 = |u1| + |u2|.
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and cn(u, v) = 0 if the L1-distance of u and v is not equal to one. Here, U is the subset of V given by

U
def={

(x, y) ∈ V : x ∈ {0,1} and y ≥ 2
}∪ {

(x, y) ∈ V : x ≤ −1 and y ∈ {0,1}},
and U is the subset of U⊗2 defined via

U def= {
(u, v) ∈ U⊗2 : ‖u − v‖ = 1, |u1 − v1| = 1

}
∪ {

(u, v) ∈ U⊗2 : ‖u − v‖ = 1, |u2 − v2| = 1
}
. (3.3)

We furthermore denote by D the “upper diagonal” defined by D
def= {(x, y) ∈ Z

2 : y = x + 1}, see Figure 2.
By E(x,y), and P(x,y) we denote the corresponding probability and expectation when starting from (x, y) ∈ V . The

goal of this section is to prove the following result.

Proposition 3.1. There exists a constant c > 0 such that for all (x, y) ∈ V , all n ∈N, and all t ≥ 0,

E(x,y)

[
Ltn2

(
D\{(0,1)

})] ≤ cn
√

t, and

E(x,y)

[
Ltn2

({
(0,1)

})] ≤ c log
(
tn2). (3.4)

To prove Proposition 3.1, we estimate first in Lemma 3.2 the local time of a simple random walk confined to the
boundary of the set

W
def= {

(x, y) ∈ Z
2 : 0 ≤ x ≤ y

}
,

which is V intersected with the first quadrant shifted by the vector (1,2). In plain words we identified the vertex (1,2) in
V with the origin, which is a change only of notational nature. Its proof consists on a comparison argument, which is the
content of Proposition 3.3. Afterwards, in Lemma 3.6, we show that the expected number of jumps over the set of slow
bonds (i.e., those with rates α/n) is finite. Finally, with all that at hand, we are able to finish the proof.

We denote by (X ,Y ) the continuous time simple random walk on W that jumps from a site z1 ∈ W to any fixed
neighbouring site z2 ∈ W at rate 1, i.e., the simple random walk reflected at the boundary of W (which takes a triangular
shape, see Figure 3). In particular the total jump rate out of z1 ∈ W is equal to the number of nearest neighbours of z1 that
lay inside W . Expectation with respect to (X ,Y ) conditioned to start at (x, y) ∈ W is denoted by E(x,y).

Lemma 3.2. There exists a constant c > 0 such that for all t ≥ 0 and all (x, y) ∈ W ,

E(x,y)

[
Lt(∂W)

] ≤ c
√

t, (3.5)

where ∂W = {(x, y) ∈ W : x = 0, y ≥ 0 or x = y}.

To prove the above lemma we will need two additional results. To introduce the first one, we remind the reader that a
continuous time Markov chain on a countable set E can be constructed from a transition probability p on E and a bounded
function λ : E → (0,∞) as follows:

Fig. 3. For (X ,Y ) any jump rate is equal to 1.
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(1) sample a discrete time Markov chain (ξn)n≥0 with transition probability p;
(2) sample a sequence of independent random variables (τn)n≥0 such that τn is exponentially distributed with rate λ(ξn)

and define the successive sequence of jump times via T0 = 0 and Tn = τn + Tn−1 for n ≥ 1;
(3) finally, define the continuous time Markov chain Z via

Zt = ξn1{Tn≤t<Tn+1}.

Note in particular that in the above construction the jump rate from a vertex x to y is given by ζ(x, y) = λ(x)p(x, y). In
the sequel we also will assume without further mentioning that p does not put any mass on the diagonal. To continue, we
fix a transition probability p on E and for any a, b such that 0 < a ≤ b < ∞, we denote by Z[a,b] the continuous time
Markov chain with transition probability p and such that its field of jump rates (λ[a,b](x))x∈E is such that λ[a,b](x) ∈ [a, b]
for all x ∈ E . We denote the expectation with respect to Z[a,b] started in z ∈ E by E[a,b]

z .

Proposition 3.3. Fix 0 < a < b ≤ c < d < ∞, and define �
def= supx∈E

λ[c,d](x)

λ[a,b](x)
. For any A ⊆ E and any z ∈ E ,

E[c,d]
z

[
Lt(A)

] ≤ E[a,b]
z

[
L�t(A)

]
. (3.6)

The second result is about projections (also called lumping) of continuous time Markov chains.

Proposition 3.4. Let E be a countable set, and consider a bounded function ζ : E × E → [0,∞). Let (Xt )t≥0 be the
continuous time Markov chain with state space E and jump rates {ζ(x, y)}x,y∈E×E . Fix an equivalence relation ∼ on E
with equivalence classes E� = {[x] : x ∈ E} and assume that ζ satisfies∑

y′∼y

ζ
(
x, y′) =

∑
y′∼y

ζ
(
x′, y′) (3.7)

whenever x ∼ x′. Then, ([Xt ])t≥0 is a Markov chain with state space E� and jump rates ζ([x], [y]) = ∑
y′∼y ζ(x, y′).

We first prove Proposition 3.3, afterwards Proposition 3.4 and finally we prove Lemma 3.2.

Proof of Proposition 3.3. To prove (3.6) we use a coupling argument. We do so by first sampling the discrete time
Markov chain (ξn)n≥0 as alluded above, and we intend to construct Z[a,b] and Z[c,d] both from the same realization of
(ξn)n≥0. To that end, we consider an independent field of Poisson clocks (N

[c,d]
x )x∈E such that for any x ∈ E the rate of

N
[c,d]
x equals λ[c,d](x). We further define

N [a,b]
x (t)

def= N [c,d]
x

(
t

λ[c,d](x)
λ[a,b](x)

)

and it readily follows that for each x ∈ E the process N
[a,b]
x is a Poisson process with rate λ[a,b](x). Hence, it follows from

the construction outlined before the statement of Proposition 3.3 that the construction above yields indeed a coupling of
Z[a,b] and Z[c,d].

This coupling has the following two properties, which immediately proves (3.6). Denote by Z
[c,d]
[0,t] the sequence of

visited points by the process Z[c,d] until time t , with an analogous definition for Z
[a,b]
[0,�t].

(1) There exists some u ∈ [0,�t] such that Z
[c,d]
[0,t] = Z

[a,b]
[0,u] . That is, the sequence Z

[c,d]
[0,t] is an initial piece of Z

[a,b]
[0,�t], so

that in particular Z
[c,d]
[0,t] ⊆ Z

[a,b]
[0,�t].

(2) Given x ∈ Z
[c,d]
[0,t] , then at its k-th visit of the discrete chain (ξn)n∈N to x the holding time at that point of Z[a,b] is

larger than the one of Z[c,d]. �

Proof of Proposition 3.4. Let P be the transition matrix of the skeleton chain of (Xt )t≥0 (i.e., of the underlying discrete
time Markov chain). Assumption (3.7) implies that

P
(
x, [y]) = P

(
x ′, [y])

whenever x ∼ x′. It then follows from [15, Lemma 2.5, pp. 25] that the skeleton chain of ([Xt ])t≥0 is a discrete time
Markov chain with transition matrix given by P �([x], [y]) := P(x, [y]). Thus, it remains to show that the holding times
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Fig. 4. Relation between (X�,Y�) and ([X�], [Y�]).

of ([Xt ])t≥0 are exponentially distributed with rates {∑[y] ζ([x], [y])}[x]∈E� . Yet, this is, as well, a consequence of (3.7).
Hence, we can conclude the proof. �

Proof of Lemma 3.2. The proof comes in two steps.
1st Step. In this step we show that it is sufficient to estimate the local time of a simple random walk on

Z
2≥0

def= {
(x, y) ∈ Z

2 : x, y ≥ 0
}
,

and we refer the reader to Figures 3 and 4 for an illustration of the various random walks that will appear in this part
of the proof. To that end, let (X�,Y�) be a simple random walk defined on Z

2≥0 that jumps from z1 ∈ Z
2≥0 to a fixed

neighbouring site z2 ∈ Z
2≥0 at rate 1

2 . Write

∂Wdiag
def= {

(x, y) ∈ W : x = y
}

(3.8)

and note that

∂Z2≥0 = {
(x, y) ∈ Z

2≥0 : x = 0 or y = 0
}
. (3.9)

Our aim is to show that for any (x, y) ∈ W ,

E(x,y)

[
Lt(∂W)

] ≤ E�
(x,y)

[
L2t

(
∂Z2≥0

)]+ E�
(x,y)

[
L2t (∂Wdiag)

]
, (3.10)

where the expectations on the right hand side of the display above denote the expectation with respect to (X�,Y�) started
at (x, y). To see that (3.10) is true we consider the function T : Z2≥0 → Z

