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Abstract. Inspired by Kalikow-type decompositions, we introduce a new stochastic model of infinite neuronal networks, for which
we establish sharp oracle inequalities for Lasso methods and restricted eigenvalue properties for the associated Gram matrix with
high probability. These results hold even if the network is only partially observed. The main argument rely on the fact that concen-
tration inequalities can easily be derived whenever the transition probabilities of the underlying process admit a sparse space–time
representation.

Résumé. En s’inspirant des décompositions de Kalikow, nous introduisons un nouveau modèle de réseaux neuronaux infinis, pour
lesquels nous établissons des inégalités d’oracle précises pour des méthodes Lasso et des propriétés de valeur propre restreinte pour
la matrice de Gram associée avec grande probabilité. Ces résultats sont vrais même si le réseau n’est que partiellement observé.
L’argument principal est d’établir des inégalités de concentration quand les probabilités de transition sous-jacentes ont une représenta-
tion parcimonieuse en temps et espace.
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1. Introduction

Lasso-type methods in classic regression settings assume that the corresponding Gram matrix G fulfills nice properties
such as the Restricted Isometry Property (RIP), Restricted Eigenvalue (RE) conditions, etc. In many works (see for
instance van de Geer and Bühlmann [32], Bühlmann and van de Geer [2], van de Geer [31] and references therein),
the explanatory variables involved in the Gram matrix are given at first and it is natural to define the regression model
conditionally to these variables. In this sense, it is also natural to assume such properties on the Gram matrix G without
trying to show that they are fulfilled with high probability. In practice, it is computationally difficult to check whether G

satisfies or not these assumptions and many works have shown how random matrices can fulfill such properties with high
probability (see for instance Candès and Tao [3], Rudelson and Vershynin [27] or the references in Tropp [29]).

However, in several probabilistic frameworks it is difficult to separate the study of the Gram matrix from the study of
the process itself (see for instance Kock and Callot [21] where the probabilistic framework is of auto-regressive kind or
Gaïffas and Matulewicz [11] for Markovian continuous processes). Several works have therefore shown that with high
probability, Lasso or other adaptive methods satisfy oracle inequalities or minimax results and that, on the same event,
the corresponding Gram matrix (which is considered here also as a random variable) satisfies RIP or RE (see for instance
Kock and Callot [21], Basu and Michailidis [1], Jiang, Raskutti and Willett [18], Hunt et al. [17]).

We are here interested in a particular type of stochastic process that can model the spiking events of a possibly infinite
network of neurons. Many probabilistic models of neuronal activities in a network exist. As examples, let us cite contin-
uous frameworks where both the voltage and the spiking activity of each neuron are modeled (see for instance Sacerdote
and Giraudo [28]), or where the spike trains are directly modeled by point processes (see e.g. Chevallier [5]). There are
also approaches, closer to the present one, where discrete time is used (see Cofré and Cessac [6], Galves and Löcherbach
[14]).
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Although many statistical methods have been developed to estimate the probability to spike given the past for various
probabilistic models, most of the time one assumes that the network is fully observed (see for instance Pouzat and Chaffiol
[25] on Wold processes, Chen et al. [4] on Hawkes processes or Mark, Raskutti and Willett [23] on Poisson counts). Let
us underline the work by Hansen, Reynaud-Bouret and Rivoirard [15], which is the closest to ours from a statistical
point of view, in which the authors applied a Lasso method on point processes and derived an oracle inequality on an
event where the corresponding Gram matrix G is invertible. In a second step, the authors have shown that G is invertible
with high probability when the observed process is a linear Hawkes process and the small fixed number of observed
neurons correspond in fact to the totality of the network (see also Kelly et al. [20] for an application on real data of
Lasso-type methods). However, in practice, data biologists record are much more scarce than a complete recordings of
the whole network activity. Most of the time, just few tens of neurons are recorded and they correspond to neurons that
are embedded in at least a network of thousands of neurons.

We are aware of only two articles which clearly deal more deeply with the problem of partial observation from a
mathematical point of view: Lerasle and Takahashi [22] and Duarte et al. [8]. In Lerasle and Takahashi [22], the authors
assume that the configuration describing the neural activity follows a Gibbsian distribution, which does not take depen-
dency in time into account, fact which is of the utmost importance in neuroscience. In Duarte et al. [8], the interaction
neighborhood of a given neuron is estimated by assuming that we observe more neurons than this neighborhood even if
it is not the totality of network. In practice, the complexity of the algorithm makes it difficult to apply it on large data
sets. In these two works, the purpose is clearly to deal with the fact that some neurons (or nodes of the network) are not
recorded at all whereas the recordings are complete for the observed neurons. In a slightly different statistical setting,
note also the work by Mark, Raskutti and Willett [24], which deals with another kind of missing data, the applied filter
being i.i.d. in both time and nodes but without nodes that are completely unrecorded.

The aim of the present work is to show that with high probability, the Gram matrix G satisfies nice properties such as
invertibility or RE condition with as few assumptions as possible on the underlying probabilistic models and this even if
we observe only a small number of neurons embedded in an infinite neuronal network, for which most of the neurons are
not observed at all.

Inspired by Galves and Löcherbach [13] model and Kalikow-type decompositions (see Kalikow [19], Galves et al.
[12]), we consider discrete time models for which the probability of a neuron to spike at a given time unit given the
past configuration may only depend on a few neurons (assimilated to space positions) and few time steps. Hence the
dependencies in time and space should be very small but may be random and chosen at each step. We use this probabilistic
sparsity in time and space to prove concentration inequalities for various functionals including Gram matrices. We employ
these concentration inequalities to prove that RE properties are satisfied with large probability even on a partially observed
infinite network. Therefore we show that Lasso methods have good theoretical properties even in this case.

The paper is organized as follows. In Section 2, we provide the main notation and present briefly the stochastic frame-
work with its main assumptions. In Section 3, we prove an oracle inequality for the Lasso estimator of the transition
probabilities of this model. The oracle inequality is derived on a certain event on which some properties of the Gram
matrix are met. Examples of useful dictionaries are also presented in this section. We discuss, in Section 4, the defini-
tion of space–time decomposition and show examples of discrete time models where it applies. Besides, thanks to the
definition of a simulation algorithm inspired by Galves and Löcherbach [13], we prove that stochastic models admitting
a space–time decomposition have a stationary version even on infinite networks under some conditions of probabilistic
sparsity. We prove that these conditions are usually much less stringent than the ones of the literature. Still in the same
section, we obtain concentration inequalities for such processes, under some additional exponential constraints, by adapt-
ing arguments of Viennet [33]. This allows us to prove that the introduced Gram matrices based on a partial observation
of the network are invertible or satisfy RE with high probability. This is done in Section 5. A brief conclusion is given in
Section 6. All proofs are given in the Section 7.

2. Stochastic framework and notation

We write N to denote the set of natural numbers {0,1,2, . . .}. The set of integers {. . . ,−1,0,1, . . .} is denoted by Z. The
set of strictly negative and positive integers are denoted by Z− and Z+ respectively.

We consider a stationary stochastic chain X = (Xi,t )i∈I,t∈Z taking values in {0,1}I×Z, defined on a probability space
(�,F,P), where I is a countable (possibly infinite) set. The set I represents the set of neurons in the network. For each
i ∈ I and t ∈ Z,

Xi,t =
{

1 if neuron i spikes at time t,

0 otherwise.
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The configuration of X at time t ∈ Z is denoted by Xt = (Xi,t , i ∈ I ). For s, t ∈ Z with s < t , Xi,s:t stands for the
collection (Xi,s, . . . ,Xi,t ) and Xs:t for the collection (Xi,r )i∈I,s≤r≤t . For each t ∈ Z, X−∞:t denotes the past history
(. . . ,Xt−1,Xt ) of X at time t + 1. Note that the past histories have space–time components. For F ⊂ I and t ∈ Z,
XF,t = (Xi,t , i ∈ F) denotes the configuration of X at time t restricted to set F . More generally, for any subset v ⊂ I ×Z,
Xv denotes the collection (Xi,t )(i,t)∈v .

Assumption 1. For each t ∈ Z, given the past history X−∞:t , the neurons spike independently of each other at time t +1,
i.e., for any finite set J ⊂ I and (ai)i∈J ∈ {0,1}J ,

P

(⋂
i∈J

{Xi,t+1 = ai}|X−∞:t = x

)
=
∏
i∈J

P(Xi,t+1 = ai |X−∞:t = x), P-a.e. x ∈ {0,1}I×Z− .

Since the stochastic chain X is stationary, Assumption 1 implies that the dynamics of X is fully characterized by the
transition probabilities

pi(x) = P(Xi,0 = 1|X−∞:−1 = x), x ∈ {0,1}I×Z−, i ∈ I.

These transition probabilities are all assumed to be measurable functions of x ∈ {0,1}I×Z− .
Hereafter, we need the following notation. For any neighborhood v ⊂ I × Z− and x, y ∈ {0,1}I×Z− , we write x

v= y

to indicate yv = xv . For any real-valued function f on {0,1}I×Z− and subset v ⊂ I × Z−, we say f is cylindrical in v

and write f (x) = f (xv), if f (x) = f (y) for any x, y ∈ {0,1}I×Z− such that x
v= y.

Let us now present briefly the three other main probabilistic assumptions that we may require in the article. They will
be discussed in more details in the sequel.

We denote by V the collection of finite neighborhoods, i.e. finite subsets of I × Z− and we consider processes for
which the following decomposition holds.

Assumption 2 (Space–time decomposition). For all v in V and i in I , there exists a [0,1]-valued measurable function
pv

i (·), cylindrical in v, and a non negative weight λi(v), such that for all x ∈ {0,1}I×Z− and i ∈ I ,

{
pi(x) = λi(∅)p

∅

i (x) +∑v∈V,v �=∅
λi(v)pv

i (x),∑
v∈V λi(v) = 1.

As we will see in Section 4 where we discuss in details the implication of this assumption, this Kalikow-like assumption
is actually met by a wide variety of stochastic processes modeling neuronal networks.

For any neighborhood v ∈ V , let T (v) = −min(s ∈ Z−, (j, s) ∈ v) be the corresponding time length, with the conven-
tion that T (∅) = 0. We also assume the following.

Assumption 3. There exists a strictly positive θ such that for all i,

ϕi(θ) =
∑
v∈V

|v|eθT (v)λi(v)

is finite and

ϕ(θ) = sup
i∈I

ϕi(θ) < 1. (2.1)

This assumption, which can be seen as probabilistic sparsity (see Section 4), means that the neighborhoods used in the
previous decomposition are in average nor too large neither too timely spread.

Finally, we will use also the following assumption to control the Gram matrices in Section 5.

Assumption 4. There exists some positive μ such that for all i ∈ I and for all x ∈ {0,1}I×Z− ,

μ ≤ pi(x) ≤ 1 − μ.

This means that whatever the past, there is always enough randomness in the system.
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Note that all these 4 assumptions are very general and are there to control the randomness of the underlying neuronal
system without specifying any parametric model. In particular in what follows, the pi ’s are just approximated by a finite
combination of elements of dictionaries, without being one (see Section 3): the overall purpose is to approximate pi by
what happens in a finite subset of observed neurons, namely F , always keeping in mind that F is embedded in a much
more complex and potentially infinite network I , the overall complex stochastic interactions inside I being governed by
Assumptions 1, 2, 3 and/or 4 depending on the results.

