
The Annals of Applied Probability
2019, Vol. 29, No. 6, 3637–3694
https://doi.org/10.1214/19-AAP1489
© Institute of Mathematical Statistics, 2019

RIGHT MARKER SPEEDS OF SOLUTIONS TO THE KPP
EQUATION WITH NOISE1

BY SANDRA KLIEM

Goethe Universität

We consider the one-dimensional KPP-equation driven by space–time
white noise. We show that for all parameters above the critical value for sur-
vival, there exist stochastic wavelike solutions which travel with a determin-
istic positive linear speed. We further give a sufficient condition on the initial
condition of a solution to attain this speed. Our approach is in the spirit of
corresponding results for the nearest-neighbor contact process respectively
oriented percolation. Here, the main difficulty arises from the moderate size
of the parameter and the long range interaction. Stopping times and averaging
techniques are used to overcome this difficulty.
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1. Introduction. The Kolmogorov–Petrovskii–Piskunov (KPP) equation
(also known as the Kolmogorov or Fisher equation) with noise is given as

(1.1) ∂tu= ∂xxu+ θu− u2+ u
1
2 dW, t > 0, x ∈R, u(0, x)= u0(x)≥ 0,

where W = W(t, x) is space–time white noise and θ > 0 a parameter. The de-
terministic part of this one-dimensional stochastic partial differential equation
(SPDE) is, after appropriate scaling, a case of the well-studied KPP-equation.
Note that by Mueller and Tribe [17], Lemma 2.1.2, constant front-factors in the
PDEs/SPDEs to be referred to, can and will be changed without comment to fit
into our framework. Including the noise term, one can think of u(t, x)= ut (x)=
u

(u0)
t (x) as the (random) density of a population in time and space. Leaving out

the term θu− u2, the above SPDE is the density of a super-Brownian motion (cf.
Perkins [19], Theorem III.4.2), the latter being the high density limit of branching
particle systems. The additional term of θu models linear mass creation at rate
θ > 0, −u2 models death due to competition or overcrowding. In [18], Mueller
and Tribe obtain solutions to (1.1) as (weak) limits of approximate densities of
occupied sites in rescaled one-dimensional long range contact processes.

Let C+ denote the space of nonnegative continuous functions on R. The ex-
istence and uniqueness in law of solutions to (1.1) in the space of nonnegative
continuous functions with slower than exponential growth C+tem,

C+tem =
{
f ∈ C+ : ‖f ‖λ <∞ for all λ > 0

}
with ‖f ‖λ = sup

x∈R
∣∣f (x)

∣∣e−λ|x|,(1.2)

is established in Tribe [21], Theorem 2.2 (see Theorem 2 below). Here, a solution
to (1.1) is to be understood in the sense of a weak solution (see Notation 1.3 be-
low). Denote with Pu0 the law of such a solution starting in u0 ∈ C+tem. By [21],
Theorem 2.2, the map f �→ Pf on C+tem is continuous and the family of laws
Pf , f ∈ C+tem forms a strong Markov family. For ν ∈ P(C+tem), the space of proba-
bility measures on C+tem, denote Pν(A)= ∫

C+tem
Pf (A)ν(df ). Use Eu0 respectively

Eν to denote respective expectations.
Let τ = inf{t ≥ 0 : u(t, ·) ≡ 0} be the extinction-time of the process. By [17],

Theorem 1, there exists a critical value θc > 0 such that for any initial condition
u0 ∈ C+c \{0} with compact support and θ < θc, the extinction-time of u solving
(1.1) is finite almost surely. For θ > θc, survival, that is, τ =∞, happens with
positive probability.

The investigation of the dynamics of solutions to (1.1) is a major challenge,
where the main difficulty comes from the competition term−u2. Without competi-
tion, the underlying additive property facilitates the use of Laplace functionals (cf.
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[19], paragraphs preceding and following Lemma II.5.9). Including competition,
only subadditivity in the sense of [17], Lemma 2.1.7, or Kliem [14], Remark 2.1(i),
holds, that is, for u0, v0 ∈ C+tem and w0 ≡ u0 + v0 there exists a coupling of solu-
tions (ut )t≥0, (vt )t≥0, (wt)t≥0 to (1.1) with respective initial conditions u0, v0,w0
such that wt(x)≤ ut (x)+ vt (x) for all t ≥ 0, x ∈R almost surely.

Let

(1.3) R0
(
u(t)

)≡R0(t)≡ sup
{
x ∈R : u(t, x) > 0

}
with sup∅=−∞

denote the right marker of a solution to (1.1) starting in u0 ∈ P(C+tem). Note
that R0(t) = −∞ if and only if τ ≤ t . Extending arguments of Iscoe [11], one
can show that R0(u(0)) <∞ implies R0(u(t)) <∞ for all t > 0 almost surely.
Indeed, the interested reader may have a look at [21], Lemma 2.1, where the
crucial part of the proof is given. In combination with a Borel–Cantelli argu-
ment, this property of the right markers now follows. (Note in particular, that for
u0 ∈ C+c , the compact support property holds, that is, ut ∈ C+c for all t > 0 al-
most surely; also see [20].) Analogously, we denote the left marker of a solution
by L0(u(t)) ≡ L0(t) ≡ inf{x ∈ R : u(t, x) > 0} with inf∅ = −∞. By symmetry,
L0(u(0)) >−∞ implies L0(u(t)) >−∞ for all t > 0 almost surely.

Using R0 as a (right) wavefront marker, we look for so-called traveling wave
solutions to (1.1), that is, solutions with the properties:

(i) R0
(
u(t)

) ∈ (−∞,∞) for all t ≥ 0,

(ii) u
(
t, ·+R0

(
u(t)

))
is a stationary process in time.

(1.4)

Traveling wave solutions are of interest in models from physics, chemistry and
biology (cf. Aronson and Weinberger [1]). In [21], the existence of traveling wave
solutions for θ > θc with nonnegative wave speed, based on solutions to (1.1)
with Heavyside initial data of the form H0(x) ≡ 1 ∧ (−x ∨ 0) is established. In
[21], Section 4, it is established that for θ > θc any traveling wave solution has an
asymptotic (possibly random) wave speed

(1.5) R0
(
u(t)

)
/t→A ∈ [0,2θ1/2] for t→∞ almost surely.

It is further shown that for θ big enough, A is close to 2θ1/2 with high probability.
Strict positivity of A remains an open problem if θ is of moderate size. Further
open problems that arise are for instance if the wave speed is deterministic or
random, the dependence of the speed on the parameter θ or the distribution of the
traveling wave, the uniqueness of the distribution of the traveling waves and the
shape of the wavefront. In this article, we make substantial progress to resolve all
of the questions relating to the wave speed.

An alternative construction of traveling wave solutions is given in [14] in
case θ > θc. The initial Heavyside-condition H0 is replaced by an arbitrary non-
negative continuous function g0 ∈ C+c with compact support. As extinction (i.e.,
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τ = inf{t ≥ 0 : ut ≡ 0} = inf{t ≥ 0 : ∫ ut (x) dx = 0} <∞) happens with proba-
bility 0 < Pg0(τ <∞) < 1, we condition on nonextinction to obtain well-defined
traveling wave solutions ν(g0). Note that ν(g0) denotes any subsequential limit ob-
tained by this construction. The uniqueness of the limiting distribution remains as
an open problem.

Write 〈f,g〉 = ∫
f (x)g(x) dx. For T > 0, denote by υT the left-upper measure

on C+tem corresponding to L(ξ
(−∞,0]∩Z
T ) (here, L denotes “law”) in the contact pro-

cess setup (for details on the connection to the contact process; see Section 1.1 be-
low; for additional motivation on upper measures, see second part of Section 1.4).
One can construct υT (cf. [14], Remark 2.8) as the limiting distribution of u

(ζN )
T

for N →∞, where ζN ∈ C+tem,N ∈ N, ζN(x) ↑ ∞ for x < 0 and ζN(x) = 0 for
x ≥ 0. Then

(1.6)
∫

e−2〈f,g〉υT (df )= P
(〈
1(−∞,0)(·), u(g)

T

〉= 0
)

for g ∈ C+tem.

Furthermore, for u0 ∈ C+tem with R0(u0)≤ 0 and T > 0 arbitrarily fixed one obtains
the existence of a coupling with a random continuous process (u

∗,l
T+t )t≥0 with val-

ues in C+tem such that

(1.7) u
(u0)
T+t (x)≤ u

∗,l
T+t (x) for all x ∈R, t ≥ 0 almost surely,

where L((u
∗,l
T+t )t≥0)= PυT

holds. Note in particular that such a coupling yields

(1.8) R0
(
u

(u0)
T+t

)≤R0
(
u
∗,l
T+t

)
for all t ≥ 0 almost surely.

By symmetry, analogous results hold for a right-upper measure, say κT , where we
make use of the notation L0(f )≡ inf{x ∈ R : f (x) > 0} and u

∗,r
T+t instead. In the

Appendix (cf. (A.8)), we indicate how to modify the techniques of [14] to construct
traveling wave solutions ν∗,l respectively ν∗,r from u∗,l respectively u∗,r .

The first main result of this article is the following.

PROPOSITION 1.1. For all θ > θc, the limit B ≡ B(θ)≡ limt→∞E[R0(u
∗,l
t )]/

t exists and is strictly positive. Moreover, for all θc < θ ≤ θ1 ≤ θ2 ≤ θ , there exists
a constant C = C(θ, θ) such that

(1.9) B(θ2)−B(θ1)≥ C(θ2 − θ1).

We note that the strict positivity of B(θ) follows from (1.9), once B(θ) ≥ 0 is
established for all θ > θc. Our approach relies on establishing the estimate (1.9)
along the lines of the corresponding result for contact processes in [3], Lemma 4.2.

Recall from above that H0 denotes Heavyside initial data of the form H0(x)≡
1∧ (−x ∨ 0).
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DEFINITION 1.2. Let

(1.10) H= {
f ∈ C+tem : ∃x0 ∈R, ε > 0 : f (x)≥ εH0(x − x0) for all x ∈R}

and HR = {f ∈H :R0(f ) ∈R}.

Our second main result concerns the limiting speeds of several right markers. It
establishes in particular the existence of at least one traveling wave with positive
deterministic speed.

THEOREM 1. Let θ > θc. Then

(1.11) R0
(
u
∗,l
T

)
/T → B(θ) as T →∞ almost surely and in L1.

For any traveling wave solution ν∗,l ,

(1.12) R0
(
u

(ν∗,l )
T

)
/T → B(θ) almost surely as T →∞

and (0∨R0(u
(ν∗,l )
T ))/T → B(θ) in L1.

For initial conditions ψ ∈HR ,

(1.13) R0
(
u

(ψ)
T

)
/T → B(θ) as T →∞ in probability and in L1.

For any traveling wave solution ν(ψ),

(1.14) R0
(
u

(ν(ψ))
T

)
/T → B(θ) almost surely as T →∞

and (0∨R0(u
(ν(ψ))
T ))/T → B(θ) in L1.

Our approach is in the spirit of corresponding results for the nearest neighbor
contact process respectively oriented percolation. A successful approach to prove
positive wave speeds respectively survival for large parameter values θ is to em-
ploy a comparison of the system at hand to N -dependent oriented site percolation
with density at least 1 − ρ (see, for instance, [21], Proof of Proposition 4.1(c),
resp., [17], Section 2.2). Here, the main difficulty arises from the moderate size
of the parameter in combination with the long range interaction and a novel ap-
proach was therefore taken. Stopping times and averaging techniques are used to
overcome the above mentioned difficulties.

1.1. Connections with the contact process setup and the significance of edge
speeds. For the process in (1.1), one has a self-duality relationship in the form

(1.15) Eu0

[
e−2〈u(t),v0〉]= Eu0 ⊗Ev0

[
e−2〈u(s),v(t−s)〉]= Ev0

[
e−2〈u0,v(t)〉]

for all 0 ≤ s ≤ t and u0, v0 ∈ C+tem, where u(t), v(t) are independent solutions to
(1.1) with initial condition u0 respectively v0 and with independent noises (cf.
[14], (2.1)). Use P(E) to denote the space of probability measures on E. In [14],
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Remark 2.5, this self-duality is used to prove existence of a unique upper invariant
distribution μ ∈ P(C+tem) satisfying

(1.16) lim
t→∞ lim

ψ↑∞Eψ

[
e−2〈u(T+t),φ〉]= ∫

e−2〈f,φ〉μ(df )= Pφ(τ <∞)

for all T > 0, φ ∈ C+c . In [9], Theorem 1, Horridge and Tribe give sufficient con-
ditions (“uniformly distributed in space”) for initial conditions to be in the do-
main of attraction of μ. They characterize μ by the right-hand side of (1.16) and
show that it is the unique translation invariant stationary distribution satisfying
μ({f : f �≡ 0}) = 1. The result and method of proof are in the spirit of Harris’
convergence theorem for additive particle systems (cf. Durrett [5], Theorem 3.3).

Recall the construction of solutions to (1.1) from [18] by means of limits of den-
sities of rescaled long range contact processes. When investigating solutions to the
SPDE (1.1), it is only natural to anticipate and/or investigate behavior similar in
spirit to the approximating systems. Indeed, [9] successfully applied the method of
proof of Harris’ convergence theorem for additive particle systems to prove a cor-
responding result in the context of SPDEs (1.1). Due to the long range interaction
and the lack of a dual process, results for long range contact processes are limited.
More is known for the nearest neighbor contact process (ξt )t≥0 on Z (cf. Grif-
feath [7]), where the neighborhood of a site x ∈ Z is restricted to {x − 1, x + 1}.
For the nearest neighbor contact process, a full description of the limiting law of a
solution is available. The limiting law is the weighted average of the Dirac-measure
on the “all-unoccupied” configuration and the upper invariant measure of the pro-
cess, ν, where the weight on the former coincides with the extinction probability
(see [7], Theorem 5).

In what follows, let S be the space of all subsets of Z. By identifying the state of
the process ξt at time t with the set of occupied sites, we can consider (ξt )t≥0 as an
S-valued process. For A⊂ Z, ξA

t denotes the state of the process at time t , starting
with the set A as occupied sites. Let λ be the birth-parameter, the death-parameter
is set to one. If we think of occupied sites as sites occupied with (exactly) one
particle, then independently of each other, at rate λ a particle at site x ∈ Z attempts
to give birth to a particle at a fixed neighboring site. In case this site is occupied,
nothing happens, otherwise the birth is successful. (Taken together, the rate of birth
is thus λ times the number of neighboring sites of x that are empty.) Furthermore,
at rate 1 each, independently of each other, particles die. Set λc = sup{λ ≥ 0 :
P(τ {0} = ∞) = 0}, where τ {0} = inf{t ≥ 0 : ξ {0}t = ∅} is the extinction time of
the population starting with zero being the only occupied site at time 0. Then
λc ≈ 1.6494; see [16], page 289.

The proof of complete convergence for the nearest neighbor case relies in
essence on the progression of the so-called edge processes lAt ≡ min{x : x ∈
ξA
t }, rA

t ≡max{x : x ∈ ξA
t }, A ∈ S fixed. Due to the nearest neighbor interaction,
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one can easily show that

ξ
{0}
t = ξA

t ∩
[
l
{0}
t , r

{0}
t

]= ξ
(−∞,0]∩Z
t ∩ ξ

[0,∞)∩Z
t

for all 0 ∈A⊂ Z on
{
τ {0} > t

}(1.17)

(cf. [7], Theorem 3). Moreover,

(1.18) l
{0}
t = l

[0,∞)∩Z
t and r

{0}
t = r

(−∞,0]∩Z
t on

{
τ {0} > t

}
.

In [3], Theorem 1.4 and Section 4, respectively [4], Section 3, (8)–(9), Durrett
shows for the nearest neighbor contact process respectively for oriented percola-
tion in two dimensions that

− lim
t→∞

l
[0,∞)∩Z
t

t
= lim

t→∞
r
(−∞,0]∩Z
t

t
= α a.s.,

where α = α(λ)

{
> 0 if λ > λc,

< 0 if λ < λc.

(1.19)

By (1.18), he obtains in particular limt→∞ r
{0}
t /t = α on {τ {0} =∞}.

Thus, in these models, edge speeds characterize critical values. Similar features
were for instance recently observed and discussed in Bessonov and Durrett [2] for
planar quadratic contact processes (here, two individuals are needed to produce a
new one). Under long range interaction, (1.17)–(1.18) do not hold true any longer.

For these reasons, the study of the speed of the right (and thus by symmetry
left) marker (cf. (1.3)) is of independent interest and yields new insights into the
dynamics of solutions to (1.1). In [14], Remark 2.8, C+tem-valued left- and right-
upper measures were derived as analogues to the law of ξ

(−∞,0]∩Z
t , ξ

[0,∞)∩Z
t , t > 0

and first rough estimates on marker speeds obtained in Section 4.
Recall (1.18). Proposition 1.1 and (1.11) are a prestep to a result in the spirit

of the first case of (1.19). It remains to prove, for instance, that for θ < θc,
(R0(u

∗,l
T )∨ 0)/T converges (in some sense) to 0. In combination with (1.11), this

would then show that the edge speeds of solutions starting in left- or right-upper
measures characterize critical values. Also, it is an open question what happens
to the the speed if we replace initial conditions ψ ∈HR in (1.13)–(1.14) by com-
pactly supported u0 ∈ C+c and a condition on survival. This is work in progress.

1.2. A comment on the use of stopping times and averaging techniques. Let us
shortly indicate the need for additional averaging techniques and stopping times.
For the contact process, ξA

t ,A⊂ Z models a population on Z with (at most) one
particle of individual mass 1 located at x ∈ Z at time t if and only if x ∈ ξA

t .
In the nearest-neighbor setup, if the right edge process rA

t increases, it increases
exactly by 1. Let τ denote a (random) time of increase in the right marker, that
is, rA

τ = rA
τ− + 1. Then ξA

τ (rA
τ )− ξA

τ−(rA
τ )= 1. Thus an increase in the right edge



3644 S. KLIEM

yields the creation of a mass of fixed size 1 at a fixed distance of 1 to the right.
Moreover, the probability for an increase of the right marker in a specific period of
time can be bounded below by a positive quantity that only depends on λ. Indeed,
just consider the probability that the particle at the rightmost site gives birth to a
particle at its right neighboring site in the specific time period without dying out.

In our setup, we consider densities u(t, x) in C+tem instead. Recall the definition
of the right marker R0(u(t)) from (1.3) as the right boundary of the support of
the solution. As this definition does not provide any information on the shape of
the right front u(t, ·+R0(u(t))) of the solution at time t , we have to additionally
control the gain of mass to the right and its spatial distribution over time. For
instance, if we gain a small amount of mass or if the gain in mass is of moderate
size but distributed over a large stretch of space, the probability for another gain at
the front in a specific period of time is comparatively small (this can be shown by
techniques used in the proof of the finiteness of the right marker; see the comment
following (1.3)). Even if we gain a large amount of mass, if its spatial distribution
is strongly localized, it has a large probability of being reduced to small size in
a short period of time due to competition (cf. (1.6)). As a result, we use stopping
times to “wait” for times where not only the right front increases but the shape of
the right front is such that another gain at the front is plausible (look ahead at the
definition of M(d0,m0) in (3.32)). By considering averages over time such as in
the definition of αT (θ) in (2.1) and in particular in the definition of averages over
front shapes as in (A.8) for u∗,ls (for the interested reader, the analogous definition
for solutions with u0 compactly supported can be found in [14], Definition 1.4),
we can ensure that for a large enough fraction of time, such a shape can be found
at the front of a solution with high probability.

1.3. Notation and a basic theorem. For the remainder, let us recall some no-
tation and Theorem 2.2 from [21] that are often used in the present article.

NOTATION 1.3 (Notation from [21]; also see Section 1.2 of [14]).

1. Equip C+tem with the topology given by the norms ‖f ‖λ for λ > 0. Note that
d(f, g)≡∑

n∈N(1∧ ‖f − g‖1/n) metrizes this topology and makes C+tem a Polish
space. Let (C([0,∞),C+tem),U,Ut ,U(t)) be continuous path space, the canonical
right continuous filtration and the coordinate variables.