2≥0 that maps each z ∈ Z
2≥0 to its reflection with

respect to the diagonal ∂Wdiag. Note in particular that T is its own inverse, so that we can define an equivalence relation
on Z

2≥0 via

z1 ∼ z2 ⇐⇒ ∃n ∈ {1,2} such that T n(z1) = z2. (3.11)

Writing P� for the transition matrix corresponding to the underlying discrete time random walk of (X�,Y�), and by
{ζ(x, y)}x,y∈Z2≥0

its field of rates, it is easy to see that for any z1 ∼ z2 and any z3 ∈ Z
2≥0

∑
z′

3∼z3

ζ
(
z1, z

′
3

) =
∑

z′
3∼z3

ζ
(
z2, z

′
3

)
. (3.12)

Hence, by Proposition 3.4 and the fact that the set Z2≥0/ ∼ equals W , the process ([X�], [Y�]) can be identified with a

simple random walk on W such that its jump rate out of each fixed edge equals 1
2 except for those attached to ∂Wdiag,

where the jump rate is 1. Note in particular that this makes the set of edges directed. Indeed, the jump rate from x ∈ ∂Wdiag
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Fig. 5. Ilustration of equivalence relation in the 2nd Step of the proof of Lemma 3.2. ∂Wdiag gets identified with the points on dashed lines. The four
points marked with black balls compose a single equivalence class. Non-zero jump rates between any two equivalence classes are everywhere equal to
1/2.

to any neighbour y is 1, whereas the jump rate from y to x is 1
2 . Note that as a set we may identify [∂W ] (the set of

elements equivalent to elements in ∂W ) with ∂Z2≥0 ∪ ∂Wdiag. Thus, denoting by E[�]
([x],[y]) the expectation with respect to

([X�], [Y�]) when started at ([x], [y]), we see that as a consequence of Proposition 3.3,

E(x,y)

[
Lt(∂W)

] ≤ E[�]
([x],[y])

[
L2t

([∂W ])]. (3.13)

Thus, (3.10) readily follows from last inequality.
2nd Step. We now show that it is sufficient to estimate certain local times of a simple random walk (X,Y ) on Z

2

jumping at total rate 2 (i.e., the jump rate over any fixed edge is 1
2 ), which will then yield the claim. To that end we define

an equivalence relation by imposing that (x, y) ∼ (x,−y − 1) and (x, y) ∼ (−x − 1, y), for any x, y ∈ Z. We then note
that in this way ∂Wdiag gets identified with

[∂Wdiag] def= {
(x, y) ∈ Z

2 : x = y
}

∪ {
(x, y) ∈ Z

2 : x = −y − 1, y ≥ 0 or y = −x − 1, x ≥ 0
}
,

see Figure 5. Note that by Proposition 3.4 the random walk (X�,Y�) can be identified with ([X], [Y ]). This shows that
it is sufficient to bound

E(X,Y )
(x,y)

[
L2t (A)

]
, (3.14)

where A = A1 ∪ A2 ∪ A3 with

A1
def= {

(x, y) ∈ Z
2 : x = y

}
,

A2
def= {

(x, y) ∈ Z
2 : x = −y − 1, y ≥ 0 or y = −x − 1, x ≥ 0

}
and

A3
def= {

(x, y) ∈ Z
2 : x ∈ {0,−1}, or y ∈ {0,−1}}.

(3.15)

Since X − Y has the same law as a one-dimensional symmetric simple random walk, we conclude that L2t (A1) equals in
law to the local time at zero of a one-dimensional symmetric simple random walk, for which the statement of this lemma
is well known, and for completeness, we provide a short proof of it in Proposition A.1. A similar argument may be used
for A2, and A3. Therefore, we can finish the proof. �

Our proof immediately yields the following corollary.

Corollary 3.5. There exists a constant c > 0 such that for all t ≥ 0 and all (x, y) ∈ Z
2≥0,

E�
(x,y)

[
Lt

(
∂Z2≥0

)] ≤ c
√

t . (3.16)
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We now come back to the original problem, i.e., estimating local times of the random walk (X,Y) defined on the set
V . An important ingredient in the analysis will be an estimate on the number of jumps of (X,Y) over the set U of slow
edges, i.e., those that are depicted with thick black segments in Figure 2. We define a sequence of stopping times via

τ0 = 0,

τ1 = inf
{
t ≥ 0 : (Xt ,Yt ) crossed an edge in U

}
, and for i ≥ 2,

τi = inf
{
t ≥ τi−1 : (Xt ,Yt ) crossed an edge in U

}
.

(3.17)

Finally, we define the number of crossings until the time tn2 via

Ctn2 = sup
{
i ≥ 0 : τi ≤ tn2}. (3.18)

Lemma 3.6. There exists a constant c > 0 such that uniformly over all starting points (x, y) ∈ V , all t ≥ 0, and all n ∈N,

E(x,y)[Ctn2 ] ≤ c. (3.19)

Proof. We first show that for all i ≥ 1, uniformly in n

inf
(x,y)

P(x,y)

[
τi − τi−1 ≥ tn2] > 0. (3.20)

To that end, assume that (x, y) is in the first quadrant and y ≥ 2. If (x, y) is any other point then instead of Lemma 3.2
below an application of Corollary 3.5 may be necessary. However, this is hopefully clear from the context so that we omit
the details. In this case τ1 can be interpreted as a first success of the simple random walk (X ,Y ), which with a slight
abuse of notation is now considered on the set W given by the intersection of V with the first quadrant, in the following
way: whenever (X ,Y ) is on a vertex z that is attached to a slow bond it realizes the following experiment: besides
its three (one if the vertex is (1,2)) independent Poisson clocks N1

z ,N2
z , and N3

z ringing at rate 1 that are needed for its
graphical construction, it considers an additional independent Poisson clock Nz(α) ringing at rate α/n. We then say that
the experiment is successful if Nz(α) rings before any of the other three clocks. It then follows from the construction
that the time of the first success equals in law the time of the first jump of (X,Y) over a slow bond. Indeed, one may
couple (X,Y) and (X ,Y ) such that they move together until the first time of success. Thus, using the fact that each
experiment is independent of the evolution of (X ,Y ), and that the set of vertices that are attached to S is a subset of
∂W , we see that for any constant c̄ ≥ 0,

P(x,y)

[
τ1 ≥ tn2] ≥ P(x,y)

[
Ltn2(∂W) ≤ c̄

√
tn, all experiments are unsuccessful

]
≥ P(x,y)

[
Ltn2(∂W) ≤ c̄

√
tn
] · P

[
exp(α/n) ≥ c̄

√
tn
]
, (3.21)

where exp(α/n) denotes an exponentially distributed random variable with rate α/n. The second term on the right hand
side of above is equal to e−αc̄

√
t , thus is strictly positive and independent of n for all choices of c̄. Markov’s inequality

and Lemma 3.2 now imply that

P(x,y)

[
Ltn2(∂W) ≥ c̄

√
tn
] ≤ c/c̄, (3.22)

where the constant c is taken from Lemma 3.2. Hence, choosing c̄ large enough we see thatP
(x,y)

[Ltn2(∂W) ≤ c̄
√

tn] is
strictly bounded away from zero uniformly in (x, y) and in n. With similar arguments we may derive the same statement
for all i ≥ 2. We next introduce the random variable

N = inf
{
i ≥ 1 : τi − τi−1 ≥ tn2}. (3.23)

Then, using the strong Markov property at time τi−1, bounding the probability of the event {τi − τi−1 ≥ tn2} by 1, and
then once again using the strong Markov property at time τi−2, we can estimate for any i ≥ 1,

P(x,y)[N = i] ≤ P(x,y)

[
i−1⋂
j=1

{
τj − τj−1 < tn2}]

= E(x,y)

[
i−2∏
j=1

1{τj −τj−1<tn2}E(Xτi−2 ,Yτi−2 )[1{τ1<tn2}]
]
. (3.24)
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Using (3.20), we see that there exists c ∈ [0,1) that is independent of the starting point (x, y), such that the latter term
above is bounded from above by

cE(x,y)

[
i−2∏
j=1

1{τj −τj−1<tn2}

]
. (3.25)

Iterating the above procedure we can get that

sup
(x,y)∈V

P(x,y)[N = i] ≤ ci−1, (3.26)

which in turn implies the uniform boundedness in (x, y) ∈ V of the expectation of N . Since Ctn2 ≤ N , this implies the
claim. �

We present now the proof of Proposition 3.1, and we focus first on the local time of the set D \{(0,1)}. For definiteness
we assume that (X,Y) starts in (x, y) ∈ W , where we recall that W is a suitable shifted version of V intersected with
the first quadrant. All other cases follow by a straightforward adaptation of this proof. Note that the event {(Xs ,Ys) ∈
D \ {(0,1)}} is only possible, if s ∈ ⋃∞

i=0[τ2i , τ2i+1), where τ0 = 0. Hence, we can write

E(x,y)

[
Ltn2

(
D\{(0,1)

})] = E(x,y)

[∫ tn2

0
1{(Xs ,Ys )∈D\{(0,1)}} ds

]

=
∞∑
i=0

E(x,y)

[∫ τ2i+1∧tn2

τ2i∧tn2
1{(Xs ,Ys )∈D\{(0,1)}} ds

]
. (3.27)

Fix i ∈ N. Applying the strong Markov property at time τ2i we can rewrite each summand in the display above as

E(x,y)

[
1{τ2i<tn2}E(Xτ2i

,Yτ2i
)

[∫ τ 1∧tn2−τ2i

0
1{(Xs ,Ys )∈D\{(0,1)}} ds

]]
, (3.28)

where (X,Y) denotes an independent copy of (X,Y) and τ 1 is the corresponding stopping time, defined in the same way
as τ1 in (3.17). We now recall that as a consequence of the proof of Lemma 3.6 until time τ 1 the walk (X,Y) can be
coupled with (X ,Y ). Hence, we see that (3.28) is at most

E(x,y)[1{τ2i<tn2}] sup
(x,y)∈W

E(x,y)

[∫ tn2

0
1{(Xs ,Ys )∈D\{(0,1)}} ds

]
. (3.29)

Making use of Lemma 3.2 we see that there exists a constant c ∈ (0,∞) such that for all starting points, all t ≥ 0 and all
n ∈ N, the term on the left hand-side of (3.27) is bounded from above by

c
√

tnE(x,y)[Ctn2 ]. (3.30)

Hence, an application of Lemma 3.6 is enough to conclude the claim. To estimate the local time of the vertex (0,1) we
can proceed almost exactly as above, and we see that there exists a constant c ∈ (0,+∞) such that

E(x,y)

[
Ltn2

({
(0,1)

})] =
∫ tn2

0
P(x,y)

[
(Xs ,Ys) = (0,1)

]
ds

≤ c
∑
z∈A

∫ 2tn2

0
P(x,y)

[
(Xs,Ys) = z

]
ds, (3.31)

where we recall that (X,Y ) denotes the simple random walk on Z
2 jumping at total rate 2, and A = {(0,1), (1,1), (0,0),

(1,0)}. The proof now follows from the local central limit theorem, see for instance [14, Theorem 2.5.6] (this result
is stated for one-dimensional continuous time random walks, however using the fact that a d-dimensional continuous
time random walk consists of d independent one-dimensional random walks, it may be easily adapted to our setting), or
alternatively from Proposition A.2.
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3.2. Estimates in dimension one

We denote by {Xt ; t ≥ 0} the random walk on Z with a slow bond, that is, the random walk with infinitesimal generator
An given in (2.10) and we use Ex,Px to denote the corresponding expectation and probability, starting from x ∈ Z.

Lemma 3.7. For all x, y ∈ Z, and for all t ≥ 0 we have the equality

Px(Xt = y) + Px(Xt = −y + 1) = Px(Xt = y) + Px(Xt = −y + 1), (3.32)

where (Xt )t≥0 denotes a one-dimensional symmetric simple random walk jumping at total rate 2.

Proof. The proof comes in two steps.
1st Step. In this step we rewrite the left hand-side in (3.32) in terms of the transition probabilities of a symmetric

simple random walk that is reflected at 1. To that end, we define the following equivalence relation:

x ∼ y ⇐⇒ y = −x + 1 or y = x. (3.33)

Note that in particular in this way 0 gets identified with 1, so that jumps between these two vertices “do not count”. One
may then readily check that condition (3.7) is satisfied, so that ([Xt ])t≥0 defines a continuous time Markov chain. It is
then plain to see that for all x ∈ Z and all t ≥ 0 the following relation holds:

[Xt ] = [x] ⇐⇒ Xt ∈ {x,−x + 1}. (3.34)

Thus,

Px

(
Xt ∈ {y,−y + 1}) = P[x]

([Xt ] = [y]). (3.35)

Choosing only representants in the set Z≥1
def= {x ∈ Z : x ≥ 1} we see that ([Xt ])t≥0 may be identified with a simple

random walk (XR
t )t≥0 on Z≥1 that jumps from any vertex x ∈ Z≥1 to a fixed neighboring vertex in Z≥1 at rate 1. Thus,

for any x, y ≥ 1, (3.35) becomes

Px

(
Xt ∈ {y,−y + 1}) = Px

(
XR

t = y
)
. (3.36)

2nd Step. In this step we show that the right hand-side of (3.36) may be rewritten in terms of a symmetric simple random
walk on Z jumping at total rate 2. To that end we use the same equivalence relation as above and we note that (Xt )t≥0
can be, in the same way, identified with (XR

t )t≥0 as (Xt )t≥0 can be identified with ([Xt ])t≥0. This finishes the proof. �

4. Estimates on the discrete derivative and correlations

In the next two subsections, we present the proofs of Theorems 2.4 and 2.5, respectively.

4.1. Estimate on the discrete derivative

This section is devoted to the proof of Theorem 2.4.

Proof. Recall that ρn
t is a solution of (2.9). Since the statement is clear for x = 0, we only need to deal with the case

x �= 0. Let ρt be the solution of the equation (2.4), and define γ n : [0, T ] ×Z
d → R via

γ n
t (x)

def=
{

ρn
t (x) − ρt (

x
n
) if x �= 0,

ρn
t (0) − ρt (

−1
n2 ) otherwise.

(4.1)

The reason for the previous definition is that it distinguishes two cases, since at x = 0 the time derivative of ρ is not
related to its spatial derivatives in a way that is helpful for our purposes. However, with the above choice of γ n we see
that for all x ∈ Z,

∂tγ
n
t (x) = n2Anγ

n
t (x) + Fn

t (x), (4.2)
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where

Fn
t (x)

def=
{

(n2An − ∂2
u)ρt (

x
n
) if x �= 0,

n2Anρt (0) − ∂2
uρt (

−1
n2 ) otherwise.

(4.3)

Observe that, by the definition of An in (2.10), for x ∈ Z\{0,1}, Fn
t accounts for the difference between the discrete and

the continuous Laplacian. To continue, we add and subtract ρt (
x
n
) and ρt (

x+1
n

) to |ρn
t (x +1)−ρn

t (x)| and use the triangle
inequality which yields

∣∣ρn
t (x + 1) − ρn

t (x)
∣∣ ≤ ∣∣γ n

t (x + 1)
∣∣+ ∣∣γ n

t (x)
∣∣+ ∣∣∣∣ρt

(
x + 1

n

)
− ρt

(
x

n

)∣∣∣∣. (4.4)

We first treat the rightmost term above. Since x �→ ρt (x) is differentiable in any neighborhood outside of zero, and ρt has
one sided spatial derivatives at zero, we see that∣∣∣∣ρt

(
x + 1

n

)
− ρt

(
x

n

)∣∣∣∣ = O

(
1

n

)
.

Recall that {Xt ; t ≥ 0} denotes the random walk on Z generated by An. Applying Duhamel’s principle we see that we can
write the solution of (4.2) as

γ n
t (x) = Ex

[
γ n

0 (Xtn2) +
∫ t

0
Fn

t−s(Xsn2) ds

]
.

Therefore,

sup
t≤T

sup
x∈Z

∣∣γ n
t (x)

∣∣ ≤ sup
x∈Z

∣∣γ n
0 (x)

∣∣+ sup
t≤T

sup
x∈Z

∣∣∣∣Ex

[∫ t

0
Fn

t−s(Xsn2) ds

]∣∣∣∣.
Since |γ n

0 (x)| = |ρn
0 (x) − ρ0(x)|, by Assumption (2.12) we only need to control the second term on the right hand-side

of the previous expression. By Fubini’s Theorem, we see that

Ex

[∫ t

0
Fn

t−s(Xsn2) ds

]
=

∫ t

0

∑
z∈Z

Px[Xsn2 = z]Fn
t−s(z) ds. (4.5)

Since the discrete Laplacian approximates the continuous Laplacian, we conclude that |Fn
t (x)| ≤ C/n2 for any x ∈

Z\{0,1} and for any t ≥ 0. Therefore, we can bound the absolute value of (4.5) by

t
C

n2
+

∫ t

0

∑
z∈{0,1}

Px[Xsn2 = z] · ∣∣Fn
t−s(z)

∣∣ds. (4.6)

We note now that

Fn
t (1) = n2

(
ρt

(
2

n

)
− ρt

(
1

n

)
+ α

n

(
ρt

(
0

n

)
− ρt

(
1

n

)))
− ∂2

uρt

(
1

n

)

= n

(
n

(
ρt

(
2

n

)
− ρt

(
1

n

))
+ α

(
ρt

(
0

n

)
− ρt

(
1

n

)))
− ∂2

uρt

(
1

n

)

= n

(
dρt

dx

(
0+)+ α

(
ρt

(
0−)− ρt

(
0+))+ O(1/n)

)
− ∂2

uρt

(
1

n

)
.