3. Lasso method and statistical notation

For a finite F ⊂ I , subset of observed neurons, and integers T > m ≥ 1 measuring the observation window, the aim is
to estimate x �→ pi(x) for a fixed neuron i ∈ F , given the sample XF,−(m−1):T . To that end, for each time 1 ≤ t ≤ T ,
we compare the past XF,(t−m):(t−1) to the current observation Xi,t to guess what can be a good approximation of pi(x).
The intuition behind this strategy is that for a well-chosen space–time neighborhood v ⊂ I ×Z−, it might be sufficient to
know xv and not the whole past configuration x to well approximate pi(x).

Given the sample XF,−(m−1):T , one might consider several candidates to approximate pi(x). Here, we shall approxi-
mate pi(x) by linear combinations of a given dictionary �, i.e. a finite set of real-valued functions on {0,1}I×Z− which
are cylindrical in F × m with m = {−m, . . . ,−1}. More precisely, for each vector a = (aϕ)ϕ∈� ∈ R

�, we denote

x �→ fa(x) =
∑
ϕ∈�

aϕϕ(x), (3.1)

the candidate encoded by the vector a that should approximate pi(x). We assume that the functions in the dictionary are
bounded in infinite norm by ‖�‖∞.

We use the least-squares contrast defined by

C(fa) = − 2

T

T∑
t=1

fa(XF,(t−m):(t−1))Xi,t + 1

T

T∑
t=1

f 2
a (XF,(t−m):(t−1)), a = (aϕ)ϕ∈� ∈ R

�.

Observe that if for real-valued functions f and g on {0,1}I×Z− , we denote 〈f,g〉T = 1
T

∑T −1
t=0 f (X−∞:t )g(X−∞:t ) and

‖f ‖T the corresponding norm, then one has

C(fa) = −2〈fa,Xi,·+1〉T + ‖fa‖2
T = ‖fa − Xi,·+1‖2

T − ‖Xi,·+1‖2
T ,

and C is minimum when ‖fa −Xi,.+1‖2
T is minimum. In this sense, minimizing C over functions that are only depending

on the past might give a good estimator of pi(x).
Notice also that, if for ϕ,ϕ′ ∈ � we write,

bϕ = 1

T

T∑
t=1

ϕ(XF,(t−m):(t−1))Xi,t and Gϕ,ϕ′ = 1

T

T∑
t=1

ϕ(XF,(t−m):(t−1))ϕ
′(XF,(t−m):(t−1)), (3.2)

then C(fa) can be rewritten as

−2aᵀb + aᵀGa,

where b = (bϕ,ϕ ∈ �) is a vector of R�, G = (Gϕ,ϕ′)ϕ,ϕ′∈� is the Gram matrix and aᵀ is the transpose of vector a.
In the sequel, let |a| = (|aϕ |, ϕ ∈ �), |a|∞ = maxϕ∈� |aϕ |, ‖a‖ = √

aᵀa and |a|1 = 1ᵀ|a| where 1 is the vector with
all coordinates equal to 1.

Following Hansen, Reynaud-Bouret and Rivoirard [15], we minimize C(fa) subject to a �1-penalization on the vector
a = (aϕ,ϕ ∈ �). Precisely, we choose the function f̂ = fâ where

â ∈ arg min
a∈R�

{−2aᵀb + aᵀGa + γ d|a|}, (3.3)

for d a positive term controlling the random fluctuations and γ > 0, a tuning parameter.
The active set S(a) of a vector a ∈ R

� is the set S(a) = {ϕ : aϕ �= 0}. We shall denote for any subset J ⊂ � and any
a ∈ R

�, aJ ∈ R
� the vector whose coordinates in J are equal to the ones of a and 0 anywhere else. We also denote by

|J | the cardinality of J .
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For later use, let us write for each ϕ ∈ �,

b̄ϕ = 1

T

T −1∑
t=0

ϕ(XF,t−m:t )pi(X−∞:t ). (3.4)

3.1. Examples of dictionaries

Let us present briefly some examples of dictionaries that might be useful.

Short memory effect. Let the dictionary � be defined by the set {ϕj : j ∈ F } where

ϕj (x) =
{

1 if xj,s = 1 for some −m ≤ s ≤ −1,

0 otherwise,
x ∈ {0,1}I×Z− ,

so that we are trying to explain the presence of a spike on neuron i at time t by a linear combination of the presence of a
spike on neuron j in a small window just before time t .

Cumulative effect. We can also think that m = ηL is a much larger parameter and cut the past m into L small pieces
of length η, where the effect of the spikes are different and cumulative. This leads to the dictionary � defined by the set
{ϕj,� : j ∈ F and 1 ≤ � ≤ L} where

ϕj,�(x) =
−η(�−1)−1∑

s=−η�

xj,s , x ∈ {0,1}I×Z− .

Cumulative effect with spontaneous apparition. It can be important to take into account a background activity, especially
to explain the apparition of spikes due to the unobserved part of the network. To do so, we may add to the previous
dictionary an extra function

ϕ0 = 1,

whose corresponding coefficient corresponds to a spontaneous activity.

Hawkes dictionary. In both the cumulative effect and the cumulative effect with spontaneous part, one might be inter-
ested in a particular example where η = 1 and L = m. In particular, in the case with spontaneous part, we are therefore
interested in approximating pi(x) by

fa(x) = a0 +
∑
j∈F

∑
−m≤s≤−1

aj,−sxj,s , x ∈ {0,1}I×Z− ,

which is the exact form of a discrete Hawkes process restricted to F × m (see Section 4) and this even if pi is not of this
shape.

Note that whatever the dictionary, m represents the maximal delay in the dictionary and |F | the number of observed
neurons. As we will see in Section 5, both these quantities have to be usually less than a certain increasing function of T ,
which depends on the dictionary (typically log(T )), to derive an RE property on the Gram matrix. In particular |m| might
grow slightly with T to ensure a good asymptotic approximation of the dependency in time. Mathematically speaking,
the same holds for |F |, although the size of F is dictated by the neurophysiological experiment and, for practical prupose,
it is always thought to be a constant with respect to T .

3.2. Oracle inequality

It is classical, by now, to derive oracle inequalities for Lasso procedures if G satisfies some properties. We use two of
them.

Definition 1. Let κ > 0. The matrix G satisfies Property Inv(κ) if

∀a ∈ R
�, aᵀGa ≥ κ‖a‖2.
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A weaker version is the restricted eigenvalue condition.

Definition 2. Let c > 0, κ > 0 and s ∈ N. The matrix G satisfies Property RE(κ, c, s) if for all subset J such that |J | ≤ s

and for all a ∈R
� such that

|aJc |1 ≤ c|aJ |1,
the following holds

aᵀGa ≥ κ‖aJ ‖2.

Our first result establishes an oracle inequality for the estimator f̂ = fâ where â is defined by (3.3).

Theorem 1. Let γ ≥ 2, κ > 0 and s ∈N. On the event on which

(i) for all ϕ ∈ �, |bϕ − b̄ϕ | ≤ d ,
(ii) and G satisfies RE(κ, c(γ ), s) with c(γ ) = γ+2

γ−2 ,

the following inequality is satisfied

∥∥f̂ − pi(·)
∥∥2

T
≤ inf

a∈R�:|S(a)|≤s

{∥∥fa − pi(·)
∥∥2

T
+ κ−1

∣∣S(a)
∣∣d2 (γ + 2)2

4

}
. (3.5)

Moreover for any 0 < δ < 1, if d = dδ with

dδ =
√

‖�‖2∞
log |�| + log(2δ−1)

2T
,

then P(∃ϕ ∈ � : |bϕ − b̄ϕ | > d) ≤ δ.

Equation (3.5) is a classical oracle inequality (see for instance Hansen, Reynaud-Bouret and Rivoirard [15] or Hunt
et al. [17] for close set-ups). This result means that the Lasso estimator gives the best s-sparse approximation of pi

based on the dictionary � and that the price to pay is of the order of κ−1sd2, if we assume that ‖�‖∞ ≤ 1. With the

choice d = dδ , we have therefore a price of the order of κ−1s
log |�|+log(2δ−1)

T
. Note that if we knew that pi can be indeed

decomposed on �, meaning that the model is true and that in particular pi only depends on s elements of the dictionary
�, the price to pay anyway to estimate pi would be roughly of the order of s/T . Therefore if the logarithmic factor is a
classical loss for adaptation in (3.5), it remains to see the order of κ , to see if (3.5) gives roughly the best possible rate.

Note that if G satisfies Inv(κ) then one can choose γ = 2 and s = |�| in Theorem 1 and (3.5) can be rewritten as

∥∥f̂ − pi(·)
∥∥2

T
≤ inf

a∈R�

{∥∥fa − pi(·)
∥∥2

T
+ 4κ−1

∣∣S(a)
∣∣d2},

which is a sharper version of the result proved in Hansen, Reynaud-Bouret and Rivoirard [15] in continuous time, up to
the fact that they used more general weights which leads to a weighted �1 norm in the criterion. The same refinement
would have been possible but since the focus is here on the Gram matrix, we have decided to use a classical �1 norm for
sake of simplicity.

Note also that another (very easy) refinement consists in clipping f̂ to ensure that it remains between 0 and 1. The
same result holds for this clipped version. Another way to find similar results for estimators that are forced to be in
[0,1] is to use penalized maximum likelihood. Many works have used it (see for instance Mark, Raskutti and Willett
[23] for Poisson counts or Basu and Michailidis [1], Gaïffas and Matulewicz [11] in Gaussian Markovian set-ups). This
comes with additional technicalities, in particular if the likelihood of the statistical model is not easy to compute, because
the model is not Gaussian. In particular, Mark, Raskutti and Willett [24] use a setting very close to ours, but simpler
(see also the examples in Section 4) and make use of Taylor expansion to approximate the criteria. Translated here, the
approximation would depend on the dictionary we use and would be more complex for each dictionary. Once again,
because the focus is here on the Gram matrix, we have decided to stick with the simplest Lasso result made for least-
squares contrast.

Results for controlling Gram matrices are numerous (see for instance Basu and Michailidis [1], Gaïffas and Matulewicz
[11], Hunt et al. [17] for simpler settings than the present one) but always assume that the whole network is observed
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and that the target can be written on the dictionary. In Hansen, Reynaud-Bouret and Rivoirard [15], which is the closest
framework to the present one, it has been proved for instance that, if one observes the whole finite network and if the
spike trains are linear Hawkes processes, then G is invertible with large probability for well chosen dictionaries. In this
case, the corresponding κ is roughly lower bounded by a quantity which is exponentially small in the total number of
neurons in the network. Here we would like to go beyond these assumptions and prove that even if

• the model is wrong (i.e. pi is not Hawkes for instance) and pi cannot be written on the dictionary,
• the network is infinite,
• we only observe a very partial subnetwork,

it is still possible to find good κ with high probability and that the dependency in the number of neurons can be much
better than these previous results.

The main idea consists in using very general Kalikow-type decomposition of the transition probabilty pi(x), that are
available in discrete time (see Galves et al. [12]) and that do not exist with such generality in continuous time (see however
Hodara and Löcherbach [16] for promising results in this direction).

4. Space–time decomposition and concentration

4.1. Definition

Let us first recall Assumption 2: For all v in V and i in I , there exists a [0,1]-valued measurable function pv
i (·), cylindrical

in v, and a non negative weight λi(v), such that for all x ∈ {0,1}I×Z− and i ∈ I ,{
pi(x) = λi(∅)p

∅

i (x) +∑v∈V,v �=∅
λi(v)pv

i (x),∑
v∈V λi(v) = 1.