2. In [21], (2.4)–(2.5), the more general equation

∂tu= ∂xxu+ α+ θu− βu− γ u2 + u
1
2 dW, t > 0, x ∈R,

u(0, x)= u0(x)≥ 0
(1.20)

with α(·), β(·), γ (·) ∈ C([0,∞),C+tem) is under consideration. We may interpret α

as the immigration rate, θ − β as the mass creation-annihilation rate and γ as the
overcrowding rate.
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A solution to (1.20) consists of a filtered probability space (�,F,Ft ,P), an
adapted white noise W and an adapted continuous C+tem valued process u(t) such
that for all φ ∈ C∞c , the space of infinitely differentiable functions on R with com-
pact support,

〈
u(t), φ

〉= 〈
u(0), φ

〉+ ∫ t

0

〈
u(s),φxx + (

θ − β(s)− γ (s)u(s)
)
φ
〉
ds

(1.21)

+
∫ t

0

〈
α(s),φ

〉
ds +

∫∫ t

0

∣∣u(s, x)
∣∣1/2

φ(x) dWx,s.

If in addition P(u(0, x)= f (x))= 1, then we say the solution u starts at f .

THEOREM 2 (Theorem 2.2 of [21]).

(a) For all f ∈ C+tem there is a solution to (1.20) started at f .
(b) All solutions to (1.20) started at f have the same law which we denote by

Qf,α,β,γ . The map (f,α,β, γ )→Qf,α,β,γ is continuous. The laws Qf,α,β,γ for
f ∈ C+tem form a strong Markov family.

(c) For R,T > 0, let UR,T = σ(U(t, x) : t ≤ T , |x| ≤ R). Then the two laws
Qf,α,β,γ , Qf,α,0,0 are mutually absolutely continuous on UR,T .

Note that Tribe [21] later uses the notation Qf ≡ Qf,0,0,1 where we use Pf .
Also, when the parameter θ in (1.20) is not clear from the context, we write
Qf,α,β,γ (θ).

Finally, let D= denote equality in distribution. Constants may change from line
to line. We drop θ if the context is clear.

1.4. Overview of basic results obtained in [14]. In this subsection, we give
a short summary of and motivation for coupling techniques and upper measures
obtained in [14] that are used in the remainder of this article.

Couplings of solutions to (1.1) play an essential role in the proofs to follow.
For precise statements and some additional details, see the Appendix, Section A.3
on coupling techniques. The first two couplings are intuitively quite simple. If
we increase the initial density u0 at time 0 or the linear mass creation parameter
θ > 0, then the resulting densities ut , t > 0 are also (monotonically) increasing
almost surely. We will refer to these couplings as a monotonicity-coupling respec-
tively a θ -coupling. The latter lies at the heart of the definition of θc. The third and
fourth couplings, the so-called coupling with two independent processes and the
immigration-coupling state in essence that if we split the initial population density
u0 into two parts and let each of the two resulting populations evolve indepen-
dently, then the sum of the respective populations dominates a population started
in u0 for all times almost surely. This is due to the additional competitive interac-
tion between the two parts of the population in the latter nonindependent setting. It
also accounts for the failure of the additive property as mentioned in the paragraph
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above (1.3). The last coupling, the θ -∗-coupling, is an extension of the idea behind
the θ -coupling to initial conditions “∞· 1(−∞,0)”.

In [14], Remark 2.8, C+tem-valued left-upper measures υT were derived as ana-
logues to the laws of the contact processes ξ

(−∞,0]∩Z
T , T > 0. In the remainder of

the article, the concepts used in this remark are often used. We thus explain them
in what follows and whenever citing the remark, we will remind the reader of the
following paragraphs by adding “left-upper measure” in brackets. As for the con-
tact process, the idea is to start in “the maximal initial condition on the left of,
including zero.” With C+tem as a state space, this motivates “u0 =∞·1(−∞,0)”. The
latter is not an element of C+tem but can be obtained as the increasing limit of initial
conditions ζN ∈ C+tem such that ζN(x) ↑ ∞ for x < 0 and ζN(x) = 0 for x ≥ 0.
One can then construct υT as the limiting distribution of u

(ζN )
T for N →∞. For

intuition purposes, imagine an extension of the monotonicity-coupling for initial
conditions u0 ≤ v0 to an increasing sequence of initial conditions ζN,N ∈ N and
define υT as the law of the limit of the increasing sequence (u

(ζN )
T )N∈N. The pre-

cise details of this construction can be found at the beginning of Section 2 in [14].
Note that although u0“= ”∞ · 1(−∞,0) /∈ C+tem, υT ∈ P(C+tem) for all T > 0 as the
downward drift, that is, the term (θ − u)u in (1.1), immediately “brings solutions
down from infinity” for u big.

Using the self-duality relationship from (1.15), one can further show for all
g ∈ C+tem, ∫

e−2〈f,g〉υT (df )= lim
N→∞EζN

[
e−2〈uT ,g〉]= lim

N→∞Eg

[
e−2〈ζN ,uT 〉]

= P
(〈
1(−∞,0)(·), u(g)

T

〉= 0
);

(1.22)

cf. (1.6). This equality yields in particular that υT is independent of the sequence
ζN .

Let us assume without loss of generality that ζ1 = u0 for u0 ∈ C+tem arbitrar-
ily fixed with R0(u0) ≤ 0. Let T > 0. Again, based on the idea of monotonicity-
couplings, one can construct a coupling of (u

(u0)
T+t )t≥0 with a random continuous

process (u
∗,l
T+t )t≥0 with values in C+tem such that

(1.23) u
(u0)
T+t (x)≤ u

∗,l
T+t (x) for all x ∈R, t ≥ 0 almost surely,

where L((u
∗,l
T+t )t≥0)= PυT

holds. Note in particular that such a coupling yields

(1.24) R0
(
u

(u0)
T+t

)≤R0
(
u
∗,l
T+t

)
for all t ≥ 0 almost surely.

Thanks to (1.23), u
∗,l
T+t , t ≥ 0 can be interpreted as a uniform upper bound on

solutions to (1.1) with R0(u0)≤ 0. Here, it is important to note that the statement
requires us to start in T > 0 as the initial condition of u

∗,l
T+t itself is not an element
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of the state space. We refrain to speak of (u
∗,l
T+t )t≥0 as “a solution” to (1.1), even

when considering υT as a randomized initial condition. Indeed, the definition of
solutions (cf. Notation 1.3) includes the specification of a white noise W , which
the construction in [14] does not provide.

As an application of (1.24), bounds on E[0∨R0(ut )] for t > 0 were obtained in
Section 4 of [14] that are independent of u0 ∈ C+tem satisfying R0(u0)≤ 0. Indeed,
in Proposition 4.5, [14] states that for θ > 0 and 0 < T ≤ 1, E[0 ∨ R0(u

∗,l
T )] ≤

C(θ)T 1/4 and in Lemma 4.6 that for T ≥ 1, E[0∨R0(u
∗,l
T )] ≤ C(θ)T . It then fol-

lows easily that Eu0[0∨R0(T )] ≤ C(θ)(T ∨T 1/4) for all T ≥ 0; cf. Corollary 4.7.
These bounds are used below in Section 2.3.

By symmetry, analogous results hold for right-upper measures κT , the ana-
logues to the laws of the contact process ξ

[0,∞)∩Z
T , T > 0. Here, we make use

of the notation L0(f )≡ inf{x ∈R : f (x) > 0} and u
∗,r
T+t instead.

Originally, the above ideas were used in [14], Proposition 2.2 and Corollary 2.6,
to construct upper measures μT corresponding to L(ξZT ) satisfying

(1.25)
∫

e−2〈f,g〉μT (df )= Pg(τ ≤ T )= P
(〈
1(−∞,∞)(·), u(g)

T

〉= 0
)

(also cf. (1.16)). They allow for a coupling u
(u0)
T+t (x)≤ u∗T+t (x) for all x ∈R, t ≥ 0

almost surely with the only restriction on u0 being u0 ∈ C+tem. Recall the two
paragraphs following (1.16). In [14], Proposition 2.4, it is shown that μT+t ⇒
μ ∈ P(C+tem) for t →∞. Here, μ is the analogue to the limit distribution of
ξZt for t →∞ in the contact process setup, that is, the upper invariant mea-
sure ν and coincides with the upper invariant distribution of [9]. Indeed, take
T →∞ in (1.25) to obtain the rightmost equality in (1.16), which character-
izes μ.

Outline. The paper is organized as follows. Sections 2–3 are dedicated to the
proof of Proposition 1.1, that is, the positivity of B(θ) for all θ > θc. In Sec-
tions 2.1–2.4, the groundwork is laid for the proof of Proposition 1.1, including
an idea of proof for estimate (1.9) in Section 2.2. In Section 2.3, we already state
the estimate that lies at the heart of the proof of Proposition 1.1; see Proposi-
tion 2.1. Its proof follows in Section 2.5. A substantial part of the proof goes
into an estimate on the gain of mass at the front due to an increase in θ ; see
Proposition 2.17. We therefore postpone the proof of the latter to Section 3. Sec-
tion 4 is dedicated to the proof of Theorem 1, that is, the convergence of the
linear speed of right markers to B(θ). Essentially, in Sections 2–3 we show that
limt→∞E[R0(u

∗,l
t )]/t = B , and in Section 4, we show that R0(u

∗,l
t )/t also con-

verges almost surely to B . In the Appendix, the construction of traveling wave
solutions from [14] is extended to include ν∗,l and ν(ψ) with initial conditions
ψ ∈HR (cf. (1.10) and below). Coupling techniques that are often used are sum-
marized for reference.
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2. Preliminary results.

2.1. The terms under investigation. Let θ > θc be arbitrarily fixed. Recall
the sequence of laws (υT )T >0 on C+tem and (u

∗,l
T+t )t≥0 for T > 0 fixed satisfying

L(u
∗,l
T+t ) = υT+t from (1.22)–(1.23). Note that υ· = υ·(θ) and u

∗,l
T+· = u

∗,l
T+·(θ).

From [14], Corollary 4.7 and Notation 1.3–4, we conclude that the double inte-
grals below are well defined with values in [−∞,∞). Let

(2.1) αT (θ)= αT = 2

T

∫ T/2

0
E
[
R0

(
u
∗,l
T /2+s

)]
ds.

In fact, E[R0(u
∗,l
T )]/T and αT /T are uniformly bounded in T ≥ 1 as we conclude

from [14], Corollary 4.7, and Lemma 2.2 below. In Lemma 2.8 and Corollary 2.9
below, we will see that the limits for T →∞ exist and that the limit of the former
is a constant multiple of the limit of the latter.

2.2. Idea of proof of estimate (1.9). In Section 2.3 to follow, we establish first
that the limit

(2.2) B = B(θ)= lim
T→∞E

[
R0

(
u
∗,l
T

)]
/T = 4

3
lim

T→∞αT /T ≥ 0

exists and is nonnegative. Here, we make use of subadditivity properties relating to
(E[R0(u

∗,l
T )])T≥1 to establish the existence of the limit B and use a coupling with

a traveling wave solution with nonnegative linear speed as for (1.24), to establish
its nonnegativity.

The proof of (1.9) then follows easily from the following.

PROPOSITION 2.1. Let θc < θ < θ . Then there exists C = C(θ, θ) > 0 and
T0 = T0(θ, θ)≥ 1 such that for all T ≥ T0 and θ ≤ θ1 < θ2 ≤ θ ,

(2.3)
αT (θ2)− αT (θ1)

T
≥ C(θ2 − θ1).

This is the main result of this section. The proof is deferred to Section 2.5.
Our approach relies on establishing the estimate (2.3) along the lines of the cor-
responding result for contact processes in [3], Lemma 4.2. The main steps of the
approach are given in what follows. For ease of understanding, let us omit at this
point the necessity of considering time averages and of considering the evaluation
of densities against test functions rather than the process by itself.

Step 1. Derive a uniform estimate from below on the expected increase of the
right marker due to a fixed gain in mass (for θc < θ ≤ θ ≤ θ fixed):

(1a) (cf. Lemma 2.14). With a slight abuse of notation, for ψ,φ ∈ C+tem,
R0(φ)≤ 0 arbitrarily fixed,

E
[
R0

(
u

(“∞·1(−∞,0)+ψ”)
T+t

)−R0
(
u

(“∞·1(−∞,0)”)
T+t

)]
≤ E

[
R0

(
u

(φ+ψ)
T+t

)−R0
(
u

(φ)
T+t

)](2.4)
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for all T > 0, t ≥ 0. In words, the average gain at the right front of a solution due
to an increase in the initial condition by ψ can be bounded from below, uniformly
over all initial conditions φ with R0(φ) ≤ 0, by the gain we obtain from starting
in the “maximal” initial condition with right marker in 0, that is, “∞ · 1(−∞,0)”.
Recall that for T > 0, t ≥ 0, the law L(u

∗,l
T+t )= υT+t of such a solution is a well-

defined element of P(C+tem).
Intuitively, by adding ψ in the initial condition, the resulting additional popu-

lation experiences death due to competition with the original population. Thus the
bigger the original initial condition, the higher the resulting competition and the
lower the gain in mass at the front.

(1b) (cf. Lemma 2.16). The left-hand side of (2.4) can in turn be bounded by a
constant C = C(T + t,ψ)= C(T + t,ψ, θ, θ)≥ 0. (In Step (2c) below, it will in
essence be shown that for T + t appropriately chosen, C(T + t,ψ) > 0.)

(1c). Note that by translation invariance, the estimates in (1a), (1b) can be used
at any (random stopping) time τ to obtain an estimate from below on the expected
increase of the right marker in the future due to a gain in mass at time τ .

Step 2. Split [θ, θ] in O(T ) subintervals of length �θ = O(1/T ). On each
subinterval, say [θl, θu], we use a θ -coupling (cf. Remark A.9 of the Appendix)
to show: with high probability there exists a finite (random) point S in time and
ψ ∈ C+tem\{0} such that

(2.5)
(
u
∗,l
S (θu)− u

∗,l
S (θl)

)(·+R0
(
u
∗,l
S (θl)

))≥ψ.

(2a) (cf. Proposition 2.17, (2.51)). To be more precise, show that on each subin-
terval [θl, θu], (2.5) succeeds with probability of order O(�θ)=O(1/T ) for some
S ∈ [0,1] and with O(1) for S ∈ [0, T ] by a geometric-type series argument. How
the latter is achieved will be discussed in Section 3.1 where the idea of proof is
given for Proposition 2.17.

(2b). Apply first the strong Markov property at time S together with (2.5) and a
monotonicity-coupling (cf. Remark A.8 of the Appendix), then apply a θ -coupling
(cf. Remark A.9 of the Appendix) to get

R0
(
u
∗,l
T (θu)

)−R0
(
u
∗,l
T (θl)

)
≥R0

(
u

(u
∗,l
S (θl)+ψ(·−R0(u

∗,l
S (θl))))

T−S (θu)
)−R0

(
u

(u
∗,l
S (θl))

T−S (θl)
)

(2.6)

≥R0
(
u

(u
∗,l
S (θl)+ψ(·−R0(u

∗,l
S (θl))))

T−S (θl)
)−R0

(
u

(u
∗,l
S (θl))

T−S (θl)
)
.

Now refer back to Step 1 to bound the expectation on the right-hand side.
(2c). Show that for S ∈ [0, T ], T big enough, the bound on the expectation at

the end of Step (1b) is strictly positive and independent of T . Now add things to-
gether. For each of the O(T ) subintervals of length �θ , the construction involving
S ∈ [0, T ] is successful with probability of order O(1). Hence, each subinterval
yields a gain of O(1) to the difference αT (θ2)− αT (θ1) and summing up we ob-
tain a gain of (θ2 − θ1)O(T ).
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2.3. Estimates on right markers.

Note that in this subsection, for all θc < θ ≤ θ ≤ θ the constants to follow only
depend on θ through θ, θ .

LEMMA 2.2. For all u0 ∈H, there exists a constant C =C(u0) > 0 such that

(2.7) Eu0

[
0∨ (−R0(ut )

)]≤ C(1+ t)

holds uniformly in t ≥ 0. Moreover, there exist Ci =Ci(u0) > 0, i = 1,2 such that
for all M > 0,

(2.8) Eu0

[−(R0(ut )/t
)
1{R0(ut )/t<−M}

]≤ C1e
−C2M

holds uniformly in t ≥ 1.

PROOF. Let u0 ∈H. Recall ε, x0 from the definition of H. Using a monoto-
nicity-coupling (cf. Remark A.8) we assume without loss of generality that u0 =
εH0(·− x0). We further assume x0 = 0 by the shift invariance of the dynamics.

We reason as in the proof of [21], Lemma 3.5. The author uses the wave marker
R1(t) = ln(〈e·, ut 〉) and Heavyside initial data H0 instead. It is shown that there
exist c = c(θ), a = a(θ), δ = δ(θ) > 0 such that PH0(R1(t) ≤ −a − cmt) ≤ (1−
δ/4)m for all t ≥ 0,m ∈N. We claim that this holds for H0 replaced by u0 = εH0,
R1(t) replaced by R0(t) and a replaced by 0 as well. Moreover, the constants c, δ

only depend on ε, θ and θ . The main idea of proof remains the same. We give it
below, so that the reader may skip the finer details.

The main idea of the proof of [21], Lemma 3.5, is to couple u(H0) with a se-
quence of independent processes u(j) solving a modification of (1.1). Namely,
each u(j) starts in a spacial shift to the left by jr, r ≥ 2, j ∈N of some continuous
function ψ0 :R→[0,1] that is symmetric and satisfies {x :ψ0(x) > 0} = (−1,1).
On−jr+ (r/2−1) · (−1,1)= (−jr− r/2+1,−jr+ r/2−1), the solutions fol-
low the dynamics of (1.1), outside the density is set to zero. By [17], Lemma 2.1.5,
with the corresponding coupling, u

(H0)
t ≥ u

(j)
t for all j ∈ N, t ≥ 0, x ∈ R almost

surely. Fix t ≥ 1. A lower bound on R0(u
(H0)
t ) is the random −jr − r/2+ 1 such

that u(j) is still alive at time t . The probability of the latter can in turn be bounded
from below by the probability that a solution starting in u

(j)
0 solves (1.1), survives

until time t and does not hit the boundary points −jr ± (r/2− 1) before time t .
The survival probability can be bounded from below by a constant, independent
of r . The probability of hitting the boundary points can be estimated using the
estimates that lie at the heart of the proof of the compact support property (cf.
paragraph following (1.3)). For r big enough, this probability becomes small.

Let us return to our claim. Replace a > 0 by a = 0; let us reason as in the
given proof with R1(f ) replaced by R0(f ) and ψ0 replaced by ψ ′0 ≡ εψ0 un-
til the last set of equations. Choose r = ct for t ≥ 1 arbitrarily fixed and r = c
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for t ∈ [0,1) (and thus Qψ0(T0(U) ≤ t) ≤ Qψ0(T0(U) ≤ 1) ≤ δ/4 in the nota-
tion of [21]). In the last set of equations, use that for a superprocess with initial
symmetric condition ψ ′0 and law Pψ ′0 (the density of the latter solves a modi-

fication of (1.1) where the competition term −u2 is dropped; for an appropri-
ate coupling, see [17], Lemma 2.1.4), there exists δ > 0 small enough such that
Pψ ′0(R0(ut )≥ 0)≥ Pψ ′0(τ > t)/2≥ Pψ ′0(〈ut ,1〉 ≥ δ)≥ δ/2 to obtain for all t ≥ 1,

(2.9) Pu0

(
R0(t)≤−cmt

)≤ (1− δ/4)m for all m ∈N.

As a result,

(2.10) Eu0

[
0∨ (−R0(ut )

)]≤ ct +∑
m∈N

(1− δ/4)mc(m+ 1)t ≤ C(c, δ)t.