The Robin boundary condition in the PDE (2.4) cancels the first two terms inside the parenthesis above, from what we
deduce that |Fn

t (1)| ≤ C for any t ≥ 0. For z = 0 we obtain, in a similar way, a bound of the same order. Therefore, (4.6)
is bounded from above by

t
C

n2
+ C

∫ t

0

(
Px[Xsn2 = 0] + Px[Xsn2 = 1])ds.

Thus, applying Lemma 4.1 below the result follows. �
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Lemma 4.1. Let X be as in Section 3.2. There exists a constant C > 0 such that the following estimate holds for all t ≥ 0:

∫ t

0
Px

[
Xsn2 ∈ {0,1}]ds ≤ C

√
t

n
.

Proof. Denote the symmetric simple random walk on Z jumping at rate 2 by {Xt ; t ≥ 0}. It is then well known that for all
t ≥ 0 the map x ∈ Z �→ Px[Xt = 0] is maximized at x = 0. Hence, Lemma 4.1 is a consequence of Lemma 3.7 together
with Proposition A.1. �

4.2. Estimate on the correlation function

In this section we prove Theorem 2.5. To that end, we show that the correlation function ϕn introduced in Definition 3
can be estimated from above by the local times of the random walk {(Xt ,Yt ); t ≥ 0}, introduced in Section 3.1. This
is the content of Proposition 4.2. Proposition 3.1 then immediately yields the result. Given a set A ⊆ V , similarly as in
Section 3 we denote by Lt(A) the local time of {(Xt ,Yt ); t ≥ 0} until time t in A, see (3.1).

Proposition 4.2. There exists C > 0 such that

sup
t≤T

∣∣ϕn
t (x, y)

∣∣ ≤ C

n
+ C

(
1

n2
E(x,y)

[
Ln2T

(
D \ {

(0,1)
})]+ 1

n
E(x,y)

[
Ln2T

({
(0,1)

})])
. (4.7)

Proof. First, observe that from Kolmogorov’s forward equation, we have that

∂tϕ
n
t (x, y) = Eμn

[
n2Ln

(
ηt (x)ηt (y)

)]− ∂t

(
ρn

t (x)ρn
t (y)

)
.

Applying (2.1) and (2.8) and performing some long, but simple, calculations, one can deduce that ϕn
t solves the following

equation:

∂tϕ
n
t (x, y) = n2Bnϕ

n
t (x, y) + gn

t (x, y),

where Bn was defined in (3.2) and

gn
t (x, y) = −(∇+

n ρn
t (x)

)2
(

1{D\(0,1)} + α

n
1{(0,1)}

)
. (4.8)

Here, ∇+
n denotes the rescaled discrete right derivative which, for any function f : Z → R, is defined via ∇+

n f (x)
def=

n(f (x + 1) − f (x)). By Duhamel’s Principle,

ϕn
t (x, y) = E(x,y)

[
ϕn

0 (Xtn2 ,Ytn2) +
∫ t

0
gn

t−s(Xsn2,Ysn2) ds

]
,

where {(Xt ,Yt ); t ≥ 0} is the random walk with generator Bn. In order to prove the proposition we just have to estimate
the right hand-side of the last equation. We see that

sup
t≤T

∣∣ϕn
t (x, y)

∣∣ ≤ ∣∣ϕn
0 (x, y)

∣∣+ sup
t≤T

∣∣∣∣E(x,y)

[∫ t

0
gn

t−s(Xsn2,Ysn2) ds

]∣∣∣∣. (4.9)

By Assumption (2.13), the first term on the right hand-side of the last expression is bounded from above by C/n. Thus,
to finish the proof we only need to estimate the rightmost term in the display above.

Applying the definition of gn, and rewriting the expectation above in terms of transition probabilities, we see that for
any s ≤ t ,

E(x,y)

[
gn

t−s(Xsn2,Ysn2)
] =

∑
z �=0

[−(∇+
n ρn

t−s(z)
)2]P(x,y)

[
(Xsn2,Ysn2) = (z, z + 1)

]

+ α

n

[−(∇+
n ρn

t−s(0)
)2]P(x,y)

[
(Xsn2,Ysn2) = (0,1)

]
.



Non-equilibrium fluctuations for the SSEP with a slow bond 1117

Consequently, for all (x, y) ∈ V , the rightmost term in (4.9) is bounded from above by

∫ t

0

(
SnP(x,y)

[
(Xsn2 ,Ysn2) ∈ D \ {

(0,1)
}]+ Sn,0

α

n
P(x,y)

[
(Xsn2 ,Ysn2) = (0,1)

])
ds, (4.10)

where

Sn = sup
t≥0

sup
z∈Z\{0}

(∇+
n ρn

t (z)
)2

and Sn,0 = sup
t≥0

(∇+
n ρn

t (0)
)2

. (4.11)

Recalling Theorem 2.4, we easily deduce that Sn ≤ C and Sn,0 ≤ Cn2. Substituting (4.11) into (4.10), together with a
change of variables, the result follows. �

The proof of Theorem 2.5 is now an immediate consequence of Proposition 3.1.

4.3. Comments on the lower bound

In the usual symmetric simple exclusion process the correlation function is of order O( 1
n
). Since intuitively one could

expect that the presence of the slow bond increases the correlation between sites which are located both on the positive
half-line or both the negative half-line, the above result does not come as a total surprise.

However, for two sites x and y such that x ≤ 0 < 1 ≤ y, then at first sight it seems to be a reasonable guess that the
correlations decrease, and they should be at most of order O( 1

n
). Yet, our proof yields the same bound as above when

one restricts only to such kind of pairs of vertices (x, y). A natural question therefore is if a matching lower bound in
(2.14) holds. Since our assumptions on the initial measure do not exclude the choice of a product Bernoulli measure with
constant intensity, in which case at any time t ≥ 0 the covariance between two distinct points is zero, such a lower bound
certainly cannot hold in general.

Nevertheless, we argue that there are indeed choices of the various parameters in our model for which |ϕn
t (x, y)| is

bounded from below by a constant times logn/n uniformly in t ∈ [0, T ]. We will not provide all the details, yet the gaps
can be filled by an adaptation of the techniques used in Section 3. We choose μn ∼ ⊗

x∈Z Ber(ρx), where

ρx =
{

1
2 if x ≤ 0,
1
4 otherwise.

(4.12)

Analyzing carefully the proof of Theorem 2.5, we see that in order to establish the desired lower bound it is enough to
show that there exists a constant c > 0 such that for all t ∈ [0, T ]∣∣ρn

t (0) − ρn
t (1)

∣∣ ≥ c, (4.13)

and that the rightmost local time term in (4.7) is bounded from below by a constant times logn. We only provide a sketch
of the argument for the former statement, the latter as mentioned above can be deduced by an application of the techniques
developed in Section 3. We note that it is possible to show that

ρn
t (0) =

∑
x∈Z

P0[Xt = x]ρn
0 (x) and ρn

t (1) =
∑
x∈Z

P1[Xt = x]ρn
0 (x), (4.14)

where X denotes a random walk with generator n2An, and for z ∈ Z we denoted by Pz the distribution of X when started
in z. Using that by symmetry P1[Xt ≥ 1] = P0[Xt ≤ 0] and P1[Xt ≤ 0] = P0[Xt ≥ 1], as well as our choice of μn, we see
that

ρn
t (0) − ρn

t (1) = 1

4

(
P0[Xt ≤ 0] − P0[Xt ≥ 1]). (4.15)

It is now possible to argue that a random walk that starts at zero, and that is reflected at zero has a local time of order n

up to times of order n2 at the origin. Using a coupling argument one may then show that one can choose α small enough
so that the probability that X, when started at 0, crosses the bond (0,1) before time T n2 becomes arbitrarily small. This
readily yields that (4.15) is indeed strictly bounded away from zero uniformly in t ∈ [0, T ], and consequently we obtain
a lower bound that matches the order of the upper bound in (2.14).
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Remark 4.3. As argued above, at first sight it seems counterintuitive that ϕt (x, y) is of order logn/n if x ≤ 0 < 1 ≤ y.
Yet, an intuitive explanation for that phenomenon could be as follows: given an exclusion particle starting at x ≤ 0, then
up to time say t

2n2 there is a strictly positive probability that it will cross the bond {0,1}, and afterwards it will have
interaction with a particle started at y ≥ 1 of same order as if it had started at a site x ≥ 1.

