
The Annals of Applied Probability
2020, Vol. 30, No. 1, 1–39
https://doi.org/10.1214/19-AAP1485
© Institute of Mathematical Statistics, 2020

GENERALIZED COUPLINGS AND ERGODIC RATES FOR SPDES AND
OTHER MARKOV MODELS

BY OLEG BUTKOVSKY1, ALEXEI KULIK2 AND MICHAEL SCHEUTZOW3

1Weierstrass Institute, oleg.butkovskiy@gmail.com
2Faculty of Pure and Applied Mathematics, Wroclaw University of Science and Technology, kulik.alex.m@gmail.com

3Institut für Mathematik, Technische Universität Berlin, ms@math.tu-berlin.de

We establish verifiable general sufficient conditions for exponential or
subexponential ergodicity of Markov processes that may lack the strong
Feller property. We apply the obtained results to show exponential ergodicity
of a variety of nonlinear stochastic partial differential equations with additive
forcing, including 2D stochastic Navier–Stokes equations. Our main tool is
a new version of the generalized coupling method.

1. Introduction. There are many Markov processes that are not strong Feller and whose
transition probabilities are mutually singular. Their ergodic properties cannot be analyzed
with classical methods from, for example, [33] and require special treatment. One of the
first papers in this direction was [23]; the results obtained there have been later generalized
and extended in [6], [12], [26], Chapter 4. These works provide sufficient conditions for
exponential or subexponential convergence of transition probabilities of a Markov process
toward its invariant measure in the Wasserstein metric.

Unfortunately, checking these conditions in practice turns out to be rather difficult. One of
the main results of this paper (Theorem 2.6) provides a set of verifiable sufficient conditions
for exponential or subexponential ergodicity. Furthermore, we develop a special framework
to ease the application of these conditions to stochastic partial differential equations (SPDEs).
To illustrate the applicability of our framework, we establish exponential ergodicity of five
important nonlinear SPDE models, including the 2D stochastic Navier–Stokes equation. This
generalizes the corresponding theorems from [18] and [27], Section 6. To obtain these results,
we develop a new version of the generalized coupling method, extending the ideas of [31]
and [19].

Let us recall that the classical approach to the analysis of ergodic properties of Markov
processes ([33, 34]) combines a local mixing condition on a certain set (a small set) with a
recurrence condition that the Markov process visits this set often enough. If these conditions
are satisfied, then the Markov process has a unique invariant probability measure (IPM) and
the transition probabilities converge to the IPM in total variation; the rate of convergence is
determined by the recurrence rate, that is, how quickly the Markov process returns to the
small set. This can be quantified in terms of a Lyapunov function or the moments of the first
return times.

The classical approach works quite well for strong Feller Markov processes such as
stochastic differential equations with uniformly elliptic noise, MCMC in finite dimensions,
nonlinear autoregressive models, etc. If a Markov process lacks the strong Feller prop-
erty, then usually the local mixing condition does not hold. Possible examples of processes
with “bad” mixing properties include many infinite-dimensional Markov processes such as
SPDEs, stochastic functional differential equations (SFDEs), MCMC in infinite dimensional
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Hilbert spaces, Markov processes with switching, etc. Typically, the transition probabilities
of these processes with different initial points are mutually singular, and thus ergodicity in
total variation clearly fails. For just one example of such a system, we refer to [38], where
the intrinsic memory effect was observed for an SFDE: once the value of the segment process
is known at some time moment t , the values at all the previous time moments are uniquely
and measurably defined; see also the discussions in [23] and [26], Section 4.1. Clearly, the
intrinsic memory effect yields mutual singularity of transition probabilities for the Markov
process; in addition, such an effect prevents the mixing property of the system, which is
a prerequisite for the classical approach.

To overcome this difficulty and to analyze the ergodic behavior of Markov processes with-
out the strong Feller property, we adopt the method developed by M. Hairer, J. Mattingly
and M. Scheutzow in [23]. The method is based on the concept of a d-small set, which is
a much more general object than a small set; see Section 2 below for the precise definition.
The strategy in a sense mimics the classical one; namely, it shows that if a Markov process
visits a d-small set often enough, then, under some additional constraint on a Markov kernel
(the so-called nonexpansion property), there exists a unique IPM and the transition probabil-
ities weakly converge to the IPM with a rate that is quantified by means of a properly chosen
probability metric; again the convergence rate is determined by the recurrence properties of
the chain. For further extensions and generalizations within this approach, we refer to [6],
[12], [26], Chapter 4.

The crucial step in the above approach is to construct a distance-like function d such that
the Markov kernel indeed has the nonexpansion property w.r.t. d and that a certain set is in-
deed d-small. This step can be quite challenging; we refer to [23], Section 5.2, where such
a construction is provided for an SFDE, though in a complicated and nontransparent way,
which makes further extensions and modifications very difficult. One of the main results of
our paper, Theorem 2.4, provides a transparent and fairly simple algorithm for the construc-
tion of a distance-like function d with required properties. We strongly believe this to be
a substantial complement to the approach initiated in [23] and developed in [6], [12], [26],
which hopefully makes this method well applicable for a wide variety of Markov systems.

The latter assertion is supported by several particular Markov models, analyzed in the
second part of the paper. First, as a test case for our approach we reconsider SFDEs. We
obtain a simple and transparent proof of their weak ergodicity at exponential, subexponential,
and polynomial rates. Second, we consider five particular nonlinear SPDE models where the
analysis of the ergodic properties is substantially more difficult due to the presence of strongly
singular terms, such as the nonlinear gradient term (u · ∇)u in the Navier–Stokes equation.
Using the general algorithm developed in the first part of the paper, we manage to overcome
these difficulties, and establish exponential ergodicity in each of these five models. This in
particular extends the results from [18] and [27], Section 6, where unique ergodicity and
weak convergence to the IPM without a specified rate are proved for the same models.

Our approach is based on the concept of a generalized coupling, which we briefly explain
here. By a coupling, one usually means a pair of stochastic processes with prescribed laws
of the components; that is, the marginal laws. Heuristically, by a generalized coupling we
will mean a pair of stochastic processes, whose marginal laws are not necessarily equal to
a prescribed pair of probability distributions, but are in a sense close to this pair. Under the
name asymptotic coupling, this concept was introduced in [23] in the spirit of earlier works
[19, 31, 32], and was later developed in [18]. Originally, the marginal laws of the asymptotic
coupling were assumed to be absolutely continuous with respect to the prescribed probability
distributions; this, in a combination with the Birkhoff theorem, appears to be a convenient
tool for proving unique ergodicity. Moreover, it was shown in [27] that the same notion can
be used to guarantee weak stabilization of the transition probabilities; since this notion was
used in a nonasymptotic way, the name was changed there to a generalized coupling.
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In the paper, we further develop the above ideas and introduce a new definition of a
generalized coupling. We require certain nonasymptotic total variation bounds between the
marginal distributions and the prescribed laws to hold true; see Section 2.2. We show that
the existence of a “good” generalized coupling makes it easy to construct a nonexpanding
distance-like function d with a large class of d-small sets; this, combined with recurrent-type
conditions, provides ergodic rates. Thus there are two important advantages of our method
compared to previous techniques. On the one hand, generalized couplings with the required
properties can be constructed quite efficiently using stochastic-control-type arguments, which
makes the entire approach quite flexible and easy to apply. On the other hand, unlike previous
results based on asymptotic/generalized couplings, our method provides explicit bounds on
convergence rates, rather than just uniqueness of the IPM or weak convergence of transition
probabilities. Let us mention briefly that the ergodic rates for a Markov process have further
natural applications to limit theorems for additive functionals of the process and other, more
complicated systems with Markov perturbations. In this context, there is a clearly seen differ-
ence between the stabilization of transition probabilities (with nonspecified rate) on the one
hand, and explicit ergodic rates on the other hand. The first one typically guarantees the law
of large numbers (or more generally, averaging principle), while the second one gives rise to
the central limit theorem and diffusion approximation-type theorems; see [26], Section 5.4,
comment 2 and Remark 6.3.9. For further discussion, references and systematic treatment of
the limit theorems for systems with weakly ergodic Markov perturbations we refer to [26],
Chapters 5, 6.

The rest of the paper is organized as follows. In Section 2.1, we recall well-known results
concerning the convergence of Markov processes. We present our main results in Section 2.2.
In Section 3, we give an application to SFDEs. In Section 4, we develop a general framework
for proving exponential ergodicity for nonlinear SPDEs and establish exponential ergodicity
of a number of important SPDEs.

2. A general setup for ergodicity and estimating convergence rates. This section con-
sists of two parts. In the first part, we introduce the basic notation and recall some useful
definitions and important theorems. In the second part, we present our main results.

2.1. Generalities and notation. Let (E,ρ) be a Polish space and E = B(E) be the corre-
sponding Borel σ -field. Consider a Markov transition function {Pt(x,A), x ∈ E,A ∈ E}t∈R+ .
We use the standard notation for the corresponding semigroup of integral operators

Ptϕ(x) =
∫
E

ϕ(y)Pt (x, dy), x ∈ E, t ∈ R+.

We also denote by {Px, x ∈ E} the corresponding Markov family, that is, Px denotes the law
of the Markov process X = {Xt, t ≥ 0} with X0 = x and the given transition function. The
law of X will be understood in the sense of finite-dimensional distributions; that is, we will
not rely on the trajectory-wise properties of X.

A function d : E × E → R+ is called distance-like if it is symmetric, lower semicon-
tinuous, and d(x, y) = 0 ⇔ x = y; see [23], Definition 4.3. Denote by P(E) the set of
all probability measures on (E,E), and for μ,ν ∈ P(E) denote by C(μ, ν) the set of
all couplings between μ and ν, that is, probability measures on (E × E,E ⊗ E) with
marginals μ and ν. For a given distance-like function d , the corresponding coupling distance
Wd : P(E) ×P(E) →R+ ∪ {∞} is defined by

Wd(μ, ν) := inf
λ∈C(μ,ν)

∫
E×E

d(x, y)λ(dx, dy), μ, ν ∈ P(E).
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If d is a lower semicontinuous metric on E, then Wd is the usual Wasserstein-1 (or Kan-
torovich) distance. In particular, if d is the discrete metric, that is, d(x, y) = 1(x 
= y), then
Wd coincides with the total variation distance dTV; the latter can also be defined as follows:

dTV(μ, ν) := sup
A∈E

∣∣μ(A) − ν(A)
∣∣.

Recall that if the original metric ρ is bounded, then convergence in total variation im-
plies convergence in Wρ ; furthermore, in this case convergence in Wρ is equivalent to weak
convergence.

As explained in the Introduction, if a Markov process lacks the strong Feller property,
then the total variation metric is too strong to measure the distance between the transition
probabilities of the process and its invariant measure; this is the reason for us to focus on
the study of weaker distances Wd . As mentioned above, [23] and subsequent works [6], [12],
[26], Chapter 4, provide sufficient conditions for convergence of the law of a Markov process
to its invariant measure in Wd for properly chosen d . For the convenience of the reader, we
formulate here two results of such type, which actually motivate the form in which our main
results are presented below. For additional details of the theory, discussions and examples,
we refer to the above mentioned references.

Define for a measurable function ϕ : R+ → (0,∞)

(2.1) Hϕ(x) :=
∫ x

1

1

ϕ(u)
du, x ≥ 1.

PROPOSITION 2.1 ([6], Theorem 2.4, [26], Theorem 4.5.2). Assume that the Markov
semigroup P is Feller. Suppose there exist a measurable function V : E → [0,∞) and a
bounded distance-like function d on E such that the following conditions hold:

1. V satisfies the Lyapunov condition, that is, there exist a concave differentiable function
ϕ : R+ → R+ increasing to infinity with ϕ(0) = 0 and a constant K > 0 such that for any
t ≥ 0, x ∈ E

(2.2) PtV (x) ≤ V (x) −
∫ t

0
Ps(ϕ ◦ V )(x) ds + Kt.

2. One has ρ ≤ d , where ρ is the original metric on the Polish space E.
3. There exist 0 < t1 < t2 < ∞ such that for all t ∈ [t1, t2],

(2.3) Wd

(
Pt(x, ·),Pt (y, ·)) ≤ d(x, y), x, y ∈ E.

4. There exists t > 0 such that for any M > 0 there exists ε = ε(M, t) > 0 such that

(2.4) Wd

(
Pt(x, ·),Pt (y, ·)) ≤ (1 − ε) d(x, y), x, y ∈ {V ≤ M}.

Then the Markov semigroup (Pt ) has a unique invariant measure π . Moreover, for any
δ ∈ (0,1) there exist constants C1,C2 > 0 such that for any x ∈ E,

Wd

(
Pt(x, ·),π) ≤ C1(1 + ϕ(V (x))δ)

ϕ(H−1
ϕ (C2t))δ

, t ≥ 0.

If the function V satisfies a stronger version of the Lyapunov inequality, then condition 4
of the above proposition can be relaxed. More precisely, the following statement holds.

PROPOSITION 2.2 ([23], Theorem 4.8). Assume that condition 1 of Proposition 2.1 holds
with ϕ(x) = γ x, γ > 0. Then condition 4 of Proposition 2.1 can be replaced with the follow-
ing weaker condition:
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4*. There exist ε > 0, t > 0 such that inequality (2.4) is satisfied for all x, y ∈ {V ≤
4K/γ }.

Thus, the difference between the assumptions in the exponential and the subexponential
cases is the following. In the exponential case, it is enough to show that for any M > 0 there
exists t > 0 such that the level set {V ≤ M} satisfies inequality (2.4). On the other hand,
in the subexponential case one cannot pick t depending on M ; one has to check inequality
(2.4) for some fixed time t simultaneously for all M . We will see later in Section 2.2 that
this difference will become crucial and we will present different sets of assumptions for the
subexponential and exponential cases.

REMARK 2.3. If it is already known that the semigroup P has an invariant measure, then
condition 2 of Proposition 2.1 can be omitted, see [23], Theorem 4.8.

A convenient tool to verify (2.3) and (2.4) is provided by the following pair of notions.

DEFINITION 2.1 ([23], Definition 4.6). A distance-like function d bounded by 1 is called
contracting for Pt if there exists α < 1 such that for any x, y ∈ E with d(x, y) < 1 we have

Wd

(
Pt(x, ·),Pt (y, ·)) ≤ αd(x, y).

DEFINITION 2.2 ([23], Definition 4.4). A set B ⊂ E is called d-small for Pt if for some
ε > 0

sup
x,y∈B

Wd

(
Pt(x, ·),Pt (y, ·)) ≤ 1 − ε.

Clearly, if d is contracting for Pt and the set {V ≤ M} is d-small for Pt , then inequalities
(2.3) and (2.4) are satisfied.