For t ∈ [0,1), the different choice of r yields

(2.11) Pu0

(
R0(t)≤−cm

)≤ (1− δ/4)m for all m ∈N
and

(2.12) Eu0

[
0∨ (−R0(ut )

)]≤ c+∑
m∈N

(1− δ/4)mc(m+ 1)≤ C(c, δ)

instead.
By �x�, we denote the greatest integer that is less than or equal to x ∈R. To ob-

tain the second claim, for 0 < M < c choose C1 big enough and C2 small enough
such that C(c, δ)≤C1e

−C2c. For M ≥ c and t ≥ 1,

Eu0

[−(R0(ut )/t
)
1{R0(ut )/t<−M}

]
≤

∞∑
m=�M/c�

(1− δ/4)mc(m+ 1)(2.13)

= eln(1−δ/4)�M/c�
∞∑

m=0

(1− δ/4)mc
(
m+ 1+ �M/c�)≤ C1e

−C2M

for C1 =C1(c, δ) big enough and C2 = C2(c, δ) small enough. �

COROLLARY 2.3. There exists a constant C > 0 such that

(2.14) E
[
0∨ (−R0

(
u
∗,l
t

))]≤ C(1+ t)

holds uniformly in t > 0. Moreover, there exist Ci > 0, i = 1,2 such that for all
M > 0,

(2.15) E
[−(R0

(
u
∗,l
t

)
/t
)
1{R0(u

∗,l
t )/t<−M}

]≤ C1e
−C2M

holds uniformly in t ≥ 1.
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PROOF. The result follows again by domination, this time using (1.24) and
u0 ∈HR with R0(u0)≤ 0 arbitrary. �

COROLLARY 2.4. Eu0[|R0(uT )|]/T , u0 ∈HR and E[|R0(u
∗,l
T )|]/T are uni-

formly bounded in T ≥ 1 (constants may depend on u0).

PROOF. Combine Lemma 2.2 respectively Corollary 2.3 with [14], Lem-
ma 4.6. �

COROLLARY 2.5. There exists a constant C > 0 such that E[|R0(u
∗,l
s )|] ≤ C

for all 0 < s ≤ 1. Moreover, for every u0 ∈HR there exists a constant C(u0) > 0
such that E[|R0(us)|] ≤ C(u0) for all 0≤ s ≤ 1.

PROOF. Fix 0 < s ≤ 1. Then E[0 ∨ R0(u
∗,l
s )] ≤ C follows from [14], Propo-

sition 4.5, and E[0 ∨ (−R0(u
∗,l
s ))] ≤ C from Corollary 2.3. For u0 ∈ HR , the

bound for the positive part follows by domination and shift invariance, that is,
E[0∨R0(us)] ≤ |R0(u0)| +E[0∨R0(u

∗,l
s )] ≤ |R0(u0)| +C = C(u0). The bound

for the negative part follows from Lemma 2.2. �

COROLLARY 2.6. αT /T is uniformly bounded in T ≥ 1.

REMARK 2.7. The definition of the marker R0 together with Corollaries 2.4–
2.5 yields inf{t > 0 : u∗,lt ≡ 0} = +∞ a.s., that is, the process u∗,l does not die out
in finite time. Thus, if we consider u∗,l , we do not have to bother with conditioning
on nonextinction.

The existence of the following limit will turn out to be crucial in the following
chapters. Nonnegativity of the limit follows below.

LEMMA 2.8. The limit

(2.16) B = B(θ)= lim
T→∞E

[
R0

(
u
∗,l
T

)]
/T = inf

T≥1
E
[
R0

(
u
∗,l
T

)]
/T ∈ (−∞,∞)

exists.

PROOF. We work with Pυ1 , that is randomize the initial condition according
to the law of u

∗,l
1 ∈ C+tem. By the strong Markov property of the process, we have

for arbitrary 1≤ s, t ,

E
[
R0

(
u
∗,l
s+t

)]= E
[
E
[
R0

(
u
∗,l
s+t

) |Ft

]]= E
[
R0

(
u

(u
∗,l
t )

s

)]
(2.17)

= E
[
R0

(
u

(u
∗,l
t (·+R0(u

∗,l
t )))

s

)]+E
[
R0

(
u
∗,l
t

)]
.
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Use monotonicity, that is, (1.24), to further obtain

(2.18) E
[
R0

(
u
∗,l
s+t

)]≤ E
[
R0

(
u∗,ls

)]+E
[
R0

(
u
∗,l
t

)]
.

By subadditivity (cf. for instance Liggett [15], Theorem B22) and from the uniform
boundedness of E[|R0(u

∗,l
T )|]/T in T ≥ 1, we conclude

(2.19) lim
T→∞E

[
R0

(
u
∗,l
T

)]
/T = inf

T >0
E
[
R0

(
u
∗,l
T

)]
/T exists in (−∞,∞). �

COROLLARY 2.9. The limit limT→∞ αT /T = 3
4B exists.

PROOF. For all ε > 0, there exists T0 ≥ 1 such that for all T ≥ T0,

lim sup
T→∞

αT

T
= lim sup

T→∞
2

T 2

∫ T/2

0
E
[
R0

(
u
∗,l
T /2+s

)]
ds

(2.20)

≤ lim sup
T→∞

2

T 2

∫ T/2

0
(ε +B)(T /2+ s) ds = 3

4
(ε +B).

Analogous reasoning for a lower bound concludes the proof. �

The limit is indeed nonnegative.

LEMMA 2.10. The limit B = limT→∞E[R0(u
∗,l
T )]/T from Lemma 2.8 is non-

negative.

PROOF. Let ν ∈ P(C+tem) be such that ν({f : R0(f ) = 0}) = 1 and Pν is the
law of a traveling wave. For θ > θc, existence follows from [21], Theorem 3.8
and (3.29), and the shift invariance of the dynamics. By [21], Proposition 4.1,
R0(u

(ν)
t )/t converges a.s. to a (possibly random) limit A(ν) ≥ 0. By monotonic-

ity, that is by (1.24), we have R0(u
∗,l
t )/t ≥ R0(u

(ν)
t )/t for all t ≥ 1 a.s., and thus

lim inft→∞R0(u
∗,l
t )/t ≥ 0 a.s.

Let ε > 0 arbitrary. By Corollary 2.3, there exist constants C1,C2 > 0 such that
for M > 0 satisfying C1e

−C2M < ε,

B ≥ lim sup
T→∞

E
[(

R0
(
u
∗,l
T

)
/T

)
1{R0(u

∗,l
T )/T≥−M}

]− ε

≥ E
[
lim inf
T→∞

(
R0

(
u
∗,l
T

)
/T

)
1{R0(u

∗,l
T ))/T≥−M}

]
− ε ≥−ε,

(2.21)

where we applied Fatou’s lemma. �

Recall the main result of this section, Proposition 2.1. As a corollary, we now
obtain the strict positivity of B(θ).
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COROLLARY 2.11. For all θ > θc,

(2.22) B = B(θ)= lim
T→∞E

[
R0

(
u
∗,l
T (θ)

)]
/T > 0.

PROOF. By definition of αT , Corollary 2.9 and Lemma 2.10, Proposition 2.1
implies that for all θ > θc,

lim
T→∞E

[
R0

(
u
∗,l
T (θ)

)]
/T = B(θ)= 4

3
lim

T→∞αT (θ)/T

>
4

3
lim

T→∞αT

(
θc + (θ − θc)/2

)
/T ≥ 0.

(2.23)

�

We conclude this subsection with two more results that we need for later esti-
mates.

LEMMA 2.12. Let θc < θ , then there exists δ̃ > 0 such that P(R0(u
∗,l
T (θ)) ≥

0)≥ δ̃ for all T ≥ 1 and θ ≥ θ .

PROOF. Recall the paragraph including (1.25). Use a θ -∗-coupling (cf.
Lemma A.12 of the Appendix) to see that it suffices to show the claim for
θ fixed. Note that for T ≥ 1 arbitrarily fixed, P(R0(u

∗,l
T (θ)) ≥ 0) > 0. There-

fore, in the following proof by contradiction we only need to suppose to the
contrary that there exists a sequence (Tn)n∈N such that Tn →∞ for n→∞
and limn→∞ P(R0(u

∗,l
Tn

) ≥ 0) = 0. Let H0(x) = 1 ∧ (−x ∨ 0) be Heavyside
initial data and set f1(x) = H0(x + 1) + H0(−x − 1). Then f1 ∈ C+tem and
supp(f1) = (−∞,−1] ∪ [1,∞). Let f2(x) = 0 ∨ (1 − |x|), then f2 ∈ C+c with
supp(f2)= [−1,1]. f1 fulfills condition [9], (6) (“nearly uniformly distributed in
space”) for initial conditions to be in the domain of attraction of μ, and hence [9],
Theorem 1, yields u

(f1)
t ⇒ μ for t→∞. Using a coupling with two independent

processes (cf. Remark A.10 of the Appendix) in combination with the construc-
tion of [14], Remark 2.8(ii) (left-upper measure), we construct two independent
processes (u

∗,l
t )t≥1 and (u

∗,r
t )t≥1 such that L((u

∗,l
t )t≥1)= Pυ1 , L((u

∗,r
t )t≥1)= Pκ1

and

(2.24) u
(f1)
t ≤ u

∗,l
t (·+ 1)+ u

∗,r
t (·− 1) for all t ≥ 1, x ∈R almost surely.

By (1.16) and [17], Theorem 1 (for θ > θc survival happens with positive proba-
bility),

(2.25)
∫
C+tem

e−2〈g,f2〉μ(dg)= Pf2(τ <∞) < 1.

Note that the additional factor of 2 in the exponent results from the use of a differ-
ent scaling constant in the original SPDE. We obtain by the weak convergence of
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u
(f1)
t to μ,

1 > lim
n→∞

∫
C+tem

e−2〈g,f2〉u(f1)
Tn

(dg)= lim
n→∞E

[
e
−2〈u(f1)

Tn
,f2〉]

≥ lim
n→∞E

[
e
−2〈u∗,lTn

(·+1)+u
∗,r
Tn

(·−1),f2〉](2.26)

= lim
n→∞E

[
e
−2〈u∗,lTn

(·+1),f2〉]E[e−2〈u∗,rTn
(·−1),f2〉].

The assumption limn→∞ P(R0(u
∗,l
Tn

)≥ 0)= 0 yields by symmetry and by the shift

invariance of the dynamics, limn→∞P(R0(u
∗,l
Tn

(· + 1) ≥ −1) = 0 =
limn→∞ P(L0(u

∗,r
Tn

(·− 1) ≤ 1) = 0. Use a coupling u
∗,r
Tn
≤ u∗Tn

with u∗Tn
⇒ μ ∈

P(C+tem) (cf. [14], (2.34) and Proposition 2.4) to conclude by using dominated
convergence that the right-hand side in (2.26) is equal to 1, a contradiction. �

LEMMA 2.13. For all θc < θ ≤ θ, T ≥ 1,

(2.27) E
[(

0∨R0
(
u
∗,l
T

))2]≤ C(θ)T 2.

PROOF. In what follows, constants C = C(θ) may change from line to line.
Note that for ai ≥ 0, i = 1, . . . , n, n ∈N, (

∑n
i=1 ai)

2 ≤ n
∑n

i=1 a2
i .

We first show the claim for T ∈ N. Let us reason as in [14], Lemma 4.2–
Proposition 4.5, to show that for T = 1, E[(0∨R0(u

∗,l
1 ))2] ≤ C. Then reason as in

[14], Lemma 4.6, to show the claim for T ∈N by induction.
Next, we extend this result to T ≥ 1. As L(u

∗,l
T ) ∈ P(C+tem\{0}) for all T > 0 we

use [14], Remark 2.8 (left-upper measure) to get for T ≥ 1 arbitrary,

(2.28) E
[(

0∨R0
(
u
∗,l
T

))2]= E
[(

0∨R0
(
u

(u
∗,l
�T �)

T−�T �
))2]

.

By [14], Remark A.1, and symmetry,

E
[(

0∨R0
(
u

(u
∗,l
�T �)

T−�T �
))2|u∗,l�T �

]
(2.29)

≤ (
0∨ (

R0
(
u
∗,l
�T �

)+ 2
))2 +C

∫ ∞
0∨(R0(u

∗,l
�T �)+2)

2R
〈
e
− (·−(R−1))2

4(T−�T �) , u
∗,l
�T �

〉
dR.

Take expectations and use [14], Corollaries 2.6 and 2.9, to conclude that

(2.30) E
[(

0∨R0
(
u

(u
∗,l
�T �)

T−�T �
))2]≤ C�T �2 +C

∫ ∞
0

2R
〈
e−

(·−(R−1))2
4 ,1

〉
dR ≤ CT 2

as claimed. �
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2.4. A preliminary estimate. The following two lemmas yield, in combination,
a lower bound on the expected increase of the right front marker at time T + t, T >

0, t ≥ 0 resulting from an increase of ψ ∈ C+tem in the initial density of a solution
to (1.1).

Recall the construction of the left-upper invariant measure υT and the process
(u
∗,l
T+t )t≥0 for T > 0 fixed from Section 1.4 or [14] (cf. the corresponding con-

struction for the upper invariant measure μT from [14], Proposition 2.2 and Corol-
lary 2.6 as well as Remark 2.8 (left-upper measure)). For arbitrarily fixed (to be
chosen later) ψ ∈ C+tem, write

(2.31) �(x)≡
{∞ x < 0,

0 otherwise,
and �(x)≡

⎧⎪⎪⎨
⎪⎪⎩
∞ x < 0,

ψ(x) x ≥ 0,

0 otherwise.

In what follows, consider couplings of solutions (u
(φ)
T+t )t≥0, φ ∈ C+tem and

(u
(φ+ψ)
T+t )t≥0, ψ ∈ C+tem with processes (u

(�)
T+t )t≥0 and (u

(�)
T+t )t≥0 for T > 0 arbi-

trarily fixed. Note that by a slight abuse of notation “� =�+ψ”. The two latter
processes are to be understood in the spirit of the construction of υT , that is, as
in Corollary 2.6 of [14] we choose sequences (�N)N∈N and (�N)N∈N such that
�N ↑ � and �N ↑ � for N →∞ to obtain u

(�)
T+t (x) ≡↑ limN→∞ u

(�N)
T+t (x) and

u
(�)
T+t ≡↑ limN→∞ u

(�N)
T+t (x) on a common probability space.

LEMMA 2.14. Let ψ ∈ C+tem arbitrarily fixed and �,� be as above. Let φ ∈
C+tem arbitrary with R0(φ) ≤ 0. Then, for arbitrary T > 0, t ≥ 0, there exists a
coupling of processes (u

(�)
T+t )t≥0, (u

(�)
T+t )t≥0 and solutions (u

(φ)
T+t )t≥0, (u

(φ+ψ)
T+t )t≥0

such that

(2.32) E
[
R0

(
u

(�)
T+t

)−R0
(
u

(�)
T+t

)]≤ E
[
R0

(
u

(φ+ψ)
T+t

)−R0
(
u

(φ)
T+t

)]
for all t ≥ 0 almost surely. On the right-hand side, we consider a monotonicity-
coupling (cf. Remark A.8) and set R0(u

(φ+ψ)
T+t )−R0(u

(φ)
T+t )= 0 on {τ (φ+ψ) ≤ T +

t}.

REMARK 2.15. Note that the expectations on the left-hand side of (2.32) are
well defined by Lemma 2.2 and Corollaries 2.4–2.5. Indeed, note that if fn ↑ f

in C+tem, then R0(fn) ↑ R0(f ) for n→∞. Now use approximating sequences
�N,�N ∈HR for � respectively � from below as in [14], Remark 2.8(i) (left-
upper measure) in combination with dominated convergence.

PROOF OF LEMMA 2.14. Step 1. Let φ,ψ as in the statement above. We first
show the claim for T = 0 and �,� ∈ C+tem satisfying R0(�)= 0, �≥ φ and � =
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�+ψ . Consider the following coupling. Let u1 = u(φ) be a nonnegative solution
to

(2.33)
∂u1

∂t
=�u1 + (θ − u1)u1 +√u1Ẇ1, u1(0)= φ,

and v2 be a nonnegative solution to

(2.34)
∂v2

∂t
=�v2 + (θ − v2 − 2u1)v2 +√v2Ẇ2, v2(0)=�− φ

with W2 a white noise independent of W1. For the construction of the latter, pro-

ceed as in Remark A.8 on monotonicity-couplings. Then u1 + v2
D= u(�), that is,

u1 + v2 solves (1.1) with initial condition �. Let v3 be a nonnegative solution to

(2.35)
∂v3

∂t
=�v3 + (

θ − v3 − 2(u1 + v2)
)
v3 +√v3Ẇ3, v3(0)=ψ

with W3 a white noise independent of W1,W2. Then u1+v2+v3
D= u(�+ψ) follows

as above, and using that � =�+ψ ,

R0
(
u

(�)
t

)−R0
(
u

(�)
t

) D=R0
(
(u1 + v2 + v3)t

)−R0
(
(u1 + v2)t

)
= (

R0
(
(v3)t

)−R0
(
(u1 + v2)t

))∨ 0
(2.36)

for all t ≥ 0 a.s., where we set R0(u
(�)
t )−R0(u

(�)
t )= 0 on {τ (�) ≤ t}. Finally, let

d4 be a nonnegative solution to

(2.37)
∂d4

∂t
=�d4+ 2v2v3+ (

θ − d4− 2(u1+ v3)
)
d4+

√
d4Ẇ4, d4(0)= 0

with W4 independent of W1,W2,W3 and where the term 2v2v3 can be interpreted

as an additional immigration term. Then u1 + v3 + d4
D= u(φ+ψ) and

R0
(
u

(φ+ψ)
t

)−R0
(
u

(φ)
t

)
=R0

(
(u1 + v3 + d4)t

)−R0
(
(u1)t

)
= (

R0
(
(v3 + d4)t

)−R0
(
(u1)t

))∨ 0

≥ (
R0

(
(v3)t

)−R0
(
(u1 + v2)t

))∨ 0,

(2.38)

the last by the nonnegativity of the solutions d4 and v2.
The second part of the claim now follows from the above and (2.36). For the

first part of the claim, use that � =�+ψ and

u1
D= u(φ), u1 + v2

D= u(�),

u1 + v2 + v3
D= u(�+ψ), u1 + v3 + d4

D= u(φ+ψ)
(2.39)
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to obtain a coupling satisfying

u
(�)
t − u

(�)
t = (u1 + v2 + v3)− (u1 + v2)= v3 ≤ v3 + d4

= (u1 + v3 + d4)− u1 = u
(φ+ψ)
t − u

(φ)
t

(2.40)

as claimed.
Step 2. Fix T > 0. Let �N ↑ �, � as in (2.31), satisfy R0(�N) = 0 and

�1 ≥ φ,�1 ∈HR . Set �N =�N +ψ . By Step 1, there exists a coupling of solu-
tions (u

(�N)
T+t )t≥0, (u

(�N)
T+t )t≥0 to (1.1) such that (2.32) holds with �,� replaced by

�N,�N for N ∈N arbitrarily fixed.
Define u

(�)
T+t (x) =↑ limN→∞ u

(�N)
T+t (x) and u

(�)
T+t (x) =↑ limN→∞ u

(�N)
T+t (x) on

a common probability space (cf. [14], Remark 2.8(i)) (left-upper measure). By
taking limits in N →∞, the claim now follows for �,� as well by dominated
convergence (cf. Remark 2.15 above). �

LEMMA 2.16. For t > 0 fixed and ψ ∈ C+tem,

E
[
R0

(
u

(�)
t

)∨ 0−R0
(
u

(�)
t

)∨ 0
]

≥
∫ ∞

0
E
[
1{−x≤L0(u

∗,r
t )<−x+1}

(
1− e−2〈1[0,1)ψ,u

∗,r
t (·−x)〉)]dx

(2.41)

holds.

PROOF. By partial integration, for φ ∈ C+tem, t > 0 arbitrary,

(2.42) Eφ

[
R0(ut )∨ 0

]= ∫ ∞
0

Pφ

(
R0(ut ) > x

)
dx.

By (1.22), symmetry and by the shift invariance of the dynamics,

(2.43) Pφ

(
R0(ut )≤ x

)= E
[
e−2〈φ,u

∗,r
t (·−x)〉]= E

[
e−2〈φ(·+x),u

∗,r
t 〉].