5. Proof of density fluctuations

In this section we prove Theorem 2.8. We follow the usual procedure to establish such a result, i.e., first we establish tight-
ness of the sequence of density fields {Yn

t : t ∈ [0, T ]}n∈N and afterwards we characterize the limit. Before proceeding,
we introduce in the next subsection some martingales associated with the density fluctuation field defined in (2.19).

5.1. Associated martingales

Fix a test function f ∈ Sα(R). By Dynkin’s formula,

Mn
t (f ) := Yn

t (f ) −Yn
0 (f ) −

∫ t

0

(
n2Ln + ∂s

)
Yn

s (f ) ds (5.1)

is a martingale with respect to the natural filtration Ft = σ(ηs, s ≤ t). Our aim is to write this martingale in a more
suitable form. Recall (2.2). Performing simple calculations,

n2LnYn
s (f ) = n2

∑
x∈Z

ξn
x,x+1

[
1√
n

∑
y∈Z

f

(
y

n

)(
ηx,x+1

s (y) − ρn
s (y)

)− 1√
n

∑
y∈Z

f

(
y

n

)(
ηs(y) − ρn

s (y)
)]

= 1√
n

∑
x∈Z

n2ξn
x,x+1

{
ηs(x)

[
f

(
x + 1

n

)
− f

(
x

n

)]
+ ηs(x + 1)

[
f

(
x

n

)
− f

(
x + 1

n

)]}

= 1√
n

∑
x∈Z

n2
{
ξn
x,x+1

[
f

(
x + 1

n

)
− f

(
x

n

)]
+ ξn

x−1,x

[
f

(
x − 1

n

)
− f

(
x

n

)]}
ηs(x)

= 1√
n

∑
x∈Z

n2Anf

(
x

n

)
ηs(x),

where the operator An has been defined in (2.10). Recalling (2.9) we get that

∂sYn
s (f ) = − 1√

n

∑
x∈Z

f

(
x

n

)
∂sρ

n
s (x) = − 1√

n

∑
x∈Z

n2Anf

(
x

n

)
ρn

s (x). (5.2)

Combining the previous equalities, we see that

Mn
t (f ) = Yn

t (f ) −Yn
0 (f ) −

∫ t

0

1√
n

∑
x∈Z

n2Anf

(
x

n

)
ηs(x) ds. (5.3)

Adding and subtracting the term
∫ t

0 Yn
s (�αf )ds, we can rewrite the martingale Mn

t (f ) as

Mn
t (f ) = Yn

t (f ) −Yn
0 (f ) −

∫ t

0
Yn

s (�αf )ds − Rn
t (f ), (5.4)

where

Rn
t (f ) :=

∫ t

0

1√
n

∑
x∈Z

{
n2Anf

(
x

n

)
− (�αf )

(
x

n

)}
ηs(x) ds.

The next lemma allows us to control the error term Rn
t (f ) defined in the previous display, which is obtained by replacing

the discrete operator An defined in (2.10) by the continuous Laplacian �α defined in (2.7).
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Lemma 5.1. For any f ∈ Sα(R), almost surely there exists a constant c > 0 such that for all t ∈ [0, T ] and all n ∈N the
estimate |Rn

t (f )| ≤ ct√
n

holds.

Proof. We begin by splitting Rn
t (f ) as the sum

Rn
t (f ) =

∫ t

0

1√
n

∑
x �=0,1

{
n2Anf

(
x

n

)
− (�αf )

(
x

n

)}
ηs(x) ds (5.5)

+
∫ t

0

1√
n

{
n2Anf

(
0

n

)
− (�αf )

(
0

n

)}
ηs(0) ds (5.6)

+
∫ t

0

1√
n

{
n2Anf

(
1

n

)
− (�αf )

(
1

n

)}
ηs(1) ds. (5.7)

We begin by dealing with (5.5). Recall that f ∈ Sα(R) and note that |ηs(x)| ≤ 2. Thus, taking advantage of the fact that
for x /∈ {0,1}, the term n2Anf (x

n
) is the discrete Laplacian, and applying a Taylor expansion up to second order with the

Lagrangian form of the remainder, we see that (5.5) is bounded by

t√
n

∑
x �=0,1

∣∣∣∣n2
{[

1

n
f ′

(
x

n

)
+ 1

2n2
f ′′

(
x

n

)
+ f ′′′(ϑ+( x

n
))

3!n3

]

−
[

1

n
f ′

(
x

n

)
− 1

2n2
f ′′

(
x

n

)
+ f ′′′(ϑ−( x

n
))

3!n3

]}
− (�αf )

(
x

n

)∣∣∣∣
= t√

n

∑
x �=0,1

∣∣∣∣f ′′′(ϑ+( x
n
))

3!n3
− f ′′′(ϑ−( x

n
))

3!n3
}
∣∣∣∣,

where ϑ+( x
n
) ∈ [ x

n
, x+1

n
] and ϑ−( x

n
) ∈ [ x−1

n
, x

n
]. Since f ′′′ is integrable, we conclude that (5.5) is of order O(tn−5/2),

and vanishes as n tends to infinity. Since �αf is bounded, we can see that the sum of (5.6) and (5.7) is equal to∫ t

0

1√
n

{
n2Anf

(
0

n

)}
ηs(0) ds +

∫ t

0

1√
n

{
n2Anf

(
1

n

)}
ηs(1) ds

plus a term of order O( t√
n
). Applying the definition of An, the expression above is equal to

∫ t

0

n2

√
n

{
α

n

(
f

(
1

n

)
− f

(
0

n

))
+

(
f

(−1

n

)
− f

(
0

n

))}
ηs(0) ds

+
∫ t

0

n2

√
n

{
α

n

(
f

(
0

n

)
− f

(
1

n

))
+

(
f

(
2

n

)
− f

(
1

n

))}
ηs(1) ds,

and we can see that the absolute value of expression above is bounded by

t
√

n

{∣∣∣∣α
(

f

(
1

n

)
− f

(
0

n

))
+ n

(
f

(−1

n

)
− f

(
0

n

))∣∣∣∣
+

∣∣∣∣α
(

f

(
0

n

)
− f

(
1

n

))
+ n

(
f

(
2

n

)
− f

(
1

n

))∣∣∣∣
}
. (5.8)

Since f ∈ Sα(R), we have the boundary conditions α(f (0+) − f (0−)) = ∂uf (0+) = ∂uf (0−) and also that f is left
continuous at zero, hence

f

(
1

n

)
− f

(
0

n

)
= [

f
(
0+)− f

(
0−)]+ O(1/n),

n

[
f

(−1

n

)
− f

(
0

n

)]
= −∂uf

(
0−)+ O(1/n),

f

(
0

n

)
− f

(
1

n

)
= −[

f
(
0+)− f

(
0−)]+ O(1/n),
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n

[
f

(
2

n

)
− f

(
1

n

)]
= ∂uf

(
0+)+ O(1/n),

which permits to conclude that (5.8) is of order O( t√
n
), finishing the proof. �

Now we study the convergence of the sequence of martingales {Mn
t (f ) : t ∈ [0, T ]}n∈N. This is the content of the next

lemma.

Lemma 5.2. For any f ∈ Sα(R), the sequence of martingales {Mn
t (f ) : t ∈ [0, T ]}n∈N converges in distribution under

the topology of D([0, T ],R), as n → ∞, to a mean-zero Gaussian process {Mt (f ) : t ∈ [0, T ]} of quadratic variation
given by

〈
M(f )

〉
t
=

∫ t

0

∫
R

2χ
(
ρs(u)

)(∇αf (u)
)2

duds

+
∫ t

0

[
ρs

(
0−)(1 − ρs

(
0+))+ ρs

(
0+)(1 − ρs

(
0−))]∇αf

(
0+)ds. (5.9)

Proof. The proof of this lemma consists on applying [10, Theorem VIII.3.12, page 473]. According to that theorem, we
have to check:

(i) condition (3.14), defined in [10, page 474],
(ii) condition [δ̂5-D], defined in [10, 3.4, page 470],
(iii) condition [γ5-D], defined in [10, 3.3, page 470].