Let us briefly mention a closely related concept of a coarse Ricci curvature [35], Defi-
nition 3, introduced recently in somewhat different framework, mainly focused at functional
inequalities. In the terms of [35], conditions 3 and 4 of Proposition 2.1 can be reformulated as
follows: the Ricci curvature of the whole space should be nonnegative and the Ricci curvature
of any level set of V should be positive.

2.2. Main results. Propositions 2.1 and 2.2 allow one to bound the rate of convergence
of a Markov process to its invariant measure in the Wasserstein metric. The crucial question
within this context is how to choose the distance-like function d in a way that conditions 3
and 4 (or 4*) are satisfied. The main goal of this section is to provide an algorithm of such
construction, which relies on explicit and easy-to-verify set of assumptions.

We will call a function θ : E × E → R+ a premetric if it is lower semicontinuous and
θ(x, y) = 0 ⇔ x = y; we fix a premetric θ on E until the end of this section. Our first
assumption will serve as a replacement for the contractivity condition.

ASSUMPTION A. There exist a nonincreasing function r :R+ →R+ with limt→∞ r(t) =
0 and a locally bounded function L : R+ →R+ such that for any x, y ∈ E, there exist random
processes Xx,y = (X

x,y
t )t≥0, Yx,y = (Y

x,y
t )t≥0 with the following properties:

1. Law(Xx,y) = Px , and

dTV
(
Law

(
Y

x,y
t

)
,Pt (y, ·)) ≤ L(t)θ(x, y), t ≥ 0;

2. Eθ(X
x,y
t , Y

x,y
t ) ≤ r(t)θ(x, y), t ≥ 0.
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Assumption A.1 means that the pair (Xx,y, Y x,y) has the sense of a generalized coupling:
its first component is distributed as Px and the defect between the law of the second com-
ponent at time t and the “true law” Pt(y, ·) can be effectively controlled. The function L

here plays the role of a Lipschitz coefficient. We do not suppose that L is decreasing to 0
at infinity; moreover, we allow the situation when L(t) → ∞ as t → ∞, that is, the defect
between the generalized coupling and the “true law” might be quite large. Assumption A.2
controls the decay rate of the premetric θ between the components of this generalized cou-
pling. Note also that we are not imposing any additional conditions on the relation between
Py and Law(Y x,y); in particular we are not assuming any absolute continuity.

The second assumption will replace the d-small property.

ASSUMPTION B1. There exist a set B ⊂ E and t0 > 0 such that for any ε > 0 there
exists a set D ∈ E such that:

1. infx∈B Pt0(x,D) > 0;
2. supx,y∈D θ(x, y) ≤ ε.

We note that a similar in spirit assumption can be found in the literature; see, for example,
[22], Corollary 2.2. Assumption B1 is not of a “generalized-coupling-type”; it is essentially
a support condition. However, in the exponential case due to the reasons discussed after
Proposition 2.2, it can be replaced by a “generalized-coupling-type” assumption that may be
easier to check in some setups.

ASSUMPTION B2. There exist a set B ⊂ E, a nonincreasing function R : R+ → R+
with limt→∞ R(t) = 0, and ε > 0 such that for any x, y ∈ B , there exist random processes
Xx,y = (X

x,y
t )t≥0, Yx,y = (Y

x,y
t )t≥0 with the following properties:

1. Law(Xx,y) = Px , and

(2.5) dTV
(
Law

(
Y

x,y
t

)
,Pt (y, ·)) ≤ 1 − ε, t ≥ 0, x, y ∈ B;

2. Eθ(X
x,y
t , Y

x,y
t ) ≤ R(t), t ≥ 0, x, y ∈ B .

Assumption B2 means that there exists a “good” set B ⊂ E, where we have a family
of generalized couplings with especially nice properties. Namely, the first component of the
generalized coupling coincides with the “true law,” and the distance between the second com-
ponent at time t and the corresponding “true law” at time t is uniformly bounded on B .

Now for any fixed N > 0 we consider the following distance-like function:

(2.6) dN(x, y) := Nθ(x, y) ∧ Nθ(y, x) ∧ 1, x, y ∈ E.

Our first main result shows how the d-smallness and contractivity conditions can be verified
under the assumptions A, B1 and B2.

THEOREM 2.4.

(i) Assume that A holds for some functions r , L. Then for any N > 0, t > 0 such that
r(t) ≤ 1/3 and N ≥ 2L(t) the distance-like function dN is contracting for Pt (in the sense of
Definition 2.1).

(ii) Assume that B1 holds for some t0 > 0 and a set B ⊂ E. Then for any N > 0 the set
B is dN -small for Pt0 (in the sense of Definition 2.2).

(iii) Assume that B2 holds for some function R, a set B ⊂ E and ε > 0. Then for any
N > 0, t > 0 such that NR(t) ≤ ε/2 the set B is dN -small for Pt .



GENERALIZED COUPLINGS AND ERGODIC RATES FOR SPDES 7

PROOF. (i). Fix t > 0, N > 0 that satisfy the assumptions of the theorem. Take any
x, y ∈ E such that dN(x, y) < 1. Without loss of generality, suppose that θ(x, y) ≤ θ(y, x).

We begin by observing that by Assumption A.1 and the coupling lemma (see, e.g., [42],
Theorem 4.1), there exists a pair of random variables Ŷ , Z such that Law(Ŷ ) = Law(Y

x,y
t ),

Law(Z) = Pt(y, ·) and

P(Ŷ 
= Z) = dTV
(
Law

(
Y

x,y
t

)
,Pt (y, ·)) ≤ L(t)θ(x, y).

By the gluing lemma (see, e.g., [26], Lemma 4.3.2, and [42], p. 23), we can assume that Ŷ ,
Z are defined on the same probability space with X

x,y
t , Y

x,y
t , and Ŷ = Y

x,y
t . Then the joint

law of X
x,y
t , Z is a coupling for Pt(x, ·), Pt(y, ·), and thus

WdN

(
Pt(x, ·),Pt (y, ·))

≤ EdN

(
X

x,y
t ,Z

)
= EdN

(
X

x,y
t ,Z

)
1
(
Y

x,y
t = Z

) + EdN

(
X

x,y
t ,Z

)
1
(
Y

x,y
t 
= Z

)
≤ EdN

(
X

x,y
t , Y

x,y
t

) + P
(
Y

x,y
t 
= Z

)
≤ NEθ

(
X

x,y
t , Y

x,y
t

) + L(t)θ(x, y)

≤ Nθ(x, y)
(
r(t) + L(t)N−1)

≤ 5

6
Nθ(x, y) = 5

6
dN(x, y),

where the last equality follows from the assumptions dN(x, y) < 1 and θ(x, y) ≤ θ(y, x).
This proves the contraction property.

(ii). Fix N > 0. In this case, we show the dN -smallness of Pt0 using the independent
coupling, similarly to [23], Proposition 5.3. Take ε := 1/(2N). By Assumption B1, there
exists a set D ∈ E such that δ := infx∈B Pt0(x,D) > 0 and supx,y∈D θ(x, y) ≤ ε.

Now we fix x, y ∈ B and construct independent random variables X, Y such that

Law(X) = Pt0(x, ·); Law(Y ) = Pt0(y, ·).
Then

WdN

(
Pt0(x, ·),Pt0(y, ·)) ≤ EdN(X,Y )

≤ P
({X /∈ D} ∪ {Y /∈ D}) + NεP(X ∈ D,Y ∈ D)

≤ 1 − δ2(1 − Nε) ≤ 1 − 1

2
δ2,

showing that B is dN -small.
(iii). We establish the dN -smallness of Pt by an argument, similar to the one used in the

proof of part (i) of the lemma. We fix t > 0, N > 0, x, y ∈ B . Using the same notation and
the same construction as in the first part of the proof, we obtain a triple of random variables
X

x,y
t , Y

x,y
t , Z such that

Law
(
X

x,y
t

) = Pt(x, ·); Law(Z) = Pt(y, ·);
Eθ

(
X

x,y
t , Y

x,y
t

) ≤ R(t); P
(
Y

x,y
t 
= Z

) ≤ 1 − ε.

Hence, using the fact that dN ≤ Nθ , we deduce

WdN

(
Pt(x, ·),Pt (y, ·)) ≤ EdN

(
X

x,y
t ,Z

) ≤ EdN

(
X

x,y
t , Y

x,y
t

) + P
(
Y

x,y
t 
= Z

)
≤ NR(t) + 1 − ε

≤ ε/2 + 1 − ε = 1 − ε/2,
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where the fourth inequality follows from the fact that NR(t) ≤ ε/2. This proves the dN -
smallness of B . �

REMARK 2.5. We will see in Sections 3 and 4 that in various cases generalized couplings
with the required properties can be constructed using a stochastic control approach. Then our
entire argument will consist of two principal steps:

(i) using a stochastic control technique, we construct a generalized coupling Xx,y , Yx,y ,
which exhibits certain contraction properties (Assumptions A.2, B2.2)

(ii) using the error-in-law bounds for this generalized coupling (Assumptions A.1, B2.1),
we construct then a true coupling X

x,y
t , Z for Pt(x, ·), Pt(y, ·), which confirms the required

contraction property of dN .

We will call this type of argument a control-and-reimburse strategy. The same general
idea—to apply the stochastic control in order to improve the system, and then to take into
account the impact of the control—was actually used, in more implicit form, in the previously
mentioned construction [23], Section 5.2, of the distance-like function d(x, y) for an SFDE,
and in the approach to the study of weak ergodicity of SPDEs developed in [19]. A similar
argument was used to prove ergodicity in total variation in [1] for degenerate diffusions, and
in [4] for solutions to Lévy driven SDEs. Related ideas were used to establish the Harnack
inequality for SDEs and SFDEs [13, 44].

Our next result establishes unique ergodicity under Assumptions A and B1. It is a combi-
nation of Theorem 2.4 and Proposition 2.1. Recall the definition of Hϕ in (2.1).

THEOREM 2.6. Assume that the Markov semigroup P is Feller. Suppose that:

1. There exists a measurable function V that satisfies condition 1 of Proposition 2.1.
2. ρ ∧ 1 ≤ θ , where ρ is the original metric on E.
3. Assumption A holds for functions r , L.
4. There exists t0 > 0 such that for any M > 0 Assumption B1 holds for B = {V ≤ M}

and t0.

Then the Markov semigroup (Pt ) has a unique invariant measure π . Moreover, for any
δ ∈ (0,1) there exist constants C1,C2 > 0 such that for any x ∈ E,

(2.7) Wρ∧1
(
Pt(x, ·),π) ≤ C1(1 + ϕ(V (x))δ)

ϕ(H−1
ϕ (C2t))δ

, t ≥ 0.

PROOF OF THEOREM 2.6. Let us check that all the conditions of Proposition 2.1 are
satisfied for the function V and a distance-like function dN introduced in (2.6), where N ≥ 1
will be chosen later. The first condition of Proposition 2.1 is satisfied by the first assumption
of the theorem. Since ρ ∧ 1 ≤ θ , we have ρ ∧ 1 ≤ dN , and thus the second condition of
Proposition 2.1 is satisfied.

Now we pick t∗ ≥ 0 such that r(t∗) ≤ 1/3. This is possible thanks to Assumption A. Set
N := (2 supt∈[t∗,t∗+t0] L(t)) ∨ 1. Theorem 2.4(i) implies that for some α < 1 we have

(2.8) WdN

(
Pt∗+t0(x, ·),Pt∗+t0(y, ·)) ≤ αdN(x, y) whenever dN(x, y) < 1

and that the distance-like function dN is contracting for Pt for any t ∈ [t∗, t∗ + t0]. This
immediately implies that inequality (2.3) holds for any t ∈ [t∗, t∗ + t0], and thus condition 3
of Proposition 2.1 is satisfied. In particular, we have

(2.9) WdN

(
Pt∗(x, ·),Pt∗(y, ·)) ≤ dN(x, y), x, y ∈ E.
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To check condition 4 of Proposition 2.1, we take t := t∗ + t0 and fix arbitrary M > 0.
It follows from Theorem 2.4(ii) and Assumption 4 of the theorem that the set {V ≤ M} is
dN -small for Pt0 with some ε = ε(t,M). Now take any x, y ∈ {V ≤ M}. If dN(x, y) < 1 then
using (2.8), we get

WdN

(
Pt(x, ·),Pt (y, ·)) ≤ αdN(x, y).

If dN(x, y) = 1, then using (2.9) and dN -small property, we derive

WdN

(
Pt0+t∗(x, ·),Pt0+t∗(y, ·)) ≤ WdN

(
Pt0(x, ·),Pt0(y, ·))

≤ 1 − ε = (1 − ε)dN(x, y).

Thus, condition 4 of Proposition 2.1 is met. Therefore, all conditions of Proposition 2.1 are
satisfied, and hence the Markov semigroup (Pt ) has a unique invariant measure π and (2.7)
holds. �

THEOREM 2.7. In the exponential case (i.e., when condition 1 of Proposition 2.1 holds
for a linear function ϕ(x) = γ x, γ > 0) condition 4 of Theorem 2.6 can be replaced by the
following assumption:

4*. Assumption B2 holds for some function R, the level set of the Lyapunov function {V ≤
4K/γ }, and some ε > 0.

PROOF OF THEOREM 2.7. We use essentially the same line of argument as in the proof
of Theorem 2.6 with some modifications. Pick t∗ ≥ 0 such that r(t∗) ≤ 1/3 and set N :=
(2 supt∈[t∗,2t∗] L(t)) ∨ 1. We see again that conditions 1–3 of Proposition 2.1 hold for V and
dN . In particular, we have for some α < 1,

(2.10) WdN

(
Pt∗(x, ·),Pt∗(y, ·)) ≤ α dN(x, y) whenever dN(x, y) < 1.

Furthermore, it follows from Theorem 2.4(i) that for any t ∈ [t∗,2t∗] we have

WdN

(
Pt(x, ·),Pt (y, ·)) ≤ dN(x, y), x, y ∈ E.

This implies that for any t ≥ t∗
(2.11) WdN

(
Pt(x, ·),Pt (y, ·)) ≤ dN(x, y), x, y ∈ E.

Pick now t0 ≥ t∗ such that NR(t0) ≤ ε/2. Then condition 4* of the theorem, the definition of
N , and Theorem 2.4(iii) imply now that the set B := {V ≤ 4K/γ } is dN -small for Pt0 .

Let us check now that condition 4* of Proposition 2.2 holds for t = t∗ + t0. Take any
x, y ∈ {V ≤ 4K/γ }. If dN(x, y) < 1 then taking into account (2.10), (2.11), and the fact that
t0 ≥ t∗, we get

WdN

(
Pt0+t∗(x, ·),Pt0+t∗(y, ·)) ≤ WdN

(
Pt∗(x, ·),Pt∗(y, ·)) ≤ α dN(x, y).