Hence,

Eφ

[
R0(ut )∨ 0

]= ∫ ∞
0

E
[(

1− e−2〈φ,u
∗,r
t (·−x)〉)]dx

(2.44)
=

∫ ∞
0

E
[
1{u∗,rt |supp(φ(·+x)) �≡0}

(
1− e−2〈φ,u

∗,r
t (·−x)〉)]dx.

In the following, we use � and � =�+ψ as initial conditions or test functions to
facilitate notation. This notation is understood as an abbreviation for taking limits
of nondecreasing approximating sequences of initial conditions as explained above
and using monotone convergence to obtain the respective results.
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Let us reason as in Remark 2.15 to see that the following integrals are well
defined. The theorem of Fubini–Tonelli yields

E
[
R0

(
u

(�)
t

)∨ 0−R0
(
u

(�)
t

)∨ 0
]

=
∫ ∞

0
E
[
e−2〈�(·+x),u

∗,r
t 〉]−E

[
e−2〈�(·+x),u

∗,r
t 〉]dx

=
∫ ∞

0
E
[
e−2〈�(·+x),u

∗,r
t 〉(1− e−2〈ψ(·+x),u

∗,r
t 〉)]dx(2.45)

=
∫ ∞

0
E
[
1{L0(u

∗,r
t )≥−x}

(
1− e−2〈ψ(·+x),u

∗,r
t 〉)]dx

≥
∫ ∞

0
E
[
1{−x≤L0(u

∗,r
t )<−x+1}

(
1− e−2〈1[0,1)ψ,u

∗,r
t (·−x)〉)]dx.

This completes the proof. �

2.5. Proof of Proposition 2.1. Let T ≥ 1 be arbitrarily fixed. For θc < θ < θ

arbitrary let

(2.46) δ = θ − θ

M
and θm = θ +m

δ

T
, m ∈ {0,1, . . . ,MT },

where M > 0 is arbitrarily large with MT ∈N.
For ease of notation, we only prove the case θ1 = θ, θ2 = θ . Note that if we

let δ = (θ2 − θ1)/M instead and consider the difference αT (θ2)− αT (θ1) in what
follows, the proof remains unchanged.

We proceed to observe that θ0 = θ, θMT = θ and that we therefore rewrite

αT (θ)− αT (θ)

=
MT∑
m=1

{
αT (θm)− αT (θm−1)

}
(2.47)

=
MT∑
m=1

2

T

∫ T/2

0

{
E
[
R0

(
u
∗,l
T /2+s(θm)

)]−E
[
R0(u

∗,l
T /2+s(θm−1)

]}
ds.

Let ξ > 0 arbitrary and S = S(ω,m), m ∈ N with ξ ≤ S ≤ T/2 − ξ be random
stopping times to be made more precise later on. Then, by the strong Markov
property of the processes involved,

αT (θ)− αT (θ)=
MT∑
m=1

2

T

∫ T/2

0
E
[
E

u
∗,l
S (θm)

[
R0

(
uT/2−S+s(θm)

)]
(2.48)

−E
u
∗,l
S (θm−1)

[
R0

(
uT/2−S+s(θm−1)

)]]
ds.
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The expectations are well defined by Corollaries 2.4–2.5. Using a θ -coupling (cf.
Remark A.9), we bound (2.48) from below by

MT∑
m=1

2

T

∫ T/2

0
E
[
E

u
∗,l
S (θm)

[
R0

(
uT/2−S+s(θm−1)

)]

−E
u
∗,l
S (θm−1)

[
R0

(
uT/2−S+s(θm−1)

)]]
ds.

(2.49)

A shift in space, using the shift invariance of the dynamics, further allows to rewrite
this to

MT∑
m=1

2

T

∫ T/2

0
E
[
E

u
∗,l
S (θm)(·+R0(u

∗,l
S (θm−1)))

[
R0

(
uT/2−S+s(θm−1)

)]
(2.50)

−E
u
∗,l
S (θm−1)(·+R0(u

∗,l
S (θm−1)))

[
R0

(
uT/2−S+s(θm−1)

)]]
ds.

For S ≥ ξ > 0, use a θ -∗-coupling (cf. Lemma A.12) to obtain

0≤�
∗,l
S (θm−1, θm)≡ u

∗,l
S (θm)

(·+R0
(
u
∗,l
S (θm−1)

))
− u
∗,l
S (θm−1)

(·+R0
(
u
∗,l
S (θm−1)

)) ∈ C+tem.
(2.51)

Hence, we use the strong Markov property of the family of laws Pf , f ∈ C+tem to
apply Lemma 2.14, using that T/2− S ≥ ξ > 0 and S ≥ ξ > 0, to see that

αT (θ)− αT (θ)

≥
MT∑
m=1

2

T

∫ T/2

0
E
[
E
[
E

u
∗,l
S (θm)(·+R0(u

∗,l
S (θm−1)))

[
R0

(
uT/2−S+s(θm−1)

)]

−E
u
∗,l
S (θm−1)(·+R0(u

∗,l
S (θm−1)))

[
R0

(
uT/2−S+s(θm−1)

)]|FS

]]
ds

≥
MT∑
m=1

2

T

∫ T/2

0
E
[
E
[
R0

(
u

(�+�
∗,l
S (θm−1,θm))

T /2−S+s (θm−1)
)]

(2.52)

−E
[
R0

(
u

(�)
T/2−S+s(θm−1)

)]]
ds

≥
MT∑
m=1

2

T

∫ T/2

0
E
[
R0

(
u

(�+�
∗,l
S (θm−1,θm))

T /2−S+s (θm−1)
)∨ 0

−R0
(
u

(�)
T/2−S+s(θm−1)

)∨ 0
]
ds.

With the help of Lemma 2.16, we further bound this from below by
MT∑
m=1

2

T

∫ T/2

0

∫ ∞
0

E
[
1{−x≤L0(u

∗,r
T /2−S+s (θm−1))<−x+1}

× (
1− e

−2〈1[0,1)�
∗,l
S (θm−1,θm),(u

∗,r
T /2−S+s (θm−1))(·−x)〉)]

dx ds.

(2.53)
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For d0,m0 > 0, let

M̃(d0,m0)= {
f ∈ C+tem : there exist 0≤ l0 < r0 ≤ 1/2, |r0 − l0| = d0

(2.54)
such that f ≥m01[l0,r0]

}
.

Fix ε > 0 arbitrary and let d0 = d0(ε),m0 =m0(ε) > 0 as in Corollary A.5, where
we note that instead of considering right markers we now consider left markers.
We obtain as a further lower bound to the above

MT∑
m=1

2

T

∫ T/2

0

∫ ∞
0

E
[
1{u∗,rT /2−S+s (θm−1)(·+L0(u

∗,r
T /2−S+s (θm−1)))∈M̃(d0,m0)}

× 1{−x≤L0(u
∗,r
T /2−S+s (θm−1))<−x+1}(2.55)

× (
1− e

−2〈1[0,1)�
∗,l
S (θm−1,θm),(u

∗,r
T /2−S+s (θm−1))(·−x)〉)]

dx ds

for all T ≥ 1. We next make use of the following crucial observation. Recall that
θm − θm−1 = δ/T for m ∈ {1, . . . ,MT } with δ = (θ − θ)/M .

PROPOSITION 2.17. For all ξ > 0 and ϕ ∈ C+tem with L0(ϕ) ∈ (0,1), there
exist T0 > 0 big enough and ρ,C0,C1 > 0 small enough; all constants only de-
pendent on ξ, θ, θ, ϕ, such that for all T ≥ T0 and m ∈ {0,1, . . . ,MT },M ∈ N
there exist stopping times ξ ≤ S = S(m,ϕ)≤ T/2− ξ such that

(2.56) P
(〈
�
∗,l
S(m,ϕ)(θm−1, θm),ϕ

〉≥ ρ
)≥ C0

(
1− exp(−C1δ)

)
.

The proof of the proposition follows in Section 3 below. First, we complete the
proof of Proposition 2.1. We obtain as a lower bound to the term in (2.55) with
ϕ =m01[1/2,1/2+d0/2],

C0
(
1− e−C1δ

)(
1− e−2ρ)

×
MT∑
m=1

2

T

∫ T/2

0

∫ ∞
0

E[1{u∗,rT /2−S+s (θm−1)(·+L0(u
∗,r
T /2−S+s (θm−1)))∈M̃(d0,m0)}

(2.57)
× 1{−x≤L0(u

∗,r
T /2−S+s (θm−1))<−x+1}

× 1{1[0,1)(·)(u∗,rT /2−S+s (θm−1))(·−x)≥m01[1/2,1/2+d0/2](·)}]dx ds

for all T ≥ T0. By definition of M̃(d0,m0), using the theorem of Fubini–Tonelli,
this is bounded from below by

C0
(
1− e−C1δ

)(
1− e−2ρ)d0

2

×
MT∑
m=1

2

T

∫ T/2

0
E[1{u∗,rT /2−S+s (θm−1)(·+L0(u

∗,r
T /2−S+s (θm−1)))∈M̃(d0,m0)}(2.58)

× 1{L0(u
∗,r
T /2−S+s (θm−1))<0}]ds.
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By symmetry and Lemma 2.12, we have for T big enough,

(2.59)
2

T

∫ T/2

0
E[1{L0(u

∗,r
T /2−S+s (θm−1))<0}]ds ≥ δ̃/2 > 0

with δ̃ as in Lemma 2.12. Recall the definition of (ν
∗,l
T (θ)) from (A.8). We con-

clude using Corollary A.5 and symmetry that

(2.60) αT (θ)− αT (θ)≥ C0
(
1− e−C1δ

)(
1− e−2ρ)d0

2

MT∑
m=1

(δ̃/2− ε)

for all T ≥ T0. Choose ε small enough and recall that δ = (θ − θ)/M , that is
M = (θ − θ)/δ to conclude that

(2.61)
αT (θ)− αT (θ)

T
≥ C0

(
1− e−2ρ)d0

2
(δ̃/2− ε)

(
1− e−C1(θ−θ)/M)

M.

Let M→∞ to obtain C0(1− e−2ρ)
d0
2 (δ̃/2− ε)(θ − θ) as a lower bound to the

left-hand side. This completes the proof.

2.6. Proof of Proposition 1.1. Lemma 2.8 yields the existence of the limit
B = B(θ). Its positivity follows from Corollary 2.11. Combine Proposition 2.1
and Corollary 2.9 to obtain (1.9) by taking T →∞. This concludes the proof.

3. Proof of Proposition 2.17. In this section, we prove Proposition 2.17. We
start out by giving the main idea of the proof.

3.1. Idea of proof. Let T1, T2 > 0, m ∈ N and ξ > 0 be arbitrarily fixed. Let
θm as in (2.46) and suppose that θc < θ ≤ θm−1 < θm ≤ θ . For t ∈ [ξ, T /2− ξ −
T1 − T2] fixed, on a time-interval of length T1 + T2, we look for a (random) point
in time S = S(m) ∈ [t, t + T1 + T2] such that

(3.1) 1[0,1)�
∗,l
S (θm−1, θm)≥ ρ1[0,1),

where

�
∗,l
S (θm−1, θm)≡ u

∗,l
S (θm)

(·+R0
(
u
∗,l
S (θm−1)

))
− u
∗,l
S (θm−1)

(·+R0
(
u
∗,l
S (θm−1)

))(3.2)

as in (2.51).
We investigate the difference between the solutions u∗,l(θm) and u∗,l(θm−1)

over time with the goal of finding S such that (3.1) holds. For t fixed as above,
condition on Ft . Aside from the shift in space, by monotonicity, the difference on
the time-interval [t, t + T1 + T2] is greater or equal to the difference of solutions
u
∗,l
t+·(θm) and u

∗,l
t+·(θm−1) with common initial condition u

∗,l
t (θm−1) at time t .
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First step: Start out with density u
∗,l
t (θm−1). Use a time-interval of length T1 to

gain additional mass-density vT1 of height of order O(ε), ε ≡ θm − θm−1 on the
support of u

∗,l
t (θm−1) with probability of order O(1). This amount is due to an im-

migration term of order εu
∗,l
t+s(θm−1), s ∈ [0, T1] in a θ -coupling (cf. Remark A.9).

For T1 not too big, the mass created, vs, s ∈ [0, T1] remains small and immigration
dominates the annihilation term of order vs .

Second step: Use a monotonicity-coupling (cf. Remark A.8) to compare the
original solution u

∗,l
t+T1+·(θm−1) with parameter θm−1 for a time-interval of length

T2 with a solution with the same parameter θm−1 but with mass vT1 (cf. first step)
added to the initial condition (at time t + T1). With probability of order O(ε), the
mass vT1 gets a constant distance and an amount of mass O(1) in front of the orig-
inal solution u

∗,l
t+T1+·(θm−1) after a time-period of length T2. To be more precise,

we use this time-period of length T2 twofold. First, we show that the mass stays
“ahead” with probability of order O(ε) and second, that if it stays “ahead,” then it
has acquired a size of order O(1) at the front.

We now give the mathematical framework for the coupling-techniques men-
tioned above. Let T1 > 0 be arbitrarily fixed and θc < θ ≤ θ1 < θ2 ≤ θ <∞ with
ε ≡ θ2 − θ1 > 0. For u0 ∈ P(C+tem) fixed, use a θ -coupling (cf. Remark A.9) to
construct solutions u

(1)
s (x) = us(θ1)(x), u

(2)
s (x) = us(θ2)(x),0 ≤ s ≤ T1 to (1.1)

such that u
(1)
s (x)≤ u

(2)
s (x) for all s ∈ [0, T1], x ∈R a.s. solve

us(θ2)(x)= us(θ1)(x)+ vs(x)

with vs(x)≥ 0 for all s ∈ [0, T1], x ∈R a.s.
(3.3)

and v as in (A.23), that is, conditional on σ(us(θ1)) : 0≤ s ≤ T1), v has distribu-
tion Q0,(θ2−θ1)u(θ1),2u(θ1),1(θ2) (cf. (1.20) and Theorem 2) on [0, T1].

Let T2 > 0 be arbitrarily fixed. Extend the above coupling to include a process
(ws)s∈[0,T1+T2] such that

(3.4) us(θ1)(x)≤ws(x)≤ us(θ2)(x) for all s ∈ [0, T1 + T2], x ∈R a.s.

as follows. Set

ws(x)≡ us(θ1)(x)+ vs(x)
(3.5)

≡
⎧⎨
⎩

u(u0)
s (θ2)(x)= u(u0)

s (θ1)(x)+ vs(x) for 0≤ s ≤ T1,

u
(wT1 )

s−T1
(θ1)(x)= u

(u
(u0)

T1
(θ1)+vT1 )

s−T1
(θ1)(x) for s ≥ T1.

That is, conditional on FT1 , wT1+· has distribution QwT1 ,0,0,1(θ1). Indeed, to con-
struct the coupling for the case s > T1, condition on FT1 and use a combination
of a monotonicity-coupling (cf. Remark A.8) and a θ -coupling (cf. Remark A.9).
To be more precise, use a monotonicity-coupling based on two independent white
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noises W1,W2 to construct

u
(u0)
T1+r (θ1)(x)= u

(uT1 (θ1))
r (θ1)(x)≤ u

(wT1 )
r (θ1)(x)

≡ u
(uT1 (θ1))
r (θ1)(x)+ vT1+r (x)

(3.6)

for all r ≥ 0, x ∈R almost surely, with vT1+· solving (A.20). Then use a θ -coupling
to obtain

(3.7) u
(wT1 )
r (θ1)(x)≤ u

(wT1 )
r (θ2)(x)≡ u

(wT1 )
r (θ1)(x)+ v̂T1+r (x)

for all r ≥ 0, x ∈ R almost surely, where the difference process v̂ solves (A.23)
with a white noise W3 independent of W1,W2 from above. As a result,

u
(u0)
T1+r (θ1)(x)≤ u

(u0)
T1+r (θ1)(x)+ vT1+r (x)=wT1+r (x)

≤ u
(u0)
T1+r (θ1)(x)+ vT1+r (x)+ v̂T1+r (x)(3.8)

= u
(wT1 )
r (θ2)(x)= u

(u
(u0)

T1
(θ2))

r (θ2)(x)= u
(u0)
T1+r (θ2)(x)

holds indeed true.

3.2. A first estimate. The following estimate is fundamental in the first step of
the construction. Recall (3.3) and thus compare the following SPDE with (A.23)
from the θ -coupling which quantifies the gain in density due to an increase in θ .

Let

ϒ = {
f ∈ C(R,R) : ‖f ‖λ = sup

{∣∣f (x)
∣∣ exp

(−λ|x|) : x ∈R} <∞
(3.9)

for some λ < 0
}

be the set of continuous functions with exponential decay. For existence and
uniqueness of solutions to all of the SPDEs mentioned in the proof below, see
Theorem 2. Also let

(3.10) ϒ̃ ≡
{
ψ ∈ C1,2 and sup

t∈[0,T ]
∣∣ψt(·)

∣∣∧ ∣∣∣∣∂ψt(·)
∂t

∣∣∣∣∧ ∣∣�ψt(·)
∣∣ ∈ϒ

}
.

LEMMA 3.1. Let T > 0, ζ ∈ C([0, T ],C+tem)\{0}, W a white noise and ε > 0
be arbitrarily fixed. Let v = v(ε, θ, ζ ) be a solution to

(3.11)
∂v

∂t
=�v + εζ + (θ − v− 2ζ )v +√vẆ , v(0)= 0, t ∈ [0, T ].

For g ∈ϒ,g ≥ 0, g �≡ 0 fixed,

0 < c−(ζ, g, θ, T )= lim inf
ε↓0+

E[1− e−2〈vT ,g〉]
ε

≤ lim sup
ε↓0+

E[1− e−2〈vT ,g〉]
ε

= c+(ζ, g, θ, T ) <∞
(3.12)

holds true.
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PROOF. The lower bound. Fix ζ, g, θ and T as above. Let

(3.13) I (ε)= E
[
1− e−2〈vT ,g〉].

Subsequently, dominate v = v(ε) by the sum of two independent solutions (cf.
the construction of the coupling with two independent processes in Remark A.10
below) satisfying

∂v(i)

∂t
=�v(i) + ε

2
ζ + (

θ − v(i) − 2ζ
)
v(i) +

√
v(i)Ẇi,

v(i)(0)= 0, i = 1,2, t ≥ 0

(3.14)

such that v(t, x) ≤ v(1)(t, x)+ v(2)(t, x) for all t ≥ 0, x ∈ R a.s. Note that v(i) =
v(i)(ε)

D= v(ε/2), i = 1,2. We obtain by the independence and the identical distri-
bution of the two nonnegative solutions, for all ε, T > 0,

I (ε)≤ E
[
1− e−2〈v(1)

T +v
(2)
T ,g〉]

= E
[
1− e−2〈v(1)

T ,g〉]E[1+ e−2〈v(2)
T ,g〉]≤ 2I (ε/2)

⇐⇒
(

I (ε)

ε
≤ I (ε/2)

ε/2

)
.

(3.15)

By Theorem 2(b), I (ε) is continuous in ε. Hence, to establish the lower bound,
it is enough to show that there exists ε0 > 0 such that I (ε) > 0 for all ε ∈ [ε0,2ε0].
Indeed, by the continuity of I and (3.15), it then follows that

(3.16) inf
ε∈(0,2ε0]

I (ε)

ε
≥ inf

ε∈[ε0,2ε0]
I (ε)

ε
> 0.

By reasoning as for an immigration-coupling (cf. Remark A.11 of the Appendix),
it follows that I (ε) is monotonically increasing in ε. It is therefore enough to find
ε0 = ε0(T ) > 0 such that I (ε0) > 0. By definition of v, this holds true for arbitrary
T > 0. Indeed, use for instance Theorem 2(c) to see that with P(v) denoting the
distribution of v, P(v) =Q0,εζ,2ζ,1 and Q0,εζ,0,0 are mutually absolutely contin-
uous on UR,T (recall the notation from Theorem 2) for R,T > 0 arbitrarily fixed.
Here, the law Q0,εζ,0,0 is the law of the solution to

(3.17)
∂w

∂t
=�w+ εζ + θw+√wẆ, w(0)= 0, t ≥ 0.