By [10, Assertion VIII.3.5, page 470], both conditions [δ̂5-D] and (3.14) are a consequence of

lim
n→∞Eμn

[
sup
s≤t

∣∣Mn
s (f ) −Mn

s−(f )
∣∣] = 0. (5.10)

To show (5.10), note that only two sites of the configuration η change its values when a jump occurs. Therefore,

sup
s≤t

∣∣Mn
s (f ) −Mn

s−(f )
∣∣ = sup

s≤t

∣∣Yn
s (f ) −Yn

s−(f )
∣∣ ≤ 2‖f ‖∞√

n
,

leading to (5.10). It remains to check Condition [γ5-D], i.e., the convergence in probability of the quadratic variation of
Mt (f ), which is given by

〈
Mn(f )

〉
t
=

∫ t

0
n2[LnYn

s (f )2 − 2Yn
s (f )LnYn

s (f )
]
ds.

After some elementary computations, the right hand-side of the display above can be rewritten as

∫ t

0

1

n

∑
x �=0

(
ηs(x) − ηs(x + 1)

)2
[
n

(
f

(
x + 1

n

)
− f

(
x

n

))]2

ds

+ α

∫ t

0

(
ηs(0) − ηs(1)

)2
(

f

(
1

n

)
− f

(
0

n

))2

ds, (5.11)

which is an additive functional of the exclusion process ηt . It is almost folklore in the literature that Theorem 2.1 together
with a suitable Replacement Lemma and standard computations yield that (5.11) converges in distribution to the right
hand-side of (5.9) as n → ∞. Since this is not the main issue of the proof, and since such a Replacement Lemma under
the slow bond’s presence has been studied in previous works (as in [3, Lemma 5.4] for instance), we do not present the
proof of this result with full details, but only a sketch instead.

By a Replacement Lemma we mean a result allowing to replace the time integral of the occupation number ηt (x) by
an average on a box around x. The only difference with respect to the usual Replacement Lemma (see [13]), is the fact
that we should avoid an intersection between this box and the slow bond in our setting. Hence, we define

η
(x) =
{

1



∑x+
−1
y=x η(y) for x ≥ 1,

1



∑x
y=x−
+1 η(y) for x ≤ 0,
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which is related to the side limits appearing in (5.9). Taking into account these definitions, the fact that ηt (x)2 = ηt (x),
and the boundary condition of f at zero, one can show that the limit in distribution of (5.11) is in fact the right hand-side
of (5.9).

Since the right hand-side of (5.9) is deterministic, the convergence in distribution implies the convergence in probabil-
ity, and this finishes the proof of the lemma. �

5.2. Tightness

Let S be a Fréchet space (see [18] for a definition of a Fréchet space) and denote by S ′ its topological dual. We cite here
the following useful criterion:

Proposition 5.3 (Mitoma’s criterion, [16]). A sequence of processes {xt ; t ∈ [0, T ]}n∈N in D([0, T ],S ′) is tight with
respect to the Skorohod topology if, and only if, the sequence {xt (f ); t ∈ [0, T ]}n∈N of real-valued processes is tight with
respect to the Skorohod topology of D([0, T ],R), for any f ∈ S .

Since Sα(R) is a Fréchet space (see [4]), tightness of the density field is reduced to showing tightness of a family of
real-valued processes. For that purpose, let f ∈ Sα(R). Since the sum of tight processes is also tight, in order to prove
tightness of {Yn

t (f ) : t ∈ [0, T ]}n∈N it is enough to prove tightness of the remaining processes appearing in (5.4), namely
{Yn

0 (f )}n∈N, {∫ t

0 Yn
s (�αf )ds : t ∈ [0, T ]}n∈N, {Mn

t (f ) : t ∈ [0, T ]}n∈N and {Rn
t (f ) : t ∈ [0, T ]}n∈N. We deal with all of

them separately.
Observe that

Eνn
ρ0

(·)
[(
Yn

0 (f )
)2] = 1

n

∑
x∈Z

f 2
(

x

n

)
χ
(
ρn

0 (x)
)+ 2

n

∑
x<y

f

(
x

n

)
f

(
y

n

)
ϕn

0 (x, y)

is bounded. As a consequence of Assumption (B) in Theorem 2.8 the sequence of initial conditions Yn
0 converges, there-

fore it is also tight.
By Lemma 5.1, the sequence of processes {Rn

t (f ) : t ∈ [0, T ]}n∈N is negligible, thus it is tight.
By Lemma 5.2 the sequence of martingales {Mn

t (f ) : t ∈ [0, T ]}n∈N converges, hence it is tight as well.
It remains to prove tightness of the integral terms {∫ t

0 Yn
s (�αf )ds : t ∈ [0, T ]}n∈N. At this point we invoke Aldous’

criterion:

Proposition 5.4 (Aldous’ criterion). A sequence {xn
t : t ∈ [0, T ]}n∈N of real-valued processes is tight with respect to the

Skorohod topology of D([0, T ],R) if:

(i) limA→+∞ lim supn→+∞ P(sup0≤t≤T |xn
t | > A) = 0,

(ii) for any ε > 0, limδ→0 lim supn→+∞ supλ≤δ supτ∈TT
P(|xn

τ+λ − xn
τ | > ε) = 0,

where TT is the set of stopping times bounded by T .

We first check the first item of Aldous’ criterion. By the Cauchy–Schwarz inequality,

Eμn

[
sup
t≤T

(∫ t

0
Yn

s (�αf )ds

)2]
≤ T

∫ T

0
Eμn

[(
1√
n

∑
x∈Z

�αf

(
x

n

)(
ηs(x) − ρn

s (x)
))2]

ds.

Observe that the right hand-side of the display above is bounded by T 2 times

1

n

∑
x∈Z

(
�αf

(
x

n

))2

sup
t≤T

χ
(
ρn

t (x)
)+ 2

n

∑
x<y

�αf

(
x

n

)
�αf

(
y

n

)
sup
t≤T

ϕn
t (x, y), (5.12)

where χ(ρn
t (x)) was defined above (2.15) and ϕn

t (x, y) is given in Definition 3. Since f ∈ Sα(R), the first term in (5.12)
may be easily shown to be bounded in n. As for the second term the estimate provided by Theorem 2.5 is unfortunately
not quite enough. Yet, Proposition 4.2 in combination with Proposition 3.1 show that for some constants c1, c2 > 0 that
do not depend on t , and (x, y) we have that for all n ∈ N,

ϕn
t (x, y) ≤ c1

n
+ c2

n

∫ T n2

0
P(x,y)

[
(Xs ,Ys) = (0,1)

]
ds, (5.13)
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where {(Xt ,Yt ); t ≥ 0} is defined in Section 3.1. Plugging the first term on the right hand-side of the display above into
the second term in (5.12) gives the desired estimate. To deal with the second term on the right hand-side of (5.13) we use
the fact that by (3.31) we can estimate the integral term from above by

c
∑
z∈A

∫ 2T n2

0
P(x,y)

[
(Xs,Ys) = z

]
ds, (5.14)

where (X,Y ) denotes simple random walk on Z
2 jumping at total rate 2, A denotes the set {(0,1), (1,1), (0,0), (1,0)},

and c ∈ (0,+∞) is some constant. Plugging this into the second term in (5.12), and using the reversibility of (X,Y ) we
see that we obtain a term that is bounded from above by a constant times

1

n2

∑
z∈A

∫ 2T n2

0
Ez

[∣∣∣∣�αf

(
Xs

n

)
�αf

(
Ys

n

)∣∣∣∣
]

ds. (5.15)

Since |�αf (x
n
)�αf (

y
n
)| is uniformly bounded in x and y we finally obtain that (5.12) is bounded by a constant, which

implies condition (i) of Aldous’ criterion via Chebychev’s inequality.
We now check (ii). For this purpose, fix a stopping time τ ∈ TT . By Chebychev’s inequality and repeating the argument

above, we have that

Pμn

(∣∣∣∣
∫ τ+λ

τ

Yn
s (�αf )ds

∣∣∣∣ > ε

)
≤ 1

ε2
Eμn

[(∫ τ+λ

τ

Yn
s (�αf )ds

)2]
≤ δ2c

ε2
,

which vanishes as δ → 0, and yields tightness of the integral term, and concludes therefore the proof.

5.3. Uniqueness of the Ornstein–Uhlenbeck process

The existence of the Ornstein–Uhlenbeck process solution of (2.18) is a consequence of tightness proved in Section 5.2.
This subsection is devoted to the proof of uniqueness of this process, as stated in Proposition 2.7. The guideline is mainly
inspired by [9,13].

In the proof of Proposition 2.7 we make use of the following result, which is a standard fact about local martingales.

Proposition 5.5. If Mt is a local martingale with respect to a filtration Ft and

E

[
sup

0≤s≤t

|Ms |
]

< +∞ (5.16)

for any t ≥ 0, then Mt is a martingale.