If dN(x, y) = 1, then using (2.11) and dN -small property, we derive

WdN

(
Pt0+t∗(x, ·),Pt0+t∗(y, ·)) ≤ WdN

(
Pt0(x, ·),Pt0(y, ·))

≤ 1 − ε = (1 − ε)dN(x, y).

Thus, condition 4* of Proposition 2.2 is met.
Therefore, all conditions of Proposition 2.2 are satisfied, and thus the Markov semigroup

(Pt ) has a unique invariant measure π and (2.7) holds. �

REMARK 2.8. Taking into account Remark 2.3, we deduce that if it is already known
that the semigroup P has an invariant measure π , then condition 2 of Theorem 2.6 can be
dropped. In this case, the left-hand side of formula (2.7) is replaced by Wθ̃

(
Pt(x, ·),π)

, where
θ̃ (x, y) := θ(x, y) ∧ θ(y, x) ∧ 1.
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3. Easy application: SFDEs. In this section, we illustrate our method of generalized
coupling by establishing a rate of convergence to the invariant measure for solutions to
SFDEs. We show how Assumptions A and B1 can be immediately verified for these pro-
cesses. This can be regarded as a “warm-up” before the next section, which deals with SPDEs.
Related ideas will be applied there in a more complicated setup and additional challenges will
arise.

Let us introduce the model. Fix n,m ∈ N and r > 0. Denote by C = C([−r,0],Rn) the
space of continuous functions endowed with the supremum norm ‖ · ‖. For a matrix M ∈
R

d×m, we denote by |||M||| its Frobenius norm, that is, |||M||| :=
√∑

M2
ij . For a real number

a, let a+ := max(a,0).
Consider the following SFDE:

(3.1)
dXx(t) = f

(
Xx

t

)
dt + g

(
Xx

t

)
dW(t), t ≥ 0,

Xx
0 = x,

where f : C →R
n and g : C →R

n×m are measurable functions, W is a m-dimensional Brow-
nian motion, the initial condition x ∈ C, and we use the standard notation Xt(s) := X(t + s),
s ∈ [−r,0].

Suppose that the function f is continuous and bounded on bounded subsets of C. Further,
suppose that f is one-sided Lipschitz and g is Lipschitz, that is, there exists C > 0 such that
for any x, y ∈ C,〈

f (x) − f (y), x(0) − y(0)
〉
+ + ∣∣∣∣∣∣g(x) − g(y)

∣∣∣∣∣∣2 ≤ C‖x − y‖2.

It is known that under these assumptions equation (3.1) has a unique strong solution
[43]. Moreover, this solution X = (Xt)t≥0 is a Feller Markov process with the state space
(C,B(C)). Denote by (Pt )t≥0 the corresponding semigroup. Assume also the uniform nonde-
generacy condition:

(3.2) sup
x∈C

∣∣∣∣∣∣g−1(x)
∣∣∣∣∣∣ < ∞,

where g−1(x) denotes a right inverse of the matrix g(x).
The next theorem describes the convergence rate of Law(Xt) to its invariant measure in

the Wasserstein metric.

THEOREM 3.1. Assume that there exists a Lyapunov function V : C → R+ that satisfies
condition 1 of Proposition 2.1. Suppose that either (i) or (ii) holds:

(i) lim‖x‖→∞ V (x) = +∞.
(ii) lim|x(0)|→∞ V (x) = +∞. Assume additionally that the drift and diffusion of SFDE

(3.1) satisfy the following growth condition: there exists C > 0 such that for any x ∈ C,

(3.3)
〈
f (x), x(0)

〉
+ + ∣∣∣∣∣∣g(x)

∣∣∣∣∣∣2 ≤ C + C
∣∣x(0)

∣∣2.
Then SFDE (3.1) has a unique invariant measure π . Further, Law(Xt) converges to π in the
Wasserstein metric W‖·‖∧1 and the rate of convergence is given by (2.7).

This theorem is essentially not new; it is only a mild generalization of [23], Section 5,
and [6], Theorem 3.2. However, using the generalized coupling method, we managed to dras-
tically simplify the key ingredient of the proof, namely, the verification of the contraction
property for the solution of an SFDE. Since this method is model insensitive, similar argu-
ments allow us to establish contraction properties of solutions of SPDEs; see Section 4. On
the other hand, transferring the ideas used in [23], Section 5, from SFDEs to SPDEs or other
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Markov models seems to be rather difficult (we mention though a recent preprint [2], where
SFDEs with infinite memory are analyzed in a way quite similar to [23], Section 5).

Construction of a suitable Lyapunov function V that satisfies condition (2.2) for a specific
SFDE is a completely independent task and is out of the scope of the paper; we refer here
to [37], [23], Remark 5.2, [7], [6], Section 3.2, [26], Section 4.6.1, for possible methods
of building V . Let us just briefly explain the difference between conditions (i) and (ii) of
Theorem 3.1. Condition (ii) allows to consider a larger and more natural class of Lyapunov
functions. For example, the function V (x) := |x(0)|2, x ∈ C satisfies condition (ii) but not
condition (i) of the theorem. The price to pay is that the drift and the diffusion of the SFDE
have to satisfy a certain growth condition.

The proof of Theorem 3.1 is based on the following key lemma.

LEMMA 3.2.

(i) There exist N0 > 0, t0 > 0 such that for any N ≥ N0, t ≥ t0 the distance

dN(x, y) := N‖x − y‖ ∧ 1

is contracting for Pt .
(ii) For any N > 0, t ≥ 2r , M > 0 the level set

BM := {
x ∈ C : ‖x‖ ≤ M

}
,

is dN -small for Pt .
(iii) Assume additionally that the drift and diffusion satisfy the growth condition (3.3).

Then for any N > 0, t ≥ 3r , M > 0 the level set

HM := {
x ∈ C : ∣∣x(0)

∣∣ ≤ M
}

is dN -small for Pt .

PROOF OF LEMMA 3.2. The proofs of all three parts of the lemma are based on the
verification of Assumptions A and B1 for the Markov semigroup (Pt )t≥0 and applying then
Theorem 2.4. In all the cases, we take E = C, ρ(x, y) = θ(x, y) = ‖x − y‖. It is clear that
the space (C, ρ) is Polish and θ is a premetric.

(i). Let us check that (Pt )t≥0 satisfies Assumption A. Let λ > 0 be a parameter to be chosen
later. For each x, y ∈ C, we consider the following generalized coupling. We put Xx,y = Xx

and let Yx,y,λ be the strong solution of the following equation:

dY x,y,λ(t) = f
(
Y

x,y,λ
t

)
dt + g

(
Y

x,y,λ
t

)
dWx,y,λ(t), t ≥ 0,

Y
x,y,λ
0 = y,

where

dWx,y,λ(t) := βx,y,λ(t) dt + dW(t),

and

βx,y,λ(t) := λg
(
Y

x,y,λ
t

)−1(
Xx(t) − Yx,y,λ(t)

)
.

The existence and uniqueness of Yx,y,λ follows again from [43]. By [23], Lemma 3.6, there
exists some λ0 > 0 that does not depend on x, y such that

(3.4) E
∥∥Xx

t − Y
x,y,λ0
t

∥∥2 ≤ Ce−2t‖x − y‖2, t ≥ 0.
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From now on, we take λ = λ0 and denote Yx,y := Yx,y,λ0 , β := βx,y,λ0 . By construction,
Law(Xx,y) = Px . By Theorem A.2 and inequality (A.1), we have for any fixed t ≥ 0

dTV
(
Law

(
Y

x,y
t

)
,Pt (y, ·)) ≤ dTV

(
Law

(
Wx,y(s), s ∈ [0, t]),Law

(
W(s), s ∈ [0, t]))

≤
(

E
∫ t

0

∣∣β(s)
∣∣2 ds

)1/2
≤ C1λ0‖x − y‖,

for some C1 > 0, where in the last step we have used (3.2) and (3.4). Thus condition A.1 is
satisfied with L(t) = C1λ0. Using again (3.4), we derive

E
∥∥Xx,y

t − Y
x,y
t

∥∥ ≤ Ce−t‖x − y‖.
Thus, condition A.2 is satisfied with r(t) = C2e

−t , for some C2 > 0.
Take now N0 := 2C1λ0 and choose t0 such that C2e

−t0 ≤ 1/3. Then by above the strong
solution of SFDE (3.1) satisfies all the conditions of Theorem 2.4(i) for any N ≥ N0 and
t ≥ t0. Thus the distance dN is contracting for Pt for any N ≥ N0 and t ≥ t0.

(ii). Fix t ≥ 2r and M > 0. Let us check that Assumption B1 holds for BM . Given ε > 0,
we take D := {x ∈ C : ‖x‖ ≤ ε/2}. Then, clearly, B1.2 holds. By [23], Lemma 3.8, B1.1 is
also satisfied. Therefore, the statement of the lemma follows from Theorem 2.4(ii).

(iii). Fix t0 ≥ 3r and M > 0. As in the proof of part (ii) of the lemma, let us verify that As-
sumption B1 holds for HM . Given ε > 0, let us set again D := {x ∈ C : ‖x‖ ≤ ε/2}. Clearly,
B1.2 holds.

To check B1.1, we note first that by the Itô formula we have for any t ≥ 0,

d
∣∣Xx(t)

∣∣2 = 2
〈
Xx(t), f

(
Xx

t

)〉
dt + ∣∣∣∣∣∣g(

Xx
t

)∣∣∣∣∣∣2 dt + dM(t),

where M is a local martingale with M(0) = 0 and

dM(t) = 2〈Xx(t), g(Xx
t ) dW(t)〉.

For arbitrary δ > 0, let τδ := inf{t ≥ 0 : |Xx(t)| ≥ δ−1}. Applying the Burkholder–Davis–
Gundy inequality and Assumption (3.3), we derive for any t ∈ [0, r]

E sup
s∈[0,t∧τδ]

∣∣Xx(s)
∣∣4 ≤ C

∣∣x(0)
∣∣4 + CE

∫ t∧τδ

0

(
1 + ∣∣Xx(s)

∣∣4)
ds

≤ C
∣∣x(0)

∣∣4 + CE
∫ t∧τδ

0

(
1 + sup

u∈[0,s∧τδ]
∣∣Xx(u)

∣∣4)
ds

≤ C
∣∣x(0)

∣∣4 + CE
∫ t

0

(
1 + sup

u∈[0,s∧τδ]
∣∣Xx(u)

∣∣4)
ds,

where the constant C > 0 does not depend on δ. Clearly, for any t ∈ [0,1] we have
E sups∈[0,t∧τδ] |Xx(s)|4 ≤ δ−4 < ∞. Therefore, the Gronwall inequality yields

E sup
s∈[0,r∧τδ]

∣∣Xx(s)
∣∣4 ≤ C

∣∣x(0)
∣∣4 + C,

where the constant C > 0 is again independent of δ. By Fatou’s lemma, we finally obtain

E sup
s∈[0,r]

∣∣Xx(s)
∣∣4 ≤ C

∣∣x(0)
∣∣4 + C.

Thus, for some large L = L(M) > 0, by the Chebyshev inequality we have

inf
x∈HM

P
(∥∥Xx

r

∥∥ ≤ L
)
> 1/2.
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This combined with [23], Lemma 3.8, implies

inf
x∈HM

P
(∥∥Xx

t0

∥∥ ≤ ε/2
) ≥ 1

2
inf

x : ‖x‖≤L
P
(∥∥Xx

t0−r

∥∥ ≤ ε/2
)
> 0.

Therefore, condition B1.1 holds and the statement of the lemma follows from Theo-
rem 2.4(ii). �

Now we can present the proof of Theorem 3.1.

PROOF OF THEOREM 3.1. Let us check that all the conditions of Propositions 2.1 are
satisfied. Recall the definition of N0 from Lemma 3.2 and set N := N0 ∨ 1. We take E := C,
ρ(x, y) = ‖x − y‖ ∧ 1, d(x, y) = (N‖x − y‖) ∧ 1, x, y ∈ E.

The first condition of Propositions 2.1 is satisfied by the assumptions of the theorem. The
second condition obviously holds. By Lemma 3.2(i), there exists t0 > 0 such that the distance
d is contracting for Pt for all t ≥ t0. If condition (i) (resp., condition (ii)) of the theorem
holds, then by Lemma 3.2(ii) (resp., Lemma 3.2(iii)) for any M > 0 the level set {V ≤ M} is
d-small for P3r . This implies that the third and the fourth condition of Propositions 2.1 are
satisfied.

Thus, all the conditions of Propositions 2.1 are satisfied. The proof of the theorem is com-
pleted by an application of this proposition. �

4. Exponential ergodicity for SPDEs. In this section, we develop a general framework
for establishing exponential ergodicity in the SPDE setting. For the convenience of the reader,
first we outline the argument and indicate the main difficulty. Consider, in the spirit of [10],
an SDE in a Hilbert space H of the form

(4.1) dX(t) = AX(t) dt + B
(
X(t)

)
dt + �

(
X(t)

)
dW(t), t ≥ 0,

where W is a cylindrical Wiener process taking values in a Hilbert space G; A is a nonpositive
self-adjoint linear operator H → H with compact inverse; B , � are measurable mappings
H → H and H → L2(G,H), respectively. Here, L2(G,H) denotes the space of all Hilbert–
Schmidt operators G → H . It follows that A has negative eigenvalues −∞ < · · · ≤ −λ2 ≤
−λ1 < 0 and that the corresponding eigenvectors form a complete orthonormal basis of H .
We refer to [10], Chapters 4.2 and 7, for the precise definitions. Assume that A, B and � are
such that equation (4.1) has a unique strong solution.

We see that the principal linear part of the drift coefficient satisfies

(Ax, x)H ≤ −λ1‖x‖2
H , x ∈ H.

The simplest case, for example, [10], Chapter 11.6, is the one where the nonlinear part B of
the drift coefficient as well as the diffusion coefficient � are Lipschitz continuous and their
Lipschitz constants are sufficiently small compared with λ1. For such a dissipative system,
one easily gets the following L2-contraction property: for two solutions X, Y of (4.1) with
the same noise and initial conditions X(0) = x, Y(0) = y,

(4.2) E
∥∥X(t) − Y(t)

∥∥2
H ≤ e−ct‖x − y‖2

H , x, y ∈ H,

where c > 0 is some constant that depends only on λ1 and Lipschitz constants of B and �.
Clearly, (4.2) yields exponential ergodicity of the model.

If the Lipschitz constants of B and � are large, then the entire system is not dissipative and
the L2-contraction property (4.2) for the true coupling (X,Y ) has no chance to be satisfied.
Nevertheless, one can provide an analogue of (4.2) for a certain generalized coupling using a
stochastic control-type argument, similar to the one which we have used for SFDEs before.
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Namely, assume for a while that � is uniformly nondegenerate; that is, the norm of the linear
operator �(x)−1 is uniformly bounded over all x ∈ H . Let X be the same as above, and Y be
defined by

(4.3)
dY (t) = AY(t) dt + B

(
Y(t)

)
dt

+ �
(
Y(t)

)
dW(t) − λ

(
Y(t) − X(t)

)
dt, Y (0) = y.