The latter is a superprocess with immigration, and thus satisfies P(〈wT ,g〉> 0) >

0.
The upper bound. We now derive the upper bound in (3.12). Couple a solution

v of (3.11) with a solution V of

(3.18)
∂V

∂t
=�V + εζ + θV +√V Ẇ3, V (0)= 0, t ≥ 0,
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such that v(t, x) ≤ V (t, x) for all t ≥ 0, x ∈ R a.s. Here, W3 is an appropriate
white noise and we use techniques as in Section A.3 of the Appendix. See the
beginning of [21], Section 2, for the theoretical background of what follows. We
obtain for test functions ψ(t, x) = ψt(x), t ≥ 0, x ∈ R satisfying ψ ∈ ϒ̃ and for
t ≥ 0 arbitrary, by an application of Itô’s formula,

e−2〈Vt ,ψt 〉

= 1+Mt(3.19)

− 2
∫ t

0
e−2〈Vs,ψs〉

{
ε〈ζs,ψs〉 +

〈
Vs,

∂ψs

∂s
+�ψs + θψs − 2

2
ψ2

s

〉}
ds,

where (Mt)t≥0 is a local martingale with quadratic variation

(3.20) 〈M·〉t = 4
∫∫ t

0
e−4〈Vs,ψs〉Vs(x)ψ2

s (x) dx ds.

For T > 0 fixed and 0≤ s ≤ T , choose ψ(s, z)≡�(T − s, z), where �(s, x)=
�s(x) is the unique nonnegative solution to the partial differential equation (PDE)

(3.21)
∂�s

∂s
=��s + θ�s −�2

s , �0 = g, 0≤ s ≤ T

(cf. Iscoe [10], Theorem A of the appendix, with Aψ =�ψ + θψ,g(x)= x2 and
D(A)= {f ∈ C2(R,R) : f,�f ∈ϒ). Then ψ ∈ ϒ̃ and we obtain for 0≤ t ≤ T ,

(3.22) e−2〈Vt ,ψt 〉 = 1+Mt − 2ε

∫ t

0
e−2〈Vs,ψs〉〈ζs,ψs〉ds.

Note that the integral on the right-hand side is finite as ζ ∈ C([0,∞),C+tem) and
sups∈[0,T ] |ψs(·)| ∈ ϒ . Let t = T . In case (Mt)t∈[0,T ] is a martingale, take expec-
tations to conclude

(3.23) E
[
1− e−2〈VT ,g〉]= 2ε

∫ T

0
E
[
e−2〈Vs,ψs〉〈ζs,ψs〉]ds.

In case (Mt)t∈[0,T ] is only a local martingale, take a sequence of increasing stop-
ping times τn ↑ T such that (Mt∧τn)t∈[0,T ] is a martingale for each n ∈ N fixed.
Take expectations and subsequently use dominated convergence to obtain the same
conclusion.

The coupling of v and V yields

E
[
1− e−2〈vT ,g〉]≤ E

[
1− e−2〈VT ,g〉]

= 2ε

∫ T

0
E
[
e−2〈Vs,ψs〉〈ζs,ψs〉]ds

≤ 2ε

∫ T

0
〈ζs,�T−s〉ds.

(3.24)

It thus remains to show that
∫ T

0 〈ζs,�T−s〉ds <∞. The latter follows from the as-
sumption ζ ∈ C([0,∞),C+tem) and as (ψs)s∈[0,T ] = (�T−s)s∈[0,T ] satisfies (3.10).

�
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3.3. Increase of the right marker. We now follow the strategy as outlined in
Section 3.1. We start by investigating the increase of the right marker of a solution
due to an increase in θ .

Let f ∈ C+tem with R0(f ) <∞ and Pf (τ =∞) = 1. Recall the notation from
Section 3.1, in particular the definition of u, v,w = u(f )(θ1)+v with u0 = f from
(3.5). In what follows, write u·(x)= u(f )· (θ1)(x) and set Fu

T = σ(ut : 0 ≤ t ≤ T )

for T > 0 arbitrary. Note that in the proofs to follow we will often only write E or
P when the context is clear. In the main statements, the indices are kept however.
This will allow us to avoid changes in indexing when using duality relations.

LEMMA 3.2. Let T1, T2 > 0 be arbitrarily fixed and θc < θ ≤ θ1 < θ2 ≤ θ .
For all δ′ > 0, there exists η1 = η1(δ

′, T1, T2, θ, θ) > 0 small enough such that∫
C+tem

Pf

(
Ef

[
0∨ (

R0(wT1+T2)∧ 1
)− 0∨ (

R0(uT1+T2)∧ 1
)|Fu

T1

]
(3.25)

≥ η1(θ2 − θ1)
)(

ν
∗,l
T (θ1)

)
(df )≥ 1− 2δ′

for all T > 1.

REMARK 3.3. Note that P
ν
∗,l
T (θ1)

(τ =∞)= 1 by (A.8) and Remark 2.7.

PROOF OF LEMMA 3.2. Recall Qf,α,β,γ ≡ Q
f,α,β,γ
u (θ) from Notation 1.3

and Theorem 2. With regards to the conditional expectation E[0∨ (R0(wT1+T2)∧
1) − 0 ∨ (R0(uT1+T2) ∧ 1)|Fu

T1
] to follow, recall that for the coupling from

(3.5), the difference (0 ∨ (R0(wt ) ∧ 1)) − (0 ∨ (R0(ut ) ∧ 1)) is nonnega-
tive for all t ≥ 0 almost surely. Moreover, conditional on Fu

T1
, v has law

Q0,(θ2−θ1)u,2u,1(θ2) ≡ Q
0,(θ2−θ1)u,2u,1
v (θ2) on [0, T1] and conditional on FT1 , w

has law
QuT1+vT1 ,0,0,1(θ1) ≡ Q

uT1+vT1 ,0,0,1
w (θ1) on [T1, T1 + T2]. Thus, as the laws

Qf,α,β,γ for f ∈ C+tem form a strong Markov family by Theorem 2(b), and by
(3.4),

E
[
0∨ (

R0(wT1+T2)∧ 1
)− 0∨ (

R0(uT1+T2)∧ 1
)|Fu

T1

]
=Q0,(θ2−θ1)u,2u,1

v (θ2)
[
Q

uT1+vT1 ,0,0,1
w (θ1)

[
0∨ (

R0(uT2)∧ 1
)]]

(3.26)

−Q
uT1 ,0,0,1
u (θ1)

[
0∨ (

R0(uT2)∧ 1
)]

a.s.

Note that by Remark 3.3, u survives almost surely. Recall (2.42)–(2.44) to rewrite

E
[
0∨ (

R0(wT1+T2)∧ 1
)− 0∨ (

R0(uT1+T2)∧ 1
)|Fu

T1

]
=

∫ 1

0
P
(
R0(wT1+T2) > x|Fu

T1

)
dx
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−
∫ 1

0
P
(
R0(uT1+T2) > x|Fu

T1

)
dx

(3.27)

=
∫ 1

0
E
[
1− e

−2〈wT1 (·+x),u
∗,r
T2

(θ1)〉|Fu
T1

]
dx

−
∫ 1

0
E
[
1− e

−2〈uT1 (·+x),u
∗,r
T2

(θ1)〉|Fu
T1

]
dx

=
∫ 1

0
E
[
e
−2〈uT1 (·+x),u

∗,r
T2

(θ1)〉(1− e
−2〈vT1 (·+x),u

∗,r
T2

(θ1)〉)|Fu
T1

]
dx.

Use a θ -∗-coupling (cf. Lemma A.12) to conclude that this is bounded below by∫ 1

0
E
[
e
−2〈uT1 (·+x),u

∗,r
T2

(θ)〉(1− e
−2〈vT1 (·+x),u

∗,r
T2

(θ)〉)|Fu
T1

]
dx

=
∫ 1

0
E
[
e
−2〈uT1 (·+x),u

∗,r
T2

(θ)〉(3.28)

×E
[
1− e

−2〈vT1 (·+x),u
∗,r
T2

(θ)〉|σ (Fu∗,r ,Fu
T1

)]|Fu
T1

]
dx,

where we let Fu∗,r = σ(u
∗,r
t (θ), u

∗,r
t (θ) : t ≥ 0).

Let ε = θ2 − θ1. We now randomize the initial condition. Recall ν
∗,l
T (θ1) as

defined in (A.8) of the Appendix. Let η1, T > 0 be arbitrarily fixed. The quantity
we are interested in is

I1 ≡
∫
C+tem

Pf

(
E
[
0∨ (

R0(wT1+T2)∧ 1
)

− 0∨ (
R0(uT1+T2)∧ 1

)|Fu
T1

]≥ η1ε
)(

ν
∗,l
T (θ1)

)
(df ).

(3.29)

We get with the help of (3.27)–(3.28) as a lower bound to (3.29),∫
C+tem

Pf

(∫ 1

0
E
[
e
−2〈uT1 (·+x),u

∗,r
T2

(θ)〉

×E
[
1− e

−2〈vT1 (·+x),u
∗,r
T2

(θ)〉|σ (Fu∗,r ,Fu
T1

)]|Fu
T1

]
dx

≥ η1ε

)(
ν
∗,l
T (θ1)

)
(df ).

(3.30)

Here, we note that (vt )t∈[0,T1] solves (A.23) or (3.11) with θ = θ2 and (ζt )t∈[0,T1] =
(ut )t∈[0,T1] = (u

(f )
t )(θ1)t∈[0,T1] and f drawn according to ν

∗,l
T (θ1). By (A.11) and

Corollary A.5, for every δ′ > 0 there exist a compact set Kδ′ ⊂ C+tem and d0 =
d0(δ

′),m0 =m0(δ
′) > 0 such that

(3.31) inf
θ≤θ≤θ

(
ν
∗,l
T (θ)

)(
Kδ′ ∩M(d0,m0)

)≥ 1− δ′ for all T > 1
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with

M(d0,m0)≡ {
f ∈ C+tem : there exist −1/2≤ l0 < r0 ≤ 0,

|r0 − l0| = d0

such that f ≥m01[l0,r0]
}(3.32)

for d0,m0 > 0. Observe first that M(d0,m0) ∩ Kδ′ is compact in C+tem. In-
deed, use that if (fn)n ⊂ M(d0,m0) ∩ Kδ′ , then there exists a subsequence
(fnk

)k ⊂M(d0,m0) that converges to a limit in Kδ′ . Let xnk
= lnk

+ d0/2 such
that fnk

≥ m01[xnk
−d0/2,xnk

+d0/2] and lnk
≤ xnk

≤ rnk
, |rnk

− lnk
| = d0, lnk

, rnk
∈

[−1/2,0]. By the compactness of [−1/2,0], there exists a subsequence xnkl
→

x0 ∈ [−1/2,0] for l→∞ and as a result, fnkl
converges to a limit in M(d0,m0)∩

Kδ′ .
Conditional on σ(Fu∗,r ,Fu

T1
), we now apply the lower bound of Lemma 3.1 for

some 0 �≡ g = gx ∈ϒ,0≤ g ≤ u
∗,r
T2

(θ)(·−x). Recall that ut = ut(θ1). From below
(3.16), it follows that it is enough to show for ε0 > 0 arbitrarily fixed that

inf
θ1∈[θ,θ ]

∫
Kδ′∩M(d0,m0)

Pf

(∫ 1

0
E
[
e
−2〈uT1 (·+x),u

∗,r
T2

(θ)〉

×E
[
1− e−2〈vT1 (ε0,θ2,(ut )t∈[0,T1]),gx〉|σ (Fu∗,r ,Fu

T1

)]|Fu
T1

]
dx

(3.33)

≥ η1ε0

)(
ν
∗,l
T (θ1)

)
(df )

≥ 1− 2δ′

for η1 small enough and θ2 = θ1 + ε0. The left-hand side in the above can be
bounded from below by

(
1− δ′

)
inf

θ∈[θ,θ ]
inf

f∈Kδ′∩M(d0,m0)
Pf

(∫ 1

0
E
[
e
−2〈uT1 (·+x),u

∗,r
T2

(θ)〉

(3.34)

×E
[
1− e−2〈vT1 (ε0,θ2,(ut )t∈[0,T1]),gx〉|σ (Fu∗,r ,Fu

T1

)]|Fu
T1

]
dx ≥ η1ε0

)
,

where we used (3.31).
The map (f,α,β,1) �→ Qf,α,β,1 is continuous by Theorem 2(b). Hence, the

law Pf (θ1) = Qf,0,0,1(θ1) = Qf,0,(θ−θ1),1(θ) of u is continuous in f and θ1.
Furthermore, by the continuous mapping theorem, the law of v(ε0, θ2, u), that is
Q0,ε0u,2u,1(θ1+ε0)=Q0,ε0u,2u+(θ−θ1),1(θ+ε0) is also continuous in f and θ1. As
[θ, θ] is a compact interval and M(d0,m0)∩Kδ′ is compact in C+tem, the infimum is
attained for some θ ′ ∈ [θ, θ], f ′ ∈M(d0,m0)∩Kδ′ . Let θ ′, f ′ be arbitrarily fixed.
The innermost expectation is nonzero almost surely by reasoning as in (3.17) of
the proof of the lower bound in Lemma 3.1. Let x ∈ [0,1] be arbitrarily fixed. Then
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(1.22) and symmetry yield for ut = u
(f ′)
t (θ ′),

E
[
e
−2〈uT1 (·+x),u

∗,r
T2

(θ)〉|Fu
T1

]
= P

(〈
1(0,∞)(·), u(uT1 (·+x))

T2
(θ)

〉= 0|Fu
T1

)
(3.35)

= P
(
R0

(
u

(uT1 (·+x))

T2
(θ)

)≤ 0|Fu
T1

)
.

The latter is nonzero almost surely. Thus, using dominated convergence, we can
choose η1 > 0 small enough such that I1 ≥ (1− δ′)2 ≥ 1− 2δ′. �

COROLLARY 3.4. Let T1, T2 > 0 be arbitrarily fixed and θc < θ ≤ θ1 < θ2 ≤
θ . For all δ′ > 0, there exists η1 = η1(δ

′, T1, T2, θ, θ) > 0 small enough such that∫
C+tem

Pf

(
Pf

(
R0(wT1+T2) > R0(uT1+T2)|Fu

T1

)
≥ η1(θ2 − θ1)

)(
ν
∗,l
T (θ1)

)
(df )≥ 1− 2δ′

(3.36)

for all T > 1.

PROOF. Use that 1{X>Y } ≥ 0∨ (X ∧ 1)− 0∨ (Y ∧ 1) for X ≥ Y . �

LEMMA 3.5. Let T1, T2 > 0 be arbitrarily fixed and θc < θ ≤ θ1 < θ2 ≤ θ .
For all δ′ > 0, there exists η2 = η2(δ

′, T1, T2, θ, θ) > 0 big enough such that∫
C+tem

Pf

(
Pf

(
R0(wT1+T2) > R0(uT1+T2)|Fu

T1

)
≤ η2(θ2 − θ1)

)(
ν
∗,l
T (θ1)

)
(df )≥ 1− 4δ′

(3.37)

for all T > 1.

PROOF. First, note that w = u+ v as in (3.5), and thus

(3.38) P
(
R0(wT1+T2) > R0(uT1+T2)|Fu

T1

)= P
(
R0(vT1+T2) > R0(uT1+T2)|Fu

T1

)
.

Recall the construction of vT1+r , r ∈ [0, T2] by means of a monotonicity-coupling
(cf. Remark A.8) from (3.6). Extend this coupling as follows:

∂u

∂t
=�u+ (θ1 − u)u+√uẆ1, u(T1)= u

(u0)
T1

(θ1),

∂v

∂t
=�v+ (θ1 − v− 2u)v+√vẆ2,

(3.39)
v(T1)= vT1 =wT1 − u

(u0)
T1

(θ1),

∂d

∂t
=�d + 2uv + (θ1 − d − 2v)d +√dẆ3, d(T1)= 0,
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t ≥ T1, with Wi, i = 1,2,3 independent white noises. Then U ≡ v + d solves,
conditional on Fu

T1+T2
,

(3.40)
∂U

∂t
=�U + (θ1 −U)U +√dẆ4, U(T1)= vT1, t ≥ T1

for some white noise W4 independent of W1. By construction, vT1+t (x) ≤
UT1+t (x) for all x ∈R, t ∈ [0, T2] almost surely and the law of U only depends on
Fu

T1
through the initial condition.

Now reason similar to (3.27)–(3.28) to obtain

P
(
R0(vT1+T2) > R0(uT1+T2)|Fu

T1

)
≤ P

(
R0(UT1+T2) > R0(uT1+T2)|Fu

T1

)
= P

(
P
(
R0(UT1+T2) > R0(uT1+T2)|Fu

T1+T2

)|Fu
T1

)
= E

[
E
[
1− e

−2〈UT1 (·+R0(uT1+T2 )),u
∗,r
T2

(θ1)〉|Fu
T1+T2

]|Fu
T1

]
(3.41)

= E
[
1− e

−2〈vT1 (·+R0(uT1+T2 )),u
∗,r
T2

(θ1)〉|Fu
T1

]
≤ E

[
1− e

−2〈vT1 (·+R0(uT1+T2 )),u
∗,r
T2

(θ)〉|Fu
T1

]
= E

[
E
[
1− e

−2〈vT1 ,(u
∗,r
T2

(θ))(·−R0(uT1+T2 ))〉|σ (Fu∗,r ,Fu
T1

)]|Fu
T1

]
.

In the third equality, we used that U(T1)= vT1 .
Use Lemma A.2 to obtain that for all θ ∈ [θ, θ], T1, T2 > 0,A > 0, T ≥ 1,

(3.42) P
ν
∗,l
T (θ)

(∣∣R0(uT1+T2)
∣∣≥A

)≤ C(θ, θ, T1 + T2)/A.

By (A.11), it follows that for every δ′ > 0 there exist Aδ′ > 0 big enough and a
compact set Kδ′ ⊂ C+tem such that

(3.43) inf
θ≤θ≤θ

(
ν
∗,l
T (θ)

)(
Kδ′ ∩ {∣∣R0(uT1+T2)

∣∣ < Aδ′
})≥ 1− δ′ for all T > 1.

For I2 ≡ ∫
C+tem

Pf (P(R0(wT1+T2) > R0(uT1+T2)|Fu
T1

)≤ η2(θ2− θ1))(ν
∗,l
T (θ1))(df )

as in (3.37), we obtain

I2 ≥
∫
Kδ′

Pf

(
sup

a∈[−Aδ′ ,Aδ′ ]
E
[
E
[
1− e

−2〈vT1 ,(u
∗,r
T2

(θ))(·−a)〉|σ (Fu∗,r ,Fu
T1

)]|Fu
T1

]
(3.44)

≤ η2(θ2 − θ1)
)(

ν
∗,l
T (θ1)

)
(df )− δ′.

By symmetry, Corollaries 2.4–2.5 and the Markov inequality, for T2 > 0 fixed
we can choose l > 0 big enough such that

(3.45) P
(∣∣L0

(
u
∗,r
T2

(θ)
)∣∣≥ l

)≤ δ′.
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Recall (3.4)–(3.5) and use monotonicity to conclude that for T1 > 0 fixed, for all
r > 0, T > 1,

(3.46) P
ν
∗,l
T (θ1)

(
0∨R0(vT1)≥ r

)≤ P
ν
∗,l
T (θ1)

(
0∨R0

(
uT1(θ2)

)≥ r
)≤ C(θ, θ, T1)

r
.

Thus, for δ′ > 0 fixed, we can pick l, r > 0 big enough such that

I2 ≥
∫
Kδ′

Pf

(
sup

a∈[−Aδ′ ,Aδ′ ]
E
[
E
[
1− e

−2〈vT1 ,(1[−l,r]u∗,rT2
(θ))(·−a)〉|

σ
(
Fu∗,r ,Fu

T1

)]|Fu
T1

]
≤ η2(θ2 − θ1)

)(
ν
∗,l
T (θ1)

)
(df )− 3δ′.

(3.47)

Now reason as from above (3.33) to below (3.34), this time using (3.24) from the
proof of the upper bound from Lemma 3.1, to obtain the claim. �

Recall the following observation for the coupling from (3.5) from the beginning
of the proof of Lemma 3.2. Conditional on Fu

T1
, v has law Q

0,(θ2−θ1)u,2u,1
v (θ2)

on [0, T1] and conditional on FT1 , w has law Q
uT1+vT1 ,0,0,1
w (θ1) on [T1, T1 + T2].