Proof. Let τn be a sequence of stopping times such that τn → ∞ as n → ∞ and such that the stopped process (Mt∧τn)t≥0

is a martingale for each n. Let s < t , it then follows that for any A ∈ Fs ,

E[Mt∧τn1A] = E[Ms∧τn1A].

Letting n → ∞, using (5.16) and the Dominated Convergence Theorem, we conclude that

E[Mt1A] = E[Ms1A],

thus finishing the proof. �

Proof of Proposition 2.7. Fix f ∈ Sα(R) and s > 0. Recall the definition of the martingales Mt (f ) and Nt (f ) given in
(2.16) and (2.17), respectively.

We claim that the process {Xs
t (f ) : t ≥ s} defined by

Xs
t (f ) = exp

{
1

2

∫ t

s

‖∇αf ‖2
ρr (·) dr + i

(
Yt (f ) −Ys(f ) −

∫ t

s

Yr (�αf )dr

)}
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is a (complex) martingale. By [19, pp. 148, Proposition 3.4] it is immediate that Xs
t (f ) is a local martingale. Therefore,

if we show that

E

[
sup

s≤u≤t

∣∣Xs
u(f )

∣∣] < +∞, (5.17)

then, by Proposition 5.5, we conclude that Xs
t (f ) is a martingale. But (5.17) is a simple consequence of the fact that the

function t �→ 1
2

∫ t

0 ‖∇αf ‖2
ρs(·) ds is continuous, hence bounded on compact sets. Therefore, the claim is proved.

Fix S > 0. We claim now that the process {Zt : 0 ≤ t ≤ S} defined by

Zt(f ) = exp

{
1

2

∫ t

0

∥∥∇αT α
S−rf

∥∥2
ρr (·) dr + iYt

(
T α

S−t f
)}

is also a martingale. To prove this second claim, consider two times 0 ≤ t1 < t2 ≤ S and a partition of the interval [t1, t2]
in n intervals of equal size, that is, t1 = s0 < s1 < · · · < sn = t2, with sj+1 − sj = (t2 − t1)/n. Observe now that

n−1∏
j=0

X
sj
sj+1

(
T α

S−sj
f
) = exp

{
n−1∑
j=0

1

2

∫ sj+1

sj

∥∥∇αT α
S−sj

f
∥∥2

ρs(·) ds

+ i

n−1∑
j=0

(
Ysj+1

(
T α

S−sj
f
)−Ysj

(
T α

S−sj
f
)−

∫ sj+1

sj

Yr

(
�αT α

S−sj
f
)
dr

)}
.

Due to smoothness of T α
t f , the first sum in the exponential above converges to

1

2

∫ t2

t1

∥∥∇αT α
S−rf

∥∥2
ρs(·) dr,

as n → +∞. The second sum inside the exponential is the same as

Yt2

(
T α

S−t2+ 1
n

f
)−Yt1

(
T α

S−t1
f
)+

n−1∑
j=1

(
Ysj

(
T α

S−sj−1
f − T α

S−sj
f
)−

∫ sj+1

sj

Yr

(
�αT α

S−sj
f
)
dr

)
.

Since Y ∈ C([0, T ],S ′
α(R)), since T α

t f is continuous in time and applying the expansion T α
t+εf − T α

t f = ε�αT α
t f +

o(ε), one can show that the almost sure limit of the previous expression is Yt2(T
α
S−t2

f ) −Yt1(T
α
S−t1

f ), see [4,6] for more
details. We have henceforth deduced that

lim
n→+∞

n−1∏
j=0

X
sj
sj+1

(
T α

S−sj
f
) = exp

{
1

2

∫ t2

t1

∥∥∇αT α
S−rf

∥∥2
ρs(·) dr + i

(
Yt2

(
T α

S−t2
f
)−Yt1

(
T α

S−t1
f
))} = Zt2

Zt1

.

Since the complex exponential is bounded, the Dominated Convergence Theorem ensures also the convergence in L1.
Thus,

E

[
g

Zt2

Zt1

]
= lim

n→+∞E

[
g

n−1∏
j=0

X
sj
sj+1

(
T α

S−sj
f
)]

,

for any bounded function g. Take g bounded and Ft1 -measurable. For any f ∈ Sα(R), the process Xs
t (f ) is a martingale.

Thus, taking the conditional expectation with respect to Fsn−1 , we get

E

[
g

n−1∏
j=0

X
sj
sj+1

(
T α

S−sj
f
)] = E

[
g

n−2∏
j=0

X
sj
sj+1

(
T α

S−sj
f
)]

.

By induction, we conclude that

E

[
g

Zt2

Zt1

]
= E[g],
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for any bounded and Ft1 -measurable function g. This assures that {Zt : t ≥ 0} is a martingale. From E[Zt |Fs] = Zs , we
get

E

[
exp

{
1

2

∫ t

0

∥∥∇αT α
S−rf

∥∥2
ρr (·) dr + iYt

(
T α

S−t f
)}∣∣Fs

]
= exp

{
1

2

∫ s

0

∥∥∇αT α
S−rf

∥∥2
ρr (·) dr + iYs

(
T α

S−sf
)}

,

which leads to

E
[
exp

{
iYt

(
T α

S−t f
)}|Fs

] = exp

{
−1

2

∫ t

s

∥∥∇αT α
S−rf

∥∥2
ρr (·) dr + iYs

(
T α

S−sf
)}

.

Choosing S = t and replacing f by λf , we achieve

E
[
exp

{
iλYt (f )

}|Fs

] = exp

{
−λ2

2

∫ t

s

∥∥∇αT α
t−rf

∥∥2
ρr (·) dr + iλYs

(
T α

t−sf
)}

,

meaning that, conditionally to Fs , the random variable Yt (f ) has Gaussian distribution of mean Ys(T
α
t−sf ) and variance∫ t

s
‖∇αT α

r f ‖2
ρs(·) dr .

We claim now that this last result implies the uniqueness of the finite dimensional distributions of the process {Yt (f ) :
t ∈ [0, T ]}. For the sake of clarity, consider only two times, t0 = 0 and t1 > 0, two test functions f0, f1 ∈ Sα(R) and two
Lebesgue measurable sets A0 and A1. By conditioning,

P
[
Yt1(f1) ∈ A1,Yt0(f0) ∈ A0

] = E
[
E[1[Yt1 (f1)∈A1]|F0] · [1[Yt0 (f0)∈A0]]

]
.

Since the conditional expectation E[1[Yt1 (f1)∈A1]|F0] is a function of Yt0(f1) and Yt0 is uniquely distributed as a random
element of S ′

α(R) (by assumption (ii) of Proposition 2.7), we get that the distribution of the vector (Yt1(f1),Yt0(f0)) is
also uniquely distributed. The generalization for a general finite number of times is straightforward.

This proves the claim, implying the uniqueness in law of the random element Y and hence finishing the proof. �

5.4. Characterization of limit points

From the results of the previous subsection we know that the sequence {Yn
t : t ∈ [0, T ]}n∈N has limit points. Let {Yt : t ∈

[0, T ]} be the limit in distribution of {Yn
t : t ∈ [0, T ]}n∈N along some subsequence nk considering the uniform topology

of D([0, T ],S ′
α(R)). Abusing of notation, we denote this subsequence simply by n. Our goal here is to prove that {Yt :

t ∈ [0, T ]} satisfies the conditions (i) and (ii) of Proposition 2.7. Since assumption (B) of Theorem 2.8 gives us exactly
the condition (ii), it only remains to prove condition (i). A remark: the reader may be asking about the existence of
initial measures satisfying the assumptions (A) and (B) of Theorem 2.8. An example of such measures is postponed to
Proposition B.1 in Appendix B.

For f ∈ Sα(R), let Mt and Nt be the processes defined by

Mt (f ) = Yt (f ) −Y0(f ) −
∫ t

0
Ys(�αf )ds,

Nt (f ) = (
Mt (f )

)2 −
∫ t

0
‖∇αf ‖2

ρs(·) ds.

Since Yn
t is assumed to converge in distribution to Yt as n → +∞, by (5.4) and Lemma 5.1, we conclude that Mt (f )

defined above coincides with the limit of Mn
t (f ) as in Lemma 5.2, which was denoted by Mt (f ) as well.