If λ > 0 is large enough compared with the Lipschitz constants for B , �, then the pair (X,Y )

satisfies (4.2). On the other hand, the SDE for Y can be written as

dY (t) = AY(t) dt + B
(
Y(t)

)
dt + �

(
Y(t)

)
dW̃ (t),

where

dW̃ (t) = dW(t) − λ�
(
Y(t)

)−1(
Y(t) − X(t)

)
dt.

Then the law of W̃ is absolutely continuous with respect to the law of W , and moreover, it is
possible to bound the total variation distance between these laws, and thus to verify Assump-
tions A and B2 for this generalized coupling. The argument here is essentially the same as
in Section 3 above. It is based on Theorem A.2 and Lemma A.1 with a minor difference that
now we have to use the analogues of these results for H -valued processes. This difference is
inessential; see Remark A.4.

If � fails to be nondegenerate, this argument still applies, but with a certain modification.
Namely, let HN be the span of the first N eigenvectors of A (which correspond to eigenvalues
−λ1, −λ2, . . ., −λN ) and PN be the projector on this span. Assume that for all x ∈ H we
have Range�(x) ⊃ HN , and the corresponding pseudo-inverse operator �(x)−1 : HN → G

is uniformly bounded over x ∈ H . Instead of (4.3), consider the following equation:

(4.4)
dY (t) = AY(t) dt + B

(
Y(t)

)
dt

+ �
(
Y(t)

)
dW(t) − λN

2
PN

(
Y(t) − X(t)

)
dt, Y (0) = y.

Then the previous argument remains applicable under the assumption that the Lipschitz con-
stants of B and � are small compared with λN . This is essentially the argument developed
in [19], which combines the dissipativity property of A for high modes of the model with
the “stabilization by noise” effect for lower modes, and works well in SPDE models with
Lipschitz nonlinearities, such as, for example, the stochastic reaction–diffusion equation; see
[19], Section 6.1.

This approach is still applicable in SPDE models which contain strongly singular terms,
such as the nonlinear gradient term (u · ∇)u in the Navier–Stokes equation. The technique
here dates back (in the deterministic setting) to the exceptional paper [14] and now is used in
the theory of finite dimensional attractors [8, 39] and meteorology [3, 11, 24]. It was shown
in [30] that for the stochastic Navier–Stokes equation a more sophisticated version of (4.2)
is available (see [30], formula (18), and (4.13) below), which leads to exponential ergodicity
under a certain balance between energy dissipation and energy influx. In [18], this principal
calculation was combined with a stochastic control argument; this led to the construction
of an asymptotic coupling under a milder balance condition which involves only the higher
modes of the system. This construction appears to be not model specific; in [18], using this
construction, five SPDE models were shown to be uniquely ergodic.

Here, we continue (and in a sense finalize) this argument, and show that essentially the
same construction can be used to verify Assumptions A and B2 (and thus to prove exponential
ergodicity) for SPDEs with non-Lipschitz nonlinearities.

Note that, comparing the proof of Theorem 3.1 and the results of the current section,
we can clearly see the difference between the Assumptions B1 and B2. Assumption B1 for
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SFDEs was verified using the support theorem. For SPDEs the support theorem is not easily
available, which makes it difficult to use the argument based on Assumption B1. Fortunately,
we can use instead Assumption B2, which can be verified using the generalized coupling
method.

The structure of the rest of this section is as follows. To make the argument visible, we first
perform basic calculation for the two-dimensional stochastic Navier–Stokes equation, which
provides a dissipativity-type bound for this model. Then we present a general toolkit which
makes it possible to combine this bound with an energy-type estimate and verify Assumptions
A and B2. Finally, we apply this general toolkit to three other SPDE models from [18]: the
hydrostatic Navier–Stokes model, the fractionally dissipative Euler model and the damped
Euler–Voigt model. Additionally, we also treat the Boussinesq equations.

Note that the remaining SPDE from [18], the damped nonlinear wave equation, does not
have any non-Lipschitz nonlinearities; therefore, the exponential ergodicity of this SPDE can
be shown directly by an argument similar to the one used in [19]. Thus we do not treat it here.

4.1. 2D Navier–Stokes equation, I: Basic calculations. In this and the next sections, we
will frequently use the following notation: for a function f : R+ → R we denote the part of
the trajectory

(4.5) f[0,t] := {
f (s), s ∈ [0, t]}, t ≥ 0.

Recall the standard notation. Denote by V the subspace of H 1(D)2, which contains u such
that ∇ · u = 0 and u|∂D

= 0. Denote by H the completion of V w.r.t. the L2(D)2-norm, by
PH the projector in L2(D)2 on H , and by A := −PH� the Stokes operator. The eigenvectors
e1, e2, . . . of the Stokes operator (with the corresponding eigenvalues 0 < λ1 ≤ λ2 ≤ · · · )
form a complete orthonormal basis of H . We denote by ‖ · ‖H the standard L2(D)2-norm
and for w = (w1,w2) ∈ V put ‖w‖2

V := ‖∇w1‖2
H + ‖∇w2‖2

H .
Consider the 2D stochastic Navier–Stokes equation evolving on a bounded domain D ⊂

R
2 with a smooth boundary ∂D:

(4.6)

du(z, t) + (
u(z, t) · ∇)

u(z, t) dt = (
ν�u(z, t) − ∇p(z, t) + f(z)

)
dt

+
m∑

k=1

σ k(z) dWk(t), z ∈ D, t ≥ 0;

u(·,0) = x, ∇ · u = 0, u|∂D
= 0,

where u = (u1, u2) is the unknown velocity field, p is the unknown pressure, m ∈ N, W =
(W 1,W 2, . . . ,Wm) is a standard m-dimensional Brownian motion, f,σ 1, . . . ,σm ∈ L2(D)2,
ν > 0. As usual (see, e.g., [18], Remark 3.1), without loss of generality, we can assume that
f and all σ i are divergence free, and thus, are in H .

It is known ([18], Section 3.1.1) that for any initial condition x ∈ H this equation has a
unique strong solution, which in the case of ambiguity will be denoted later by ux. Further, u
is a Feller Markov process with state space H .

The generalized coupling construction which we will use is the same as in [27], Sec-
tion 6.2.1, and is a slight variation of the construction from [18], Section 3.1.2. Namely, we
consider σ as a linear operator Rm → L2(D)2 and fix the maximal possible N such that

(4.7) HN := PNH ⊂ Range(σ ) = Span(σ k, k = 1, . . . ,m);
here, PN stands for the projection to the span of the first N eigenvectors e1, e2, . . . eN of the
Stokes operator.
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For given x,y ∈ H , take Xx,y := ux and define Yx,y as the solution to the following
stochastic 2D Navier–Stokes equation (4.6) with the initial condition y and the additional
control term:

(4.8)

dYx,y(z, t) + (
Yx,y(z, t) · ∇)

Yx,y(z, t) dt

= (
ν�Yx,y(z, t) − ∇p̃(z, t) + f(z)

)
dt

+ νλN+1

2
PN

(
Xx,y(·, t) − Yx,y(·, t))dt

+
m∑

k=1

σ k(z) dWk(t),

Yx,y(z,0) = y(z), ∇ · Yx,y = 0, Yx,y|∂D
= 0.

Note that (4.8) is just (4.4) up to a proper change of notation. There are two different ways to
understand this equation as a modification of (4.6), both of them being useful for particular
purposes. First, one can interpret (4.8) as an analogue of (4.6) with the operator � changed
to �̂ := � − (νλN+1/2)PN , and with an additional forcing term (νλN+1/2)PNux. This al-
lows one to apply the Girsanov theorem to show that the strong solution to (4.8) is uniquely
defined; see [27], Remark 8, for a detailed exposition. Second, we can write (4.8) in the form
(4.6) with x changed to y, and with dW(t) replaced by

(4.9)
dW x,y(t) := dW(t) + βx,y(t) dt,

βx,y(t) := νλN+1

2
σ−1PN

(
Xx,y(t) − Yx,y(t)

)
.

By (4.7), the pseudo-inverse operator σ−1 : HN → R
m is well-defined and bounded; thus

there exists a constant C > 0 such that for all t ≥ 0,

(4.10)
∥∥βx,y(t)

∥∥
Rm≤ C

∥∥PN

(
Xx,y(t) − Yx,y(t)

)∥∥
H ≤ C

∥∥Xx,y(t) − Yx,y(t)
∥∥
H .

To check the first condition of Assumption A, we note that by construction we have
Law(Xx,y) = Px . Further, recall that for any t ≥ 0 the strong solution to equation (4.6) with
the initial value y, uy(t), is an image of the driving noise under a measurable mapping

�
y
t : C([0, t],Rm) → H.

In other words, uy(t) = �
y
t (W[0,t]), recall the convention (4.5). It follows from the Gir-

sanov theorem ([29], Theorem 7.4) that Law(W
x,y
[0,t]) is absolutely continuous with respect

to Law(W[0,t]). Therefore, by the uniqueness of the solution, we have Yx,y(t) = �
y
t (W

x,y
[0,t]).

By the mere definition of the total variation distance,

dTV
(
Pt(y, ·),Law

(
Yx,y(t)

)) = dTV
(
Law

(
uy(t)

)
,Law

(
Yx,y(t)

))
= dTV

(
Law

(
�

y
t (W[0,t])

)
,Law

(
�

y
t

(
W

x,y
[0,t]

)))
≤ dTV

(
Law(W[0,t]),Law

(
W

x,y
[0,t]

))
.

Thus, for any δ ∈ (0,1] we derive that there exists Cδ > 0 such that for any t ≥ 0 we have by
(4.10) and Theorem A.5,

(4.11)

dTV
(
Pt(y, ·),Law

(
Yx,y(t)

))
≤ Cδ

(
E
(∫ t

0

∥∥Xx,y(s) − Yx,y(s)
∥∥2
H ds

)δ)1/(1+δ)

.
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As we have already explained, the crucial difficulty in the estimation of the ‖ · ‖H -
difference between Xx,y and Yx,y appears because of the non-Lipschitz structure of the term
(u · ∇)u in the original equation. To overcome this difficulty, we use the idea from [14];
see also [18], Section 3.1.2. The Ladyzhenskaia trick [28], formula (6), yields the following
generic bound:

(4.12)
∣∣∣∣∫

D
(v · ∇)u · vdz

∣∣∣∣ ≤ 2‖v‖H‖v‖V ‖u‖V , u,v ∈ V.

Combining the Itô formula, the Poincaré inequality, bound (4.12) and the Gronwall in-
equality, one gets for any t ≥ 0,

(4.13)
∥∥Xx,y(t) − Yx,y(t)

∥∥2
H ≤ ‖x − y‖2

H exp
(
−νλN+1t + 4

ν

∫ t

0

∥∥Xx,y(s)
∥∥2
V ds

)
;

see [27], formula (6.10), and [18], formula (3.9). This inequality can be understood as a
proper substitute for the dissipativity bound (4.2). However, due to the extra term, which
involves the stronger ‖ · ‖V -norm of the solution Xx,y, this bound cannot be directly used
to verify Assumption A.2. Fortunately, the extra term can be efficiently bounded using the
energy estimates. We have (see [18], p. 627, line 16)

d‖u‖2
H + 2ν‖u‖2

V dt = 2(f,u)H dt + ‖σ‖2
H dt + 2(σ,u)H dW.

Using the Cauchy inequality,

2(f,u)H ≤ ν‖u‖2
V + 1

ν

∥∥A−1/2f
∥∥2
H ,

we obtain the integral estimate

(4.14)

∥∥u(t)
∥∥2
H + ν

∫ t

0

∥∥u(s)
∥∥2
V ds

≤ ∥∥u(0)
∥∥2
H +

(
1

ν

∥∥A−1/2f
∥∥2
H + ‖σ‖2

H

)
t + M(t),

where M is a continuous local martingale with

(4.15) d〈M〉t = 4(σ,u)2
H dt ≤ 4‖σ‖2

H‖u‖2
H dt ≤ C‖σ‖2

H‖u‖2
V dt,

where C > 0 and the last inequality follows from the Poincaré inequality.
With the estimates (4.11) and (4.13)–(4.15) in hand, we are able to construct a premetric

θ (which is going to be nonsymmetric due to the presence of the extra factor in (4.13)) such
that Assumptions A and B2 are verified. This allows to prove exponential ergodicity of ux.
Such a construction is quite generic and can be used in various SPDE models. Thus, for the
convenience of further applications, we introduce it separately and in an abstract form.

4.2. A general toolkit for SPDEs. In this subsection, motivated by the above analysis,
we introduce a general framework for establishing exponential ergodicity of the solutions
of SPDEs. We use the general setting from Section 2.1; that is, (E,ρ) is a Polish space,
{Pt(x,A), x ∈ E,A ∈ E}t∈R+ is a Markov transition function and {Px, x ∈ E} is the corre-
sponding Markov family. Recall the notion of a premetric that was defined in the beginning
of Section 2.2. Assume the following.

ASSUMPTION H. There exist a lower semicontinuous function U: E→[0,∞), a mea-
surable function S : E → [0,∞] and a premetric q on E such that for any given x, y ∈ E

there exists a couple of progressively measurable random processes Xx,y = (X
x,y
t )t≥0,

Yx,y = (Y
x,y
t )t≥0, that satisfies the following set of conditions:
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H1 (dissipativity bound):

(4.16) q
(
X

x,y
t , Y

x,y
t

) ≤ q(x, y) exp
(
−ζ t + κ

∫ t

0
S
(
Xx,y

s

)
ds

)
, t ≥ 0,

where ζ > 0, κ ≥ 0;
H2 (energy estimate):

(4.17) U
(
X

x,y
t

) + μ

∫ t

0
S
(
Xx,y

s

)
ds ≤ U

(
X

x,y
0

) + bt + Mt, t ≥ 0,

where μ > 0, b ≥ 0 are some constants such that

(4.18) ζ >
κb

μ
;

and M is a continuous local martingale with M0 = 0 and

(4.19) d〈M〉t ≤ b1S
(
X

x,y
t

)
dt + b2 dt, t ≥ 0,

where b1 ≥ 0, b2 ≥ 0.
H3 (error-in-law bounds): Law(Xx,y) = Px and for every δ ∈ (0,1] there exists a constant

Cδ > 0 such that for any t > 0,

(4.20) dTV
(
Law

(
Y

x,y
t

)
,Pt (y, ·)) ≤ Cδ

(
E
(∫ t

0
q
(
Xx,y

s , Y x,y
s

)
ds

)δ)1/2
.