Finally, recall that w = u+ v.

LEMMA 3.6. Let T1, T2 > 0 be arbitrarily fixed, θc < θ ≤ θ1 < θ2 ≤ θ . For all
δ′ > 0, there exists η3 = η3(δ

′, T1, T2, θ, θ) > 0 small enough such that∫
C+tem

Ef

[
1
(
Pf

({
R0(wT1+T2)−R0(uT1+T2)≥ η3

}|Fu
T1

)
≥ η2

3Pf

({
R0(wT1+T2) > R0(uT1+T2)

}|Fu
T1

))](
ν
∗,l
T (θ1)

)
(df )

≥ 1− 6δ′

(3.48)

for all T > 1.

REMARK 3.7. Note that by (3.36), P({R0(wT1+T2) > R0(uT1+T2)}|Fu
T1

) > 0

almost surely under ν
∗,l
T (θ1).

PROOF OF LEMMA 3.6. Let X ≥ 0 be a random variable on some probability
space (�,F, P̃). Then (cf. [9], Proof of Lemma 3)

(3.49) P̃
(
X > Ẽ[X]/2

)≥ (
Ẽ[X])2

/
(
4Ẽ

[
X2]).

In the coupling from above, let

(3.50) 0≤X ≡ 0∨ (
R0(wT1+T2)∧ 1

)− 0∨ (
R0(uT1+T2)∧ 1

)≤ 1.
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In what follows, we make use of regular conditional distributions. For
P({R0(wT1+T2) > R0(uT1+T2)}|Fu

T1
) > 0, set

(3.51) P̃
({·})= P({·} ∩ {R0(wT1+T2) > R0(uT1+T2)}|Fu

T1
)

P({R0(wT1+T2) > R0(uT1+T2)}|Fu
T1

)
.

Now apply (3.49) to get for η3 ≤ Ẽ[X]/2,

P̃
({

R0(wT1+T2)−R0(uT1+T2)≥ η3
})

≥ P̃(X ≥ η3)≥ P̃
(
X > Ẽ[X]/2

)≥ (
Ẽ[X])2

/
(
4Ẽ

[
X2])(3.52)

≥ (
Ẽ[X])2

/4≥ η2
3.

Therefore, it suffices to show that there exists η3 > 0 small enough such that

(3.53)
∫
C+tem

Ef [1{η3≤Ẽ[X]/2}]
(
ν
∗,l
T (θ1)

)
(df )≥ 1− 6δ′.

By (3.25) and (3.37), we have for η3 = η1/(2η2),∫
C+tem

Ef

[
1
(
η3 ≤ Ẽ[X]/2

)](
ν
∗,l
T (θ1)

)
(df )

=
∫
C+tem

Ef

[
1
(
E
[
0∨ (

R0(wT1+T2)∧ 1
)− 0∨ (

R0(uT1+T2)∧ 1
)|Fu

T1

]
≥ 2η3P

({
R0(wT1+T2) > R0(uT1+T2)

}|Fu
T1

))](
ν
∗,l
T (θ1)

)
(df )

≥
∫
C+tem

Ef

[
1
(
E
[
0∨ (

R0(wT1+T2)∧ 1
)− 0∨ (

R0(uT1+T2)∧ 1
)|Fu

T1

]
(3.54)

≥ η1(θ2 − θ1)
)](

ν
∗,l
T (θ1)

)
(df )

−
∫
C+tem

Ef

[
1
(
P
({

R0(wT1+T2) > R0(uT1+T2)
}|Fu

T1

)

≥ η1(θ2 − θ1)

2η3

)](
ν
∗,l
T (θ1)

)
(df )

≥ 1− 2δ′ − 4δ′. �

LEMMA 3.8. Let ϕ ∈ C+tem with L0(ϕ) ∈ (0,1) be arbitrarily fixed. Further,
let T1, T2 > 0 be arbitrarily fixed and θc < θ ≤ θ1 < θ2 ≤ θ . For all δ′ > 0, there
exists η4 = η4(ϕ, δ′, T1, T2, θ, θ) > 0 small enough such that∫

C+tem

Ef

[
1
(
Pf

({〈
vT1+T2

(·+R0(uT1+T2)
)
, ϕ(·)〉≥ η4

}|Fu
T1

)
≥ (

1− e−2η4
)2(3.55)
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× Pf

({
R0(wT1+T2) > R0(uT1+T2)

}|Fu
T1

))](
ν
∗,l
T (θ1)

)
(df )

≥ 1− δ′

for all T > 1.

PROOF. Let ϕ ∈ C+tem with L0(ϕ) ∈ (0,1) and η4 > 0 be arbitrarily fixed. Note
that in what follows we condition first on Fu

T1+T2
rather than on Fu

T1
. Next, rewrite

P
({〈

vT1+T2

(·+R0(uT1+T2)
)
, ϕ(·)〉≥ η4

}|Fu
T1+T2

)
(3.56)

= P
({

1− e−2〈vT1+T2 (·+R0(uT1+T2 )),ϕ(·)〉 ≥ 1− e−2η4
}|Fu

T1+T2

)
.

Recall from (3.6) that by means of a monotonicity-coupling (cf. Remark A.8),

uT1+t (x) = u
(uT1 (θ1))

t (θ1)(x) ≤ wT1+t (x) = u
(wT1 )

t (θ1)(x) = uT1+t (x) + vT1+t (x)

for 0≤ t ≤ T2 with v solving (cf. (A.20))

∂v

∂t
=�v + (θ1 − v− 2u)v +√vẆ2,

v(T1)=wT1 − uT1, T1 ≤ t ≤ T1 + T2.

(3.57)

By Corollary A.1, we have

E
[
1− e−2〈vT1+T2 (·+R0(uT1+T2 )),ϕ(·)〉|Fu

T1+T2

]
= E

[
1− e−2〈vT1+T2 ,ϕ(·−R0(uT1+T2 ))〉|Fu

T1+T2

]
(3.58)

= E
[
1− e−2〈vT1 ,zT1+T2 〉|Fu

T1+T2

]
,

where z solves

∂z

∂t
=�z+ (θ − z− 2u2T1+T2−·)z+√zẆ3,

z(T1)= ϕ
(·−R0(uT1+T2)

)
, T1 ≤ t ≤ T1 + T2,

(3.59)

where W2,W3 are independent white noises. That is, conditional on Fu
T1+T2

,

(zt )T1≤t≤T1+T2 has law P(z) ≡ Qz(T1),0,2u2T1+T2−·,1. By Theorem 2(c), P(z) and
Qz(T1),0,0,0 are mutually absolutely continuous on UR,T for R,T > 0 arbitrarily
fixed. The latter is the law of a superprocess with nonzero initial condition, and
thus is nonzero with positive probability at time T1+ T2. Similarly, vT1 is nonzero
with positive probability.

Now reason as in (3.28)–(3.34) with the following modifications. Use a θ -
coupling (cf. Remark A.9) for z to obtain (3.28). Then investigate

(3.60) E
[
E
[
1− e−2〈vT1 ,zT1+T2 (θ)〉|σ (Fz,Fu

T1+T2

)]
Fu

T1

]
instead of the (outer) conditional expectation in (3.30). Only apply the lower bound
of Lemma 3.1 in case zT1+T2 �≡ 0. This way we obtain a result in the spirit of
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(3.25). Here, we do not require zT1+T2 or vT1 to be nonzero a.s. as we do not have
to multiply the (inner) conditional expectation from (3.60) with a front factor as in
(3.30).

Note in particular, that the final statement is phrased in terms of conditioning on
Fu

T1
. Analogous reasoning to the proof of Lemma 3.6, using that L0(ϕ) ∈ (0,1),

and thus 〈vT1+T2(·+ R0(uT1+T2)), ϕ(·)〉 = 0 if R0(wT1+T2) ≤ R0(uT1+T2), com-
pletes the proof. �

LEMMA 3.9. Let ϕ ∈ C+tem with L0(ϕ) ∈ (0,1) and T1, T2 > 0 be arbi-
trarily fixed and θc < θ ≤ θ1 < θ2 ≤ θ . For all δ′′ > 0, there exists η5 =
η5(ϕ, δ′′, T1, T2, θ, θ) > 0 small enough such that∫

C+tem

Pf

(
Pf

({〈
vT1+T2

(·+R0(uT1+T2)
)
, ϕ(·)〉≥ η5

}|Fu
T1

)
≥ η5(θ2 − θ1)

)(
ν
∗,l
T (θ1)

)
(df )(3.61)

≥ 1− δ′′

for all T > 1.

PROOF. By Corollary 3.4, with ν
∗,l
T (θ1)(df )-measure of at least 1− 2δ′,

(3.62) Pf

(
Pf

(
R0(wT1+T2) > R0(uT1+T2)|Fu

T1

)≥ η1(θ2 − θ1)
)≥ 1− 2δ′.

Hence, with ν
∗,l
T (θ1)(df )Pf (dω)-measure of at least (1− 2δ′)2 ≥ 1− 4δ′,

(3.63) Pf

(
R0(wT1+T2) > R0(uT1+T2)|Fu

T1

)
(ω)≥ η1(θ2 − θ1).

Also, by Lemma 3.8, with ν
∗,l
T (θ1)(df )-measure of at least 1− δ′,

Ef

[
1
(
Pf

({〈
vT1+T2

(·+R0(uT1+T2)
)
, ϕ(·)〉≥ η4

}|Fu
T1

)
(3.64)

≥ (
1− e−2η4

)2Pf

({
R0(wT1+T2) > R0(uT1+T2)

}|Fu
T1

))]≥ 1− δ′.

Hence, with ν
∗,l
T (θ1)(df )Pf (dω)-measure of at least (1− δ′)2 ≥ 1− 2δ′,

Pf

({〈
vT1+T2

(·+R0(uT1+T2)
)
, ϕ(·)〉≥ η4

}|Fu
T1

)
(ω)

(3.65)
≥ (

1− e−2η4
)2Pf

({
R0(wT1+T2) > R0(uT1+T2)

}|Fu
T1

)
(ω).

Together with (3.63), this yields that with ν
∗,l
T (θ1)(df )Pf (dω)-measure of at least

1− 6δ′,
Pf

({〈
vT1+T2

(·+R0(uT1+T2)
)
, ϕ(·)〉≥ η4

}|Fu
T1

)
(ω)

≥ (
1− e−2η4

)2
η1(θ2 − θ1).

(3.66)

The claim now follows. �
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PROOF OF PROPOSITION 2.17. Let ϕ ∈ C+tem with L0(ϕ) ∈ (0,1), T1, T2, ξ >

0 and θm−1, θm be arbitrarily fixed. For ease of notation, write θ1, θ2 instead of
θm−1, θm and set ε = θ2 − θ1. By Lemma 3.9 and the definition of ν

∗,l
T (θ1) (cf.

(A.8)), for all δ′′ > 0 there exists η6 > 0 small enough and T0 > 0 big enough, all
constants only dependent on ϕ, δ′′, T1, T2, θ, θ , such that

1

T

∫ T

0
P
({
P

u
∗,l
s (·+R0(s))

(〈
vT1+T2

(·+R0(uT1+T2)
)
, ϕ(·)〉≥ η6

)
(3.67)

≥ η6(θ2 − θ1)
})

ds ≥ 1− δ′′

for all T ≥ T0 and θc < θ ≤ θ1 < θ2 ≤ θ . Hence, using Fubini–Tonelli’s theorem,
there exists a set �′ with P(�′)≥ 1− δ′′, such that for all ω ∈�′,

1

T

∫ T

0
1
(
P

u
∗,l
s (·+R0(s))

(〈
vT1+T2

(·+R0(uT1+T2)
)
, ϕ(·)〉≥ η6

)≥ η6ε
)
ds

(3.68)
≥ 1− δ′′.

For all ω ∈�′, there exists

s1 = s1(ω)≡ inf
{
s ≥ ξ : P

u
∗,l
s (·+R0(s))

(〈
vT1+T2

(·+R0(uT1+T2)
)
, ϕ(·)〉≥ η6

)
(3.69)

≥ η6ε
}

satisfying s1 ≤ T/2−ξ−T1−T2. In case 〈v(u
∗,l
s1 (·+R0(s1)))

T1+T2
(·+R0(u

(u
∗,l
s1 (·+R0(s1)))

T1+T2
)),

ϕ(·)〉 ≥ η6, set S = s1 + T1 + T2 and call this a success. In case of no success, by
(3.68), there exists

s2 = s2(ω)≡ inf
{
s ≥ s1 + T1 + T2 :

(3.70)
P

u
∗,l
s (·+R0(s))

(〈
vT1+T2

(·+R0(uT1+T2)
)
, ϕ(·)〉≥ η6

)≥ η6ε
}

satisfying s2 ≤ T/2 − ξ − T1 − T2. Continue as above with s2 instead of s1. By
choosing C > 0 small enough, we can repeat this procedure !CT " times. If the
above procedure fails, which can only happen if ω /∈ �′ or ω ∈ �′ but there was
no success in !CT " trials, set S = T/2− ξ .

Note that for η, δ′′ ∈ (0,1) arbitrarily fixed, maxx∈[0,δ′′](x + (1− x)η)= δ′′ +
(1 − δ′′)η. As a result, using the strong Markov property of the family of laws
Pf , f ∈ C+tem, we get

P
(
�S : ξ ≤ S ≤ T/2− ξ : 〈�∗,lS (θ1, θ2), ϕ

〉≥ η6
)

≤ δ′′ + (
1− δ′′

)
(1− η6ε)

!CT ".
(3.71)

Recall from (2.46) that ε = δ/T to conclude that

P
(∃S : ξ ≤ S ≤ T/2− ξ : 〈�∗,lS (θ1, θ2), ϕ

〉≥ η6
)

≥ (
1− δ′′

)(
1− (1− η6δ/T )!CT ").(3.72)
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For T →∞, this bound approaches (1 − δ′′)(1 − exp(−Cη6δ)) > 0. This com-
pletes the proof of the claim. �

4. The speed of the right marker. Note the construction of traveling wave
solutions from Theorem 3 or Remark A.7 of the Appendix. Let ν

∗,l
T ∈ P(C+tem)

be given as in (A.8) and denote any arbitrary subsequential limit of the tight set
{ν∗,lT : T ≥ 1} by ν = ν∗,l in what follows. This limit yields a traveling wave solu-
tion to (1.1). By Proposition A.6, ν∗,l({f :R0(f )= 0})= 1 and Pν∗,l (u(t) �≡ 0)=
1 for all t ≥ 0. Denote with ν(u0) any subsequential limit that is obtained as in
Remark A.7 for u0 ∈H with analogous properties.

Recall from [21], Proposition 4.1, that for θ > θc and (u
(ν)
t )t≥0 a traveling wave

solution to (1.1),

(4.1) R0
(
u

(ν)
t

)
/t→A(ν) =A(ν)(ω) ∈ [0,2θ1/2] almost surely as t→∞

holds. This convergence also holds in L1 if we replace R0(u(t)) by 0 ∨ R0(u(t))

as we see below.
In this section, we show that the limiting speed of the dominating right marker

R0(u
∗,l
t ) and that of any traveling wave solution ν∗,l coincide. Moreover, the speed

is deterministic, namely it equals B = B(θ) from Lemma 2.8. We extend this result
to right front markers of solutions to (1.1) with initial conditions ψ satisfying ψ ∈
HR , where the convergence is now in probability and L1. For the right front marker
of a corresponding traveling wave solution, we obtain almost sure convergence to
A(ν(ψ)) = B .

LEMMA 4.1. Let θ > θc. Then, for any (u
(ν)
t )t≥0 a traveling wave solution to

(1.1),

(4.2)
(
0∨R0

(
u

(ν)
t

))
/t→A(ν) =A(ν)(ω) ∈ [0,2θ1/2] as t→∞ in L1.

Moreover, E[A(ν)] ≤ B .

PROOF. By (4.1), for all N ∈N, ((0∨R0(u
(ν)
t ))∧ (Nt))/t→A(ν)∧N almost

surely for t→∞. By dominated convergence,

(4.3)
((

0∨R0
(
u

(ν)
t

))∧ (Nt)
)
/t→A(ν) ∧N as t→∞ in L1.

By (1.24) and Lemma 2.13, for m > 0 arbitrary,

(4.4) P
(
R0

(
u

(ν)
t

)
/t ≥m

)≤ Cm−2

uniformly in t ≥ 1. In combination with (4.1), this gives P(A(ν) ≥ 2m) ≤ Cm−2.
Thus A(ν) ∈ L1. For N ∈N arbitrary, we get

(4.5) 0≤ E
[
0∨ (

R0
(
u

(ν)
t

)
/t
)]−E

[(
0∨ (

R0
(
u

(ν)
t

)
/t
))∧N

]≤ ∫ ∞
N

Cm−2 dm
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and similarly, |E[A(ν) ∧N ] −E[A(ν)]| ≤ 2C/N . Hence,

lim
t→∞E

[∣∣0∨ (
R0

(
u

(ν)
t

)
/t
)−A(ν)

∣∣]
≤ lim

t→∞E
[∣∣(0∨ (

R0
(
u

(ν)
t

)
/t
))∧N −A(ν) ∧N

∣∣]+ 3C/N

= 3C/N

(4.6)

and the first claim follows after taking N→∞.
Moreover, for all N ∈N, using once more (1.24) and the L1-convergence of the

first claim,

E
[
A(ν)]≤ E

[
A(ν) ∧N

]+ 2C/N

= lim
T→∞E

[(
0∨ (

R0
(
u

(ν)
T

)
/T

))∧N
]+ 2C/N(4.7)

≤ lim
T→∞E

[
0∨R0

(
u
∗,l
T

)]
/T + 2C/N ≤ B + 2C/N.

Take N→∞ to conclude that E[A(ν)] ≤ B . �

Recall from Lemma 2.8 and Corollary 2.11 that

(4.8) lim
T→∞E

[
R0

(
u
∗,l
T

)]
/T = inf

T≥1
E
[
R0

(
u
∗,l
T

)]
/T ≡ B ∈ (0,∞).

Then

(4.9) B = lim
T→∞E

[
0∨R0

(
u
∗,l
T

)]
/T

holds as well. Indeed, let (u
(ν)
t )t≥0 be an arbitrary traveling wave solution with

R0(ν)= 0 almost surely. By Corollary 2.3 and (1.24), (4.1), for M ∈N arbitrary,

lim
T→∞E

[
0∨ (−R0

(
u
∗,l
T

))]
/T

≤ lim
T→∞E

[(
0∨ (−R0

(
u
∗,l
T

)))∧ (MT )
]
/T +C1e

−C2M

≤ lim
T→∞E

[(
0∨ (−R0

(
u

(ν)
T

)))∧ (MT )
]
/T +C1e

−C2M

= E
[
0∨ (−A(ν) ∧M

)]+C1e
−C2M

=C1e
−C2M.

(4.10)

Take M→∞ and the claim follows.

LEMMA 4.2. Let θ > θc. With the notation from above, E[A(ν∗,l )] = B holds
true. Moreover, if ψ ∈ HR satisfies R0(u

(ψ)
T )/T → B for T →∞ in L1, then

E[A(ν(ψ))] = B holds as well.
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REMARK 4.3. Note that we will show at the end of this section (Corollary 4.7)
that every ψ ∈H indeed satisfies the above assumption.

PROOF OF LEMMA 4.2. Let ν = ν∗,l or ν = ν(ψ) with ψ as above. By
Lemma 4.1, E[A(ν)] ≤ B . It remains to show that E[A(ν)] ≥ B . In what follows,
we provide a proof in case ν = ν∗,l . The proof in case ν = ν(ψ) is analogous except
for the changes indicated below.

Fix T ≥ 1 arbitrary. Review the definitions and comments in [14], (5.18)–(5.20).
Note in particular that for fixed N ∈ N and m0 > 0, RN

m0
is a continuous function

on C+tem with |RN
m0

(f )| ≤N and Rm0,N (f )≤RN
m0

(f )≤R0(f ) on {R0(f )≥−N}
and RN

m0
(f ) = −N on {R0(f ) < −N}. Hence, for m0 = m0(T ),N = N(T ), by

Lemma 4.1,

(4.11) E
[
A(ν∗,l )]= lim

T→∞Eν∗,l
[
0∨R0(uT )

]
/T ≥ lim

T→∞Eν∗,l
[
0∨RN

m0
(uT )

]
/T .