The aforementioned decomposition can be interpreted as follows. At each time step, to decide whether the neuron
i spikes or not, we first choose a random space–time neighborhood V ∈ V according to the distribution λi . Once this
neighborhood V is chosen, we decide if a spike of neuron i occurs with probability pV

i (xV ) that depends only on the past
history restricted to V . Note that p

∅

i (x) does not depend on x at all, and we denote this value p
∅

i .
Such a space–time decomposition of the transition probabilities {pi(x), i ∈ I, x ∈ {0,1}I×Z−} generalizes the classical

Kalikow decomposition introduced in Kalikow [19] and further developed in Comets, Fernandez and Ferrari [7], Galves
et al. [12] and Galves and Löcherbach [13]. The main difference consists in not forcing the nesting of the neighborhoods
v that lie in the support of λi . This helps us to exploit the fact that in many cases the distributions λi charge very few
neighborhoods and that the cardinality of this neighborhood is usually very small, if the nesting is not forced. We speak
in this case of probabilistic sparsity.

Remark 1. If we denote qi(x) = P(Xi,0 = 0|X−∞:−1 = x) = 1 − pi(x) and qv
i (x) = 1 − pv

i (x) for all i ∈ I , x ∈
{0,1}I×Z− , we can also write

qi(x) = λi(∅)q
∅

i (x) +
∑

v∈V,v �=∅

λi(v)qv
i (x),

where for each v ∈ V , the function qv
i is cylindrical in v.

Remark 2. For a given space–time decomposition, one can use Remark 1 to deduce that for all i ∈ I ,

inf
x∈{0,1}I×Z−

pi(x) + inf
x∈{0,1}I×Z−

qi(x) ≥ λi(∅).

More generally, for any v ∈ V , one can show that

inf
x∈{0,1}I×Z−

{
inf

y∈{0,1}I×Z−:y v=x

pi(y) + inf
y∈{0,1}I×Z−:y v=x

qi(y)
}

≥ λi(∅) +
∑

w⊆v,w �=∅

λi(w).

One can also show that the space–time decomposition is not unique. This fact raises the question of whether there is
an “optimal” decomposition of a given transition probability. Such a question, however, is not discussed in this article.
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4.2. Main examples

4.2.1. Markov chains
Suppose I is a singleton, say I = {1}, and denote Xt instead of X1,t for convenience. Let us assume also that for all
x ∈ {0,1}Z− ,

p(x) = P(X0 = 1|X−∞:−1 = x) = P(X0 = 1|X−1 = x−1),

that is, the stochastic chain X = (Xt )t∈Z is a Markov chain of order 1 taking values in {0,1}. To shorten notation, let

p1 = P(Xt = 1|Xt−1 = 1), q1 = 1 − p1, p0 = P(Xt = 1|Xt−1 = 0) and q0 = 1 − p0.

We can always write the transition probability p(x) as

p(x) = p1x−1 + p0(1 − x−1).

Let us denote p = p1 ∧ p0, q = q1 ∧ q0 and μ = p + q . If 0 < μ < 1, then one can write

p(x) = μ
p

μ
+ (1 − μ)

[
p1 − p

1 − μ
x−1 + p0 − p

1 − μ
(1 − x−1)

]
.

So one can use as space–time decomposition⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ(∅) = μ,

p∅ = p
μ
,

λ({−1}) = 1 − μ,

p{−1}(x) = p1−p
1−μ

x−1 + p0−p
1−μ

(1 − x−1).

(4.1)

Note that the support of λ is then reduced to {∅, {−1}}. Note also than it is quite straightforward to extend this to the mul-
tidimensional models considered in Mark, Raskutti and Willett [24], for instance by saying that when the neighborhood
is not empty, one picks I which is finite in their case.

4.2.2. Chains of infinite order
Again suppose I is a singleton. In this case, the stochastic chain X is described by the transition probability {p(x), x ∈
{0,1}Z−}. Denote for � ∈ Z+, � the set {−�, . . . ,−1} and

β� = sup
x∈{0,1}Z−

sup
y,z∈{0,1}Z− s.t.

y
�=z

�=x

{∣∣p(y) − p(z)
∣∣}.

If there exist �0 ≥ 1 such that β� = 0 for all � ≥ �0, then the stochastic chain X is called Markov Chain of Order �0. Oth-
erwise, X is called Chain of Infinite Order. We refer the reader to Fernandéz, Ferrari and Galves [9] for a comprehensive
introduction to Chains of Infinite Order.

If β� → 0 as � → ∞, then {p(x), x ∈ {0,1}Z−} is said to be continuous and the sequence (β�)�∈Z+ is called the
continuity rate. Recall that q(x) = 1 − p(x) for all x ∈ {0,1}Z− . One can then compute for � ∈ Z+,

α(�) = inf
x∈{0,1}Z−

{
inf

y∈{0,1}Z− s.t. y
�=x

p(y) + inf
y∈{0,1}Z− s.t. y

�=x

q(y)
}
.

This allows us to define the distribution λ which has support only on the �’s and

λ(�) = α(�) − α(� − 1), (4.2)

where α(0) = λ(∅) = infx∈{0,1}Z− p(x) + infx∈{0,1}Z− q(x). One can show that every continuous transition probability

{p(x), x ∈ {0,1}Z−} admits a decomposition of the form:{
p(x) = λ(∅)p∅ +∑�∈Z+ λ(�)p�(x),

λ(∅) +∑�∈Z+ λ(�) = 1.
(4.3)

Moreover (4.3) is a space–time decomposition since p∅ ∈ [0,1] and for each � ∈ Z+, {p�(x), x ∈ {0,1}Z−} is a transition
probability of a Markov chain of order �.
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4.2.3. Discrete-time linear Hawkes processes
Multivariate Hawkes processes (also referred in the neuroscience literature as a particular case of generalized linear
models) are often used to model interacting spike trains and especially the synaptic integration. In contrast to the classical
framework where these processes are described in continuous time and are not linear, we focus here on a discrete-time
and linear formulation, where for i ∈ I :

ψi(x) = νi +
∑
s∈Z−

∑
j∈I

hj→i (−s)xj,s and

⎧⎪⎨
⎪⎩

pi(x) = ψi(x) if ψi(x) ∈ [0,1],
pi(x) = 1 if ψi(x) > 1,

pi(x) = 0 if ψi(x) < 0.

(4.4)

In this formula, νi ≥ 0 represents the spontaneous activity of neuron i, that is its ability to produce spikes when there is
no interaction. The interaction function hj→i measures the amount of excitation (if positive) or inhibition (if negative)
that a spike of neuron j has on neuron i after a delay −s (a spike of neuron j with delay −s corresponds to xj,s = 1).

For a given neuron i ∈ I , we write

A+
i = {(j, s) ∈ I ×Z− : hj→i (−s) > 0

}
and A−

i = {(j, s) ∈ I ×Z− : hj→i (−s) < 0
}
,

and define the maximal excitatory (respectively inhibitory) strength by

�+
i =

∑
(j,s)∈A+

i

∣∣hj→i (−s)
∣∣ and �−

i =
∑

(j,s)∈A−
i

∣∣hj→i (−s)
∣∣.

Let us assume that

0 ≤ νi − �−
i and νi + �+

i ≤ 1, (4.5)

which implies in particular that whatever the past configuration x ∈ {0,1}I×Z− , the transition probability pi(x) ∈ [0,1] is
always equal to ψi(x). It also implies that �+

i + �−
i ∈ [0,1].

Then one can use for the space–time decomposition:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λi(∅) = 1 − (�+
i + �−

i ) which is ≥ 0 since 0 ≤ �+
i + �−

i ≤ 1,

p
∅

i = νi−�−
i

λi (∅)
which is ≤ 1 since νi + �+

i ≤ 1,

λi({(j, s)}) = |hj→i (−s)| for all (j, s) ∈ A+
i ∪ A−

i ,

p
{(j,s)}
i (x) = xj,s for all (j, s) ∈ A+

i ,

p
{(j,s)}
i (x) = (1 − xj,s) for all (j, s) ∈ A−

i .

(4.6)

It is moreover sufficient to assume that �+
i + �−

i < 1 to have λi(∅) > 0.
The discrete-time linear Hawkes model is an interesting example, because even if the true interaction graph, that is the

set of edges (j, i) ∈ I × I for which hj→i is non zero, is complete, the random neighborhoods V ∈ V of the space–time
decomposition have cardinality at most 1 almost surely. This probabilistic sparsity is exploited in the sequel to obtain
concentration inequalities.

Note that it is classically assumed for general Hawkes models that the spectral radius of the matrix (
∫ |hj→i |)i,j

is smaller than 1 to ensure stationnarity of the whole multivariate process. Here this matrix can be reinterpreted as
H = (

∑
�>1 |hj→i (�)|)i,j . Therefore (4.5) is different from the usual assumption: it implies in particular that

�+ + �− = H1 ≤ 1 coordinate per coordinate,

where �+ = (�+
i )i , �+ = (�+

i )i and 1 is the vector of 1’s.

4.2.4. GL neuron model
Let Wj→i ∈ R with i, j ∈ I , be a collection of real numbers such that Wj→j = 0 for all j . For each i ∈ I , let ϕi : R →
[0,1] be a non-decreasing measurable function and gi = (gi(�))�∈Z+ be a sequence of strictly positive real numbers.
Here, Wj→i is interpreted as the synaptic weight of neuron j on neuron i, ϕi as the spike rate function of neuron i and gi

as the postsynaptic current pulse of neuron i.
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For each x ∈ {0,1}I×Z− and i ∈ I , we define Li(x) = sup{s ∈ Z− : xi,s = 1}. The stochastic chain X satisfies a GL
neuron model if the transition probabilities {pi(x), i ∈ I, x ∈ {0,1}I×Z−} are given by (see Galves and Löcherbach [13])

pi(x) =
{

ϕi(0) if Li(x) = −1,

ϕi(
∑

j∈I Wj→i

∑−1
s=Li(x)+1 gj (−s)xj,s) otherwise.

(4.7)

Remark 3. Notice that the functions Li ’s introduce a structure of variable-length memory in the model. For this reason
the GL neuron model was introduced in Galves and Löcherbach [13] under the name of Systems of Interacting Chains
with Memory of Variable Length.

Linear spike rate functions. Let us consider the particular case where the parameters of the model are such that ϕi(u) =
νi + u with νi ≥ 0 for each i ∈ I . Similarly to Section 4.2.3, let us denote for each i ∈ I ,

A+
i = {(j, s) ∈ I ×Z− : Wj→igj (−s) > 0

}
and A−

i = {(j, s) ∈ I ×Z− : Wj→igj (−s) < 0
}
,

and define the maximal excitatory (respectively inhibitory) strength by

�+
i =

∑
(j,s)∈A+

i

|Wj→i |gj (−s) and �−
i =

∑
(j,s)∈A−

i

|Wj→i |gj (−s).

We also assume that

0 ≤ νi − �−
i and νi + �+

i ≤ 1. (4.8)

Under these assumptions, one can check that the transition probabilities (4.7) also satisfy Assumption 2. Specifically, we
can use⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λi(∅) = 1 − (�+
i + �−

i ) which is ≥ 0 since 0 ≤ �+
i + �−

i ≤ 1,

p
∅

i = νi−�−
i

λi (∅)
which is ≤ 1 since νi + �+

i ≤ 1,

λi({(j, s)}↓i ) = |Wj→i |gj (−s) for all (j, s) ∈ A+
i ∪ A−

i ,

p
{(j,s)}↓i

i (x) = xj,s1xi,s:−1=0 for all (j, s) ∈ A+
i ,

p
{(j,s)}↓i

i (x) = (1 − xj,s)1xi,s:−1=0 for all (j, s) ∈ A−
i ,

(4.9)

where {(j, s)}↓i = {(j, s), (i, s), . . . , (i,−1)} is the augmentation of the set {(j, s)} on the coordinate i for each (j, s) ∈
A+

i ∪A−
i . Hence, the random neighborhoods V ∈ V have cardinality either 0 (when V =∅) or s +1 (when V = {(j, s)}↓i

with j �= i) or s (when V = {(i, s)}↓i ).