Additionally, for any δ ∈ (0,1], R > 0 there exists ε = ε(R, δ) > 0 such that E(
∫ t

0 q(X
x,y
s ,

Y
x,y
s ) ds)δ < R implies

(4.21) dTV
(
Law

(
Y

x,y
t

)
,Pt (y, ·)) ≤ 1 − ε.

The functions U , S, q as well as the constants ζ , κ , μ, b, b1, b2, Cδ , ε should not depend on
the pair x, y.

Typically, the process Yx,y is constructed as the solution to the original SPDE where the
Brownian motion is replaced by the Brownian motion with a suitable drift that pushes Yx,y

toward Xx,y (recall (4.9) and the corresponding construction for the stochastic Navier–Stokes
equation). In this case, condition H3 can be replaced by the following simple condition on
this drift. Recall convention (4.5).

LEMMA 4.1. Let W be an m-dimensional Brownian motion, m ≥ 1. Assume that there
exists a constant c > 0 such that for each t ≥ 0, x, y ∈ E there exists a measurable function
� = �t,x,y : C[0, t] → E and progressively measurable processes βx,y, ξx,y : � × [0, t] →
R

m such that:

1. We have dξ
x,y
s = dWs + β

x,y
s ds, s ∈ [0, t].

2. Law(�(W[0,t])) = Pt(y, ·) and �(ξ[0,t]) = Y
x,y
t .

3. For each s ∈ [0, t] we have |βs |2 ≤ cq(X
x,y
s , Y

x,y
s ).

Then conditions (4.20) and (4.21) hold.

PROOF. Fix δ ∈ (0,1], t > 0. Denote

Mδ := E
(∫ t

0
|βs |2 ds

)δ

.

It follows from condition 3 of the lemma that

(4.22) Mδ ≤ cδE
(∫ t

0
q
(
Xx,y

s , Y x,y
s

)
ds

)δ

.
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Further, inequality (A.13) from Theorem (A.5) and condition 2 of the lemma imply

dTV
(
Law

(
Y

x,y
t

)
,Pt (y, ·)) = dTV

(
Law

(
�(ξ[0,t])

)
,Law

(
�(W[0,t])

))
≤ dTV

(
Law(ξ[0,t]),Law(W[0,t])

)
≤ 2(1−δ)/(1+δ)(Mδ)

1/(1+δ).

Combining this with (4.22), we obtain (4.20).
Similarly, inequality (A.14) from Theorem (A.5), condition 2 of the lemma and (4.22)

yield (4.21). �

Now let us present the main result of this section. It shows that Assumptions H1–H3
together with the existence of a suitable Lyapunov function imply exponential ergodicity.

THEOREM 4.2. Suppose that the Markov kernel (Pt ) is Feller and satisfies Assumptions
H1–H3 for some functions U , S, q . Assume further that there exists a measurable function
V : E →R+ such that for some γ > 0, K > 0 we have

(4.23) ExV (Xt) ≤ V (x) − γ Ex

∫ t

0
V (Xs) ds + Kt, t ≥ 0, x ∈ E

and for any M > 0 the functions U(·), q(·, ·) are bounded on the level sets {V ≤ M} and
{V ≤ M} × {V ≤ M}, respectively.

If additionally ρ ≤ qδ for some δ > 0, then (Pt ) has a unique invariant measure π . More-
over, there exist constants C, r > 0 such that

(4.24) Wρ∧1
(
Pt(x, ·),π) ≤ C

(
1 + V (x)

)
e−rt , t ≥ 0, x ∈ E.

REMARK 4.3. If we assume additionally that a Markov semigroup P has an invariant
measure π , then condition ρ ≤ qδ of Theorem 4.2 can be dropped. In this case, the left-hand
side of bound (4.24) is replaced by Wq̃

(
Pt(x, ·),π)

, where q̃(x, y) := q(x, y)δ ∧q(y, x)δ ∧1,
where δ is arbitrary positive real number.

The proof of Theorem 4.2 is based on the following key lemma. It shows that Assumptions
A and B2 follow from Assumptions H1–H3.

LEMMA 4.4. Suppose that Assumptions H1–H3 hold. Then there exists α0 > 0 that de-
pends only on ζ , κ , μ, b, b1, b2, Cδ , ε, such that for any α ∈ (0, α0] there exist constants
C,Q,λ > 0 such that:

(i) Assumption A holds for the premetric

θ(x, y) = eQU(x)q(x, y)α,

and the rate functions L(t) := C, r(t) = C exp(−λt).
(ii) For any set B such that U(·) is bounded on B , and q(·, ·) is bounded on B × B there

exists C > 0 such that Assumption B2 holds for the same premetric θ , the set B and the rate
function R(t) := C exp(−λt).

PROOF OF LEMMA 4.4. (i). Take any x, y ∈ E. First of all, let us derive a good bound on
q(X

x,y
t , Y

x,y
t ), t ≥ 0. Let γ > 0 be a sufficiently small parameter to be chosen later. Define

�γ := sup
t≥0

(
Mt − γ 〈M〉t ).
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By the Dambis–Dubins–Schwarz theorem (see, e.g., [36], Theorem 5.1.6), there exists
(maybe on an extended probability space) a Brownian motion Ŵ such that Mt = Ŵ〈M〉t ,
t ≥ 0. Therefore,

�γ ≤ sup
t≥0

(Ŵt − γ t)

and

(4.25) P(�γ ≥ R) ≤ P
(
sup
t≥0

(Ŵt − γ t) ≥ R
)

= e−2γR, R ≥ 0;

see [5], Part II, formula 2.0.2.(1). By (4.17) and (4.19), we have

(4.26) U
(
X

x,y
t

) + (μ − γ b1)

∫ t

0
S
(
Xx,y

s

)
ds ≤ U(x) + (b + γ b2)t + �γ .

From now on, we assume that 0 < γ < μ/b1. Then, combining (4.26) with (4.16), we obtain

(4.27) q
(
X

x,y
t , Y

x,y
t

) ≤ q(x, y) exp
(−χt + υ

(
U(x) − U

(
X

x,y
t

) + �γ

))
,

where we denoted

υ = κ

μ − γ b1
, χ := ζ − κ(b + γ b2)

μ − γ b1
.

Recall that thanks to (4.18) we have ζ − κb/μ > 0. Therefore, we can take γ small enough
so that χ > 0.

We begin with verifying A.1. By H3, we have Law(Xx,y) = Px . To estimate the distance
between Law(Y

x,y
t ) and Pt(y, ·) we also use H3 together with (4.27). We get for any δ ∈

(0,1),

(4.28)
dTV

(
Law

(
Y

x,y
t

)
,Pt (y, ·)) ≤ Cδ

(
E
(∫ t

0
q
(
Xx,y

s , Y x,y
s

)
ds

)δ)1/2

≤ Cq(x, y)δ/2eυδU(x)/2E exp
(

υδ

2
�γ

)
.

Define now for α ∈ (0,1)

(4.29) θα(z1, z2) := q(z1, z2)
αeαυU(z1), z1, z2 ∈ E.

Recall that (4.25) implies that E exp(K�γ ) < ∞ for K < 2γ . Thus, by taking

(4.30) α0 := (γ /υ) ∧ (1/2),

we see that for any α ∈ (0, α0] inequality (4.28) implies

dTV
(
Law

(
Y

x,y
t

)
,Pt (y, ·)) ≤ Cθα(x, y)

and, therefore, Assumption A.1 holds for the premetric θα , α ∈ (0, α0].
To check A.2, we employ again (4.27). Using the definition of the premetric θα in (4.29),

we derive

(4.31)

Eθα

(
X

x,y
t , Y

x,y
t

) = Eq
(
X

x,y
t , Y

x,y
t

)α
eαυU(X

x,y
t )

≤ Ee−λtq(x, y)αeαυU(x)eαυ�γ

≤ Ce−λt θα(x, y),

where we denoted λ = αχ . Thus Assumption A.2 also holds for the premetric θα , α ∈ [0, α0].
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(ii). We will use the same notation as in the part (i) of the proof. Fix α ∈ (0, α0] and take
any x, y ∈ B . First, let us verify B2.1. Clearly, Law(Xx,y) = Px thanks to H3. Fix now t > 0.
To estimate the total variation distance between Law(Y

x,y
t ) and Pt(y, ·) denote

Mα := E
(∫ t

0
q
(
Xx,y

s , Y x,y
s

)
ds

)α

.

Inequality (4.27) and the boundedness of q and U on the set B imply

Mα ≤ CE exp(υα�γ ) ≤ C1,

where we also used (4.30) and the fact that α ≤ α0. Now condition (4.21) from H3 implies

dTV
(
Law

(
Y

x,y
t

)
,Pt (y, ·)) ≤ 1 − ε

for some ε > 0. This yields (2.5).
To verify B2.2, we use (4.31) and the definition of the metric θα , which is (4.29). Using

again the fact that q and U are bounded on B , we get

Eθα

(
X

x,y
t , Y

x,y
t

) ≤ Ce−λt ,

for some C = C(B) > 0. Thus, B2.2 holds for the metric θα . �

Now we can present a proof of Theorem 4.2.

PROOF OF THEOREM 4.2. The theorem follows from Lemma 4.4 and Theorem 2.7.
Recall the definition of α0 from Lemma 4.4. Take α := α0 ∧ δ. Then by Lemma 4.4

there exists Q > 0 such that Assumptions A and B2 holds for the premetric θ(x, y) :=
eQU(x)q(x, y)α .

Let us now check that all the conditions of Theorem 2.7 are satisfied for this premetric θ .
The first condition of Theorem 2.7 is satisfied due to (4.23). Since, by assumption, ρ ≤ qδ

and U(x) ≥ 0 for any x ∈ E, we have

ρ(x, y) ∧ 1 ≤ q(x, y)δ∧1 ≤ q(x, y)α∧1 ≤ θ(x, y), x, y ∈ E,

and thus the second condition of Theorem 2.7 holds.
The third condition of Theorem 2.7 holds by Lemma 4.4(i).
Finally, since U and q are bounded on the level sets of V , we see that Lemma 4.4(ii)

implies that the fourth condition of Theorem 2.7 is also satisfied. Now the statement of the
theorem follows immediately from Theorem 2.7. The statement of Remark 4.3 follows now
from Remark 2.8. �

4.3. 2D Navier–Stokes equation, II: Exponential ergodicity. Now with the general toolkit
in hand we can proceed directly and establish exponential ergodicity of the 2D stochastic
Navier–Stokes equation. Note that exponential ergodic bounds had been obtained previously
for the Navier–Stokes equation only on a 2-dimensional torus; see [31] and [21]. Unlike these
results, Theorem 4.5 does not rely on the geometry of the domain D, or on the fine structure
of the forcing. This illustrates well, we believe, that the generalized coupling method is quite
insensitive with respect to the local structure of the model.

For ergodicity of 2D Navier-Stokes equations driven by different types of noise we refer
also to [25], Section 3.

Recall that λi is the ith largest eigenvalue of the Stokes operator A = −PH�.
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THEOREM 4.5. Assume that there exists N ∈ Z+ such that

PNH ⊂ Span(σ k, k = 1, . . . ,m)

and

(4.32) λN+1 > 4ν−4∥∥A−1/2f
∥∥2
H + 4ν−3‖σ‖2

H .

Then the stochastic Navier–Stokes equation (4.6) has a unique invariant measure π . Further,
there exist constants C > 0, r > 0 such that

W‖·‖H ∧1
(
Law

(
ux(t)

)
, π

) ≤ C
(
1 + ‖x‖2

H

)
e−rt , t ≥ 0,x ∈ H.

PROOF. Let us check that all the conditions of Theorem 4.2 are satisfied. Motivated by
the preliminary analysis in Section 4.1, let us take

U(x) := ‖x‖2
H , S(x) := ‖x‖2

V , q(x,y) := ‖x − y‖2
H , x,y ∈ H.

Then it follows from (4.13) that Assumption H1 is satisfied with ζ := νλN+1 and κ := 4/ν.
Further, we see from bounds (4.14) and (4.15) that H2 also holds with μ := ν and b :=

‖A−1/2f‖2
H/ν + ‖σ‖2

H . Constraint (4.18) follows from (4.32).
To verify H3, we employ Lemma 4.1. As discussed in Section 4.1, for any t ≥ 0 there

exists some measurable mapping � such that Yx,y(t) = �
y
t (W

x,y
[0,t]) and uy = �

y
t (W[0,t]).

Inequality (4.10) implies that for some C > 0

|βs |2 ≤ Cq
(
Xx,y(s),Yx,y(s)

)
, s ∈ [0, t].

Hence, by Lemma 4.1 condition H3 also holds.
Finally, we introduce the following Lyapunov function: V (x) := ‖x‖2

H . By definition, for
any M > 0 the functions U and q are bounded on the level sets {V ≤ M} and {V ≤ M} ×
{V ≤ M}, respectively. Inequality (4.23) follows from the energy estimate (4.14) and the
Poincaré inequality ‖u‖V ≥ C‖u‖H .

Since ρ := ‖x − y‖H ≤ q(x,y)1/2, we see that all conditions of Theorem 4.2 hold. This
immediately implies the statement of the theorem. �

4.4. 2D hydrostatic Navier–Stokes equation. In this section, we treat the stochastic hy-
drostatic Navier–Stokes equations. Fix L,h > 0 and consider a domain D ⊂ R

2 defined
by D := {(z1, z2) : z1 ∈ (0,L), z2 ∈ (−h,0)}. Introduce the lateral side of the boundary
�l := {0,L}× [−h,0] and the horizontal side �h := [0,L]× {−h,0}. Consider the following
equations for an unknown velocity field (u,w) and pressure p on D:

du + (u∂z1u + w∂z2u)dt = (ν�u − ∂z1p)dt +
m∑

k=1

σk dWk,(4.33)

∂z2p = 0, ∂z1u + ∂z2w = 0, u(0) = x,

u|�l
= 0, ∂z2u|�h

= w|�h
= 0.

(4.34)

where W = (W 1,W 2, . . . ,Wm) is a standard m-dimensional Brownian motion, ν > 0. We
assume that for any k = 1, . . . ,m we have σk ∈ H 2(D), σk |�l

= 0, ∂z2σk |�h
= 0,

∫ 0
−h σk dz2 ≡

0. Denote

H :=
{
ϕ ∈ L2(D) :

∫ 0

−h
ϕ(z1, z2) dz2 = 0 for all z1 ∈ (0,L)

}
,

V :=
{
ϕ ∈ H 1(D) :

∫ 0

−h
ϕ(z1, z2) dz2 = 0 for all z1 ∈ (0,L) and ϕ|�l

= 0
}
.
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Let ‖ · ‖H be the standard L2(D)-norm and put ‖ϕ‖2
V := ‖∂z1ϕ‖2

H + ‖∂z2ϕ‖2
H , where ϕ ∈ V .