By the definition of tightness and the continuity of f �→ Pf , (A.8) yields for
ν
∗,l
Tn
⇒ ν∗,l (n→∞),

Eν∗,l
[
0∨RN

m0
(uT )

]
= lim

n→∞
1

Tn

∫ Tn

0
E
[
0∨RN

m0

(
u
∗,l
s+T

(·+R0
(
u∗,ls

)))]
ds

≥ lim inf
n→∞

{
1

Tn

∫ Tn

0
E
[
R0

(
u
∗,l
s+T

(·+R0
(
u∗,ls

)))]
ds

− 1

Tn

∫ Tn

0
E
[
0∨ {

R0
(
u
∗,l
s+T

(·+R0
(
u∗,ls

)))

−RN
m0

(
u
∗,l
s+T

(·+R0
(
u∗,ls

)))}]
ds

}

≥ lim inf
n→∞

{
1

Tn

∫ Tn

0
E
[
R0

(
u
∗,l
s+T

(·+R0
(
u∗,ls

)))]
ds

}

− lim sup
n→∞

{
1

Tn

∫ Tn

0
E
[
0∨ {

R0
(
u
∗,l
s+T

(·+R0
(
u∗,ls

)))

−RN
m0

(
u
∗,l
s+T

(·+R0
(
u∗,ls

)))}]
ds

}

≡ I1(T )−E1
(
T ,m0(T ),N(T )

)
= I1(T )−E1(T ).

(4.12)

We obtain for I1, using Corollaries 2.4–2.5, that

I1(T )= lim inf
n→∞

1

Tn

∫ Tn

0
E
[
R0

(
u
∗,l
s+T

)−R0
(
u∗,ls

)]
ds
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= lim inf
n→∞

1

Tn

(∫ Tn+T

Tn

E
[
R0

(
u∗,ls

)]
ds −

∫ T

0
E
[
R0

(
u∗,ls

)]
ds

)
(4.13)

= T B

by (4.8) respectively the assumption R0(u
(ψ)
T )/T → B for T →∞ in L1 for ψ ∈

HR . It therefore remains to show that lim supT→∞E1(T )/T = 0.
For ε > 0 arbitrarily fixed, recall the definition of Rm0,N (f ) from [14], (5.18).

Also recall from above that |RN
m0

(f )| ≤ N and Rm0,N (f ) ≤ RN
m0

(f ) ≤ R0(f ) on
{R0(f )≥−N} and RN

m0
(f )=−N on {R0(f ) <−N} to obtain that

E1(T ) ≤ lim sup
n→∞

1

Tn

∫ Tn

0
E
[
2R0

(
u
∗,l
s+T

(·+R0
(
u∗,ls

)))
1{R0(u

∗,l
s+T (·+R0(u

∗,l
s )))>N}

]
ds

+ lim sup
n→∞

1

Tn

∫ Tn

0
E[2N1{〈u∗,ls+T (·+R0(u

∗,l
s+T )),1[−εT ,∞)〉<m0}]ds + εT

(4.14)
= 2 lim sup

n→∞
E

ν
∗,l
Tn

[
R0(uT )1{R0(uT )>N}

]
+ 2N lim sup

n→∞
P

ν
∗,l
Tn

(〈
uT

(·+R0(T )
)
,1[−εT ,∞)

〉
< m0

)+ εT .

By (1.24) and Lemma 2.13, we choose N > CT/ε such that

E
ν
∗,l
Tn

[
R0(uT )1{R0(uT )>N}

]≤ E
[
R0

(
u
∗,l
T

)
1{R0(u

∗,l
T )>N}

]
≤N−1E

[(
0∨R0

(
u
∗,l
T

))2](4.15)

≤N−1CT 2 < εT

for all n ∈ N. Finally, by Lemma A.4 with a = εT /2, we choose b = b(T ) and
m̃=m0(T ) small enough such that

(4.16) P
ν
∗,l
Tn

(〈
uT

(·+R0(T )
)
,1[−εT ,∞)

〉
< m0

)≤ εT

2N(T )

for all n ∈N. Thus, E1(T )/T ≤ 4ε for all T ≥ 1 and the claim follows after taking
ε ↓ 0+. �

PROPOSITION 4.4. Let θ > θc. Then A(ν∗,l ) ≡ E[A(ν∗,l )] = B almost surely
and

(4.17) R0
(
u
∗,l
T

)
/T → B almost surely as T →∞.

In particular, A(ν) ≤ B almost surely for all A(ν) as in (4.1).

PROOF. The last claim follows immediately from (1.24).
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Fix T0 > 0. By (1.24) and as ν∗,l({f : R0(f ) = 0}) = 1 by Proposition A.6,
there exists a coupling such that

(4.18) R0
(
u

(ν∗,l )
T0+t

)≤R0
(
u
∗,l
T0+t

)
for all t ≥ 0 almost surely.

By Corollaries 2.4–2.5, E[|R0(u
∗,l
T0

)|] ≤ C(T0), and thus, using Lemma 4.1 and
(4.1),

A(ν∗,l ) = lim
T→∞0∨ (

R0
(
u

(ν∗,l )
T

)
/T

)= lim
T→∞R0

(
u

(ν∗,l )
T

)
/T

≤ lim inf
T→∞ R0

(
u
∗,l
T

)
/T a.s.,

(4.19)

where the left equality also holds in L1.
Note that by reasoning as in the proof of [21], Proposition 4.1(a), for T > 0

fixed, once we bound lim supn→∞R0(u
∗,l
T0+nT )/nT , the same bound holds for

lim supt→∞R0(u
∗,l
t )/t almost surely. We therefore fix T > 0 and rewrite

1

nT
R0

(
u
∗,l
T0+nT

)− 1

nT
R0

(
u
∗,l
T0

)

= 1

nT

n∑
i=1

(
R0

(
u
∗,l
T0+iT

)−R0
(
u
∗,l
T0+(i−1)T

))
(4.20)

= 1

nT

n∑
i=1

R0
(
u

(u
∗,l
T0+(i−1)T (·+R0(u

∗,l
T0+(i−1)T )))

T

)
.

Fix i ∈N. By (1.24), there exists a coupling such that

(4.21) R0
(
u

(u
∗,l
T0+(i−1)T (·+R0(u

∗,l
T0+(i−1)T )))

T

)≤R0
(
u
∗,l
T (i)

)
almost surely,

where L(u
∗,l
T (i))= L(u

∗,l
T ) for all i ∈N. By construction, the L(u

∗,l
T (i)), i ∈N are

independent. Indeed, we show this by induction. Let u
∗,l
T0+(i−1)T be given. Then

ζ1 ≥ u
∗,l
T0+(i−1)T (·+ R0(u

∗,l
T0+(i−1)T )) is chosen in the construction. Nevertheless,

as ζN(x) ↑∞ for x < 0 and ζN(x)= 0 for x ≥ 0, the law of u
∗,l
T (i) conditional on

u
∗,l
T0+(i−1)T remains L(u

∗,l
T ). Thus

(4.22)
1

nT
R0

(
u
∗,l
T0+nT

)− 1

nT
R0

(
u
∗,l
T0

)≤ 1

nT

n∑
i=1

R0
(
u
∗,l
T (i)

)
,

where (R0(u
∗,l
T (i)))i∈N is an i.i.d. sequence of real valued random variables with

R0(u
∗,l
T (1))

D=R0(u
∗,l
T ). By Corollaries 2.4–2.5, R0(u

∗,l
T ) ∈ L1.
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By the ergodic theorem (cf. for instance Klenke [13], Theorems 20.14, 20.16
and Example 20.12),

1

nT

n∑
i=1

R0
(
u
∗,l
T (i)

)→ E
[
R0

(
u
∗,l
T

)]
/T

almost surely and in L1 for n→∞.

(4.23)

As a result,

(4.24) lim sup
n→∞

R0(u
∗,l
T0+nT )

nT
≤ lim sup

n→∞
R0(u

∗,l
T0

)

nT
+ E[R0(u

∗,l
T )]

T
= E[R0(u

∗,l
T )]

T

for all T > 0. Take T →∞ to conclude that

A(ν∗,l ) ≤ lim inf
T→∞

R0(u
∗,l
T )

T
≤ lim sup

T→∞
R0(u

∗,l
T )

T

≤ lim sup
T→∞

E[R0(u
∗,l
T )]

T
= B = E

[
A(ν∗,l )](4.25)

and, therefore, limT→∞R0(u
∗,l
T )/T = B almost surely. �

COROLLARY 4.5. Let θ > θc. Then

(4.26) R0
(
u

(ν∗,l )
T

)
/T → B almost surely as T →∞

and

(4.27) R0
(
u
∗,l
T

)
/T → B in L1 as T →∞.

PROOF. The first claim follows from (4.1) and Proposition 4.4.
By Proposition 4.4, we have (R0(u

∗,l
T )/T ∧ N) ∨ (−N)→ B for T →∞ al-

most surely for all N ∈ N,N > B fixed. As these random variables are bounded,
dominated convergence implies convergence in L1. We conclude that for all
N ∈N,N > B ,

lim sup
T→∞

E
[∣∣(R0

(
u
∗,l
T

)
/T

)−B
∣∣]

≤ 2 lim sup
T→∞

E
[∣∣(R0

(
u
∗,l
T

)
/T

)∣∣1{|R0(u
∗,l
T )/T |>N}

]
.

(4.28)

The second claim now follows from the bounds on the positive part from
Lemma 2.13 and on the negative part from (2.15) for N→∞. �

Finally, we consider initial conditions ψ ∈H with H as in (1.10).

LEMMA 4.6. For initial conditions ψ ∈HR , R0(u
(ψ)
T )/T

D→ B as T →∞.
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PROOF. Without loss of generality, we assume that ψ(x) = εH0(x − x0) for
some x0 ∈ R, ε > 0. Indeed, by definition of HR , for every ψ ∈ H there exist
x0 ∈ R, ε > 0 such that ψ ≥ εH0(·− x0) and R0(ψ) ∈ R. Let us reason as in
[14], Remark 2.8(ii) (left-upper measure) to construct a coupling such that for
T0 > 0 arbitrarily fixed, u(εH0(·−x0))(t, x)≤ u(ψ)(t, x)≤ u∗,l(t, x −R0(ψ)) for all
t ≥ T0, x ∈R almost surely. Then

R0
(
u

(εH0(·−x0))
t

)
/t ≤R0

(
u

(ψ)
t

)
/t ≤ (

R0
(
u
∗,l
t

)+R0(ψ)
)
/t

for all t ≥ T0 almost surely
(4.29)

and by Proposition 4.4,

(4.30) lim
t→∞

(
R0

(
u
∗,l
t

)+R0(ψ)
)
/t = B almost surely.

Hence, R0(u
(εH0(·−x0))
t )/t

D→ B implies R0(u
(ψ)
t )/t

D→ B . By the shift invariance
of the dynamics, assume further that x0 = 1.

Let c ∈ R be arbitrary. For c > B , limT→∞ P(R0(u
(ψ)
T ) ≥ cT ) = 0 follows

from (4.29)–(4.30). Note that ψ(x) = εH0(x − 1) ≥ ε1(−∞,0](x) for all x ∈ R.
By (1.22), symmetry and by the shift invariance of the dynamics, for all T > 0,

P
(
R0

(
u

(ψ)
T

)
> cT

)= 1−E
[
e−2〈ψ,u

∗,r
T (·−cT )〉]

≥ 1−E
[
e−2ε〈1(−∞,0],u∗,rT (·−cT )〉](4.31)

≥ 1− P
(〈
1(−∞,0], u∗,rT (·− cT )

〉
< N

)− e−2εN

for all N ∈ N. Suppose c < B . Let δ > 0 and choose N big enough such that
e−2εN < δ. As we will show below, for N fixed,

(4.32) lim
T→∞P

(〈
1(−∞,0], u∗,rT (·− cT )

〉
< N

)= 0

and, therefore, P(R0(u
(ψ)
T ) > cT ) ≥ 1 − 2δ for all T big enough. Then

limT→∞ P(R0(u
(ψ)
T )≥ cT )= 1(−∞,B)(c) for c �= B arbitrary follows.

It thus remains to show (4.32) for 0 < c < B and N arbitrarily fixed. Let
� = (B − c)/2,0 < � < B . By symmetry, L0(u

∗,r
T )/T → −B almost surely.

A coupling with two independent processes (cf. Remark A.10) at time T

yields

P
(
L0

(
u
∗,r
T+1

)≥ (−B +�)T
)

≥ E
[
1{〈1(−∞,−cT ],u∗,rT (·)〉<N}P1(−∞,−cT ]u∗,rT

(τ ≤ 1)(4.33)

× P1[−cT ,∞)u
∗,r
T

(
L0(u1)≥ (−B +�)T

)]
.
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By [14], (2.11), on {〈1(−∞,−cT ], u∗,rT (·)〉 < N}, P1(−∞,−cT ]u∗,rT
(τ ≤ 1) ≥

exp(−2θN
1−e−θ ). Note that −B +�=−c−� to further get by symmetry and domi-

nation, P1[−cT ,∞)u
∗,r
T

(L0(u1)≥ (−B +�)T )≥ P(R0(u
∗,l
1 )≤�T ). Hence,

P
(
L0

(
u
∗,r
T+1

)≥ (−B +�)T
)

(4.34)

≥ exp
( −2θN

1− e−θ

)
P
(〈
1(−∞,−cT ], u∗,rT (·)〉 < N

)
P
(
R0

(
u
∗,r
1

)≤�T
)
.

As limT→∞ P(L0(u
∗,r
T+1)≥ (−B+�)T )= 0 and limT→∞ P(R0(u

∗,r
1 )≤�T )= 1

by [14], Lemma 4.6, and the Markov inequality, (4.32) follows. �

COROLLARY 4.7. For initial conditions ψ ∈HR , R0(u
(ψ)
T )/T → B for T →

∞ in probability and in L1.

PROOF. As the limit is deterministic, the convergence in distribution (cf.
Lemma 4.6) implies convergence in probability (cf. Grimmett and Stirzaker [8],
Theorem 7.2.(4)(a)). Use (2.8) for the negative part and Lemma 2.13 and domina-
tion for the positive part of R0(u

(ψ)
T ) to see that the family {R0(u

(ψ)
T )/T ,T ≥ 1} is

bounded in L2, and thus uniformly integrable (cf. [13], Corollary 6.21). By [13],
Theorem 6.25 (and Definition 6.2), the convergence in L1 now follows from the
convergence in probability of R0(u

(ψ)
T )/T in combination with the uniform inte-

grability of this sequence. �

COROLLARY 4.8. For initial conditions ψ ∈HR ,

(4.35) R0
(
u

(ν(ψ))
T

)
/T → B almost surely as T →∞

and (0∨R0(u
(ν(ψ))
T ))/T → B in L1.

PROOF. By (4.1), Lemma 4.2 and Corollary 4.7,

(4.36) R0
(
u

(ν(ψ))
T

)
/T →A(ν(ψ)) almost surely as T →∞

with E[A(ν(ψ))] = B . By Proposition 4.4, A(ν(ψ)) ≤ B almost surely. Hence,
A(ν(ψ)) = B almost surely and the first claim follows. The second claim follows
by Lemma 4.1. �

4.1. Proof of Theorem 1. The first claim and (1.12) follow from Proposi-
tion 4.4 and Corollary 4.5. Lemma 4.1 yields the L1-convergence of the positive
part of the right-hand side of (1.12). The third claim follows from Corollary 4.7.
The fourth and last claim follow from Corollary 4.8. This concludes the proof.
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APPENDIX

A.1. Duality. A self-duality relation in the form (1.15) holds for solutions to
(1.1). For solutions with additional annihilation due to competition with a deter-
ministic process β (see (A.1) below), a duality relation is obtained analogously.
Such solutions appear for instance in the context of monotonicity-couplings; see
(A.20). For existence and uniqueness of solutions to (A.1) or (A.2), see Theorem 2.

COROLLARY A.1. Let θ > 0, T > 0, β ∈ C([0, T ],C+tem) arbitrarily fixed. Let
v, z be independent solutions to

(A.1)
∂v

∂t
=�v + (θ − v − β)v+√vẆ1, v(0)= v0,

respectively,

(A.2)
∂z

∂t
=�z+ (θ − z− βT−·)z+√zẆ2, z(0)= z0

for 0 ≤ t ≤ T with v0, z0 ∈ C+tem and W1,W2 independent white noises. Then we
have for 0≤ s ≤ T ,

(A.3) E
[
e−2〈v(T ),z(0)〉]= E

[
e−2〈v(s),z(T−s)〉]= E

[
e−2〈v(0),z(T )〉].

PROOF. Let us reason as in [9], Section 1.2. Let

(A.4) H(f,g)= 2e−2〈f,g〉(〈f 2, g
〉+ 〈

f,g2〉− 〈f,�g〉 − θ〈f,g〉).
Integration by parts yields H(f,g) = H(g,f ). The additional factor of 2 in the
exponent results from the use of different scaling constants in the original SPDEs.
Then

(A.5) e−2〈vt ,g〉 −
∫ t

0
H(vs, g) ds − 2

∫ t

0
e−2〈vs ,g〉〈βsvs, g〉ds

is a local martingale as well as

(A.6) e−2〈zt ,f 〉 −
∫ t

0
H(zs, f ) ds − 2

∫ t

0
e−2〈zs ,f 〉〈βT−szs, f 〉ds.

As

d

ds
E
[
e−2〈vs,zT−s〉]

= E
[(

H(vs, zT−s)+ 2e−2〈vs ,zT−s〉〈βsvs, zT−s〉)
− (

H(zT−s, vs)+ 2e−2〈zT−s ,vs〉〈βszT−s, vs〉)]= 0,

(A.7)

the duality relation follows. �
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A.2. Traveling waves for the right-upper invariant measure. We extend
the construction of traveling wave solutions from solutions with compactly sup-
ported initial conditions (cf. [14]) respectively Heavyside initial data (cf. [21]) to
the right-upper invariant measure case. As in [14], the right marker is used to cen-
ter the waves. Recall the set HR from (1.10). The constructions extend to initial
conditions u0 ∈HR .

Let θc < θ ≤ θ ≤ θ and ν
∗,l
T = ν

∗,l
T (θ) ∈ P(C+tem) be given by

(A.8) ν
∗,l
T (A)≡ T −1

∫ T

0
P
(
u∗,ls

(·+R0(s)
) ∈A

)
ds,

with L(u∗,ls ) = υs, s > 0 as in (1.22)–(1.23). Note that by Corollaries 2.4–2.5,
R0(u

∗,l
s ) is almost surely finite, and thus ν

∗,l
T is well defined. Then the analogues

of the following results of [14] hold, where constants only depend on θ through
θ and θ . Here, it is important to note that the tightness-result of Lemma A.3 from
below is uniform in θ ≤ θ ≤ θ as well. Note that in the proof of Lemma A.2 we
use Corollaries 2.4–2.5 in place of [14], Lemma 4.8. Also note that the constants
in [21], Lemmas 3.2–3.4, hold uniform in θ ≤ θ ≤ θ , which is easily be deduced
using that pθ

t (x) = eθtpt (x). Finally, note that the restriction to N ∈ N in [21],
Lemma 3.7, and [14], Chapter 5, was only due to the fact that the sequence {νT :
T ∈ N} was under consideration rather than the set {νT : T ≥ 1}. As we integrate
from 1 to T in the proof of [21], Lemma 3.7, and [14], (5.2), part of the statements
below are only valid for T > 1.

LEMMA A.2 (Analogue to [14], Lemma 4.9). If t > 0, then there exists
C(θ, θ, t) such that for all a > 0,0 < s ≤ t and T ≥ 1,

(A.9) P
ν
∗,l
T

(∣∣R0(s)
∣∣≥ a

)≤ C(θ, θ, t)/a.