Non-linear spike rate functions. In the previous work of Galves and Löcherbach [13], the space–time decomposition is
restricted to growing sequences of neighborhoods v that are indexed by their range in time. For each i ∈ I , one assumes
that there exists a growing sequence Ji(1) = {i}, Ji(�) ⊂ Ji(� + 1) of subsets of I that corresponds to the space positions
that are needed when looking at a past of length �, so that we can form vi(�) = Ji(�) × �, defining a growing sequence of
subsets of I ×Z−.

Next let us introduce the following quantities:

αi(�) = inf
x∈{0,1}I×Z−

{
inf

y∈{0,1}I×Z−:yvi (�)= x

pi(y) + inf
y∈{0,1}I×Z−:yvi (�)= x

qi(y)
}

and λi(vi(�)) = αi(�) − αi(� − 1), where for each i ∈ I , qi(y) = 1 − pi(y) and λi(∅) = αi(0) = infx∈{0,1}I×Z− pi(x) +
infx∈{0,1}I×Z− qi(x).

Let us assume that

sup
i∈I

∑
j∈I

|Wj→i | < ∞,
∑
�∈Z+

sup
i∈I

gi(�) < ∞ and sup
i∈I

∣∣ϕi(u) − ϕi(v)
∣∣≤ γ |u − v|, (4.10)

where γ is a positive constant.
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It has been proved in Galves and Löcherbach [13] (see Proposition 2) that the transition probabilities {pi(x), x ∈
{0,1}I×Z−} admit the following space–time decomposition:{

pi(x) = λi(∅)p
∅

i +∑�∈Z+ λi(vi(�))p
vi(�)
i (x),

λi(∅) +∑+∞
�=1 λi(vi(�)) = 1,

(4.11)

with, p
∅

i ∈ [0,1] and for � ≥ 1, p
vi(�)
i (x) is a [0,1]-valued measurable function which is cylindrical in vi(�).

Hence, the transition probabilities pi ’s also satisfy Assumption 2 in the nonlinear case. The random neighborhoods V ∈
V have cardinality either 0 (when V = ∅) or �|Ji(�)| (when V = vi(�)). Note that in the non-linear case the neighborhoods
vi(�) are dense in time by construction, whereas in the linear case one can obtain a stronger probabilistic sparsity.

4.3. Main properties

Before being able to assess a value to Xi,t at site (i, t) for fixed neuron i and time t , we need to understand on which
previous sites this value depends. To do so, we use the distribution λi to obtain a space–time neighborhood of (i, t). More
precisely, because the distribution λi gives a neighborhood for neuron i at time 0, we need to shift it at time t to obtain
a realization of the random neighborhood for neuron i at time t by stationarity. Hence if for every t ∈ Z and subset A of
I ×Z,

A→t = {(j, s + t) for (j, s) ∈ A
}
,

with the convention that ∅→t =∅, we can define the random neighborhood Ki,t of site (i, t) as

Ki,t = V →t
i,t ,

where Vi,t is drawn independently of anything else according to λi . We can proceed independently for all sites (j, s) and
obtain Kj,s = V →s

j,s .
By looking recursively at the neighborhoods of the neighborhoods, we are building a whole genealogy in space and

time of the site (i, t), that is the list of sites that are really impacting the value Xi,t . This genealogy is random and depends
only on the realizations of the neighborhoods, i.e. only on the distributions λi ’s.

The study of this space–time genealogy is of utmost importance. Indeed if the genealogy is almost surely finite then we
are able to follow classical constructions as done by Galves and Löcherbach [13] to write a perfect simulation algorithm.
Moreover the study of the length of the genealogy enables us to cut time into almost independent blocks and therefore to
have access to concentration inequalities, this second construction being inspired by Viennet [33], Reynaud-Bouret and
Roy [26] or Hansen, Reynaud-Bouret and Rivoirard [15].

4.3.1. Sufficient condition for finite genealogies
For all sites (i, t), let us define recursively A1

i,t = Ki,t and for n ≥ 1,

An+1
i,t =

( ⋃
(j,s)∈An

i,t

Kj,s

)∖{
A1

i,t ∪ · · · ∪ An
i,t

}
,

the genealogy stopped after n + 1 generations.
The complete genealogy is Gi,t =⋃∞

n=1 An
i,t . It is finite if and only if

Ni,t = inf
{
n ≥ 1 : An

i,t =∅
}
,

is finite.
This is a consequence of the following property.

Assumption 5. For each i ∈ I , we assume that the mean size of the random neighborhood on neuron i

m̄i =
∑
v∈V

|v|λi(v), (4.12)

is finite and that the maximal mean size satisfies

m̄ = sup
i∈I

m̄i < 1. (4.13)
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Probabilistic sparsity corresponds here to the fact that the mean size of the random neighborhoods are strictly less
than 1.

Thanks to this assumption, we can prove the following result.

Proposition 1. For each i ∈ I , t ∈ Z and � ∈ Z+,

P(Ni,t > �) ≤ (m̄)�.

In particular, under Assumption 5, for all i ∈ I and t ∈ Z,

P(Ni,t < ∞) = 1, (4.14)

that is all genealogies are finite almost surely.

4.3.2. Perfect simulation algorithm
Fix a site (i, t) and suppose we want to simulate Xi,t .

Under Assumption 5, we know the genealogy is finite almost surely and it is possible to build this genealogy recursively
without having to generate all the Vj,s . Once the genealogy is obtained by going backward in time, it is then sufficient to
go forward and simulate the Xj,s ’s in the genealogy according to the transitions pVj,s (XKj,s

).
More formally, we can use two independent fields of independent uniform random variables on [0,1], U1 =

(U1
i,t )i∈I,t∈Z and U2 = (U2

i,t )i∈I,t∈Z, such that the whole randomness of the construction is encompassed in the field

U1 for the genealogies and in the field U2 for the forward transitions and such that conditionally on these two fields, the
whole simulation algorithm is deterministic. But in practice, we generate U1

j,s and U2
j,s only if we need it. This leads to

the following algorithm

Step 1. Generate U1
i,t random uniform variable on [0,1]. Since V is countable, one can order its elements such that

V = {v1, . . . , vn, . . .}. Define the c.d.f. of λi by Fi(0) = λi(∅) and for n ≥ 1,

Fi(n) = λi(∅) +
n∑

k=1

λi(Vk)

and pick the random neighborhood of (i, t) as

Ki,t = V →t
i,t with Vi,t =

{
∅ if U1

i,t ≤ Fi(0),

vn if Fi(n − 1) < U1
i,t ≤ Fi(n) for some n ≥ 1.

Initialize A1
i,t ← Ki,t .

Step 2. Generate recursively U1
j,s for j, s ∈ An

i,t , compute the corresponding Vj,s and Kj,s as in Step 1 and actualize

An+1
i,t ← (

⋃
j,s∈An

i,t
Kj,s) \ {A1

i,t ∪ · · · ∪ An
i,t }. After a finite number of steps, An

i,t is empty and [Step 2] stops. Let Ni,t be

the final n of this recursive procedure and the genealogy of (i, t) is given by Gi,t =⋃Ni,t

n=1 An
i,t .

Step 3. Note that the (j, s)’s in A
Ni,t−1
i,t have therefore an empty neighborhood. Generate i.i.d. uniform variables U2

j,s

for (j, s) in A
Ni,t−1
i,t and define

Xj,s = 1
{
U2

j,s ≤ p
∅

j

}
. (4.15)

Step 4. Recursively generate U2
j,s for (j, s) in A�

i,t recursively from � = Ni,t − 2 to � = 1 and define

Xj,s = 1
{
U2

j,s ≤ p
Vj,s

j (XKj,s
)
}
, (4.16)

In particular arrived at � = 1, one generates

Xi,t = 1
{
U2

i,t ≤ p
Vi,t

j (XKi,t
)
}
. (4.17)
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It is well-known that the algorithm above not only shows the existence but also the uniqueness of the stochastic chain
X compatible with Assumptions 1, 2 and 5 (see for instance Galves and Löcherbach [13] for formal statement of this
result in a close setup).

Note that when simulating the linear Hawkes process, the algorithm reduces to a random walk in the past to find the
genealogy, a random decision on the state Xj,s at the end of the random walk and a forward decision of the other states
Xj,s which is then completely deterministic and just depends on the sign of hj→i (−s).

4.3.3. Time length of a genealogy
We are now interested by the time length of a genealogy. Let, for each non-empty subset A of I ×Z,

T(A) = min
{
s ∈ Z : (j, s) ∈ A

}
.

We are interested by the variable Ti,t which is equal to t − T(Ai,t ) if the genealogy Gi,t is non empty and equal to 0 if
Gi,t is empty. By stationarity its distribution does not depend on t and the behavior of this variable is of course linked to
the one of the variables T (Vj ) = −T(Vj ) for Vj obeying the distribution λj , with the convention that T (∅) = 0. We are
interested by conditions under which the variable Ti,t has a Laplace transform, that is when

θ �→ �i(θ) = E
(
eθTi,t

)
is finite for some positive θ . To do so, we are going to assume Assumption 3 that we recall here: There exists a strictly
positive θ such that for all i,

ϕi(θ) =
∑
v∈V

|v|eθT (v)λi(v)

is finite and

ϕ(θ) = sup
i∈I

ϕi(θ) < 1. (4.18)

Theorem 2. Under Assumption 3, for all i in I , �i(θ) is finite and

�(θ) = sup
i∈I

�i(θ) ≤ supi∈I λi(∅)

1 − ϕ(θ)
.

Note that if ϕi(θ) is finite for some positive θ , limθ→0 ϕi(θ) = m̄i . Therefore if Assumption 5 is fulfilled,
limθ→0 ϕi(θ) < 1 and it is possible to find θ > 0 such that ϕi(θ) < 1 as soon as λi has a Laplace transform. In this
sense, and roughly speaking, Assumption 3 is a more stringent condition of probabilistic sparsity than Assumption 5.

4.3.4. Application on the main examples
Markov chains. In this case, m̄ = 1−μ and the condition (4.13) is satisfied as soon as μ < 1. Moreover condition (4.18)
reduces to eθ (1 − μ) < 1 and it is always possible to find such a θ > 0 as soon as μ < 1.

Chains of infinite order. The space–time decomposition (4.3) implies that

m̄ =
∞∑

�=1

�λ(�).

Thus, the condition (4.13) is satisfied as soon as

∞∑
�=1

�λ(�) < 1

and similarly the condition (4.18) is satisfied as soon as

∞∑
�=1

�eθ�λ(�) < 1.

Hence both can be verified if λ is sufficiently exponentially decreasing. Typically one can have λ(�) = e−λλ�/�! with
0 < λ < 1 (Poisson distribution on the range) or λ(�) = (1 − p)�p with 1/2 < p ≤ 1 (Geometric distribution on the
range).
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Discrete-time linear Hawkes processes. According to the space–time decomposition (4.6), it follows that for each i ∈ I ,

mi = �+
i + �−

i .

Therefore, the condition (4.13) reduces to

sup
i∈I

(
�+

i + �−
i

)= sup
i∈I

∑
j,s

∣∣hj→i (−s)
∣∣< 1.

Moreover the condition (4.18) becomes

sup
i∈I

∑
j,s

eθs
∣∣hj→i (−s)

∣∣< 1.

So if for instance we can rewrite hj→i (−s) = wj→ig(−s) for a fixed function g of mean 1, the condition (4.13) reduces
to

sup
i∈I

∑
j∈I

|wj→i | < 1,

and the additional condition (4.18) is fulfilled for a small enough θ as soon as g has finite exponential moment.