We consider the following complete orthonormal basis of H :{
ei,j := 2√

hL
sin

(
iπz1

L

)
cos

(
jπz2

h

)}
i,j≥1

,

which corresponds to eigenvectors of the negative Laplacian operator with boundary condi-
tions given by (4.34). Their associated eigenvalues are{

λi,j := π2(
i2/L2 + j2/h2)}

i,j≥1.

It is known ([18], Section 3.2.1, see also [17], Theorems 1.3 and 1.5) that under the above
assumptions on σ , for any x ∈ V stochastic hydrostatic Navier–Stokes equation (4.33) has a
unique strong solution, which in the case of ambiguity will be further denoted by ux . More-
over, u is a Feller Markov process with the state space V and for Lebesgue-almost all t > 0
the random element ux(t) ∈ {ϕ ∈ H 2(D) : ∂z2ϕ|�h

= 0}. The existence and uniqueness of the
invariant measure of u was shown in [18], Section 3.2. The weak convergence of transition
probabilities to the invariant measure was established in [27], Section 6.2.2. We strengthen
these results and prove exponential ergodicity of u.

THEOREM 4.6. Assume that

(4.35) Span(ei,j : λi,j ≤ K) ⊂ Span(σk, k = 1, . . . ,m),

where

(4.36) K := 4(1 + h)ν−3
(

1 +
√

hL√
2π

)(‖σ‖2
H + ‖∂z2σ‖2

H

)
.

Then the stochastic hydrostatic Navier–Stokes equation (4.33) has a unique invariant measure
π . Further, there exist constants C > 0, r > 0 such that

W‖·‖H ∧1
(
Law

(
ux(t)

)
, π

) ≤ C
(
1 + ‖x‖2

H + ‖∂z2x‖2
H

)
e−rt , t ≥ 0, x ∈ V.

PROOF. As in the proof of Theorem 4.5, we will utilize Theorem 4.2. Let us check that
all the conditions of Theorem 4.2 are satisfied. Put

U(x) := ‖x‖2
H + ‖∂z2x‖2

H , S(x) = ‖x‖2
V + ‖∂z2x‖2

V ,

q(x, y) = ‖x − y‖2
H , x, y ∈ V.

We use the same generalized coupling construction as in [27], Section 6.2.2 (which in turn is
a minor variation of the construction from [18], Section 3.2.4).

Fix x, y ∈ V . Take Xx,y := ux and let Yx,y be the solution to the same equation with initial
condition Y

x,y
0 = y and with the additional control term in the right-hand side

1

2
νKP K(

X
x,y
t − Y

x,y
t

)
dt;

here P K is the projection to the space Span(ei,j : λi,j ≤ K).
Then an application of the Itô formula, Poincaré inequality and Ladyzhenskaia bound [28],

formula (6), yields (see the inequality at [18], line 1, p. 633)

(4.37)

1

2
d
∥∥Xx,y(t) − Yx,y(t)

∥∥2
H + 1

2
νK

∥∥Xx,y(t) − Yx,y(t)
∥∥2
H dt

≤ 4(1 ∨ h)ν−1∥∥Xx,y(t) − Yx,y(t)
∥∥2
H

× (∥∥Xx,y(t)
∥∥2
V + ∥∥∂z2X

x,y(t)
∥∥
H

∥∥∂z2X
x,y(t)

∥∥
V

)
.



24 O. BUTKOVSKY, A. KULIK AND M. SCHEUTZOW

By the Poincaré inequality, for any ϕ ∈ H 1(D) such that ϕ|∂D
= 0 we have

π2(
h−2 + L−2)‖ϕ‖L2 ≤ ‖∇ϕ‖L2 .

This combined with (4.37) and the Gronwall inequality implies now

q
(
Xx,y(t), Y x,y(t)

)
≤ q(x, y) exp

(
−νKt + κ

∫ t

0

(∥∥Xx,y(s)
∥∥2
V + ∥∥∂z2X

x,y(s)
∥∥2
V

)
ds

)
,

where

κ := 8(1 ∨ h)ν−1
(

1 +
√

hL√
2π

)
.

Thus Assumption H1 is satisfied.
To check H2, we use the standard energy estimates [18], formulae (3.15) and (3.17). We

get

(4.38)
d
(∥∥Xx,y(t)

∥∥2
H + ∥∥∂z2X

x,y(t)
∥∥2
H

) + 2ν
(∥∥Xx,y(t)

∥∥2
V + ∥∥∂z2X

x,y(t)
∥∥2
V

)
dt

= (‖σ‖2
H + ‖∂z2σ‖2

H

)
dt + M(t),

where M is a continuous local martingale with the quadratic variation

d〈M〉t ≤ (
4
∥∥Xx,y(t)

∥∥2
H‖σ‖2

H + 4
∥∥∂z2X

x,y(t)
∥∥2
H‖∂z2σ‖2

H

)
dt

≤ C
∥∥Xx,y(t)

∥∥2
V dt ≤ CS

(
Xx,y(t)

)
,

for some C > 0; here, in the second inequality, we used the Poincaré inequality. Thus H2 is
satisfied with μ := 2ν and b := ‖σ‖2

H +‖∂z2σ‖2
H . Inequality (4.18) holds due to the definition

of K in (4.36).
Denote

Wx,y(t) := W(t) +
∫ t

0

1

2
νKσ−1P K(

X
x,y
t − Y

x,y
t

)
dt, t ≥ 0.

By (4.35), we see that this process is well-defined. Arguing as in the proof of theorem The-
orem 4.5, we see that the uniqueness of the solution to (4.33) implies that for each t ≥ 0
there exists a measurable mapping �

y
t : C([0, t],Rm) → V such that Yx,y(t) = �

y
t (W

x,y
[0,t])

and uy(t) = �
y
t (W[0,t]). Further, thanks again to condition (4.35), we see that (similar to

(4.10)) there exists a constant C > 0 such that for any t ≥ 0,∥∥∥∥1

2
νKσ−1P K(

X
x,y
t − Y

x,y
t

)∥∥∥∥2

Rm
≤ C

∥∥Xx,y
t − Y

x,y
t

∥∥2
H = Cq

(
X

x,y
t , Y

x,y
t

)
.

Thus, by Lemma 4.1, condition H3 is also satisfied.
Finally, we consider the following Lyapunov function:

V (x) = ‖x‖2
H + ‖∂z2x‖2

H , x ∈ V.

Condition (4.23) follows from the energy estimate (4.38). By definition, for any M > 0 the
functions q and U are bounded on the level sets {V ≤ M} × {V ≤ M} and {V ≤ M}, respec-
tively.

We recall that as shown in [18], Section 3.2, the process u has an invariant measure. There-
fore, all the conditions of Theorem 4.2 and Remark 4.3 hold. This immediately implies the
statement of the theorem. �
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4.5. The fractionally dissipative Euler model. In this and the next sections, we will
denote the fractional Laplacian by �γ := −(−�)γ/2, γ ∈ (0,2). For a vector f(z) =
(f1(z), f2(z)), where z = (z1, z2) ∈ R

2 we denote as usual curl f := ∂z1f2 − ∂z2f1.
Fix r > 2 and consider the stochastic fractionally dissipative Euler model on the periodic

box D := [−π,π ]2. In the velocity formulation, the model is given by

du(z, t) + (
u(z, t) · ∇)

u(z, t) dt = (
�γ u(z, t) − ∇p(z, t)

)
dt

+
m∑

k=1

σ k(z) dWk(t), z ∈ D, t ≥ 0;

u(·,0) = x, ∇ · u = 0,

(4.39)

where u = (u1, u2) is the unknown velocity field, p is the unknown pressure, m ∈ N, W =
(W 1,W 2, . . . ,Wm) is a standard m-dimensional Brownian motion. We assume that for any
k = 1, . . . ,m we have σ k ∈ Hr+3(D)2, ∇ · σk = 0,

∫
D σk(z) dz = 0.

Introduce the following space:

V :=
{
ϕ ∈ Hr(D)2 : ∇ · ϕ = 0,

∫
D

ϕ(z) dz = 0
}
.

The eigenvectors e1, e2, . . . of the operator −�γ |V (with the corresponding eigenvalues 0 <

λ1 = 1 ≤ λ2 ≤ · · · ) form a complete orthonormal basis of V .
It is known ([18], Section 3.3.1, see also [9], footnote on p. 821, Proposition 1.1 and The-

orem 1.4) that for any x ∈ V equation (4.39) has a unique strong solution, which in the case
of ambiguity will be further denoted by ux. Moreover, u is a Feller Markov process with
the state space V . The existence and uniqueness of the invariant measure of u was shown in
[9], Theorem 1.5, and [18], Section 3.3. The weak convergence of transition probabilities to
the invariant measure was established in [27], Section 6.2.3. It was conjectured in [18], Sec-
tion 3.3, that to establish the rate of convergence to the invariant measure one might need to
exploit high-order polynomial moment bounds of the solution in high-order Sobolev spaces.
Actually, applying our method, we are able to show exponential rate of convergence without
invoking these complicated bounds; we use just the calculations from [18], Section 3.3.2.

THEOREM 4.7. There exists a universal C > 0 such that if for some N ∈ Z+ one has

Span(ek, k = 1, . . . ,N) ⊂ Span(σ k, k = 1, . . . ,m)

and

(4.40) λN+1 > C‖σ‖2
L6/γ

,

then the stochastic fractionally dissipative Euler equation (4.39) has a unique invariant mea-
sure π . Further, there exist constants C1 > 0, r > 0 such that

W‖·‖L2∧1
(
Law

(
ux(t)

)
, π

) ≤ C1
(
1 + ‖ curl x‖2

L6/γ
+ ‖x‖2

L2

)
e−rt , t ≥ 0,x ∈ V.

PROOF. Let us again check that all the conditions of Theorem 4.2 are satisfied. For
brevity, we denote p := 6/γ and put

U(x) := (
1 + ‖ curl x‖p

Lp

)2/p
, S(x) := ‖ curl x‖2

Lp
,

q(x,y) := ‖x − y‖2
L2

, x,y ∈ V.

Since x ∈ Hr(D)2, we see that curl x ∈ Hr−1(D), and thus by the Sobolev embedding theo-
rem curl x ∈ L∞(D) thanks to the assumption r > 2. Therefore, U is finite on V .
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We again use the same coupling construction as in [27], Section 6.2.3 (which in turn is
a small modification of the construction from [18], Section 3.3.2). Fix x,y ∈ V . We take
Xx,y := ux and let Yx,y be the solution to the same equation with the extra term in the right-
hand side

1

2
λN+1PN

(
Xx,y(t) − Yx,y(t)

)
dt

and started from the initial condition Yx,y
0 = y. Then by [18], formula (3.28) (see also [9],

formulae (4.15)–(4.20)) there exists a universal C1 > 0 such that

q
(
Xx,y(t),Yx,y(t)

) ≤ q(x,y) exp
(
−λN+1t + C1

∫ t

0
S
(
Xx,y(s)

)
ds

)
.

Therefore, Assumption H1 is satisfied.
Assumption H2 follows from the corresponding energy estimate [18], formula (3.29). In-

deed, this estimate immediately implies that for some universal constants C2,C3 > 0 we have

dU
(
Xx,y(t)

) + C2S
(
Xx,y(t)

)
dt ≤ C3‖σ‖2

Lp dt + M(t),

where M is a continuous local martingale with quadratic variation bounded by

d〈M〉t ≤ 4‖σ‖2
LpU

(
Xx,y(t)

)
dt ≤ 4‖σ‖2

Lp

(
1 + S

(
Xx,y(t)

))
dt,

see [18], formula (3.30). This implies H2. Inequality (4.18) follows from (4.40), where we
took C := C1C3/C2.

Assumption H3 follows from the uniqueness of a strong solution to (4.39) by exactly the
same argument as in the proofs of Theorem 4.5 and 4.6.

Finally, we consider the Lyapunov function

V (x) := U(x) + ‖x‖2
L2

, x ∈ V.

It is clear that for any M > 0 the functions U and q are bounded on the level sets {V ≤ M}
and {V ≤ M} × {V ≤ M}, respectively. Further, we have a simple energy estimate

(4.41) d
∥∥Xx,y(t)

∥∥2
L2 + 2

∥∥�γ/2Xx,y(t)
∥∥2
L2 dt = ‖σ‖2

L2 dt + dM̃(t),

for some martingale M̃ . Since Xx,y(t) is a mean zero function, the Poincaré inequality implies∥∥�γ/2Xx,y(t)
∥∥
L2 ≥ ∥∥Xx,y(t)

∥∥
L2 .

Combining this with (4.41) and with the energy estimate for ‖ curl x‖p
Lp

[18], formula (3.29),
we obtain (4.23).

We recall that as shown in [18], Section 3.3, the process u has an invariant measure. There-
fore, all the conditions of Theorem 4.2 and Remark 4.3 hold. This immediately implies the
statement of the theorem. �

4.6. The 2D damped stochastically forced Euler–Voigt model. Our next example is the
2D damped stochastically forced Euler–Voigt Model. Fix γ > 2/3 and consider the following
equation on the periodic box D := [−π,π ]2:

du(z, t) + (
νu(z, t) + (

uγ (z, t) · ∇)
uγ (z, t) dt + ∇p(z, t)

)
dt

=
m∑

k=1

σ k(z) dWk(t),

u(·,0) = x, ∇ · u = 0, �γ uγ = u,

(4.42)
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where u = (u1, u2) is the unknown velocity field, p is the unknown pressure, ν > 0, m ∈ N,
W = (W 1,W 2, . . . ,Wm) is a standard m-dimensional Brownian motion. We assume that for
any k = 1, . . . ,m we have σ k ∈ H 1−γ /2(D)2, ∇ · σk = 0,

∫
D σk(z) dz = 0.

Introduce the following space:

V :=
{
ϕ ∈ H 1−γ /2(D)2 : ∇ · ϕ = 0,

∫
D

ϕ(z) dz = 0
}
.

The eigenvectors e1, e2, . . . of the operator −�|V (with the corresponding eigenvalues 0 <

λ1 = 1 ≤ λ2 ≤ · · · ) form a complete orthonormal basis of V .
It is known ([18], Proposition 3.4) that for any x ∈ V equation (4.39) has a unique strong

solution, which in the case of ambiguity will be further denoted by ux. Moreover, u is a
Markov process with the state space V . Note however that the Feller property of u is known
only with respect to a weaker H−γ /2 norm rather than H 1−γ /2 norm. This causes several
technical difficulties, which however are not very crucial and can be successfully resolved.

First, we note that the process ux is progressively measurable. This follows from the facts
that ux is stochastically continuous in the weaker H−γ /2 norm and the Borel σ -algebras
generated by the H−γ /2- and the H 1−γ /2-norms are the same.