By Lemma 5.2, we already know that Mt (f ) has quadratic variation given by
∫ t

0 ‖∇αf ‖2
ρs(·) ds. Therefore, if we show

that Mt (f ) is a martingale, then we will immediately get that Nt (f ) is also a martingale.
Hence, we claim that Mt (f ) is a martingale. First of all, we fix the filtration, which will be the natural one: Ft =

{σ(Ys(g)) : s ≤ t and g ∈ Sα(R)}. Thus, Mt (f ) is Ft -measurable. The fact that Mt (f ) is in L1 for any time t ∈ [0, T ]
is a consequence that Mt (f ) is a Gaussian process, which was proved in Lemma 5.2. Thus, if we prove that

E
[
Mt (f )1U

] = E
[
Ms(f )1U

]
, ∀U ∈Fs , (5.18)

we will conclude that Mt (f ) is a martingale. To assure (5.18) it is enough to verify it for sets U of the form

U =
k⋂

i=1

[
Ysi (fi) ∈ Ai

]
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for 0 ≤ s1 ≤ · · · ≤ sk ≤ s, fi ∈ Sα(R) and Ai measurable sets of R. Since Mn
t (f ) is a martingale,

E
[
Mn

t (f )1Un

] = E
[
Mn

s (f )1Un

]
, ∀U ∈Fs , (5.19)

where

Un =
k⋂

i=1

[
Yn

si
(fi) ∈ Ai

]

for 0 ≤ s1 ≤ · · · ≤ sk ≤ s, fi ∈ Sα(R) and Ai are measurable sets of R. Therefore, in order to show (5.18) it is enough to
prove the claim that the expectations in (5.19) converge to the respective expectations in (5.18).

Since Yn
t (f ) converges to Yt (f ) as n → +∞, which is concentrated on continuous paths, then Mn

t (f )1Un converges
in distribution to Mt (f )1U . Thus, by [1, pp. 32, Theorem 5.4] in order to get convergence of expectations, it is enough to
assure that {Mn

t (f )1Un}n∈N is a uniformly integrable sequence. In its hand, the uniform integrability can be guaranteed
by showing that the L2 norm of Mn

t (f )1Un is uniformly bounded in n ∈ N. Since the indicator function is bounded by
one, we can deal only with the L2 norm of the martingale Mn

t (f ). Now, applying the Minkowksi inequality to (5.3), we
get

Eμn

[(
Mn

t (f )
)2]1/2 ≤ Eμn

[(
Yn

t (f )
)2]1/2 +Eμn

[(
Yn

0 (f )
)2]1/2

+Eμn

[(∫ t

0

1√
n

∑
x∈Z

n2Anf

(
x

n

)
ηs(x) ds

)2]1/2

. (5.20)

The first term on the right hand-side of (5.20) is bounded by

1

n

∑
x∈Z

(
f

(
x

n

))2

χ
(
ρn

t (x)
)+ 2

n

∑
x<y

f

(
x

n

)
f

(
y

n

)
ϕn

t (x, y).

Since |ρn
t (x)| ≤ 1, the first parcel in the display above is uniformly bounded in n. To treat the second term of the last

display, we use a similar argument to the one used below (5.12). The second term on the RHS of (5.20) is bounded by

1

n

∑
x∈Z

(
f

(
x

n

))2

χ
(
ρn

0 (x)
)+ 2

n

∑
x<y

f

(
x

n

)
f

(
y

n

)
ϕn

0 (x, y),

which is uniformly bounded on n ∈ N due to conditions (2.12) and (2.13). Again by a similar argument to the one
presented for tightness below (5.12), the third term on the right hand-side of (5.20) is bounded by t2 times

1

n

∑
x∈Z

(
f

(
x

n

))2

sup
t≤T

χ
(
ρn

t (x)
)+ 2

n

∑
x<y

f

(
x

n

)
f

(
y

n

)
sup
t≤T

ϕn
t (x, y),

thus concluding the characterization of limit points.

Appendix A: Auxiliary results on random walks

The next result is quite classical, but hard to find in the literature. It is included here for sake of completeness.

Proposition A.1. Let X be the symmetric simple one-dimensional continuous time random walk with jump rates given
by λx,y = λ > 0 whenever |x − y| = 1, and zero if |x − y| �= 1. Then,

∫ t

0
P[Xs = 0]ds ≤ c

√
t,

where c > 0 is a constant which does not depend on t .
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Proof. Assume for sake of simplicity that λ = 1. Let N := N2s be a Poisson distribution with parameter 2s.

P[Xs = 0] =
∞∑

k=0

P[Xs = 0|N = k] · P[N = k]

=
∞∑

k=0

1[k is even]
1

2k

(
k

k/2

)
P[N = k]

= e−2s +
�s�∑
k=1

1[k is even]
1

2k

(
k

k/2

)
P[N = k]

+
∞∑

k=�s�+1

1[k is even]
1

2k

(
k

k/2

)
P[N = k]. (A.1)

Using the Stirling Formula (see for example Feller, Vol I.), it is easy to check that

1

2k

(
k

k/2

)
≤ 1√

πk
≤ 1. (A.2)

Applying the second inequality of (A.2) in the first sum of (A.1) and the first inequality of (A.2) in the second sum in
(A.1), we obtain that P[Xs = 0] is bounded from above by

e−2s + P
[
N ≤ �s�]+ c1√

s

∞∑
k=�s�+1

P[N = k] ≤ e−2s + P
[
N ≤ �s�]+ c1√

s
. (A.3)

In the sequel, we will get an exponential bound P[N ≤ �s�] by a standard large deviations technique. In this way, note
that, for any θ > 0,

P
[
N ≤ �s�] ≤ P[N ≤ s] = E

[
1[N≤s]eθNe−θN

] ≤ eθs
E
[
1[N≤s]e−θN

]
≤ eθs

E
[
e−θN

] = eθse2s(e−θ−1) = es(2e−θ−2+θ).

Denote f (θ) = 2e−θ − 2 + θ and note that f assumes its minimum at θ0 = log 2 > 0, and f (θ0) = log 2 − 1 < 0.
Therefore, choosing θ = θ0, we get

P
[
N ≤ �s�] ≤ es(log 2−1).

Looking at (A.3) and then to (A.1), we conclude that

P[Xs = 0] ≤ e−2s + es(log 2−1) + c1√
s
.

Integrating, we get∫ t

0
P[Xs = 0]ds ≤

∫ t

0

(
e−2s + es(log 2−1) + c1√

s

)
ds ≤ c2

√
t,

for some constant c2 not depending on t . �

Proposition A.2. Let (X,Y ) be the symmetric simple two-dimensional continuous time random walk. Then,∫ t

0
P
[
(Xs,Ys) = (0,0)

]
ds ≤ c log t,

where c > 0 is a constant which does not depend on t .

The proof of the statement above can be adapted from the one of Proposition A.1.
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Appendix B: Fluctuations at the initial time

The objective of the next result is to illustrate that any slowly varying Bernoulli product measure satisfies the condition
(B) in Theorem 2.8. Since condition (A) is trivially satisfied, this shows that the slowly varying Bernoulli measure falls
into the framework of this article.

Proposition B.1. Let νn
ρ0(·) be the slowly varying Bernoulli product measure associated with a smooth profile ρ0. Then,

Yn
0 converges in distribution to Y0, where Y0 is a mean zero Gaussian field of covariance given by

E
[
Y0(g)Y0(f )

] =
∫
R

χ
(
ρ0(u)

)
g(u)f (u)du, (B.1)

for any f,g ∈ Sα(R).

Proof. As argued in Section 5.2, for each f ∈ Sα(R), the sequence {Y0(f )}n∈N is tight, hence {Y0}n∈N is tight due to
Mitoma’s criterion (Proposition 5.3). Thus, it remains only to characterize the joint limit in distribution for the vectors of
the form (Y0(f1), . . . ,Y0(fk)), with fi ∈ Sα(R), for i = 1, . . . , k. Since νn

ρ0
is a product measure,

logEνn
ρ0

(·)
[
exp

{
iθYn

0 (f )
}] =

∑
x∈Z

logEνn
ρ0

(·)
[

exp

{
iθ√
n
η̄0(x)f

(
x

n

)}]

=
∑
x∈Z

log

[
ρ0

(
x

n

)
exp

{
iθ√
n
f

(
x

n

)(
1 − ρ0

(
x

n

))}

+
(

1 − ρ0

(
x

n

))
exp

{
− iθ√

n
f

(
x

n

)
ρ0

(
x

n

)}]
.

Since f ∈ Sα(R), we have smoothness of f except possibly at x = 0, together with fast decaying. Keeping this in mind,
Taylor’s expansion on the exponential function permits to conclude that the expression above is equal to

− θ2

2n

∑
x∈Z

f 2
(

x

n

)
χ

(
ρ0

(
x

n

))
+ O

(
1√
n

)
,

which gives us that

lim
n→+∞ logEνn

ρ0
(·)
[
exp

{
iθYn

0 (f )
}] = −θ2

2

∫
R

χ
(
ρ0(u)

)
f 2(u) du.

Replacing f by a linear combination of functions and then applying the Crámer–Wold device, the proof ends. �
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