GL neuron model. In the nonlinear case, it has been proved in Galves and Löcherbach [13] (cf. inequalities (5.57) and
(5.58)) that for each i ∈ I the following estimates hold:

λi(∅) ≤ γ
∑
j∈I

|Wj→i |
∑
s≥1

gj (s), (4.19)

and for � ≥ 1,

λi

(
vi(�)

)≤ γ

( ∑
j /∈vi (�)

|Wj→i |
∑
s≥1

gj (s) +
∑

j∈vi (�)

|Wj→i |
∑
s≥�

gj (s)

)
. (4.20)

Therefore, a sufficient condition (cf. inequality (2.9) of Galves and Löcherbach [13]) for Assumption 5 to hold is

sup
i∈I

∑
�≥1

�
∣∣vi(�)

∣∣( ∑
j /∈vi (�)

|Wj→i |
∑
s≥1

gj (s) +
∑

j∈vi (�)

|Wj→i |
∑
s≥�

gj (s)

)
<

1

γ
.

In the linear case (i.e. when ϕi(u) = νi + u), the condition above reduces to

sup
i∈I

∑
�≥1

�
∣∣vi(�)

∣∣( ∑
j /∈vi (�)

|Wj→i |
∑
s≥1

gj (s) +
∑

j∈vi (�)

|Wj→i |
∑
s≥�

gj (s)

)
< 1. (4.21)

Using the decomposition (4.9), one can verify that the condition (4.13) is, in the linear case, equivalent to

sup
i∈I

∑
�≥1

[
�|Wi→i |gi(�) +

∑
j �=i,j∈I

(� + 1)|Wj→i |gj (�)

]
< 1. (4.22)

Note that condition (4.21) is usually much stronger than condition (4.22) and that a sparse space–time decomposition of
the process allows us to derive existence of the linear process on a larger set of possible choices for wj→i and gj . Once
again condition (4.18) is fulfilled under a very similar expression

sup
i∈I

∑
�≥1

eθ�

[
�|Wi→i |gi(�) +

∑
j �=i,j∈I

(� + 1)|Wj→i |gj (�)

]
< 1,

this can be easily fulfilled if gj (�) = g(�) is exponentially decreasing with
∑∞

�=1(�+1)g(�) = 1. Indeed (4.22) is implied
as in the Hawkes case by

sup
i∈I

∑
j∈I

|Wj→i | < 1

and it is easy to find by continuity a small θ > 0 such that (4.18) is fulfilled too.
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4.4. Concentration

4.4.1. Block construction
Thanks to the control of the time length genealogy it is possible to cut the observations XF,−(m−1):T into (overlapping)
blocks that form with high probability two families of independent variables. This is a key tool to derive concentration
inequalities. This construction is inspired by Viennet [33], who used as a central element, Berbee’s lemma, which is
replaced here by Theorem 2. Note that similar coupling arguments have been used in continuous and more restrictive
settings (see Reynaud-Bouret and Roy [26], Hansen, Reynaud-Bouret and Rivoirard [15] for linear Hawkes processes,
Chen et al. [4] for bounded Hawkes process and mixing arguments).

Lemma 1. Let m ∈ Z+ and F ⊂ I be a finite subset of the neurons, observed on −(m − 1) : T . Let B , the grid size, be
an integer such that

m ≤ B ≤ �T/2�
and define k = � T

2B
�. Let the 2k + 1 blocks be defined by, for 1 ≤ n ≤ 2k,

In = {(n − 1)B + 1 − m, . . . nB
}

and I2k+1 = {2kB + 1 − m, . . . T }.

There exist on a common probability space some stochastic chains X, X1, . . . ,X2k+1 satisfying the following properties:

1. All the chains Xn = (Xn
i,t )i∈I,t∈Z have the same distribution as X which satisfies Assumptions 1, 2 and 3 for a given θ ,

that is a sparse enough space–time decomposition with weights (λi)i∈I and transitions (pv
i )i∈I,v∈V .

2. The odd chains X1,X3, . . . ,X2k+1 are independent.
3. The even chains X2, . . . ,X2k are independent.
4. There exists an event, �good, such that on �good, XF,In = Xn

F,In
for all n = 1, . . . ,2k + 1 and such that the probability

of �c
good, under the notation of Theorem 2, is at most

|F |(2k + 1)
�(θ)

(1 − e−θ )
e−θ(B+1−m). (4.23)

In particular, by choosing B = m + θ−1(2 log(T ) + log(|F |)), we obtain that there exists a positive c′(θ) such that the
probability of �c

good is at most c′(θ)T −1.

4.4.2. Applications
As an application of Lemma 1, we can derive the following Hoeffding type concentration inequality.

Theorem 3. Let X = (Xi,t )i∈I,t∈Z be a stationary sparse space–time process satisfying Assumptions 1, 2 and 3 for a
given θ . For F ⊂ I finite, m ∈ Z+, let f be a real-valued function of XF,t−m:t−1 bounded by M . Let T ∈ Z+ such that

m + θ−1(2 log(T ) + log
(|F |))≤ �T/2�

and

Z(f ) = 1

T

T∑
t=1

(
f (XF,t−m:t−1) −E

[
f (XF,t−m:t−1)

])
. (4.24)

Then there exists nonnegative constant c′, c′′, which only depends on θ such that, for any x > 0,

P

(
Z(f ) >

√
c′′(θ)M2 m + logT + log |F |

T
x

)
≤ c′(θ)

T
+ 2e−x. (4.25)

If there is a finite family F of such f , we also have that

P

(
∃f ∈F,Z(f ) >

√
c′′(θ)M2 m + logT + log |F |

T
x

)
≤ c′(θ)

T
+ 2|F |e−x.
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There is a matrix counterpart to the previous inequality, which is an application of now classical results on random
matrices (see Tropp [30] and the references therein).

Theorem 4. Let X = (Xi,t )i∈I,t∈Z be a stationary sparse space–time process satisfying Assumptions 1, 2 and 3 for a
given θ . For F ⊂ I finite, m ∈ Z+, let F be a finite family of bounded real-valued functions of XF,t−m:t−1 and denote
M = max{‖fg‖∞ : f,g ∈F}. Let T ∈ Z+ such that

m + θ−1(2 log(T ) + log
(|F |))≤ �T/2�

and define the random matrix Z = (Z(f,g))f,g∈F where for each f,g ∈ F ,

Z(f,g) = 1

T

T∑
t=1

(
f (XF,t−m:t−1)g(XF,t−m:t−1) −E

[
f (XF,t−m:t−1)g(XF,t−m:t−1)

])
. (4.26)

Then there exists nonnegative constant c′, c′′, which only depends on θ such that, for any x > 0,

P

(
‖Z‖ >

√
c′′(θ)M4|F |2 m + logT + log |F |

T
x

)
≤ c′(θ)

T
+ 4|F |e−x, (4.27)

where ‖Z‖ corresponds to the spectral norm, that is the largest eigenvalue of the self-adjoint matrix Z.

5. Back to the Gram matrices

To control the Gram matrix we need also Assumption 4 that we recall here: There exists some positive μ such that for all
i ∈ I , for all x,

μ ≤ pi(x) ≤ 1 − μ,

Note that in each of the examples (Markov chain, Hawkes, etc), this assumption is easily fulfilled. For instance in the
Hawkes case, this adds the condition μ ≤ νi − �−

i ≤ νi + �+
i ≤ (1 − μ).

This assumption is useful to bound expectation by changing the underlying measure.

Lemma 2. Under Assumptions 1 and 4, for all non negative function f cylindrical on a fixed finite space–time neighbor-
hood v,(

2(1 − μ)
)|v|

E
⊗V
B(1/2)

[
f (Xv)

]≥ E
[
f (Xv)

]≥ (2μ)|v|
E

⊗V
B(1/2)

[
f (Xv)

]
,

where E
⊗V
B(1/2)

means that the expectation is taken with respect to the measure where all Xi,t ’s are i.i.d. Bernoulli with
parameter 1/2.

5.1. Inv(κ) property for general dictionaries

In this section we prove that the Inv(κ) property holds on an event with high probability for the examples of dictionaries
considered in Section 3.1. As a by product, we are able to derive oracle inequalities with high probability for these
dictionaries. We start with the following result.

Theorem 5. For a finite F ⊂ I and integer T > m ≥ 1, let XF,−(m−1):T be a sample produced by the stationary sparse
space–time process X = (Xi,t )i∈I,t∈Z satisfying Assumptions 1, 2 and 3. Let � denote a finite dictionary of bounded
functions cylindrical in F × m and G be the corresponding Gram matrix defined in (3.2). If the matrix E(G) satisfies
property Inv(κ ′) for some positive constant κ ′, then for any δ > 0 and T sufficiently large, the Gram matrix G satisfies
the property Inv(κ) on an event of probability larger than 1 − c′

T
− δ with

κ = κ ′ − c1|�|‖�‖2∞

√
(m + log(T ) + log |F |)(log |�| + log δ−1)

T
,

where c′ and c1 are positive constants which only depends on the underlying distribution of X.

To apply Theorem 5 to the dictionaries considered in Section 3.1 we must find the corresponding κ ′. This is done
below.
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Short memory effect. To apply Theorem 5 we need first to find κ ′ for this class of models. This is done as follows.
Let Q = B(1/2)⊗V be the probability measure under which all Xi,t ’s are i.i.d. Bernoulli with parameter 1/2 and denote
pj = Q(ϕj (X−∞:−1) = 1) for j ∈ F . Clearly, pj = 1 − (1/2)m for all j ∈ F and we write p to denote this common
value. With this notation, one can check that,

E
⊗V
B(1/2)

(G) =

⎛
⎜⎜⎝

p p2 p2 . . . p2

p2 p p2 . . . p2

. . .

p2 p2 p2 . . . p

⎞
⎟⎟⎠ .

Such a matrix has only two eigenvalues, namely, p + (|F | − 1)p2 of multiplicity 1 and p − p2 = (1/2)m(1 − (1/2)m)

with multiplicity |F | − 1. Indeed, ξ is an eigenvalue E
⊗V
B(1/2)

(G) if and only if there exists a non-null vector u ∈ R
F such

that

(
p − p2)u + p2

∑
i

ui1 = ξu.

On the one hand, by choosing the vector u �= 0 such that
∑

i ui = 0 gives that η = p−p2 is an eigenvalue with multiplicity
|F | − 1. On the other hand, the choice

∑
i ui = 1 forces that (p − p2)ui + p2 = ξui for all i ∈ F , ensuring that ξ =

p + p2(|F | − 1) is the second eigenvalue. Its multiplicity is necessarily 1.
Note that if m is large, the smallest eigenvalue of E⊗V

B(1/2)
(G) is really small. This can be interpreted in the following

way: when m is large, one will find a “1” on every observed neuron in the past, therefore all the ϕj ’s will be equal with
high probability and one cannot infer a dependence graph with this dictionary anymore.

Thus, Lemma 2 implies that eigenvalue of E(G) can be lower bounded by

κ ′ = (2μ)m|F |(1/2)m
(
1 − (1/2)m

)
. (5.1)

Choosing for a fixed integer η

m = η and |F | ≤ log logT , (5.2)

gives κ ′ of the order (log(T ))−c3 for some constant c3 > 0 depending on μ and η.

Cumulative effect. Let α denote the common value of E
⊗V
B(1/2)

(ϕ2
j,�(X−∞:−1)) with j ∈ F and 1 ≤ � ≤ L, and β be

the corresponding value of E⊗V
B(1/2)

(ϕj,�(X−∞:−1)(ϕk,n(X−∞:−1)) with j, k ∈ F and k �= j and 1 ≤ n, � ≤ L. With this
notation, one can verify that

α = η

2
+ η(η − 1)

4
= η

4
+ η2

4
, β = η2

4
and E

⊗V
B(1/2)

(G) =

⎛
⎜⎜⎝

α β β . . . β

β α β . . . β

. . .