Next, we cannot apply here Theorem 4.2, which requires the Feller property of the Markov
semigroup. Therefore, to show the exponential convergence of transition probabilities we
apply [23], Theorem 4.8, which does not require the Feller property, together with Lemma 4.4
and Theorem 2.4. Note that the existence of the invariant measure of u does not follow from
these considerations; fortunately, it was already established in [18], Proposition 3.5.

In this section, we also use the notation ‖ϕ‖Hs := ‖�sϕ‖L2 , s ∈ R.

THEOREM 4.8. There exists a universal C > 0 such that if for some N ∈ Z+ one has

Span(ek, k = 1, . . . ,N) ⊂ Span(σ k, k = 1, . . . ,m)

and

(4.43) λ
γ/2−1/3
N+1 > C

‖ curlσ‖2
H−γ /2

ν3 ,

then equation (4.42) has a unique invariant measure π . Further, there exist constants C1 > 0,
r > 0 such that

(4.44) W‖·‖
H−γ /2∧1

(
Law

(
ux(t)

)
, π

) ≤ C1
(
1 + ‖x‖2

H1−γ /2

)
e−rt , t ≥ 0,x ∈ V.

PROOF. First, let us check that Assumptions H1–H3 hold.
Put

U(x) = S(x) := ∥∥�−γ /2 curl x
∥∥2
L2

, q(x,y) = ∥∥�−γ /2(x − y)
∥∥2
L2

, x,y ∈ V.

We use the same coupling construction as in [27], Section 6.2.4 (which again is a minor
modification of the corresponding construction from [18], Section 3.4.4). Fix x,y ∈ V . Take
Xx,y := ux and let Yx,y be the solution to the same equation with the extra term in the right-
hand side

1

2
νλ

γ/2−1/3
N+1 PN

(
Xx,y(t) − Yx,y(t)

)
dt
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and started from the initial condition Yx,y
0 = y (recall that γ > 2/3). Then [18], formula

(3.45), and the Sobolev embedding H 1/3 ⊂ L3 imply that for some universal constant C1 > 0,

(4.45)

1

2

d

dt
q
(
Xx,y(t),Yx,y(t)

) + νq
(
Xx,y(t),Yx,y(t)

)
+ 1

2
νλ

γ/2−1/3
N+1

∥∥PN�−γ /2(
Xx,y(t) − Yx,y(t)

)∥∥2
L2

≤ C1
∥∥�−γ (

Xx,y(t) − Yx,y(t)
)∥∥2

H 1/3

∥∥�−γ curl
(
Xx,y(t)

)∥∥
H 1/3 .

By the Poincaré inequality,

C1
∥∥Xx,y(t) − Yx,y(t)

∥∥2
H−γ+1/3

∥∥curl
(
Xx,y(t)

)∥∥
H−γ+1/3

≤ 1

2

∥∥Xx,y(t) − Yx,y(t)
∥∥2
H−γ+1/3

× (
νλ

γ/2−1/3
N+1 + ν−1λ

−γ /2+1/3
N+1 C2

1
∥∥curl

(
Xx,y(t)

)∥∥2
H−γ+1/3

)
≤ 1

2
νλ

γ/2−1/3
N+1

∥∥PN�−γ /2(
Xx,y(t) − Yx,y(t)

)∥∥2
L2

+ 1

2
νq

(
Xx,y(t),Yx,y(t)

)
+ 1

2
ν−1λ

−γ /2+1/3
N+1 C2

1q
(
Xx,y(t),Yx,y(t)

)
S
(
Xx,y(t)

)
.

Combining this with (4.45) and applying the Gronwall inequality, we obtain

q
(
Xx,y(t),Yx,y(t)

) ≤ q(x,y) exp
(
−νt + C2

1ν−1λ
−γ /2+1/3
N+1

∫ t

0
S
(
Xx,y(s)

)
ds

)
.

Therefore, assumption H1 is satisfied.
Assumption H2 follows immediately from [18], formula (3.35). Indeed, rewriting this for-

mula in our notation, we get

dU
(
Xx,y(t)

) + 2νS
(
Xx,y(t)

)
dt = ‖ curlσ‖2

H−γ /2 dt + M(t),

where M is a continuous local martingale with quadratic variation bounded by

d〈M〉t ≤ 4‖ curlσ‖2
H−γ /2S

(
Xx,y(t)

)
dt.

This yields H2. Inequality (4.18) follows from (4.43), where we took C := C2
1/2.

To verify H3, we use the same argument as in the proofs of Theorems 4.5 and 4.6. Note
that condition 3 of Lemma 4.1 holds since by the Poincaré inequality for any t ≥ 0,∥∥PN

(
Xx,y(t) − Yx,y(t)

)∥∥2
L2

≤ λ
γ/2
N

∥∥PN

(
Xx,y(t) − Yx,y(t)

)∥∥2
H−γ /2

≤ λ
γ/2
N q

(
Xx,y(t),Yx,y(t)

)
.

Thus all the assumptions H1–H3 hold.
Finally, we consider the Lyapunov function

V (x) := ‖ curl x‖2
H−γ /2 + ‖x‖2

H−γ /2, x ∈ V.

Obviously, for any M > 0 the functions U and q are bounded on the level sets {V ≤ M} and
{V ≤ M}× {V ≤ M}, respectively. Further, by adding energy estimates [18], formulae (3.34)
and (3.35), we obtain

EV
(
ux(t)

) ≤ V (x)e−2νt + KV , t ≥ 0

for some universal constant KV > 0.
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Now we are ready to complete the proof of the theorem. The existence of an invariant
measure π was established in [18], Proposition 3.5. Since V is a Lyapunov function for
Pt , V is integrable with respect to any invariant measure (see, e.g., [20], Proposition 4.24).
Applying Lemma 4.4 and Theorem 2.4(i), (iii), we see that for some N > 0, t > 0, α > 0,
C > 0 the distance-like function

dN(x1,x2) := (
NeC(U(x1)∧U(x2))q(x1,x2)

α) ∧ 1

is contracting for Pt and the set {V ≤ 4KV } is dN -small for Pt . Thus all the conditions of
[23], Theorem 4.8, are satisfied. Hence the invariant measure is unique and the exponential
bound on the convergence rate (4.44) follows from [23], formula (4.6), and the integrabil-
ity of V with respect to π . Note that to use the integrability, one first has to check that
Wd(Pt(x, ·),Pt (y, ·)) is measurable. This is the point, where the lack of the Feller prop-
erty causes minor technical difficulty; in particular we can not refer here neither to [23],
Lemma 4.13, nor to [26], Theorem 4.4.3. Note however, that the mapping

V × V � (x, y) �→ (
Pt(x, ·),Pt (y, ·)) ∈ P(V ) ×P(V )

is measurable (one can get this easily using the H−γ /2-Feller property), and the function dN

is continuous on V × V . Then the required measurability follows by [42], Corollary 5.22.
�

4.7. Boussinesq approximation for Rayleigh–Bénard convection. Finally, we consider
Boussinesq approximation for the Rayleigh–Bénard convection perturbed by additive noise.
The physical motivation behind the model as well as the relevance of the model for fluid
dynamics are explained in detail in [16].

Consider the following system of stochastic equations evolving on a domain D :=
[0,L] × [0,1]:

1

Pr

(
du(z, t) + (

u(z, t) · ∇)
u(z, t) dt

)
= �u(z, t) dt + Rai2T (z, t) dt − ∇p(z, t) dt

+
m1∑
k=1

σ k(z) dWk(t), z ∈ D, t ≥ 0;
(4.46)

dT (z, t) + (
u(z, t) · ∇)

T (z, t) dt

= �T (z, t) dt +
m2∑
k=1

ρk(z) dBk(t), z ∈ D, t ≥ 0;(4.47)

(
u(0), T (0)

) = x, ∇ · u = 0,

u|z2=0 = u|z2=1 = 0, T|z2=0 = R̃a, T|z2=1 = 0

u, T are periodic in z1,

where u = (u1, u2) is the unknown velocity field; p is the unknown pressure; T is the un-
known temperature; m1,m2 ∈ Z+; W = (W 1, . . . ,Wm1) and B = (B1, . . . ,Bm2) are stan-
dard independent m1– and m2-dimensional Brownian motions, respectively. Pr, Ra, R̃a de-
note positive constants and correspond to some physical parameters: Pr is the Prandtl number,
Ra and R̃a are Rayleigh numbers. We also used the notation i2 := (0,1).
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Introduce the following spaces:

V1 := {
ϕ ∈ H 1(D)2 : ∇ · ϕ = 0,ϕ|z2=0,1

= 0,ϕ is periodic in z1
}
,

V2 := {
ϕ ∈ H 1(D) : ϕ|z2=0,1 = 0, ϕ is periodic in z1

}
,

Ṽ2 := {
ϕ ∈ H 1(D) : ϕ|z2=0 = R̃a, ϕ|z2=1 = 0, ϕ is periodic in z1

}
.

We denote by H1 and H2 the completions of V1 and V2 with respect to L2(D)2- and L2(D)-
norms, correspondingly. Put V := V1 × V2, H := H1 × H2. The eigenvectors e1, e2, . . . of
the Stokes operator (with the corresponding eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ) form a complete
orthonormal basis of H1, and the eigenvectors j1, j2, . . . of the Laplace operator (with the
corresponding eigenvalues 0 < μ1 ≤ μ2 ≤ · · · ) form a complete orthonormal basis of H2.
For N ∈ Z+, we denote by P

Hi

N the projection onto the span of the first N eigenvectors of
Hi , i = 1,2. By ‖ · ‖H1 , ‖ · ‖H2 , ‖ · ‖H , we denote the L2 norms in the spaces H1, H2, H ,
correspondingly.

We assume that for each k = 1, . . . ,m1 we have σ k ∈ H 2(D)2 ∩ V1 and for each k =
1, . . . ,m2 we have ρk ∈ H 2(D) ∩ V2.

It is known ([16], Proposition 2.1) that for any x ∈ H a system of equations (4.46)–(4.47)
has a unique strong solution, which in the case of ambiguity will be further denoted by
(ux, T x). Moreover, (u, T ) is a Feller Markov process with the state space H and for almost
all t > 0 we have (ux(t), T x(t)) ∈ V1 × Ṽ2.

It was shown in [15], Theorem 1.1, that if the velocity u and temperature T satisfies pe-
riodic boundary conditions, then the process (u, T ) is exponentially ergodic. However, as
was noted in [16], “using periodic boundary conditions in the vertical directions is not ap-
propriate from the physical point of view.” Therefore, following [16], we equip the system
(4.46)–(4.47) with mixed periodic and nonhomogeneous Dirichlet boundary conditions that
are physically relevant.

Note that the methods of [15], Theorem 1.1, are not applicable to treat the system with
mixed boundary conditions; see also a related discussion in [18], p. 619, lines 36–42. How-
ever, using Theorem 4.2, we are able to establish exponential ergodicity of (ux, T x) with
mixed boundary conditions in the case of small Rayleigh numbers.

THEOREM 4.9. Suppose that

R̃aRa < π2
√

2 − 1.

Assume further that there exists N1,N2 ∈ Z+ such that

PH1
N1

H1 ⊂ Span(σ k, k = 1, . . . ,m1); PH2
N2

H2 ⊂ Span(ρk, k = 1, . . . ,m2);
and

λN1+1 > C1(Pr)−3/2(
Pr‖σ‖2

H1
+ Ra2‖ρ‖2

H2

)
,(4.48)

μN2+1 > C1(Pr)−1/2(
Pr‖σ‖2

H1
+ Ra2‖ρ‖2

H2

) + C2Pr,(4.49)

where C1 = (1+1/π)(
√

2+16Pr−1/2)

1∧(Ra2(2−π−4(1+RaR̃a)2))
, C2 = 2π−2(Ra + R̃a/Pr)2.

Then the system (4.46)–(4.47) has a unique invariant measure π . Further, there exist con-
stants C3 > 0, r > 0 such that

W‖·‖H ∧1
(
Law

(
ux(t), T x(t)

)
, π

) ≤ C3
(
1 + ‖x‖2

H

)
e−rt , t ≥ 0,x ∈ H.
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REMARK 4.10. Note that conditions (4.48)–(4.49) are satisfied in the following two dif-
ferent scenarios. The first case is when the noise acts both on the velocity u and temperature
T (i.e., both N1 and N2 are large enough). The second case is when the noise acts only on
temperature (i.e., N2 is large enough). Then the system is ergodic provided that the Prandtl
number is large enough (and N1 can be small, in particular equal to 0).

PROOF OF THEOREM 4.9. First, as in [16], we introduce a shifted temperature process

�(t, z) := T (t, z) − R̃a(1 − z2), t ≥ 0, z ∈ D.

It is clear from the definition that � is periodic in z1 and satisfies homogeneous boundary
conditions �|z2=0 = �|z2=1 = 0.

Let us check that all the conditions of Theorem 4.2 are satisfied for the Markov process
(u,�). Since � is just T shifted by some nonrandom function, which is constant in time,
exponential ergodicity of the Markov process (u,�) would imply exponential ergodicity of
(u, T ).

Take

U(x) := 1

Pr

∥∥(x1, x2)
∥∥2
H1

+ Ra2‖x3‖2
H2

, S(x) := ‖∇x‖,
q(x,y) := ‖x − y‖H , x,y ∈ H.

We use the coupling construction, which is a small modification of the construction from [16],
Section 5.2. Fix x,y ∈ H . We take Xx,y := (ux,�x) and let Yx,y := (ũ, �̃) be the solution to
the same system of equations with the initial condition y and the additional control terms:

1

Pr

(
dũ + (̃u · ∇ )̃udt

) = �ũdt + Rai2�̃ dt − ∇p̃ dt

+ 1

2
λN1+1P

H1
N1

(
ux − ũ

)
dt +

m1∑
k=1

σ k dWk,

d�̃ + (̃u · ∇)�̃ dt = R̃aũ2 dt + ��̃dt

+ 1

2
μN2+1P

H2
N2

(
�x − �̃

)
dt +

m2∑
k=1

ρk dBk,

(̃
u(0), �̃(0)

) = y, ∇ · ũ = 0, ũ|z2=0 = ũ|z2=1 = 0,

�̃|z2=0 = �̃|z2=1 = 0, ũ, �̃ are periodic in z1.