In particular, for 0 < t ≤ 1,

(A.10) P
ν
∗,l
T

(∣∣R0(s)
∣∣≥ a

)≤ C(θ, θ)t1/4/a

holds.

LEMMA A.3 (Extension of [14], Lemma 5.1). Let θc < θ ≤ θ ≤ θ be arbitrar-
ily fixed. Then the set {ν∗,lT (θ) : T ≥ 1} is tight. In particular, for every ε > 0 there
exists a compact set Kε =Kε(θ, θ)⊂ C+tem such that

(A.11) inf
θ≤θ≤θ

(
ν
∗,l
T (θ)

)
(Kε)≥ 1− ε for all T > 1.

PROOF. Let λ > 0 arbitrary. Then there exist C <∞, γ, δ > 0,μ < λ and
A > 0, such that

inf
θ≤θ≤θ

(
ν
∗,l
T (θ)

)(
K(C, δ, γ,μ)∩ {f ∈ C+tem : 〈f,φ1〉 ≤A

})≥ 1− ε

for all T > 1,

(A.12)
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where φ1(x)≡ exp(−|x|) and

K(C, δ, γ,μ)≡ {
f ∈ C+tem :

∣∣f (x)− f
(
x′
)∣∣≤C

∣∣x − x′
∣∣γ eμ|x|

for all
∣∣x − x′

∣∣≤ δ
}
.

(A.13)

Indeed, a look at the proof of [14], Lemma 5.1, shows that the sets under con-
sideration, namely K(C, δ, γ,μ) and {f : 〈f,φ1〉 ≤N} are independent of θ . The
bounds are derived from previous statements, where constants only depend on θ

through θ and θ .
Recall that K ⊂ C+tem is (relatively) compact if and only if it is (relatively)

compact in C+λ for all λ > 0 and that K(C, δ, γ,μ) ∩ {f ∈ C+tem : 〈f,φ1〉 ≤ A} ≡
K(ε,λ) satisfying (A.12) is compact in C+λ (cf. [21], above (1.2)). Now set

(A.14) Kε =
⋂
n∈N

K
(
ε2−n,1/n

)
to conclude the proof of the claim. �

LEMMA A.4 (Analogue to [14], Lemma 5.2). Let t ≥ 0 and a, m̃ > 0, 0 <

b ≤ 1 be arbitrarily fixed. Then

P
ν
∗,l
T

(〈
ut

(·+R0(ut )
)
,1(−2a,∞)(·)〉 < m̃

)

≤
((

1− C1(θ, θ)b1/4

a

)
∨ 0

)−1
(A.15)

×
{
T + t

T

C2(θ, θ)b1/4

a
+ (

1− e
−2θ m̃

1−e−θb
)}

for all T ≥ 1.

Recall from (3.32) for d0,m0 > 0 the definition of

M(d0,m0)= {
f ∈ C+tem : there exist − 1/2≤ l0 < r0 ≤ 0, |r0 − l0| = d0

(A.16)
such that f ≥m01[l0,r0]

}
.

COROLLARY A.5. Let ε > 0 arbitrary. Then there exist d0 = d0(ε),m0 =
m0(ε) > 0 such that

(A.17) inf
θ≤θ≤θ

(
ν
∗,l
T (θ)

)(
M(d0,m0)

)≥ 1− ε

for all T > 1.

PROOF. In Lemma A.4, choose t = 0 and a = 1/4. Then choose b small
enough and then m̃ small enough to obtain

(A.18) inf
θ≤θ≤θ

(
ν
∗,l
T (θ)

)({
f : 〈f,1(−1/2,0](·)〉≥ m̃

})≥ 1− ε/2 for all T ≥ 1.
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By (A.12)–(A.13) for λ= 1, there exist C <∞, γ, δ > 0,μ < 1 and A > 0, such
that

inf
θ≤θ≤θ

(
ν
∗,l
T (θ)

)(
K(C, δ, γ,μ)∩ {f ∈ C+tem : 〈f,φ1〉 ≤A

})
≥ 1− ε/2 for all T > 1.

(A.19)

For deterministic f0 ∈ C+tem, note that if f0 ∈ {C+tem : 〈f,1[−1/2,0]〉 ≥ m̃} ∩ {f ∈
C+tem : |f (x)− f (x′)| ≤C|x − x′|γ for all x, x′ ∈ [−1,0], |x − x′| ≤ δ}, then there
exists x0 ∈ [−1/2,0] such that f (x0) ≥ 2m̃. Now use the Hölder-γ -continuity of
f0 around x0 to obtain the existence of d0 > 0 such that there exist l0 ≤ x0 ≤
r0, l0, r0 ∈ [−1/2,0], |r0 − l0| = d0 and 0 < m0 < 2m̃ such that f (x)≥m0 for all
l0 ≤ x ≤ r0. �

PROPOSITION A.6 (Analogue to [14], Proposition 1.7). Let ν
∗,l
Tn

be a subse-

quence that converges to ν∗,l . Then ν∗,l({f : R0(f ) = 0}) = 1 and Pν∗,l (u(t) �≡
0)= 1 for all t ≥ 0.

THEOREM 3 (Analogue to [14], Theorem 1.6). Every subsequential limit of
the tight set {ν∗,lT : T ≥ 1} yields a traveling wave solution to equation (1.1).

REMARK A.7. Recall the set HR from (1.10). The constructions and state-
ments from above extend to initial conditions u0 ∈HR . Here, we use Lemma 2.2
instead of (2.14).

A.3. Coupling techniques. In what follows, we shortly introduce the main
coupling techniques and ideas that are used in this article. We start with the
monotonicity-coupling from [14], Remark 2.1(i).

REMARK A.8 (Monotonicity-coupling). Let 0 < θ and ui ∈ C+tem, i = 1,2
with u1(x)≤ u2(x) for all x ∈R. Then there exists a coupling of solutions u(i), i =
1,2 to (1.1) with initial conditions ui, i = 1,2 such that u(1)(t, x)≤ u(2)(t, x) for
all t ≥ 0, x ∈R almost surely. For intuition purposes, compare the construction of
[17], Lemma 2.1.7. The main idea is to write

∂u(1)

∂t
=�u(1) + (

θ − u(1))u(1) +
√

u(1)Ẇ1, u(1)(0)= u1,

∂v

∂t
=�v + (

θ − v− 2u(1))v+√vẆ2, v(0)= u2 − u1,

(A.20)

where W1,W2 are independent white noises and u(2) ≡ u(1) + v with v(t, x) ≥ 0
for all t ≥ 0, x ∈R almost surely. v is constructed (conditional on u(1)) as a process
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with annihilation due to competition with u(1). Now recall [14], (1.8), to note that〈∫∫ ·

0

∣∣u(1)(s, x)
∣∣1/2

φ(x) dW1(x, s)+ ∣∣v(s, x)
∣∣1/2

φ(x) dW2(x, s)

〉
t

=
∫∫ t

0

(
u(1)(s, x)+ v(s, x)

)
φ2(x) dx ds

=
〈∫∫ ·

0

∣∣u(1)(s, x)+ v(s, x)
∣∣1/2

φ(x) dW(x, s)

〉
t

=
〈∫∫ ·

0

∣∣u(2)(s, x)
∣∣1/2

φ(x) dW(x, s)

〉
t

(A.21)

for W a white noise appropriately chosen.

In this article, we call a θ -coupling a coupling in the spirit of [17], Lemma 2.1.6.
To be more precise, use the techniques of [14], (2.2)–(2.4), to show the following.

REMARK A.9 (θ -coupling). Let 0 < θ1 < θ2. Let u0 ∈ C+tem. Then there exists
a coupling of solutions u(i), i = 1,2 to (1.1) with common initial condition u0
but different parameters θ1 respectively θ2 such that u(1)(t, x) ≤ u(2)(t, x) for all
t ≥ 0, x ∈R almost surely. The main idea is to write

∂u(1)

∂t
=�u(1) + (

θ1 − u(1))u(1) +
√

u(1)Ẇ1, u(1)(0)= u0,

(A.22)
∂v

∂t
=�v+ (θ2 − θ1)u

(1) + (
θ2 − v− 2u(1))v+√vẆ2, v(0)= 0,

where W1,W2 are independent white noises and u(2) ≡ u(1) + v with v(t, x) ≥
0 for all t ≥ 0, x ∈ R almost surely. v is constructed (conditional on u(1)) as a
process with annihilation due to competition with u(1) and an immigration-term
(θ2 − θ1)u

(1).

In what follows, we call a coupling with two independent processes a coupling
in the spirit of [17], Lemma 2.1.7. To be more precise, use the techniques of [14],
(2.2)–(2.4), to show the following.

REMARK A.10 (Coupling with two independent processes). Let 0 < θ . Let
u1, u2 ∈ C+tem and u0 ≡ u1 + u2. Then there exists a coupling of solutions u(i), i =
0,1,2 to (1.1) with initial conditions ui, i = 0,1,2 such that u(1) and u(2) are in-
dependent and u(0)(t, x)≤ u(1)(t, x)+u(2)(t, x) for all t ≥ 0, x ∈R almost surely.
The main idea is to write

∂u(1)

∂t
=�u(1) + (

θ − u(1))u(1) +
√

u(1)Ẇ1, u(1)(0)= u1,



3690 S. KLIEM

∂v

∂t
=�v + (

θ − v− 2u(1))v+√vẆ2, v(0)= u2,(A.23)

∂u(2)

∂t
=�u(2) + (

θ − u(2))u(2) +
√

u(2)Ẇ2, u(2)(0)= u2,

where W1,W2 are independent white noises and u(0) ≡ u(1) + v with v(t, x) ≤
u(2)(t, x) for all t ≥ 0, x ∈ R almost surely. v is constructed (conditional on u(1))
as a process with annihilation due to competition with u(1) contrary to u(2), where
no annihilation takes place. The independence of u(1) and u(2) follows from the
independence of the white noises W1,W2.

An immigration-coupling is constructed similar to a θ -coupling (cf. Re-
mark A.9), where the immigration-term only depends on an outside source.

REMARK A.11 (Immigration-coupling). Let α1, α2 − α1 ∈ C([0,∞),C+tem).
Let u0 ∈ C+tem. Then there exists a coupling of solutions u(i), i = 1,2 solving

∂u(i)

∂t
=�u(i) + αi + (

θ − u(i))u(i) +
√

u(i)Ẇi,

u(i)(0)= u0, i = 1,2

(A.24)

with W1,W2 two independent white noises, such that u(1)(t, x)≤ u(2)(t, x) for all
t ≥ 0, x ∈ R almost surely. The main idea is to write u(2) ≡ u(1) + v with v ≥ 0
satisfying

(A.25)
∂v

∂t
=�v + (α2 − α1)+ (

θ − v − 2u(1))v+√vẆ2, v(0)= 0.

v is constructed (conditional on u(1)) as a process with annihilation due to compe-
tition with u(1) and an immigration-term α2 − α1.

Note that conditional on u(1) ∈ C([0,∞),C+tem) all the processes (v(t))t≥0 fit
into the framework of (1.20) and are as such nonnegative. The final coupling we
present is of a different flavor. It is based on the approximation of solutions to
(1.1) with initial conditions u0 ∈ C+tem by means of densities of rescaled long-range
contact processes; see [18], Theorem 1, for the convergence result. Note that the
parameter θc in [18] denotes an arbitrary θ > 0 and does not have any relation to
the critical parameter θc of the present article.

We use the construction of an approximating particle system (ξn
t (f0))t≥0 for

n ∈N resulting in a solution to (1.1) with initial condition f0 ∈ C+tem from [18]. The
dynamics are modeled by means of i.i.d. Poisson processes given at the beginning
of Section 2. Their rates depend in a monotone way on the parameter θ . Initial con-
ditions f0 get approximated by approximate densities Ac(ξ

n
0 (f0)), n ∈N, compare
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the definition preceding Theorem 1. The approximate densities (Ac(ξ
n
t (f0))t≥0

converge to a solution to (1.1) with initial condition f0.
For the next lemma, recall the definition of υT = υT (θ) from [14], Remark 2.8

(left-upper measure). Note in particular the use of the nondecreasing sequence
ζN ∈ C+tem,N ∈N.

LEMMA A.12 (θ -∗-coupling). Let 0 < θ1 < θ2 and T > 0 be arbitrarily
fixed. There exists a coupling of two processes (u

∗,l
T+t (θi))t≥0, i = 1,2 such that

L((u
∗,l
T+t (θi))t≥0)= PυT (θi), i = 1,2. Moreover,

(A.26)
(
u
∗,l
T+t (θ1)

)
(x)≤ (

u
∗,l
T+t (θ2)

)
(x) for all x ∈R, t ≥ 0 a.s.

This result also holds for a finite number of 0 < θ1 < · · ·< θm,m ∈N.

This coupling relies on two properties of the processes involved. First, we use
the monotonicity of the respective solutions resulting from θ1 < θ2 for each initial
condition ζN,N ∈N; second, for θi fixed, we use the construction of (u

∗,l
T+t (θi))t≥0

by means of a nondecreasing sequence (u
(ζN )
T+t (θi))t≥0,N ∈ N as in [14], Re-

mark 2.8 (left-upper measure). Unfortunately, we could not make the constructions
from the above work to integrate these two steps into one. Thus we had to make
use of the approximation by discrete particle systems, where at least the motivation
for the veracity of the above result should be easily accessible to the reader.

PROOF OF LEMMA A.12. The dynamics of the nth approximation for θi, i =
1,2 use the same set of i.i.d. Poisson processes for death events. For birth events,
consider i.i.d. Poisson processes(

Pt(x, y) : x, y ∈ n−2Z, x neighbor of y
)

with rate
(
2c1n

3/2)−1
(n+ θ1),

(A.27) (
Qt(x, y) : x, y ∈ n−2Z, x neighbor of y

)
with rate

(
2c1n

3/2)−1
(θ2 − θ1),

where c1(n)→ 1 as n→∞. For the θ1-system, at a jump of Pt(x, y), if the
site x is occupied, there is a birth and the site y, if vacant, becomes occu-
pied (cf. beginning of [18], Section 2). In our coupling, for the θ2-system, at a
jump of Pt(x, y) or Qt(x, y) the same holds. Note that (Pt (x, y) + Qt(x, y) :
x, y ∈ n−2Z, x neighbor of y) is a family of i.i.d. Poisson processes with rate
(2c1n

3/2)−1(n + θ2). As a result, given the same initial configurations, the θ2-
system dominates the θ1-system.

Additionally, we construct a set of initial conditions (ξn
0 (ζN) : N ∈ N) of the

nth approximating particle systems as follows below. They are the same for the
θ1- and θ2-system. After linear interpolation in space, Ac(ξ

n
0 (ζN)) converges in

C+tem to ζN for n→∞ for all N ∈N and (use that the sequence (ζN)N∈N is nonde-
creasing), ξn

0 (ζN1)≤ ξn
0 (ζN2) for N1 ≤N2. By [18], Theorem 1, the approximating
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densities (Ac(ξ
n
t (ζN))(θi))t≥0, i = 1,2 converge in distribution for n→∞ to con-

tinuous solutions (u
(ζN )
t (θi))t≥0, i = 1,2 of (1.1) with initial conditions ζN ∈ C+tem.

By construction,

(A.28) Ac

(
ξn
t (ζN1)

)
(θi)≤Ac

(
ξn
t (ζN2)

)
(θj )

for all t ≥ 0,N1 ≤N2, θi ≤ θj , i, j ∈ {1,2}.
For n ∈ N fixed, use the following coupling to obtain nth-approximations

(ξn
0 (ζN) : N ∈ N) for a family of initial conditions (ζN)N∈N as in [14], Re-

mark 2.8 (left-upper measure). Assume without loss of generality that for all
N ∈N, ζN ∈ C+tem is a bounded continuously differentiable function with bounded
first derivatives. To construct the initial conditions of the nth approximating par-
ticle system recall that each site z ∈ n−2Z has 2c1n

3/2 neighbors (including z)
and for f0 ∈ C+tem, Ac(ξ

n
0 (f0))(z) = (2c1n

1/2)−1 ∑
y neighbor of z(ξ

n
0 (f0))(y). For

z ∈ n−2Z, let(
ξn

0 (f0)
)
(z)

(A.29)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 ∃k ∈ Z : z ∈
{
k · 2c1n

3/2

n2 ,
k · 2c1n

3/2 + 1

n2 , . . . ,

k · 2c1n
3/2 + �2c1n

1/2f0(kc1n
−1/2)�

n2

}
,

0 otherwise.

Then Ac(ξ
n
0 (ζN)), after linear interpolation in space, converges in C+tem to ζN for

n→∞ for all N ∈N and by construction, (A.28) is fulfilled.
Assume without loss of generality that d̃ is such that (D([0,∞),C+tem), d̃) is

a Polish space (recall d from below [14], (1.6); cf. Ethier and Kurtz [6], Theo-
rem III.5.6). We have(

Ac

(
ξn· (ζN)

)
(θ1),Ac

(
ξn· (ζN)

)
(θ2),Ac

(
ξn· (ζN)

)
(θ2)−Ac

(
ξn· (ζN)

)
(θ1),

Ac

(
ξn· (ζN+1)

)
(θ2)−Ac

(
ξn· (ζN)

)
(θ2),Ac

(
ξn· (ζN+1)

)
(θ1)

−Ac

(
ξn· (ζN)

)
(θ1)

)
N∈N(A.30)

≡ (
An(N, θ1),An(N, θ2),An(N,�θ),An(�N,θ1),An(�N,θ2)

)
N∈N

≡An ∈X ≡ ((
D
([0,∞),C+tem

))5)N
.

If we equip X with the metric ρ(f̄ , ḡ) ≡∑
i∈N 2−i (

∑
j=1,2,3,4,5 d̃(fi1, gi1)) ∧ 1

where f̄ = (fij )i∈N,j=1,2,3,4,5, ḡ = (gij )i∈N,j=1,2,3,4,5 ∈ X, fij , gij ∈ D([0,∞),

C+tem), then X is a Polish space as well. Let us reason as in Jacod and Shiryaev
[12], Corollary VI.3.33, to see that the convergence in distribution of the sequences
(Ac(ξ

n· (ζN))(θj ))n∈N for j ∈ {1,2},N ∈ N fixed and n→∞ to a continuous (in
t) limit implies the convergence of

(A.31)
(
An(N, θ1),An(N, θ2),An(N,�θ1),An(�N,θ1),An(�N,θ2)

)
n∈N
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to (
u(ζN )· (θ1), u

(ζN )· (θ2), u
(ζN )· (θ2)− u(ζN )· (θ1), u

(ζN+1)· (θ1)
(A.32)

− u(ζN )· (θ1), u
(ζN+1)· (θ2)− u(ζN )· (θ2)

)
.

By the definition of ρ(f̄ , ḡ), we can choose a subsequence such that (Ank
)k∈N

converges in X. Note in particular that the marginal distributions of every subse-
quential limit are given by their respective one-dimensional limits.

Fix this convergent subsequence. Now apply Skorokhod’s theorem (cf. [6], The-
orem III.1.8) to obtain that after possibly changing to another probability space,
this convergence becomes almost sure convergence, that is,(

Ank
(N, θ1),Ank

(N, θ2),Ank
(N,�θ1),Ank

(�N,θ1),Ank
(�N,θ2)

)
N∈N

→ (
(
u(ζN )· (θ1), u

(ζN )· (θ2), u
(ζN )· (θ2)− u(ζN )· (θ1),

(A.33)
u(ζN+1)· (θ1)− u(ζN )· (θ1), u

(ζN+1)· (θ2)− u(ζN )· (θ2)
)
N∈N ∈X

a.s. for k→∞,

where u(ζN )(θi) solves (1.1) with initial condition ζN and parameter θi and

(A.34) u(ζN1 )(θj1)≤ u(ζN2 )(θj2) for all N1 ≤N2, j1 ≤ j2 a.s.

by (A.33) in combination with the definition of X.
Fix T > 0. Let u

∗,l
T+t (θi) = ↑ limN→∞ u

(ζN )
T+t (θi), i = 1,2, t ≥ 0. Let us reason

as in [14], Corollary 2.6, to conclude that L((u
∗,l
T+t (θi))t≥0 = PυT

. From (A.34),
(A.26) follows. �
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