β β . . . β α

⎞
⎟⎟⎠ .

Hence, the smallest eigenvalue of E⊗V
B(1/2)

(G) is α − β = η
4 which grows with η = m

K
. This seems also reasonable since

once looking for cumulative effects, the larger the bin size η, the more points you see in it and the more diverse the
situations are (hence the dictionary has many different functions) whereas if η is small there is a large probability to see
all ϕj,�’s null.

Thus, Lemma 2 implies that eigenvalue of E(G) can be lower bounded by

κ ′ = η

4
(2μ)ηK|F |.

Choosing for some fixed integer η

m = ηK with K ≤√log logT and |F | ≤ log logT , (5.3)

gives κ ′ of the order (log(T ))−c3 for some other constant c3 > 0 depending on μ and η.
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Cumulative effect with spontaneous apparition. With the same notation of the previous example, one can show that

E
⊗V
B(1/2)

(G) =

⎛
⎜⎜⎝

1 η/2 η/2 . . . η/2
η/2 α β . . . β

. . .

η/2 β . . . β α

⎞
⎟⎟⎠ .

Reasoning by block with the vector (μ,a) with μ ∈ R and a ∈R
K|F |, we end up with

(μ,a)ᵀE⊗V
B(1/2)

(G)(μ,a) =
(

μ + η

2

∑
j∈F,k=1,...,K

aj,k

)2

+ η

4
‖a‖2

2.

But for all 0 < θ < 1,

(
μ + η

2

∑
aj,k

)2

+ η

4
‖a‖2

2 ≥ (1 − θ)μ2 +
(

1 − 1

θ

)
η2

4

( ∑
j∈F,k=1,...,K

aj,k

)2

+ η

4
‖a‖2

2

≥ (1 − θ)μ2 − 1 − θ

θ

K|F |η2

4
‖a‖2

2 + η

4
‖a‖2

2

By choosing θ = 2ηK|F |
1+2ηK|F | we conclude, thanks to Lemma 2, that the smallest eigenvalue of E(G) can be lower bounded

by

κ ′ = (2μ)ηK|F | min

(
1

1 + 2ηK|F | ,
η

8

)
.

Once again choosing for some fixed integer η

m = ηK with K ≤√log logT and |F | ≤ log logT , (5.4)

gives κ ′ roughly larger than (log(T ))−c3 for some other constant c3 > 0 depending on μ and η.
Next, as a by product of Theorem 5 and Theorem 1, one can derive oracle inequalities for dictionaries above.

Corollary 1. Let � be one of the dictionaries presented in Section 3.1, with the choices (5.2), (5.3) or (5.4). Assume one
observes XF,−(m−1):T , where the underlying process X satisfies Assumptions 1, 2, 3 and 4.

With the notation of Theorem 1, for T large enough, on an event with probability 1 − c1/T , the following oracle
inequality holds

∥∥f̂ − pi(·)
∥∥2

T
≤ inf

a∈R�

{∥∥fa − pi(·)
∥∥2

T
+ c2

∣∣S(a)
∣∣ (log(T ))c3

T

}
,

where the constant c1 > 0 depends only on the underlying distribution of X, c2 > 0 depends on η and γ and constant
c3 > 0 depends on both the underlying distribution of X and η.

Note that the main improvement with respect to Hansen, Reynaud-Bouret and Rivoirard [15], is that in all the examples,
the constant κ is roughly of order (log(T ))−c3 , that is asymptotically decreasing in roughly speaking the number of
neurons used in the dictionary and not the total number of neurons in the network. This number of neurons that are used,
which is bounded by the number of observed neurons, can very slowly grow with T .

5.2. Hawkes dictionary without spontaneous part

In this case the ϕ(XF,−m:−1)’s are just the Xj,s for j ∈ F and s ∈ m and one can prove the following result.

Theorem 6. For a finite F ⊂ I and integer T > m ≥ 1, let XF,−(m−1):T be a sample produced by the stationary sparse
space–time process X = (Xi,t )i∈I,t∈Z satisfying Assumptions 1, 2, 3 and 4. For the Hawkes dictionary without sponta-
neous part, i.e. ϕ = ϕj,s with ϕj,s(XF,−m:−1) = Xj,s for j ∈ F and s ∈ m, the corresponding Gram matrix G defined by
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(3.2) satisfies for all c > 0, s ≤ m|F | and T large enough, the property RE(κ, c, s) on an event of probability larger than
1 − c′

T
− δ with

κ = μ − μ2 − ((1 − 2μ) + RT

)
(1 + c)s,

where

RT = c1

T 1/2

(
m + logT + log |F |)1/2(logm + log |F | + log δ−1)1/2

,

for some positive constant c′ and c1 which only depends on the underlying distribution of X.

The major point to note is that asymptotically, for slowly growing m and |F | as functions of T , the constant κ does
not depend at all on the number of observed neurons and therefore the rate of convergence in Theorem 1 is not worsened
by a huge number of observed neurons, |F |. This is a drastic improvement with respect to the previous result of Hansen,
Reynaud-Bouret and Rivoirard [15] which depends on the total number of neurons in the network. For each fixed c and
s, we only need here μ to be close enough to 1/2 to have κ > 0.

It also means that the size of the dictionary might be growing with T , much more rapidly than before: typically m the
delay might grow like log(T ) and the number of observed neurons might grow like T or even more rapidly as long as
log |F | = o(T 1/2). Therefore if one can reasonably well approximate pi by a sparse combination in space and time for
which the precise location is unknown, one might by a growing set of observations find the correct set in space and time.

6. Conclusion

It is therefore possible to control the Gram matrix for various dictionaries and this even if the finite number of observed
neurons is much smaller than the potentially infinite set of existing neurons. The main assumption on the underlying
stochastic structure is the probabilistic sparsity (Assumption 3) which allows us to derive concentration inequalities via
coupling.

As an open question, it remains to understand the complete link between a well chosen deterministic sparse approxima-
tion of pi and the probabilistic sparsity of the λi ’s typically when both the approximation model and the true underlying
model coincide, for instance for Hawkes processes. Another way to phrase this is “can we prove the variable selection
property, that is typical of Lasso methods?” i.e. “can we find the set of neurons influencing i?”. If the answer seems likely
to be yes if they are all observed, it seems intuitive to think in general that a good set of sites (j, s) for the sparse approx-
imation of pi is a level set of the λi but the fact that the λi ’s are not unique makes this reasoning not straightforward.

Another open question is the minimax rate in this setting. This would involve speaking about regularity of the space–
time decomposition, which is not done yet, since we do not even have for the moment uniqueness of the decomposition.

7. Proofs

7.1. Proof of Theorem 1

To prove Theorem 1 we use arguments from Gaïffas and Guilloux [10]. We will need the following Lemmas.

Lemma 3. Let f̂ = fâ where â is defined by (3.3). For any vector a ∈R
�, the following inequality holds

2〈f̂ − fa, f̂ − pi〉T + γ d|âSc(a)|1 ≤ γ d|âS(a) − aS(a)|1 + 2(b − b̄)T (â − a), (7.1)

where S(a) = {ϕ : aϕ �= 0} and the vectors b, b̄ ∈R
� are defined in (3.2) and (3.4) respectively.

Proof. Throughout the proof we write ∂g(p) to denote the subddiferential mapping of a convex function g at the point
p. One can show that p is a global minimum of the convex function g if and only if 0 ∈ ∂g(p). Now since â is such that

â ∈ arg min
a∈R�

{
aT Ga − 2aT b + γ d|a|1

}
,

it follows that

0 ∈ ∂
(
âT Gâ − 2âT b + γ d|â|1

)= 2Gâ − 2b + γ d∂|â|1.
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Thus, it follows that for some ŵ ∈ ∂|â|1, the following equation holds

2Gâ − 2b + γ dŵ = 0,

which implies then

(2Gâ − 2b + γ dŵ)T (â − a) = 0, for any a ∈R
�.

From the above equation we can deduce that for any vector w ∈ ∂|a|1 and a ∈ R
�,

(2Gâ − 2b̄)T (â − a) + γ d(ŵ − w)T (â − a) = −γ dwT (â − a) + 2(b − b̄)T (â − a). (7.2)

One can easily show by the definition of subdifferentials that

(ŵ − w)T (â − a) ≥ 0,

for all ŵ ∈ |â|1 and w ∈ |a|1. Thus, using this fact in equation (7.2) together with the fact that (2Gâ − 2b̄)T (â − a) =
2〈f̂ − fa, f̂ − pi〉T , we derive the following inequality

2〈f̂ − fa, f̂ − pi〉T ≤ −γ dwT (â − a) + 2(b − b̄)T (â − a). (7.3)

It is well know that

∂|a|1 = {v : |v|∞ ≤ 1 and vT a = |a|1
}
.

In other words, v ∈ ∂|a|1 if and only if vϕ = sign(aϕ) for ϕ ∈ S(a) and vϕ ∈ [−1,1] for all ϕ ∈ Sc(a). Now, take
w = (wϕ)ϕ∈� ∈ ∂|a|1 of the following form

wϕ =
{

sign(aϕ) if ϕ ∈ S(a),

sign(âϕ) if ϕ ∈ Sc(a),

and observe that wT (â − a) =∑ϕ∈S(a) sign(aϕ)(âϕ − aϕ) + |âSc(a)|1. Thus, by plugging this identify into inequality
(7.3), we obtain that

2〈f̂ − fa, f̂ − pi〉T + γ d|âSc(a)|1 ≤ −γ d
∑

ϕ∈S(a)

sign(aϕ)(âϕ − aϕ) + 2(b − b̄)T (â − a),

and the result follows, because |−∑ϕ∈S(a) sign(aϕ)(âϕ − aϕ)| ≤ |âS(a) − aS(a)|1. �

Lemma 4. Let f̂ = fâ where â defined by (3.3) with γ ≥ 2 and a ∈R
�. On an event on which

(i) 〈f̂ − fa, f̂ − pi〉T ≥ 0,
(ii) |bϕ − b̄ϕ | ≤ d for all ϕ ∈ �,

the following inequality is satisfied,

|âSc(a)|1 ≤ γ + 2

γ − 2
|âS(a) − aS(a)|1, (7.4)

where S(a) = {ϕ : aϕ �= 0}.

Proof. Suppose that 〈f̂ − fa, f̂ − pi〉T ≥ 0. In this case, Lemma 3 implies that

γ d|âSc(a)|1 ≤ γ d|âS(a) − aS(a)|1 + 2
∑

ϕ∈S(a)

(bϕ − b̄ϕ)(âϕ − aϕ) + 2
∑

ϕ∈Sc(a)

(bϕ − b̄ϕ)âϕ.

On an event on which |bϕ − b̄ϕ | ≤ d for all ϕ ∈ �, we then have that

γ d|âSc(a)|1 ≤ (γ + 2)d|âS(a) − aS(a)|1 + 2d|âSc(a)|1,
and the result follows. �
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To prove the first part of Theorem 1 we proceed as follows. First of all, on the event on which 〈f̂ − fa, f̂ − pi〉T < 0,
there is nothing to be proved, since in this case

‖f̂ − pi‖2
T + ‖f̂ − fa‖2

T − ‖fa − pi‖2
T = 〈f̂ − fa, f̂ − pi〉T < 0.

Hence, in what follows, take a = (aϕ)ϕ∈� such that |S(a)| ≤ s and 〈f̂ −fa, f̂ −pi〉T ≥ 0. In this case, thanks to Lemma 4,
we can use Property RE(κ, c(γ ), s) to the vector â − a:

‖âS(a) − aS(a)‖2 ≤ κ−1(â − a)T G(â − a).