Then it follows from [16], formulae (5.9)–(5.12), that

(4.50)

1

2

d

dt

(∥∥ux − ũ
∥∥2
H1

+ ∥∥�x − �̃
∥∥2
H2

)
+ Pr

2
λN1+1

∥∥ux − ũ
∥∥2
H1

+ 1

2
μN2+1

∥∥�x − �̃
∥∥2
H2

≤ (R̃a + PrRa)2

π2Pr

∥∥�x − �̃
∥∥2
H2

+ C4√
Pr

(∥∥ux − ũ
∥∥2
H1

+ ∥∥�x − �̃
∥∥2
H2

)(∥∥∇ux∥∥2
H1

+ ∥∥∇�x∥∥2
H2

)
,
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where C4 := (1 + 1/π)(1/
√

2 + 8/
√

Pr). Here, we have also used the Poincaré inequality
‖∇ϕ‖L2 ≥ π‖ϕ‖L2 and the Sobolev embedding ‖ϕ‖4

L4
≤ 2(1 + 1/π)‖ϕ‖2

L2
‖∇ϕ‖2

L2
; both are

valid for any ϕ ∈ V2.
Inequality (4.50) and the Gronwall inequality imply for any t ≥ 0,

q
(
Xx,y(t),Yx,y(t)

)
≤ q(x,y) exp

(
−ζ t + 2C4√

Pr

∫ t

0

∥∥∇ux(s)
∥∥2
H1

+ ∥∥∇�x(s)
∥∥2
H2

ds

)
,

where we put ζ := (PrλN1+1)∧(μN2+1 − 2(R̃a+PrRa)2

π2Pr
). Therefore, assumption H1 is satisfied.

To verify Assumption H2, we use the corresponding energy estimates for ux and �x (see
[16], formulae (3.32) and (3.35)). We multiply the first of these estimates by 1/Pr, the second
one by Ra2 and get

(4.51)

1

Pr
d
∥∥ux(t)

∥∥2
H1

+ Ra2 d
∥∥�x(t)

∥∥2
H2

+ ∥∥∇ux(t)
∥∥2
H1

dt

+ Ra2
(

2 − (1 + RaR̃a)2

π4

)∥∥∇�x(t)
∥∥2
H2

dt

≤ (
Pr‖σ‖2

H1
+ Ra2‖ρ‖2

H2

)
dt + dM(t),

where M is a continuous local martingale with M(0) = 0; its quadratic variation is bounded
by

d〈M〉t ≤ 4
(‖σ‖2

H1
+ Ra4‖ρ‖2

H2

)(∥∥ux(t)
∥∥2
H1

+ ∥∥�x(t)
∥∥2
H2

)
dt.

Inequality (4.51) yields

dU
(
Xx,y(t)

) + μS
(
Xx,y(t)

)
dt ≤ (

Pr‖σ‖2
H1

+ Ra2‖ρ‖2
H2

)
dt + dM(t),

where μ := 1 ∧ (Ra2(2 − (1+RaR̃a)2

π4 )); this implies H2. Inequality (4.18) follows from (4.48)
and (4.49).

Assumption H3 follows from the uniqueness of a strong solution to (4.46)–(4.47) by the
same argument as in the proofs of Theorem 4.5 and 4.6.

Finally, we consider the Lyapunov function

V (x) := U(x), x ∈ H.

We immediately see by definition, that for any M > 0 the functions U and q are bounded
on the level sets {V ≤ M} and {V ≤ M} × {V ≤ M}, respectively. Inequality (4.23) follows
directly from the energy estimate (4.51) and the Poincaré inequality.

Thus all the conditions of Theorem 4.2 hold. This immediately implies the statement of
the theorem. �

APPENDIX. DISTANCE BETWEEN THE LAW OF AN ITÔ PROCESS AND THE
WIENER MEASURE

In the Appendix, we provide useful bounds on the various distances between the law of an
Itô process and the Wiener measure under different sets of conditions. We use these bounds
throughout the paper; however, we believe that they are also of independent interest.

We begin by recalling that for a pair of probability measures μ � ν over a measurable
space (X,X ) the Kullback–Leibler (KL-) divergence of μ from ν is defined by

DKL(μ ‖ ν) :=
∫
X

log
dμ

dν
dμ =

∫
X

dμ

dν
log

(
dμ

dν

)
dν.
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If a measure μ is not absolutely continuous with respect to ν, then for convenience we put
DKL(μ ‖ ν) := +∞. KL-divergence is a stronger measure of difference between probability
distributions than the total variation distance; they are connected in the following way.

LEMMA A.1. Let μ and ν be probability measures over (X,X ). Then

dTV(μ, ν) ≤
√

1

2
DKL(μ ‖ ν);(A.1)

dTV(μ, ν) ≤ 1 − 1

2
e−DKL(μ‖ν);(A.2) ∫

X

(
log

dμ

dν

)
+

dμ ≤ DKL(μ ‖ ν) + log 2.(A.3)

Further, for any N > 1 and any set A ∈ X ,

(A.4) ν(A) ≥ 1

N
μ(A) − DKL(μ‖ν) + log 2

N logN
.

PROOF. We can consider only the case when μ � ν; otherwise, DKL(μ ‖ ν) := +∞
and all the bounds trivially hold. (A.1) is the classical Pinsker inequality (see, e.g., [40],
Lemma 2.5.(i)). Inequality (A.2) is [40], formula (2.25). To establish (A.3), denote f := dμ

dν
.

Then ∫
X
(logf )+ dμ = DKL(μ ‖ ν) +

∫
X
(logf )− dμ

and ∫
X
(logf )− dμ ≤ log

(∫
X

e(logf )− dμ

)
= log

(∫
X

max
(
f −1,1

)
f dν

)
≤ log

(∫
X
(f + 1) dν

)
= log 2.

This implies (A.3).
To prove (A.4), we fix N > 1 and a measurable set A. We have

ν(A) =
∫
A

dν

dμ
dμ

≥ 1

N

∫
A

1
(

dν

dμ
≥ 1

N

)
dμ

≥ 1

N
μ(A) − 1

N

∫
X

1
(

dμ

dν
≥ N

)
dμ

≥ 1

N
μ(A) − 1

N logN

∫
X

log
(

dμ

dν

)
+

dμ.

This combined with (A.3) yields (A.4). �

Consider now a d-dimensional (d ∈N) Itô process (ξt )t≥0 with ξ0 = 0 and

(A.5) dξt = βt dt + dWt, t ≥ 0,

where W is a Wiener process in R
d , and (βt )t≥0 is a progressively measurable process. De-

note by μξ the law of the process ξ in C([0,∞),Rd), and by μW the law of W ; the latter will
be also called the Wiener measure on C([0,∞),Rd).
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THEOREM A.2.

DKL(μξ ‖ μW) ≤ 1

2
E

∫ ∞
0

|βt |2 dt.

This result is not new, it is essentially [41], Theorem 8, up to a minor difference which
will be discussed later in Remark A.3. However, apparently it is not widely known, hence for
the convenience of the reader we give its proof together with a short discussion. Recall that
the Girsanov theorem (see, e.g., [29], Theorem 6.2) states that ξ is a Wiener process w.r.t. the
new probability measure dQ := E dP with

E := exp
(
−

∫ ∞
0

βt dWt − 1

2

∫ ∞
0

|βt |2 dt

)
under the assumption that

(A.6) EE = 1.

To verify this assumption, the Novikov condition is most commonly used:

(A.7) E exp
(

1

2

∫ ∞
0

|βt |2 dt

)
< ∞.

This condition is nonimprovable in the sense that the similar condition

E exp
((

1

2
− ε

)∫ ∞
0

|βt |2 dt

)
< ∞

with any ε > 0 is not sufficient for (A.6); see [29], Example 6, Chapter 6.2. On the other
hand, under a much weaker condition

P
(∫ ∞

0
|βt |2 dt < ∞

)
= 1

the absolute continuity μξ � μW holds (see, e.g., [29], Theorem 7.4), though not much
information about the Radon–Nikodym density dμξ/dμW is available. Theorem A.2 has the
same virtue with the latter result: under a weak condition

(A.8) E
∫ ∞

0
|βt |2 dt < ∞

a bound for the KL-divergence of μξ from μW is given without specifying dμξ/dμW . The
proof is based on a similar localization argument.

PROOF OF THEOREM A.2. We begin by observing that if condition (A.8) is not satisfied,
then the statement of the theorem trivially holds. Thus from now on we can assume (A.8).

Assume first that additionally (A.7) holds true. Then (A.6) is satisfied; see, for example,
[29], Theorem 6.1. Hence μξ ∼ μW , and the function

p(x) := dμW

dμξ

(x), x ∈ C
([0,∞),Rd)

satisfies

p(ξ) = E
[
E |σ(ξ)

];
see [29], Theorem 7.3. Therefore,

(A.9)
DKL(μξ ‖ μW) = −

∫
C([0,∞))

log
dμW

dμξ

dμξ = −
∫
C([0,∞))

logp dμξ

= −E logp(ξ) = −E log
(
E
[
E |σ(ξ)

]) ≤ −E logE,
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where in the last inequality we have used the conditional Jensen inequality. Assumption (A.7)
yields (A.8), and thus

E
∫ ∞

0
βt dWt = 0.

Therefore,

−E logE = 1

2
E

∫ ∞
0

|βt |2 dt,

which gives the required bound.
Now we can treat the general case. Define a sequence of stopping times

τn := inf
{
t :

∫ t

0
|βs |2 ds ≥ n

}
, n ∈ Z+.

Let βn
t := βt1t≤τn . Consider the corresponding Itô process:

dξn
t = βn

t dt + dWt, ξn
0 = 0

and denote its law by μξn . By definition, the process βn satisfies the Novikov condition (A.7).
Thus, by the first part of the proof

(A.10) DKL(μξn ‖ μW) ≤ 1

2
E

∫ τn

0
|βt |2 dt ≤ 1

2
E

∫ ∞
0

|βt |2 dt.

Note that the processes ξn and ξ coincide on the set {τn = ∞}. On the other hand, condition
(A.8) implies

P(τn < ∞) ≤ P
(∫ ∞

0
|βt |2 dt ≥ n

)
→ 0 as n → ∞.

Hence

(A.11) dTV(μξn,μξ ) → 0 as n → ∞.

Denote fn := dμξn

dμW
, f := dμξ

dμW
. It follows from (A.11) that fn → f in L1(μW) as n → ∞.

Therefore, fn logfn converges in measure μW to f logf as n → ∞. Since the sequence
(fn logfn)n∈Z+ is uniformly bounded from below by a constant, an application of Fatou’s
lemma and (A.10) give

DKL(μξ ‖ μW) =
∫
C([0,∞))

f logf dμW ≤ lim inf
n→∞

∫
C([0,∞))

fn logfn dμW

≤ 1

2
E

∫ ∞
0

|βt |2 dt.

This completes the proof of the theorem. �

REMARK A.3. A minor difference between Theorem A.2 and [41], Theorem 8, is that
the latter one, prior to the localization argument, uses invertibility of Wiener maps, and thus
requires β to be progressively measurable w.r.t. the natural filtration of W . In the above
proof this step is made using the Jensen inequality (A.9), hence this hidden limitation is not
involved.

REMARK A.4. The proof of Theorem A.2 without any substantial changes can be trans-
ferred to the infinite-dimensional setting. Namely, using [10], Theorem 10.14, instead of the
classical Girsanov theorem, one gets essentially the same bound for DKL(μξ ‖ μW) in the
setting where ξ , W in (A.5) are cylindrical processes in a Hilbert space H . In this case, μξ ,
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μW are cylindrical measures; this requires some additional technical steps, for example, the
specification of the Radon–Nikodym derivative for cylindrical measures. In order to keep the
exposition relatively simple and clear, we do not develop this possibility in further details
here. Note also that Theorem A.2 holds true for a finite time interval interval [0, T ] as well:
one easily gets that by extending a process βt , t ∈ [0, T ] to [0,∞) taking βt = 0, t > T .

As mentioned before, Theorem A.2 provides a nontrivial bound only if condition (A.8)
holds. Now let us further relax this condition and assume that only for some δ ∈ (0,1)

(A.12) Mδ := E
(∫ ∞

0
|βt |2 dt

)δ

< ∞.

In this case, it is also possible to measure the difference between μξ and μW ; the price to
pay is that this difference will be expressed in terms of total variation distance rather than
KL-divergence.

THEOREM A.5. For any δ ∈ (0,1), we have

dTV(μξ ,μW) ≤ 2(1−δ)/(1+δ)(Mδ)
1/(1+δ);(A.13)

dTV(μξ ,μW) ≤ 1 − 1

6
min

(
1

8
, e−(22−δMδ)

1/δ
)
.(A.14)

Further, for any measurable set A ⊂ C([0,∞),Rd) and any N > 1

(A.15) μW(A) ≥ 1

N

(
μξ(A) − 21−δMδ

(logN)δ
− log 2

logN

)
.

PROOF. Fix δ ∈ (0,1). As before, we can assume that condition (A.12) is satisfied; oth-
erwise, all the bounds of the theorem hold trivially.

We begin with the proof of (A.13). Let τn, ξn and μξn , n ∈ Z+ be the same as in the proof
of Theorem A.2. By Theorem A.2, we have for n ∈ Z+

(A.16)
DKL(μξn ‖ μW) ≤ 1

2
E

∫ τn

0
|βt |2 dt = 1

2
E min

(∫ ∞
0

|βt |2 dt, n

)
≤ 1

2
n1−δMδ.

In addition,

(A.17) dTV(μξ ,μξn) ≤ P(τn < ∞) = P
(∫ ∞

0
|βt |2 dt ≥ n

)
≤ n−δMδ.

Then it follows by (A.1) that

dTV(μξ ,μW) ≤ dTV(μξ ,μξn) + dTV(μξn,μW) ≤ n−δMδ + 1

2
n1/2−δ/2

√
Mδ.

Taking n = (4Mδ)
1/(1+δ), we obtain (A.13).

To establish (A.15), we apply inequality (A.4) to the measures μW and μξn , n > 1. For
any N > 1 and any measurable set A, we get

(A.18)

μW(A) ≥ 1

N
μξn(A) − DKL(μξn ‖ μW) + log 2

N logN

≥ 1

N
μξn(A) − n1−δMδ + 2 log 2

2N logN
,
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where we have also used (A.16). Further, inequality (A.17) implies

μξn(A) ≥ μξ(A) − dTV(μξ ,μξn) ≥ μξ(A) − n−δMδ.

Combining this with (A.18), we obtain

μW(A) ≥ 1

N

(
μξ(A) − n1−δMδ

2 logN
− n−δMδ − log 2

logN

)
.

By choosing n := 2 logN , we obtain (A.15).
Finally, to derive (A.14) we apply (A.15) with logN := max(3 log 2, (22−δMδ)

1/δ). We
get

μW(A) ≥ 1

N

(
μξ(A) − 5

6

)
.

This yields

dTV(μξ ,μW) = sup
A

(
μξ(A) − μW(A)

) ≤ 5

6N
+ sup

A

(
1 − 1

N

)
μξ(A)

≤ 1 − 1

6N
≤ 1 − 1

6
min

(
1

8
, e−(22−δMδ)

1/δ
)
.

This completes the proof of (A.14). �
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