Now, as in the proof of Lemma 4, we know that on an event on which |bϕ − b̄ϕ | ≤ d for all ϕ ∈ �, the following bound
holds:

2
∣∣(b − b̄)T (â − a)

∣∣≤ 2d
∣∣(âS(a) − aS(a))

∣∣
1 + 2d|âSc(a)|1

By using this inequality together with Lemma 3, we conclude that

2〈f̂ − fa, f̂ − pi〉T + (γ − 2)d|âSc(a)|1 ≤ (γ + 2)d|âS(a) − aS(a)|1. (7.5)

Finally, by Cauchy–Schwarz inequality, we know that

|âS(a) − aS(a)|1 ≤√S(a)‖âS(a) − aS(a)‖ ≤
√

S(a)κ−1(â − a)T G(â − a).

Plugging this last inequality into (7.5), we deduce that

2〈f̂ − fa, f̂ − pi〉T + (γ − 2)d|âSc(a)|1 ≤ (γ + 2)d
√

S(a)κ−1(â − a)T G(â − a).

To conclude the proof of the first part, note that{
2〈f̂ − fa, f̂ − pi〉T = ‖f̂ − pi‖2

T + ‖f̂ − fa‖2
T − ‖fa − pi‖2

T ,

(â − a)T G(â − a) = ‖f̂ − fa‖2
T ,

and use the inequality qy − y2 ≤ q2/4, which is valid for any q, y > 0.
For the second part of the result, to control the fluctuations of bϕ − b̄ϕ , let us note that bϕ − b̄ϕ = MT , where (Mt)1≤t≤T

is the martingale defined by

Mt =
t∑

i=1

ϕ(X−∞:t−1)

T

[
Xi,t − pi(X−∞:t−1)

]
.

We can apply the classical bound of Hoeffding’s inequality on each increment of the martingale �Mt . Note that if
ϕ(X−∞:t−1) is positive,

−ϕ(X−∞:t−1)

T
pi(X−∞:t−1) ≤ �Mt ≤ ϕ(X−∞:t−1)

T

[
1 − pi(X−∞:t−1)

]
,

and if ϕ(X−∞:t−1) is negative,

ϕ(X−∞:t−1)

T

[
1 − pi(X−∞:t−1)

]≤ �Mt ≤ −ϕ(X−∞:t−1)

T
pi(X−∞:t−1).

This leads for every θ > 0 to

E
(
eθ�Mt |X−∞:t−1

)≤ exp

(
θ2ϕ(X−∞:t−1)

2

8T 2

)
≤ exp

(
θ2‖�‖2

8T 2

)
.

Therefore

E
(
eθMT

)≤ exp

(
θ2‖�‖2

8T

)
.



2398 G. Ost and P. Reynaud-Bouret

Hence

P(MT ≥ x) ≤ exp

(
θ2‖�‖2∞

8T
− θx

)
.

By optimizing this in θ and applying the same inequality to −ϕ, we get for all positive u

P

(
MT ≥

√
u‖�‖2∞

2T

)
≤ e−u and P

(
|bϕ − b̄ϕ | ≥

√
u‖�‖2∞

2T

)
≤ 2e−u

Therefore taking u = log |�| + log(2δ−1) and then applying the union bound we obtain the result.

7.2. Proof of Proposition 1

Since {N(i,t) > �} = {|A�
i,t | ≥ 1}, the Markov inequality implies that

P(Ni,t > �) ≤ E
[∣∣A�

i,t

∣∣].
So let us prove by induction that E[|A�

i,t |] ≤ (m̄)� for all � ≥ 1. For � = 1, we have E[|A1
i,t |] = E[|Vi,t |] = m̄i ≤ m̄. Next

for � > 1,

E
[∣∣A�

i,t

∣∣|A�−1
i,t

] ≤
∑

(j,s)∈A�−1
i,t

E
[∣∣V →s

j,s

∣∣]

≤
∑

(j,s)∈Ci,t (�−1)

m̄j ≤ ∣∣A�−1
i,t

∣∣ m̄.

To conclude the proof take the overall expectation and use the induction assumption given by E[|A�−1
i,t |] ≤ (m̄)�−1.

7.3. Proof of Theorem 2

For any fixed n ≥ 1, for all site (i, t) let

Gn
i,t =

n⋃
m=1

Am
i,t

We adopt the convention that if Gn
i,t = ∅, T(Gn

i,t ) = t and we consider the variable T n
i,t = t − T(Gn

i,t ) as well as its

Laplace transform �n
i (θ) = E(e

θT n
i,t ).

Let us prove by induction that �n
i (θ) is finite and that

�n(θ) = sup
i

�n
i (θ) ≤ λ̄

(
1 + ϕ(θ) + · · · + ϕ(θ)n−2)1n>1 + ϕ(θ)n−1g(θ), (7.6)

where λ̄ = supi∈I λi(∅) and

g(θ) = sup
i∈I

∑
v∈V

eθT (v)λi(v).

Note that g(θ) is finite as soon as ϕ(θ) is and that 0 ≤ λ̄ ≤ 1.
For n = 1, since for all i, T(G1

i,t ) = T(A1
i,t ) = T(Ki,t ) = t − T (Vi,t )

�1
i (θ) = E

(
exp
[
θT (Vi,t )

])
=
∑
v∈V

eθT (v)λi(v)

≤ g(θ).
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Next by induction, let us assume (7.6) at level n for all i and let us prove it at level n + 1. Note that because the Gn
i,t

are computed recursively, we have that when Ki,t is not empty,

T
(
Gn+1

i,t

)= min
(k,r)∈Ki,t

T
(
Gn

k,r

)
.

Therefore if Ki,t =∅, T n+1
i,t = 0 and

E
(
exp
[
θT n+1

i,t

]|Ki,t

)= 1.

This happens with probability λj (∅). If Ki,t �=∅,

E
(
exp
[
θ
(
t −T

(
Gn+1

i,t

))]|Kj,t

) = E

(
exp
[
θ max

(k,r)∈Ki,t

(
t −T

(
Gn

k,r

))]|Ki,t

)

≤
∑

(k,r)∈Ki,t

eθ(t−r)
E
(
exp
[
θ
(
r −T

(
Gn

k,r

))]|Ki,t

)
.

Since (see the algorithm) Ki,t only depends on U1
j,t and Gn

k,r only depends on the U1
k′,r ′ for k′ ∈ I, r ′ ≤ r and r < t , it

follows that T(Gn
k,r ) is independent of Ki,t . Hence if Ki,t �=∅

E
(
exp
[
θT n+1

i,t

]|Kj,t

) ≤
∑

(k,r)∈Ki,t

eθ(t−r)�n
k (θ)

≤
[ ∑

(k,r)∈Ki,t

eθ(t−r)

]
�n(θ)

≤ [|Ki,t |eθ(t−T(Kj,t ))
]
�n(θ)

≤ |Vi,t |eθT (Vi,t )�n(θ).

We obtain by taking the overall expectation that

�n+1
i (θ) ≤ λ̄ + ϕ(θ)�n(θ),

so that supi∈I �n+1
i (θ) is finite and (7.6) holds at level n + 1 by induction.

To conclude, it is sufficient to remark that by the monotone convergence theorem, �n
i (θ) →n→∞ �i(θ) which are

therefore upper bounded by λ̄/(1 − ϕ(θ)). This concludes the proof.

7.4. Proof of Lemma 1

We use the perfect simulation algorithm to construct these chains. Let U0 = (U
0,1
i,t ,U

0,2
i,t )i∈I,t∈Z, . . . ,U2k+1 =

(U
2k+1,1
i,t ,U

2k+1,2
i,t )i∈I,t∈Z be independent fields of independent random variables with uniform distribution on [0,1].

We assume that these sequences are defined in the same probability space and set (�̃, F̃, P̃) to be this common probabil-
ity space.

The perfect simulation algorithm performed with the same field U0 on each site (i, t) yields the construction of X =
(Xi,t )i∈I,t∈Z.

For any n, the chain Xn is also built similarly via the perfect simulation algorithm but with the field Un except on a
small portion of time where we use U0. More precisely, we use the following variables((

U
n,1
i,t ,U

n,2
i,t

)
i∈I,t≤(n−2)B

,
(
U

0,1
i,t ,U

0,2
i,t

)
i∈I,(n−2)B<t≤nB

,
(
U

n,1
i,t ,U

n,2
i,t

)
i∈I,t>nB

)
,

for 1 ≤ n ≤ 2k and for n = 2k + 1,((
U

n,1
i,t ,U

n,2
i,t

)
i∈I,t≤(2k−1)B

,
(
U

0,1
i,t ,U

0,2
i,t

)
i∈I,(2k−1)B<t≤T

,
(
U

n,1
i,t ,U

n,2
i,t

)
i∈I,t>T

)
.

Since all chains are simulated with the same set of weights (λi)i∈I and transitions (pv
i )i∈I,v∈V , they have obviously

the same distribution. Since the algorithms use disjoint sets of uniform variables for the odd (resp. even) chains, they are
obviously independent and therefore Items 1–3 follows easily from the construction.
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Let Gi,t be the genealogy of site (i, t) in the chain X and Ti,t = T(Gi,t ). For any n, any i ∈ F and any t ∈ In, if
Ti,t > (n − 2)B , then we use exactly the same set of uniform variables to produce the values of Xi,t and Xn

i,t and their
values are equal.

Therefore on �good =⋂i∈F

⋂2k+1
n=1

⋂
t∈In

{Ti,t > (n − 2)B}, XF,In = Xn
F,In

for all n = 1, . . . ,2k + 1. Note that �good
only depends on X.

It remains to control P̃(�c
good). By a union bound, and the application of Theorem 2, we obtain

P̃
(
�c

good

) ≤
∑
i∈F

2k+1∑
n=1

∑
t∈In

P
(
Ti,t ≤ (n − 2)B

)

≤
∑
i∈F

2k+1∑
n=1

∑
t∈In

P
(
t −Ti,t ≥ t − (n − 2)B

)

≤
∑
i∈F

2k+1∑
n=1

∑
t∈In

e−θ(t−(n−2)B)�(θ)

≤ |F |(2k + 1)
e−θ(B−m+1)

1 − e−θ
�(θ).

In particular if we choose B = m + θ−1(2 log(T ) + log(|F |),

P̃
(
�c

good

)≤ 2k + 1

T 2

�(θ)

1 − e−θ
,

which concludes the proof.

7.5. Proof of Theorem 3

Take B = m + θ−1(2 log(T ) + log(|F |)), k = � T
2B

� and use the probability space (�̃, F̃, P̃) and the stochastic chains

X, . . . ,X2k+1 given by Lemma 1. By Lemma 1-Item 1 we can assume that Z is also defined on (�̃, F̃, P̃). Define also a
partition J1, . . . , J2k+1 of 1 : T as follows:

Jn = {1 + (n − 1)B, . . . , nB
}

for 1 ≤ n ≤ 2k, and J2k+1 = {1 + 2kB, . . . , T }.
For each 1 ≤ n ≤ 2k + 1, write Sn = 1

T

∑
t∈Jn

f (Xn
F,t−m:t−1) and note that Sn only depends on the t ’s in In as defined in

Lemma 1. Since |Jn| ≤ B for all 1 ≤ n ≤ 2k + 1, it holds |Sn| ≤ MB/T .
Observe that Lemma 1-Item 1 and 4 ensure that on �good,

Z =
2k+1∑
n=1

(
Sn −E(Sn)

)
,

so that for any w > 0, we have

P̃(Z > w) ≤ P̃
(
�c

good

)+ P̃

(
2k+1∑
n=1

(
Sn −E(Sn)

)
> w

)

≤ c′(θ)

T
+ P̃

(
2k+1∑
n=1

(
Sn −E(Sn)

)
> w

)
.

Moreover, if we denote Z1 =∑k+1
n=1(S2n−1 −E(S2n−1)) and Z2 =∑k

n=1(S2n −E(S2n), then

P̃

(
2k+1∑
n=1

(
Sn −E(Sn)

)
> u + v

)
≤ P̃(Z1 > u) + P̃(Z2 > v),

for all u + v = w.
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Lemma 1-Item 3 implies that S2, . . . , S2k are independent, so that by the classical Hoeffding inequality, we have for
any x > 0, P̃(Z1 >

√
kB2M2T −2x/2) ≤ e−x , and similarly for P̃(Z1 >

√
(k + 1)B2M2T −2x/2) ≤ e−x . Hence

P̃
(
Z >

√
kB2M2T −2x/2 +

√
(k + 1)B2M2T −2x/2

)≤ c′(θ)

T
+ 2e−x.

But k ≤ T (2B)−1 and k + 1 ≤ (T + 2B)(2B)−1 ≤ T/B . This leads directly to the first result.
For the second result, note that we can restrict ourselves to �good once and for all at the beginning and use the union

bound only on the auxiliary independent chains, which explains why we pay |F | only in front of the deviation e−x .

7.6. Proof of Theorem 4

Let (�̃, F̃, P̃) be the probability space and X, . . . ,X2k+1 be the stochastic chains given by Lemma 1. By Lemma 1-Item 1
we can assume that Z is also defined on (�̃, F̃, P̃). We write Ẽ to denote the expectation taken with respect the probability
measure P̃.

Now, let B , k, J1, . . . , J2k+1 as in the proof of Theorem 3 and define for 1 ≤ n ≤ 2k + 1, the random matrix �n =
((�n(f, g))f,g∈F as follows:

�n(f,g) = 1

T

∑
t∈Jn

(f
(
Xn

F,t−m:t−1

)
g
(
Xn

F,t−m:t−1

)−E
(
f
(
Xn

F,t−m:t−1

)
g
(
Xn

F,t−m:t−1

))
.

Clearly Ẽ(�n) = 0. To apply Theorem 1.3 of Tropp [30], we need to find a deterministic self-adjoint matrix An such
that A2

n − �2
n is non negative. This means that for all vector x ∈ R

F ,

xᵀ[A2
n − �2

n

]
x ≥ 0.

By taking An = σIn, it is sufficient to prove that

xᵀ�2
nx ≤ σ 2‖x‖2.

But

xᵀ�2
nx =

∑
f,g∈F

xf xg

1

T 2

∑
t,t ′∈Jn

∑
h∈F

(f
(
Xn

F,t−m:t−1

)
h
(
Xn

F,t−m:t−1

)−E
(
f
(
Xn

F,t−m:t−1

)
h
(
Xn

F,t−m:t−1

))

× (h
(
Xn

F,t ′−m:t ′−1

)
g
(
Xn

F,t ′−m:t ′−1

)−E
(
h
(
Xn

F,t ′−m:t ′−1

)
g
(
Xn

F,t ′−m:t ′−1

))
= 1

T 2

∑
t,t ′∈Jn

∑
h∈F

[∑
f

xf (f
(
Xn

F,t−m:t−1

)
h
(
Xn

F,t−m:t−1

)−E
(
f
(
Xn

F,t−m:t−1

)
h
(
Xn

F,t−m:t−1

))]

×
[∑

g

xg(g
(
Xn

F,t ′−m:t ′−1

)
h
(
Xn

F,t ′−m:t ′−1

)−E
(
g
(
Xn

F,t ′−m:t ′−1

)
h
(
Xn

F,t ′−m:t ′−1

))]

≤ 1

T 2

∑
t,t ′∈Jn

∑
h∈F

‖x‖2
√∑

f

(f
(
Xn

F,t−m:t−1

)
h
(
Xn

F,t−m:t−1

)−E
(
f
(
Xn

F,t−m:t−1

)
h
(
Xn

F,t−m:t−1

))2

×
√∑

g

(g
(
Xn

F,t ′−m:t ′−1

)
h
(
Xn

F,t ′−m:t ′−1

)−E
(
g
(
Xn

F,t ′−m:t ′−1

)
h
(
Xn

F,t ′−m:t ′−1

))2

≤ 4‖x‖2|F |
T 2

∑
t,t ′∈Jn

∑
h∈F

M4

≤ 4|F |2B2M4

T 2
‖x‖2.

Hence σ = 2|F |BM2

T
works. Denote Z1 =∑k+1

n=1 �2n−1 and Z2 =∑k
n=1 �2n. Lemma 1 implies that on �good,

Z = Z1 + Z2,
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so that by the triangle inequality we have for any u > 0 and v > 0,

P̃
(‖Z‖ > u + v

)≤ P̃
(
�c

good

)+ P̃
(‖Z1‖ > u

)+ P̃
(‖Z2‖ > v

)
.

Since by Lemma 1-Item 3, �2,�4, . . . ,�2k are i.i.d. random matrices, we can apply Theorem 1.3 of Tropp [30] to
deduce that for any v > 0,

P̃
(‖Z2‖ >

√
8kσ 2v

)≤ 2|F |e−v,

Similarly, we have that for any x > 0,

P̃
(‖Z2‖ >

√
8(k + 1)σ 2u

)≤ 2|F |e−u,

and as a consequence, it follows that for any x > 0,

P̃
(‖Z‖ >

√
8kσ 2x +

√
8(k + 1)σ 2x

)≤ c′(θ)

T
+ 4|F |e−x.

Since k1/2 + (k + 1)1/2 ≤ (4T/B)1/2, the result follows from the inequality above.

7.7. Proof of Lemma 2

The proof is done for the lower bound. The argument is similar for the upper bound. We use induction on the time length
of v. If v =∅, f is constant and E(f (Xv)) = E

⊗V
B(1/2(f (Xv)). Let Q = B(1/2)⊗v .

If the time length of v is strictly positive, let t be the maximal time of v and let wt = {(i, t) for i such that (i, t) ∈ v}.

E
(
f (Xv)

) = E
[
E
(
f (Xv)|X−∞:t−1

)]
= E

( ∑
xwt ∈{0,1}wt

f
(
(Xv\wt , xwt )

)
P(Xwt = xwt |X−∞:t−1)

)

= E

( ∑
xwt ∈{0,1}wt

f
(
(Xv\wt , xwt )

) ∏
i/(i,t)∈wt

P(Xi,t = xi,t |X−∞:t−1)

)

≥ (2μ)|wt |E
( ∑

xwt ∈{0,1}wt

f
(
(Xv\wt , xwt )

)
Q(Xi,t = xi,t )

)

But
∑

xwt ∈{0,1}wt f ((Xv\wt ), xwt ))Q(Xi,t = xi,t ) is a cylindrical function on v \ wt with time length strictly smaller
than v, so by induction,

E
(
f (Xv)

) ≥ (2μ)|wt |(2μ)|v\wt |E⊗V
B(1/2)

( ∑
xwt ∈{0,1}wt

f
(
(Xv\wt ), xwt

))
Q(Xi,t = xi,t ))

≥ (2μ)|v|
E

⊗V
B(1/2)

(
f (Xv)

)
,

which concludes the proof.

7.8. Proof of Theorem 5

For any a ∈R
� such that ‖a‖ = 1, we have by Cauchy–Schwarz inequality

κ ≤ aᵀE(G)a ≤ aᵀGa + ‖a‖∥∥(G −E(G)
)
a
∥∥≤ aᵀGa + ∥∥G −E(G)

∥∥, (7.7)

so that the result follows from Theorem 4 with x = log(4|F |/δ) and F = �.
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7.9. Proof of Theorem 6

First of all, remark that thanks to Lemma 2 and since ϕ in this case depends on a neighborhood of size 1, one has that

E(Gϕ,ϕ) = E
(
ϕ(X)2)≥ 2μ1/2 = μ

and similarly for ϕ �= ϕ′, ϕϕ′ is positive and depends on a neighborhood of size 2, hence

(1 − μ)2 ≥ E(Gϕ,ϕ′) ≥ μ2.

Moreover let us apply our version of Hoeffding’s inequality, i.e. the second result of Theorem 3 on all the ϕ2 = ϕ, ϕϕ′
and −ϕϕ′ for ϕ �= ϕ′. Hence there exists and event of probability larger than 1 − c′(θ)

T
− δ such that for all ϕ,ϕ′,∣∣Gϕ,ϕ′ −E(Gϕ,ϕ′)

∣∣≤ RT ,

with

RT =
√

c′′(θ)
(m + logT + log |F |)

T
log

(
4|�|2

δ

)
,

which means that there exists a constant c1 depending only on the distribution such that for T large enough (depending
on θ and |F |)

RT = c1T
−1(m + logT + log |F |)1/2(logm + log |F | + log δ−1)1/2

.

Therefore on this event, for all a and J such that |J | ≤ s and |aJc |1 ≤ c|aJ |1, and if μ2 ≥ RT ,

aᵀGa =
∑
ϕ∈�

a2
ϕGϕ,ϕ +

∑
ϕ �=ϕ′∈�

aϕaϕ′Gϕ,ϕ′

≥ (μ − RT )
∑
ϕ∈�

a2
ϕ + (μ2 − RT

) ∑
ϕ �=ϕ′∈�

aϕaϕ′≥0

aϕaϕ′ + ((1 − μ)2 + RT

) ∑
ϕ �=ϕ′∈�

aϕaϕ′<0

aϕaϕ′

≥ (μ − μ2)‖a‖2 + μ2
∑

ϕ,ϕ′∈�

aϕaϕ′ + (1 − 2μ)
∑

ϕ �=ϕ′∈�

aϕaϕ′<0

aϕaϕ′ − RT |a|21

≥ (μ − μ2)‖a‖2 + μ2
(∑

ϕ∈�

aϕ

)2

− ((1 − 2μ) − RT

)|a|21

≥ (μ − μ2)‖a‖2 − ((1 − 2μ) + RT

)[|aJ |1 + |aJc |1
]2

≥ (μ − μ2)‖a‖2 − ((1 − 2μ) + RT

)
)(1 + c)2|aJ |21

≥ (μ − μ2)‖aJ ‖2 − ((1 − 2μ) + RT

)
(1 + c)s‖aJ ‖2,

which is the desired result.

7.10. Proof of Corollary 1

We shall prove only for the short effect dictionary. The other cases are treated similarly. For this choice of dictionary
‖�‖∞ = 1 and |�| = |F |. Hence, by applying Theorem 5 and Theorem 1 both with δ = T −1 one deduces that, for T

large enough, on an event of probability larger then 1 − c1/T , the following oracle inequality holds

∥∥f̂ − pi(·)
∥∥2

T
≤ inf

a∈R�

{∥∥fa − pi(·)
∥∥2

T
+ 4κ−1

∣∣S(a)
∣∣ (log |F | + log(2T ))

2T

}
, (7.8)

where c1 depends only on the distribution of X and

κ = κ ′ − c′
1T

−1/2|F |1/2(m + log(T ) + log |F |)1/2(log |F | + log δ−1)1/2
,

with c′
1 depending only on the distribution of X and κ ′ given by (5.1).
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Now, for the choices given by (5.2), (5.3) and (5.4), then, as seen previously κ ′ = c′
2 log(T ))−c′

3 , for positive constants
c′

2 and c′
3 depending only on m and μ and

κ = c′
2

(logT )c
′
3

(
1 − o(1)

)
.

By plugging κ into (7.8), the result follows.
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